linux/fs/exec.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/exec.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8/*
   9 * #!-checking implemented by tytso.
  10 */
  11/*
  12 * Demand-loading implemented 01.12.91 - no need to read anything but
  13 * the header into memory. The inode of the executable is put into
  14 * "current->executable", and page faults do the actual loading. Clean.
  15 *
  16 * Once more I can proudly say that linux stood up to being changed: it
  17 * was less than 2 hours work to get demand-loading completely implemented.
  18 *
  19 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
  20 * current->executable is only used by the procfs.  This allows a dispatch
  21 * table to check for several different types  of binary formats.  We keep
  22 * trying until we recognize the file or we run out of supported binary
  23 * formats.
  24 */
  25
  26#include <linux/kernel_read_file.h>
  27#include <linux/slab.h>
  28#include <linux/file.h>
  29#include <linux/fdtable.h>
  30#include <linux/mm.h>
  31#include <linux/stat.h>
  32#include <linux/fcntl.h>
  33#include <linux/swap.h>
  34#include <linux/string.h>
  35#include <linux/init.h>
  36#include <linux/sched/mm.h>
  37#include <linux/sched/coredump.h>
  38#include <linux/sched/signal.h>
  39#include <linux/sched/numa_balancing.h>
  40#include <linux/sched/task.h>
  41#include <linux/pagemap.h>
  42#include <linux/perf_event.h>
  43#include <linux/highmem.h>
  44#include <linux/spinlock.h>
  45#include <linux/key.h>
  46#include <linux/personality.h>
  47#include <linux/binfmts.h>
  48#include <linux/utsname.h>
  49#include <linux/pid_namespace.h>
  50#include <linux/module.h>
  51#include <linux/namei.h>
  52#include <linux/mount.h>
  53#include <linux/security.h>
  54#include <linux/syscalls.h>
  55#include <linux/tsacct_kern.h>
  56#include <linux/cn_proc.h>
  57#include <linux/audit.h>
  58#include <linux/kmod.h>
  59#include <linux/fsnotify.h>
  60#include <linux/fs_struct.h>
  61#include <linux/oom.h>
  62#include <linux/compat.h>
  63#include <linux/vmalloc.h>
  64#include <linux/io_uring.h>
  65#include <linux/syscall_user_dispatch.h>
  66#include <linux/coredump.h>
  67#include <linux/time_namespace.h>
  68#include <linux/user_events.h>
  69
  70#include <linux/uaccess.h>
  71#include <asm/mmu_context.h>
  72#include <asm/tlb.h>
  73
  74#include <trace/events/task.h>
  75#include "internal.h"
  76
  77#include <trace/events/sched.h>
  78
  79static int bprm_creds_from_file(struct linux_binprm *bprm);
  80
  81int suid_dumpable = 0;
  82
  83static LIST_HEAD(formats);
  84static DEFINE_RWLOCK(binfmt_lock);
  85
  86void __register_binfmt(struct linux_binfmt * fmt, int insert)
  87{
  88        write_lock(&binfmt_lock);
  89        insert ? list_add(&fmt->lh, &formats) :
  90                 list_add_tail(&fmt->lh, &formats);
  91        write_unlock(&binfmt_lock);
  92}
  93
  94EXPORT_SYMBOL(__register_binfmt);
  95
  96void unregister_binfmt(struct linux_binfmt * fmt)
  97{
  98        write_lock(&binfmt_lock);
  99        list_del(&fmt->lh);
 100        write_unlock(&binfmt_lock);
 101}
 102
 103EXPORT_SYMBOL(unregister_binfmt);
 104
 105static inline void put_binfmt(struct linux_binfmt * fmt)
 106{
 107        module_put(fmt->module);
 108}
 109
 110bool path_noexec(const struct path *path)
 111{
 112        return (path->mnt->mnt_flags & MNT_NOEXEC) ||
 113               (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
 114}
 115
 116#ifdef CONFIG_USELIB
 117/*
 118 * Note that a shared library must be both readable and executable due to
 119 * security reasons.
 120 *
 121 * Also note that we take the address to load from the file itself.
 122 */
 123SYSCALL_DEFINE1(uselib, const char __user *, library)
 124{
 125        struct linux_binfmt *fmt;
 126        struct file *file;
 127        struct filename *tmp = getname(library);
 128        int error = PTR_ERR(tmp);
 129        static const struct open_flags uselib_flags = {
 130                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 131                .acc_mode = MAY_READ | MAY_EXEC,
 132                .intent = LOOKUP_OPEN,
 133                .lookup_flags = LOOKUP_FOLLOW,
 134        };
 135
 136        if (IS_ERR(tmp))
 137                goto out;
 138
 139        file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
 140        putname(tmp);
 141        error = PTR_ERR(file);
 142        if (IS_ERR(file))
 143                goto out;
 144
 145        /*
 146         * may_open() has already checked for this, so it should be
 147         * impossible to trip now. But we need to be extra cautious
 148         * and check again at the very end too.
 149         */
 150        error = -EACCES;
 151        if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
 152                         path_noexec(&file->f_path)))
 153                goto exit;
 154
 155        error = -ENOEXEC;
 156
 157        read_lock(&binfmt_lock);
 158        list_for_each_entry(fmt, &formats, lh) {
 159                if (!fmt->load_shlib)
 160                        continue;
 161                if (!try_module_get(fmt->module))
 162                        continue;
 163                read_unlock(&binfmt_lock);
 164                error = fmt->load_shlib(file);
 165                read_lock(&binfmt_lock);
 166                put_binfmt(fmt);
 167                if (error != -ENOEXEC)
 168                        break;
 169        }
 170        read_unlock(&binfmt_lock);
 171exit:
 172        fput(file);
 173out:
 174        return error;
 175}
 176#endif /* #ifdef CONFIG_USELIB */
 177
 178#ifdef CONFIG_MMU
 179/*
 180 * The nascent bprm->mm is not visible until exec_mmap() but it can
 181 * use a lot of memory, account these pages in current->mm temporary
 182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
 183 * change the counter back via acct_arg_size(0).
 184 */
 185static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 186{
 187        struct mm_struct *mm = current->mm;
 188        long diff = (long)(pages - bprm->vma_pages);
 189
 190        if (!mm || !diff)
 191                return;
 192
 193        bprm->vma_pages = pages;
 194        add_mm_counter(mm, MM_ANONPAGES, diff);
 195}
 196
 197static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 198                int write)
 199{
 200        struct page *page;
 201        struct vm_area_struct *vma = bprm->vma;
 202        struct mm_struct *mm = bprm->mm;
 203        int ret;
 204
 205        /*
 206         * Avoid relying on expanding the stack down in GUP (which
 207         * does not work for STACK_GROWSUP anyway), and just do it
 208         * by hand ahead of time.
 209         */
 210        if (write && pos < vma->vm_start) {
 211                mmap_write_lock(mm);
 212                ret = expand_downwards(vma, pos);
 213                if (unlikely(ret < 0)) {
 214                        mmap_write_unlock(mm);
 215                        return NULL;
 216                }
 217                mmap_write_downgrade(mm);
 218        } else
 219                mmap_read_lock(mm);
 220
 221        /*
 222         * We are doing an exec().  'current' is the process
 223         * doing the exec and 'mm' is the new process's mm.
 224         */
 225        ret = get_user_pages_remote(mm, pos, 1,
 226                        write ? FOLL_WRITE : 0,
 227                        &page, NULL);
 228        mmap_read_unlock(mm);
 229        if (ret <= 0)
 230                return NULL;
 231
 232        if (write)
 233                acct_arg_size(bprm, vma_pages(vma));
 234
 235        return page;
 236}
 237
 238static void put_arg_page(struct page *page)
 239{
 240        put_page(page);
 241}
 242
 243static void free_arg_pages(struct linux_binprm *bprm)
 244{
 245}
 246
 247static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 248                struct page *page)
 249{
 250        flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 251}
 252
 253static int __bprm_mm_init(struct linux_binprm *bprm)
 254{
 255        int err;
 256        struct vm_area_struct *vma = NULL;
 257        struct mm_struct *mm = bprm->mm;
 258
 259        bprm->vma = vma = vm_area_alloc(mm);
 260        if (!vma)
 261                return -ENOMEM;
 262        vma_set_anonymous(vma);
 263
 264        if (mmap_write_lock_killable(mm)) {
 265                err = -EINTR;
 266                goto err_free;
 267        }
 268
 269        /*
 270         * Place the stack at the largest stack address the architecture
 271         * supports. Later, we'll move this to an appropriate place. We don't
 272         * use STACK_TOP because that can depend on attributes which aren't
 273         * configured yet.
 274         */
 275        BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 276        vma->vm_end = STACK_TOP_MAX;
 277        vma->vm_start = vma->vm_end - PAGE_SIZE;
 278        vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
 279        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 280
 281        err = insert_vm_struct(mm, vma);
 282        if (err)
 283                goto err;
 284
 285        mm->stack_vm = mm->total_vm = 1;
 286        mmap_write_unlock(mm);
 287        bprm->p = vma->vm_end - sizeof(void *);
 288        return 0;
 289err:
 290        mmap_write_unlock(mm);
 291err_free:
 292        bprm->vma = NULL;
 293        vm_area_free(vma);
 294        return err;
 295}
 296
 297static bool valid_arg_len(struct linux_binprm *bprm, long len)
 298{
 299        return len <= MAX_ARG_STRLEN;
 300}
 301
 302#else
 303
 304static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 305{
 306}
 307
 308static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 309                int write)
 310{
 311        struct page *page;
 312
 313        page = bprm->page[pos / PAGE_SIZE];
 314        if (!page && write) {
 315                page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 316                if (!page)
 317                        return NULL;
 318                bprm->page[pos / PAGE_SIZE] = page;
 319        }
 320
 321        return page;
 322}
 323
 324static void put_arg_page(struct page *page)
 325{
 326}
 327
 328static void free_arg_page(struct linux_binprm *bprm, int i)
 329{
 330        if (bprm->page[i]) {
 331                __free_page(bprm->page[i]);
 332                bprm->page[i] = NULL;
 333        }
 334}
 335
 336static void free_arg_pages(struct linux_binprm *bprm)
 337{
 338        int i;
 339
 340        for (i = 0; i < MAX_ARG_PAGES; i++)
 341                free_arg_page(bprm, i);
 342}
 343
 344static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 345                struct page *page)
 346{
 347}
 348
 349static int __bprm_mm_init(struct linux_binprm *bprm)
 350{
 351        bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 352        return 0;
 353}
 354
 355static bool valid_arg_len(struct linux_binprm *bprm, long len)
 356{
 357        return len <= bprm->p;
 358}
 359
 360#endif /* CONFIG_MMU */
 361
 362/*
 363 * Create a new mm_struct and populate it with a temporary stack
 364 * vm_area_struct.  We don't have enough context at this point to set the stack
 365 * flags, permissions, and offset, so we use temporary values.  We'll update
 366 * them later in setup_arg_pages().
 367 */
 368static int bprm_mm_init(struct linux_binprm *bprm)
 369{
 370        int err;
 371        struct mm_struct *mm = NULL;
 372
 373        bprm->mm = mm = mm_alloc();
 374        err = -ENOMEM;
 375        if (!mm)
 376                goto err;
 377
 378        /* Save current stack limit for all calculations made during exec. */
 379        task_lock(current->group_leader);
 380        bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
 381        task_unlock(current->group_leader);
 382
 383        err = __bprm_mm_init(bprm);
 384        if (err)
 385                goto err;
 386
 387        return 0;
 388
 389err:
 390        if (mm) {
 391                bprm->mm = NULL;
 392                mmdrop(mm);
 393        }
 394
 395        return err;
 396}
 397
 398struct user_arg_ptr {
 399#ifdef CONFIG_COMPAT
 400        bool is_compat;
 401#endif
 402        union {
 403                const char __user *const __user *native;
 404#ifdef CONFIG_COMPAT
 405                const compat_uptr_t __user *compat;
 406#endif
 407        } ptr;
 408};
 409
 410static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
 411{
 412        const char __user *native;
 413
 414#ifdef CONFIG_COMPAT
 415        if (unlikely(argv.is_compat)) {
 416                compat_uptr_t compat;
 417
 418                if (get_user(compat, argv.ptr.compat + nr))
 419                        return ERR_PTR(-EFAULT);
 420
 421                return compat_ptr(compat);
 422        }
 423#endif
 424
 425        if (get_user(native, argv.ptr.native + nr))
 426                return ERR_PTR(-EFAULT);
 427
 428        return native;
 429}
 430
 431/*
 432 * count() counts the number of strings in array ARGV.
 433 */
 434static int count(struct user_arg_ptr argv, int max)
 435{
 436        int i = 0;
 437
 438        if (argv.ptr.native != NULL) {
 439                for (;;) {
 440                        const char __user *p = get_user_arg_ptr(argv, i);
 441
 442                        if (!p)
 443                                break;
 444
 445                        if (IS_ERR(p))
 446                                return -EFAULT;
 447
 448                        if (i >= max)
 449                                return -E2BIG;
 450                        ++i;
 451
 452                        if (fatal_signal_pending(current))
 453                                return -ERESTARTNOHAND;
 454                        cond_resched();
 455                }
 456        }
 457        return i;
 458}
 459
 460static int count_strings_kernel(const char *const *argv)
 461{
 462        int i;
 463
 464        if (!argv)
 465                return 0;
 466
 467        for (i = 0; argv[i]; ++i) {
 468                if (i >= MAX_ARG_STRINGS)
 469                        return -E2BIG;
 470                if (fatal_signal_pending(current))
 471                        return -ERESTARTNOHAND;
 472                cond_resched();
 473        }
 474        return i;
 475}
 476
 477static int bprm_stack_limits(struct linux_binprm *bprm)
 478{
 479        unsigned long limit, ptr_size;
 480
 481        /*
 482         * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
 483         * (whichever is smaller) for the argv+env strings.
 484         * This ensures that:
 485         *  - the remaining binfmt code will not run out of stack space,
 486         *  - the program will have a reasonable amount of stack left
 487         *    to work from.
 488         */
 489        limit = _STK_LIM / 4 * 3;
 490        limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
 491        /*
 492         * We've historically supported up to 32 pages (ARG_MAX)
 493         * of argument strings even with small stacks
 494         */
 495        limit = max_t(unsigned long, limit, ARG_MAX);
 496        /*
 497         * We must account for the size of all the argv and envp pointers to
 498         * the argv and envp strings, since they will also take up space in
 499         * the stack. They aren't stored until much later when we can't
 500         * signal to the parent that the child has run out of stack space.
 501         * Instead, calculate it here so it's possible to fail gracefully.
 502         *
 503         * In the case of argc = 0, make sure there is space for adding a
 504         * empty string (which will bump argc to 1), to ensure confused
 505         * userspace programs don't start processing from argv[1], thinking
 506         * argc can never be 0, to keep them from walking envp by accident.
 507         * See do_execveat_common().
 508         */
 509        ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
 510        if (limit <= ptr_size)
 511                return -E2BIG;
 512        limit -= ptr_size;
 513
 514        bprm->argmin = bprm->p - limit;
 515        return 0;
 516}
 517
 518/*
 519 * 'copy_strings()' copies argument/environment strings from the old
 520 * processes's memory to the new process's stack.  The call to get_user_pages()
 521 * ensures the destination page is created and not swapped out.
 522 */
 523static int copy_strings(int argc, struct user_arg_ptr argv,
 524                        struct linux_binprm *bprm)
 525{
 526        struct page *kmapped_page = NULL;
 527        char *kaddr = NULL;
 528        unsigned long kpos = 0;
 529        int ret;
 530
 531        while (argc-- > 0) {
 532                const char __user *str;
 533                int len;
 534                unsigned long pos;
 535
 536                ret = -EFAULT;
 537                str = get_user_arg_ptr(argv, argc);
 538                if (IS_ERR(str))
 539                        goto out;
 540
 541                len = strnlen_user(str, MAX_ARG_STRLEN);
 542                if (!len)
 543                        goto out;
 544
 545                ret = -E2BIG;
 546                if (!valid_arg_len(bprm, len))
 547                        goto out;
 548
 549                /* We're going to work our way backwards. */
 550                pos = bprm->p;
 551                str += len;
 552                bprm->p -= len;
 553#ifdef CONFIG_MMU
 554                if (bprm->p < bprm->argmin)
 555                        goto out;
 556#endif
 557
 558                while (len > 0) {
 559                        int offset, bytes_to_copy;
 560
 561                        if (fatal_signal_pending(current)) {
 562                                ret = -ERESTARTNOHAND;
 563                                goto out;
 564                        }
 565                        cond_resched();
 566
 567                        offset = pos % PAGE_SIZE;
 568                        if (offset == 0)
 569                                offset = PAGE_SIZE;
 570
 571                        bytes_to_copy = offset;
 572                        if (bytes_to_copy > len)
 573                                bytes_to_copy = len;
 574
 575                        offset -= bytes_to_copy;
 576                        pos -= bytes_to_copy;
 577                        str -= bytes_to_copy;
 578                        len -= bytes_to_copy;
 579
 580                        if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 581                                struct page *page;
 582
 583                                page = get_arg_page(bprm, pos, 1);
 584                                if (!page) {
 585                                        ret = -E2BIG;
 586                                        goto out;
 587                                }
 588
 589                                if (kmapped_page) {
 590                                        flush_dcache_page(kmapped_page);
 591                                        kunmap_local(kaddr);
 592                                        put_arg_page(kmapped_page);
 593                                }
 594                                kmapped_page = page;
 595                                kaddr = kmap_local_page(kmapped_page);
 596                                kpos = pos & PAGE_MASK;
 597                                flush_arg_page(bprm, kpos, kmapped_page);
 598                        }
 599                        if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 600                                ret = -EFAULT;
 601                                goto out;
 602                        }
 603                }
 604        }
 605        ret = 0;
 606out:
 607        if (kmapped_page) {
 608                flush_dcache_page(kmapped_page);
 609                kunmap_local(kaddr);
 610                put_arg_page(kmapped_page);
 611        }
 612        return ret;
 613}
 614
 615/*
 616 * Copy and argument/environment string from the kernel to the processes stack.
 617 */
 618int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
 619{
 620        int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
 621        unsigned long pos = bprm->p;
 622
 623        if (len == 0)
 624                return -EFAULT;
 625        if (!valid_arg_len(bprm, len))
 626                return -E2BIG;
 627
 628        /* We're going to work our way backwards. */
 629        arg += len;
 630        bprm->p -= len;
 631        if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
 632                return -E2BIG;
 633
 634        while (len > 0) {
 635                unsigned int bytes_to_copy = min_t(unsigned int, len,
 636                                min_not_zero(offset_in_page(pos), PAGE_SIZE));
 637                struct page *page;
 638
 639                pos -= bytes_to_copy;
 640                arg -= bytes_to_copy;
 641                len -= bytes_to_copy;
 642
 643                page = get_arg_page(bprm, pos, 1);
 644                if (!page)
 645                        return -E2BIG;
 646                flush_arg_page(bprm, pos & PAGE_MASK, page);
 647                memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
 648                put_arg_page(page);
 649        }
 650
 651        return 0;
 652}
 653EXPORT_SYMBOL(copy_string_kernel);
 654
 655static int copy_strings_kernel(int argc, const char *const *argv,
 656                               struct linux_binprm *bprm)
 657{
 658        while (argc-- > 0) {
 659                int ret = copy_string_kernel(argv[argc], bprm);
 660                if (ret < 0)
 661                        return ret;
 662                if (fatal_signal_pending(current))
 663                        return -ERESTARTNOHAND;
 664                cond_resched();
 665        }
 666        return 0;
 667}
 668
 669#ifdef CONFIG_MMU
 670
 671/*
 672 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 673 * the binfmt code determines where the new stack should reside, we shift it to
 674 * its final location.  The process proceeds as follows:
 675 *
 676 * 1) Use shift to calculate the new vma endpoints.
 677 * 2) Extend vma to cover both the old and new ranges.  This ensures the
 678 *    arguments passed to subsequent functions are consistent.
 679 * 3) Move vma's page tables to the new range.
 680 * 4) Free up any cleared pgd range.
 681 * 5) Shrink the vma to cover only the new range.
 682 */
 683static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 684{
 685        struct mm_struct *mm = vma->vm_mm;
 686        unsigned long old_start = vma->vm_start;
 687        unsigned long old_end = vma->vm_end;
 688        unsigned long length = old_end - old_start;
 689        unsigned long new_start = old_start - shift;
 690        unsigned long new_end = old_end - shift;
 691        VMA_ITERATOR(vmi, mm, new_start);
 692        struct vm_area_struct *next;
 693        struct mmu_gather tlb;
 694
 695        BUG_ON(new_start > new_end);
 696
 697        /*
 698         * ensure there are no vmas between where we want to go
 699         * and where we are
 700         */
 701        if (vma != vma_next(&vmi))
 702                return -EFAULT;
 703
 704        vma_iter_prev_range(&vmi);
 705        /*
 706         * cover the whole range: [new_start, old_end)
 707         */
 708        if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
 709                return -ENOMEM;
 710
 711        /*
 712         * move the page tables downwards, on failure we rely on
 713         * process cleanup to remove whatever mess we made.
 714         */
 715        if (length != move_page_tables(vma, old_start,
 716                                       vma, new_start, length, false, true))
 717                return -ENOMEM;
 718
 719        lru_add_drain();
 720        tlb_gather_mmu(&tlb, mm);
 721        next = vma_next(&vmi);
 722        if (new_end > old_start) {
 723                /*
 724                 * when the old and new regions overlap clear from new_end.
 725                 */
 726                free_pgd_range(&tlb, new_end, old_end, new_end,
 727                        next ? next->vm_start : USER_PGTABLES_CEILING);
 728        } else {
 729                /*
 730                 * otherwise, clean from old_start; this is done to not touch
 731                 * the address space in [new_end, old_start) some architectures
 732                 * have constraints on va-space that make this illegal (IA64) -
 733                 * for the others its just a little faster.
 734                 */
 735                free_pgd_range(&tlb, old_start, old_end, new_end,
 736                        next ? next->vm_start : USER_PGTABLES_CEILING);
 737        }
 738        tlb_finish_mmu(&tlb);
 739
 740        vma_prev(&vmi);
 741        /* Shrink the vma to just the new range */
 742        return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
 743}
 744
 745/*
 746 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 747 * the stack is optionally relocated, and some extra space is added.
 748 */
 749int setup_arg_pages(struct linux_binprm *bprm,
 750                    unsigned long stack_top,
 751                    int executable_stack)
 752{
 753        unsigned long ret;
 754        unsigned long stack_shift;
 755        struct mm_struct *mm = current->mm;
 756        struct vm_area_struct *vma = bprm->vma;
 757        struct vm_area_struct *prev = NULL;
 758        unsigned long vm_flags;
 759        unsigned long stack_base;
 760        unsigned long stack_size;
 761        unsigned long stack_expand;
 762        unsigned long rlim_stack;
 763        struct mmu_gather tlb;
 764        struct vma_iterator vmi;
 765
 766#ifdef CONFIG_STACK_GROWSUP
 767        /* Limit stack size */
 768        stack_base = bprm->rlim_stack.rlim_max;
 769
 770        stack_base = calc_max_stack_size(stack_base);
 771
 772        /* Add space for stack randomization. */
 773        stack_base += (STACK_RND_MASK << PAGE_SHIFT);
 774
 775        /* Make sure we didn't let the argument array grow too large. */
 776        if (vma->vm_end - vma->vm_start > stack_base)
 777                return -ENOMEM;
 778
 779        stack_base = PAGE_ALIGN(stack_top - stack_base);
 780
 781        stack_shift = vma->vm_start - stack_base;
 782        mm->arg_start = bprm->p - stack_shift;
 783        bprm->p = vma->vm_end - stack_shift;
 784#else
 785        stack_top = arch_align_stack(stack_top);
 786        stack_top = PAGE_ALIGN(stack_top);
 787
 788        if (unlikely(stack_top < mmap_min_addr) ||
 789            unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 790                return -ENOMEM;
 791
 792        stack_shift = vma->vm_end - stack_top;
 793
 794        bprm->p -= stack_shift;
 795        mm->arg_start = bprm->p;
 796#endif
 797
 798        if (bprm->loader)
 799                bprm->loader -= stack_shift;
 800        bprm->exec -= stack_shift;
 801
 802        if (mmap_write_lock_killable(mm))
 803                return -EINTR;
 804
 805        vm_flags = VM_STACK_FLAGS;
 806
 807        /*
 808         * Adjust stack execute permissions; explicitly enable for
 809         * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 810         * (arch default) otherwise.
 811         */
 812        if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 813                vm_flags |= VM_EXEC;
 814        else if (executable_stack == EXSTACK_DISABLE_X)
 815                vm_flags &= ~VM_EXEC;
 816        vm_flags |= mm->def_flags;
 817        vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 818
 819        vma_iter_init(&vmi, mm, vma->vm_start);
 820
 821        tlb_gather_mmu(&tlb, mm);
 822        ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
 823                        vm_flags);
 824        tlb_finish_mmu(&tlb);
 825
 826        if (ret)
 827                goto out_unlock;
 828        BUG_ON(prev != vma);
 829
 830        if (unlikely(vm_flags & VM_EXEC)) {
 831                pr_warn_once("process '%pD4' started with executable stack\n",
 832                             bprm->file);
 833        }
 834
 835        /* Move stack pages down in memory. */
 836        if (stack_shift) {
 837                ret = shift_arg_pages(vma, stack_shift);
 838                if (ret)
 839                        goto out_unlock;
 840        }
 841
 842        /* mprotect_fixup is overkill to remove the temporary stack flags */
 843        vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
 844
 845        stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 846        stack_size = vma->vm_end - vma->vm_start;
 847        /*
 848         * Align this down to a page boundary as expand_stack
 849         * will align it up.
 850         */
 851        rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
 852
 853        stack_expand = min(rlim_stack, stack_size + stack_expand);
 854
 855#ifdef CONFIG_STACK_GROWSUP
 856        stack_base = vma->vm_start + stack_expand;
 857#else
 858        stack_base = vma->vm_end - stack_expand;
 859#endif
 860        current->mm->start_stack = bprm->p;
 861        ret = expand_stack_locked(vma, stack_base);
 862        if (ret)
 863                ret = -EFAULT;
 864
 865out_unlock:
 866        mmap_write_unlock(mm);
 867        return ret;
 868}
 869EXPORT_SYMBOL(setup_arg_pages);
 870
 871#else
 872
 873/*
 874 * Transfer the program arguments and environment from the holding pages
 875 * onto the stack. The provided stack pointer is adjusted accordingly.
 876 */
 877int transfer_args_to_stack(struct linux_binprm *bprm,
 878                           unsigned long *sp_location)
 879{
 880        unsigned long index, stop, sp;
 881        int ret = 0;
 882
 883        stop = bprm->p >> PAGE_SHIFT;
 884        sp = *sp_location;
 885
 886        for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
 887                unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
 888                char *src = kmap_local_page(bprm->page[index]) + offset;
 889                sp -= PAGE_SIZE - offset;
 890                if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
 891                        ret = -EFAULT;
 892                kunmap_local(src);
 893                if (ret)
 894                        goto out;
 895        }
 896
 897        *sp_location = sp;
 898
 899out:
 900        return ret;
 901}
 902EXPORT_SYMBOL(transfer_args_to_stack);
 903
 904#endif /* CONFIG_MMU */
 905
 906static struct file *do_open_execat(int fd, struct filename *name, int flags)
 907{
 908        struct file *file;
 909        int err;
 910        struct open_flags open_exec_flags = {
 911                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 912                .acc_mode = MAY_EXEC,
 913                .intent = LOOKUP_OPEN,
 914                .lookup_flags = LOOKUP_FOLLOW,
 915        };
 916
 917        if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
 918                return ERR_PTR(-EINVAL);
 919        if (flags & AT_SYMLINK_NOFOLLOW)
 920                open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
 921        if (flags & AT_EMPTY_PATH)
 922                open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
 923
 924        file = do_filp_open(fd, name, &open_exec_flags);
 925        if (IS_ERR(file))
 926                goto out;
 927
 928        /*
 929         * may_open() has already checked for this, so it should be
 930         * impossible to trip now. But we need to be extra cautious
 931         * and check again at the very end too.
 932         */
 933        err = -EACCES;
 934        if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
 935                         path_noexec(&file->f_path)))
 936                goto exit;
 937
 938        err = deny_write_access(file);
 939        if (err)
 940                goto exit;
 941
 942out:
 943        return file;
 944
 945exit:
 946        fput(file);
 947        return ERR_PTR(err);
 948}
 949
 950struct file *open_exec(const char *name)
 951{
 952        struct filename *filename = getname_kernel(name);
 953        struct file *f = ERR_CAST(filename);
 954
 955        if (!IS_ERR(filename)) {
 956                f = do_open_execat(AT_FDCWD, filename, 0);
 957                putname(filename);
 958        }
 959        return f;
 960}
 961EXPORT_SYMBOL(open_exec);
 962
 963#if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
 964ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
 965{
 966        ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
 967        if (res > 0)
 968                flush_icache_user_range(addr, addr + len);
 969        return res;
 970}
 971EXPORT_SYMBOL(read_code);
 972#endif
 973
 974/*
 975 * Maps the mm_struct mm into the current task struct.
 976 * On success, this function returns with exec_update_lock
 977 * held for writing.
 978 */
 979static int exec_mmap(struct mm_struct *mm)
 980{
 981        struct task_struct *tsk;
 982        struct mm_struct *old_mm, *active_mm;
 983        int ret;
 984
 985        /* Notify parent that we're no longer interested in the old VM */
 986        tsk = current;
 987        old_mm = current->mm;
 988        exec_mm_release(tsk, old_mm);
 989
 990        ret = down_write_killable(&tsk->signal->exec_update_lock);
 991        if (ret)
 992                return ret;
 993
 994        if (old_mm) {
 995                /*
 996                 * If there is a pending fatal signal perhaps a signal
 997                 * whose default action is to create a coredump get
 998                 * out and die instead of going through with the exec.
 999                 */
1000                ret = mmap_read_lock_killable(old_mm);
1001                if (ret) {
1002                        up_write(&tsk->signal->exec_update_lock);
1003                        return ret;
1004                }
1005        }
1006
1007        task_lock(tsk);
1008        membarrier_exec_mmap(mm);
1009
1010        local_irq_disable();
1011        active_mm = tsk->active_mm;
1012        tsk->active_mm = mm;
1013        tsk->mm = mm;
1014        mm_init_cid(mm);
1015        /*
1016         * This prevents preemption while active_mm is being loaded and
1017         * it and mm are being updated, which could cause problems for
1018         * lazy tlb mm refcounting when these are updated by context
1019         * switches. Not all architectures can handle irqs off over
1020         * activate_mm yet.
1021         */
1022        if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1023                local_irq_enable();
1024        activate_mm(active_mm, mm);
1025        if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1026                local_irq_enable();
1027        lru_gen_add_mm(mm);
1028        task_unlock(tsk);
1029        lru_gen_use_mm(mm);
1030        if (old_mm) {
1031                mmap_read_unlock(old_mm);
1032                BUG_ON(active_mm != old_mm);
1033                setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1034                mm_update_next_owner(old_mm);
1035                mmput(old_mm);
1036                return 0;
1037        }
1038        mmdrop_lazy_tlb(active_mm);
1039        return 0;
1040}
1041
1042static int de_thread(struct task_struct *tsk)
1043{
1044        struct signal_struct *sig = tsk->signal;
1045        struct sighand_struct *oldsighand = tsk->sighand;
1046        spinlock_t *lock = &oldsighand->siglock;
1047
1048        if (thread_group_empty(tsk))
1049                goto no_thread_group;
1050
1051        /*
1052         * Kill all other threads in the thread group.
1053         */
1054        spin_lock_irq(lock);
1055        if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1056                /*
1057                 * Another group action in progress, just
1058                 * return so that the signal is processed.
1059                 */
1060                spin_unlock_irq(lock);
1061                return -EAGAIN;
1062        }
1063
1064        sig->group_exec_task = tsk;
1065        sig->notify_count = zap_other_threads(tsk);
1066        if (!thread_group_leader(tsk))
1067                sig->notify_count--;
1068
1069        while (sig->notify_count) {
1070                __set_current_state(TASK_KILLABLE);
1071                spin_unlock_irq(lock);
1072                schedule();
1073                if (__fatal_signal_pending(tsk))
1074                        goto killed;
1075                spin_lock_irq(lock);
1076        }
1077        spin_unlock_irq(lock);
1078
1079        /*
1080         * At this point all other threads have exited, all we have to
1081         * do is to wait for the thread group leader to become inactive,
1082         * and to assume its PID:
1083         */
1084        if (!thread_group_leader(tsk)) {
1085                struct task_struct *leader = tsk->group_leader;
1086
1087                for (;;) {
1088                        cgroup_threadgroup_change_begin(tsk);
1089                        write_lock_irq(&tasklist_lock);
1090                        /*
1091                         * Do this under tasklist_lock to ensure that
1092                         * exit_notify() can't miss ->group_exec_task
1093                         */
1094                        sig->notify_count = -1;
1095                        if (likely(leader->exit_state))
1096                                break;
1097                        __set_current_state(TASK_KILLABLE);
1098                        write_unlock_irq(&tasklist_lock);
1099                        cgroup_threadgroup_change_end(tsk);
1100                        schedule();
1101                        if (__fatal_signal_pending(tsk))
1102                                goto killed;
1103                }
1104
1105                /*
1106                 * The only record we have of the real-time age of a
1107                 * process, regardless of execs it's done, is start_time.
1108                 * All the past CPU time is accumulated in signal_struct
1109                 * from sister threads now dead.  But in this non-leader
1110                 * exec, nothing survives from the original leader thread,
1111                 * whose birth marks the true age of this process now.
1112                 * When we take on its identity by switching to its PID, we
1113                 * also take its birthdate (always earlier than our own).
1114                 */
1115                tsk->start_time = leader->start_time;
1116                tsk->start_boottime = leader->start_boottime;
1117
1118                BUG_ON(!same_thread_group(leader, tsk));
1119                /*
1120                 * An exec() starts a new thread group with the
1121                 * TGID of the previous thread group. Rehash the
1122                 * two threads with a switched PID, and release
1123                 * the former thread group leader:
1124                 */
1125
1126                /* Become a process group leader with the old leader's pid.
1127                 * The old leader becomes a thread of the this thread group.
1128                 */
1129                exchange_tids(tsk, leader);
1130                transfer_pid(leader, tsk, PIDTYPE_TGID);
1131                transfer_pid(leader, tsk, PIDTYPE_PGID);
1132                transfer_pid(leader, tsk, PIDTYPE_SID);
1133
1134                list_replace_rcu(&leader->tasks, &tsk->tasks);
1135                list_replace_init(&leader->sibling, &tsk->sibling);
1136
1137                tsk->group_leader = tsk;
1138                leader->group_leader = tsk;
1139
1140                tsk->exit_signal = SIGCHLD;
1141                leader->exit_signal = -1;
1142
1143                BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1144                leader->exit_state = EXIT_DEAD;
1145
1146                /*
1147                 * We are going to release_task()->ptrace_unlink() silently,
1148                 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1149                 * the tracer won't block again waiting for this thread.
1150                 */
1151                if (unlikely(leader->ptrace))
1152                        __wake_up_parent(leader, leader->parent);
1153                write_unlock_irq(&tasklist_lock);
1154                cgroup_threadgroup_change_end(tsk);
1155
1156                release_task(leader);
1157        }
1158
1159        sig->group_exec_task = NULL;
1160        sig->notify_count = 0;
1161
1162no_thread_group:
1163        /* we have changed execution domain */
1164        tsk->exit_signal = SIGCHLD;
1165
1166        BUG_ON(!thread_group_leader(tsk));
1167        return 0;
1168
1169killed:
1170        /* protects against exit_notify() and __exit_signal() */
1171        read_lock(&tasklist_lock);
1172        sig->group_exec_task = NULL;
1173        sig->notify_count = 0;
1174        read_unlock(&tasklist_lock);
1175        return -EAGAIN;
1176}
1177
1178
1179/*
1180 * This function makes sure the current process has its own signal table,
1181 * so that flush_signal_handlers can later reset the handlers without
1182 * disturbing other processes.  (Other processes might share the signal
1183 * table via the CLONE_SIGHAND option to clone().)
1184 */
1185static int unshare_sighand(struct task_struct *me)
1186{
1187        struct sighand_struct *oldsighand = me->sighand;
1188
1189        if (refcount_read(&oldsighand->count) != 1) {
1190                struct sighand_struct *newsighand;
1191                /*
1192                 * This ->sighand is shared with the CLONE_SIGHAND
1193                 * but not CLONE_THREAD task, switch to the new one.
1194                 */
1195                newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1196                if (!newsighand)
1197                        return -ENOMEM;
1198
1199                refcount_set(&newsighand->count, 1);
1200
1201                write_lock_irq(&tasklist_lock);
1202                spin_lock(&oldsighand->siglock);
1203                memcpy(newsighand->action, oldsighand->action,
1204                       sizeof(newsighand->action));
1205                rcu_assign_pointer(me->sighand, newsighand);
1206                spin_unlock(&oldsighand->siglock);
1207                write_unlock_irq(&tasklist_lock);
1208
1209                __cleanup_sighand(oldsighand);
1210        }
1211        return 0;
1212}
1213
1214char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1215{
1216        task_lock(tsk);
1217        /* Always NUL terminated and zero-padded */
1218        strscpy_pad(buf, tsk->comm, buf_size);
1219        task_unlock(tsk);
1220        return buf;
1221}
1222EXPORT_SYMBOL_GPL(__get_task_comm);
1223
1224/*
1225 * These functions flushes out all traces of the currently running executable
1226 * so that a new one can be started
1227 */
1228
1229void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1230{
1231        task_lock(tsk);
1232        trace_task_rename(tsk, buf);
1233        strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1234        task_unlock(tsk);
1235        perf_event_comm(tsk, exec);
1236}
1237
1238/*
1239 * Calling this is the point of no return. None of the failures will be
1240 * seen by userspace since either the process is already taking a fatal
1241 * signal (via de_thread() or coredump), or will have SEGV raised
1242 * (after exec_mmap()) by search_binary_handler (see below).
1243 */
1244int begin_new_exec(struct linux_binprm * bprm)
1245{
1246        struct task_struct *me = current;
1247        int retval;
1248
1249        /* Once we are committed compute the creds */
1250        retval = bprm_creds_from_file(bprm);
1251        if (retval)
1252                return retval;
1253
1254        /*
1255         * Ensure all future errors are fatal.
1256         */
1257        bprm->point_of_no_return = true;
1258
1259        /*
1260         * Make this the only thread in the thread group.
1261         */
1262        retval = de_thread(me);
1263        if (retval)
1264                goto out;
1265
1266        /*
1267         * Cancel any io_uring activity across execve
1268         */
1269        io_uring_task_cancel();
1270
1271        /* Ensure the files table is not shared. */
1272        retval = unshare_files();
1273        if (retval)
1274                goto out;
1275
1276        /*
1277         * Must be called _before_ exec_mmap() as bprm->mm is
1278         * not visible until then. Doing it here also ensures
1279         * we don't race against replace_mm_exe_file().
1280         */
1281        retval = set_mm_exe_file(bprm->mm, bprm->file);
1282        if (retval)
1283                goto out;
1284
1285        /* If the binary is not readable then enforce mm->dumpable=0 */
1286        would_dump(bprm, bprm->file);
1287        if (bprm->have_execfd)
1288                would_dump(bprm, bprm->executable);
1289
1290        /*
1291         * Release all of the old mmap stuff
1292         */
1293        acct_arg_size(bprm, 0);
1294        retval = exec_mmap(bprm->mm);
1295        if (retval)
1296                goto out;
1297
1298        bprm->mm = NULL;
1299
1300        retval = exec_task_namespaces();
1301        if (retval)
1302                goto out_unlock;
1303
1304#ifdef CONFIG_POSIX_TIMERS
1305        spin_lock_irq(&me->sighand->siglock);
1306        posix_cpu_timers_exit(me);
1307        spin_unlock_irq(&me->sighand->siglock);
1308        exit_itimers(me);
1309        flush_itimer_signals();
1310#endif
1311
1312        /*
1313         * Make the signal table private.
1314         */
1315        retval = unshare_sighand(me);
1316        if (retval)
1317                goto out_unlock;
1318
1319        me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1320                                        PF_NOFREEZE | PF_NO_SETAFFINITY);
1321        flush_thread();
1322        me->personality &= ~bprm->per_clear;
1323
1324        clear_syscall_work_syscall_user_dispatch(me);
1325
1326        /*
1327         * We have to apply CLOEXEC before we change whether the process is
1328         * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1329         * trying to access the should-be-closed file descriptors of a process
1330         * undergoing exec(2).
1331         */
1332        do_close_on_exec(me->files);
1333
1334        if (bprm->secureexec) {
1335                /* Make sure parent cannot signal privileged process. */
1336                me->pdeath_signal = 0;
1337
1338                /*
1339                 * For secureexec, reset the stack limit to sane default to
1340                 * avoid bad behavior from the prior rlimits. This has to
1341                 * happen before arch_pick_mmap_layout(), which examines
1342                 * RLIMIT_STACK, but after the point of no return to avoid
1343                 * needing to clean up the change on failure.
1344                 */
1345                if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1346                        bprm->rlim_stack.rlim_cur = _STK_LIM;
1347        }
1348
1349        me->sas_ss_sp = me->sas_ss_size = 0;
1350
1351        /*
1352         * Figure out dumpability. Note that this checking only of current
1353         * is wrong, but userspace depends on it. This should be testing
1354         * bprm->secureexec instead.
1355         */
1356        if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1357            !(uid_eq(current_euid(), current_uid()) &&
1358              gid_eq(current_egid(), current_gid())))
1359                set_dumpable(current->mm, suid_dumpable);
1360        else
1361                set_dumpable(current->mm, SUID_DUMP_USER);
1362
1363        perf_event_exec();
1364        __set_task_comm(me, kbasename(bprm->filename), true);
1365
1366        /* An exec changes our domain. We are no longer part of the thread
1367           group */
1368        WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1369        flush_signal_handlers(me, 0);
1370
1371        retval = set_cred_ucounts(bprm->cred);
1372        if (retval < 0)
1373                goto out_unlock;
1374
1375        /*
1376         * install the new credentials for this executable
1377         */
1378        security_bprm_committing_creds(bprm);
1379
1380        commit_creds(bprm->cred);
1381        bprm->cred = NULL;
1382
1383        /*
1384         * Disable monitoring for regular users
1385         * when executing setuid binaries. Must
1386         * wait until new credentials are committed
1387         * by commit_creds() above
1388         */
1389        if (get_dumpable(me->mm) != SUID_DUMP_USER)
1390                perf_event_exit_task(me);
1391        /*
1392         * cred_guard_mutex must be held at least to this point to prevent
1393         * ptrace_attach() from altering our determination of the task's
1394         * credentials; any time after this it may be unlocked.
1395         */
1396        security_bprm_committed_creds(bprm);
1397
1398        /* Pass the opened binary to the interpreter. */
1399        if (bprm->have_execfd) {
1400                retval = get_unused_fd_flags(0);
1401                if (retval < 0)
1402                        goto out_unlock;
1403                fd_install(retval, bprm->executable);
1404                bprm->executable = NULL;
1405                bprm->execfd = retval;
1406        }
1407        return 0;
1408
1409out_unlock:
1410        up_write(&me->signal->exec_update_lock);
1411out:
1412        return retval;
1413}
1414EXPORT_SYMBOL(begin_new_exec);
1415
1416void would_dump(struct linux_binprm *bprm, struct file *file)
1417{
1418        struct inode *inode = file_inode(file);
1419        struct mnt_idmap *idmap = file_mnt_idmap(file);
1420        if (inode_permission(idmap, inode, MAY_READ) < 0) {
1421                struct user_namespace *old, *user_ns;
1422                bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1423
1424                /* Ensure mm->user_ns contains the executable */
1425                user_ns = old = bprm->mm->user_ns;
1426                while ((user_ns != &init_user_ns) &&
1427                       !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1428                        user_ns = user_ns->parent;
1429
1430                if (old != user_ns) {
1431                        bprm->mm->user_ns = get_user_ns(user_ns);
1432                        put_user_ns(old);
1433                }
1434        }
1435}
1436EXPORT_SYMBOL(would_dump);
1437
1438void setup_new_exec(struct linux_binprm * bprm)
1439{
1440        /* Setup things that can depend upon the personality */
1441        struct task_struct *me = current;
1442
1443        arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1444
1445        arch_setup_new_exec();
1446
1447        /* Set the new mm task size. We have to do that late because it may
1448         * depend on TIF_32BIT which is only updated in flush_thread() on
1449         * some architectures like powerpc
1450         */
1451        me->mm->task_size = TASK_SIZE;
1452        up_write(&me->signal->exec_update_lock);
1453        mutex_unlock(&me->signal->cred_guard_mutex);
1454}
1455EXPORT_SYMBOL(setup_new_exec);
1456
1457/* Runs immediately before start_thread() takes over. */
1458void finalize_exec(struct linux_binprm *bprm)
1459{
1460        /* Store any stack rlimit changes before starting thread. */
1461        task_lock(current->group_leader);
1462        current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1463        task_unlock(current->group_leader);
1464}
1465EXPORT_SYMBOL(finalize_exec);
1466
1467/*
1468 * Prepare credentials and lock ->cred_guard_mutex.
1469 * setup_new_exec() commits the new creds and drops the lock.
1470 * Or, if exec fails before, free_bprm() should release ->cred
1471 * and unlock.
1472 */
1473static int prepare_bprm_creds(struct linux_binprm *bprm)
1474{
1475        if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1476                return -ERESTARTNOINTR;
1477
1478        bprm->cred = prepare_exec_creds();
1479        if (likely(bprm->cred))
1480                return 0;
1481
1482        mutex_unlock(&current->signal->cred_guard_mutex);
1483        return -ENOMEM;
1484}
1485
1486static void free_bprm(struct linux_binprm *bprm)
1487{
1488        if (bprm->mm) {
1489                acct_arg_size(bprm, 0);
1490                mmput(bprm->mm);
1491        }
1492        free_arg_pages(bprm);
1493        if (bprm->cred) {
1494                mutex_unlock(&current->signal->cred_guard_mutex);
1495                abort_creds(bprm->cred);
1496        }
1497        if (bprm->file) {
1498                allow_write_access(bprm->file);
1499                fput(bprm->file);
1500        }
1501        if (bprm->executable)
1502                fput(bprm->executable);
1503        /* If a binfmt changed the interp, free it. */
1504        if (bprm->interp != bprm->filename)
1505                kfree(bprm->interp);
1506        kfree(bprm->fdpath);
1507        kfree(bprm);
1508}
1509
1510static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1511{
1512        struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1513        int retval = -ENOMEM;
1514        if (!bprm)
1515                goto out;
1516
1517        if (fd == AT_FDCWD || filename->name[0] == '/') {
1518                bprm->filename = filename->name;
1519        } else {
1520                if (filename->name[0] == '\0')
1521                        bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1522                else
1523                        bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1524                                                  fd, filename->name);
1525                if (!bprm->fdpath)
1526                        goto out_free;
1527
1528                bprm->filename = bprm->fdpath;
1529        }
1530        bprm->interp = bprm->filename;
1531
1532        retval = bprm_mm_init(bprm);
1533        if (retval)
1534                goto out_free;
1535        return bprm;
1536
1537out_free:
1538        free_bprm(bprm);
1539out:
1540        return ERR_PTR(retval);
1541}
1542
1543int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1544{
1545        /* If a binfmt changed the interp, free it first. */
1546        if (bprm->interp != bprm->filename)
1547                kfree(bprm->interp);
1548        bprm->interp = kstrdup(interp, GFP_KERNEL);
1549        if (!bprm->interp)
1550                return -ENOMEM;
1551        return 0;
1552}
1553EXPORT_SYMBOL(bprm_change_interp);
1554
1555/*
1556 * determine how safe it is to execute the proposed program
1557 * - the caller must hold ->cred_guard_mutex to protect against
1558 *   PTRACE_ATTACH or seccomp thread-sync
1559 */
1560static void check_unsafe_exec(struct linux_binprm *bprm)
1561{
1562        struct task_struct *p = current, *t;
1563        unsigned n_fs;
1564
1565        if (p->ptrace)
1566                bprm->unsafe |= LSM_UNSAFE_PTRACE;
1567
1568        /*
1569         * This isn't strictly necessary, but it makes it harder for LSMs to
1570         * mess up.
1571         */
1572        if (task_no_new_privs(current))
1573                bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1574
1575        /*
1576         * If another task is sharing our fs, we cannot safely
1577         * suid exec because the differently privileged task
1578         * will be able to manipulate the current directory, etc.
1579         * It would be nice to force an unshare instead...
1580         */
1581        t = p;
1582        n_fs = 1;
1583        spin_lock(&p->fs->lock);
1584        rcu_read_lock();
1585        while_each_thread(p, t) {
1586                if (t->fs == p->fs)
1587                        n_fs++;
1588        }
1589        rcu_read_unlock();
1590
1591        if (p->fs->users > n_fs)
1592                bprm->unsafe |= LSM_UNSAFE_SHARE;
1593        else
1594                p->fs->in_exec = 1;
1595        spin_unlock(&p->fs->lock);
1596}
1597
1598static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1599{
1600        /* Handle suid and sgid on files */
1601        struct mnt_idmap *idmap;
1602        struct inode *inode = file_inode(file);
1603        unsigned int mode;
1604        vfsuid_t vfsuid;
1605        vfsgid_t vfsgid;
1606
1607        if (!mnt_may_suid(file->f_path.mnt))
1608                return;
1609
1610        if (task_no_new_privs(current))
1611                return;
1612
1613        mode = READ_ONCE(inode->i_mode);
1614        if (!(mode & (S_ISUID|S_ISGID)))
1615                return;
1616
1617        idmap = file_mnt_idmap(file);
1618
1619        /* Be careful if suid/sgid is set */
1620        inode_lock(inode);
1621
1622        /* reload atomically mode/uid/gid now that lock held */
1623        mode = inode->i_mode;
1624        vfsuid = i_uid_into_vfsuid(idmap, inode);
1625        vfsgid = i_gid_into_vfsgid(idmap, inode);
1626        inode_unlock(inode);
1627
1628        /* We ignore suid/sgid if there are no mappings for them in the ns */
1629        if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1630            !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1631                return;
1632
1633        if (mode & S_ISUID) {
1634                bprm->per_clear |= PER_CLEAR_ON_SETID;
1635                bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1636        }
1637
1638        if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1639                bprm->per_clear |= PER_CLEAR_ON_SETID;
1640                bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1641        }
1642}
1643
1644/*
1645 * Compute brpm->cred based upon the final binary.
1646 */
1647static int bprm_creds_from_file(struct linux_binprm *bprm)
1648{
1649        /* Compute creds based on which file? */
1650        struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1651
1652        bprm_fill_uid(bprm, file);
1653        return security_bprm_creds_from_file(bprm, file);
1654}
1655
1656/*
1657 * Fill the binprm structure from the inode.
1658 * Read the first BINPRM_BUF_SIZE bytes
1659 *
1660 * This may be called multiple times for binary chains (scripts for example).
1661 */
1662static int prepare_binprm(struct linux_binprm *bprm)
1663{
1664        loff_t pos = 0;
1665
1666        memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1667        return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1668}
1669
1670/*
1671 * Arguments are '\0' separated strings found at the location bprm->p
1672 * points to; chop off the first by relocating brpm->p to right after
1673 * the first '\0' encountered.
1674 */
1675int remove_arg_zero(struct linux_binprm *bprm)
1676{
1677        int ret = 0;
1678        unsigned long offset;
1679        char *kaddr;
1680        struct page *page;
1681
1682        if (!bprm->argc)
1683                return 0;
1684
1685        do {
1686                offset = bprm->p & ~PAGE_MASK;
1687                page = get_arg_page(bprm, bprm->p, 0);
1688                if (!page) {
1689                        ret = -EFAULT;
1690                        goto out;
1691                }
1692                kaddr = kmap_local_page(page);
1693
1694                for (; offset < PAGE_SIZE && kaddr[offset];
1695                                offset++, bprm->p++)
1696                        ;
1697
1698                kunmap_local(kaddr);
1699                put_arg_page(page);
1700        } while (offset == PAGE_SIZE);
1701
1702        bprm->p++;
1703        bprm->argc--;
1704        ret = 0;
1705
1706out:
1707        return ret;
1708}
1709EXPORT_SYMBOL(remove_arg_zero);
1710
1711#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1712/*
1713 * cycle the list of binary formats handler, until one recognizes the image
1714 */
1715static int search_binary_handler(struct linux_binprm *bprm)
1716{
1717        bool need_retry = IS_ENABLED(CONFIG_MODULES);
1718        struct linux_binfmt *fmt;
1719        int retval;
1720
1721        retval = prepare_binprm(bprm);
1722        if (retval < 0)
1723                return retval;
1724
1725        retval = security_bprm_check(bprm);
1726        if (retval)
1727                return retval;
1728
1729        retval = -ENOENT;
1730 retry:
1731        read_lock(&binfmt_lock);
1732        list_for_each_entry(fmt, &formats, lh) {
1733                if (!try_module_get(fmt->module))
1734                        continue;
1735                read_unlock(&binfmt_lock);
1736
1737                retval = fmt->load_binary(bprm);
1738
1739                read_lock(&binfmt_lock);
1740                put_binfmt(fmt);
1741                if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1742                        read_unlock(&binfmt_lock);
1743                        return retval;
1744                }
1745        }
1746        read_unlock(&binfmt_lock);
1747
1748        if (need_retry) {
1749                if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1750                    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1751                        return retval;
1752                if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1753                        return retval;
1754                need_retry = false;
1755                goto retry;
1756        }
1757
1758        return retval;
1759}
1760
1761/* binfmt handlers will call back into begin_new_exec() on success. */
1762static int exec_binprm(struct linux_binprm *bprm)
1763{
1764        pid_t old_pid, old_vpid;
1765        int ret, depth;
1766
1767        /* Need to fetch pid before load_binary changes it */
1768        old_pid = current->pid;
1769        rcu_read_lock();
1770        old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1771        rcu_read_unlock();
1772
1773        /* This allows 4 levels of binfmt rewrites before failing hard. */
1774        for (depth = 0;; depth++) {
1775                struct file *exec;
1776                if (depth > 5)
1777                        return -ELOOP;
1778
1779                ret = search_binary_handler(bprm);
1780                if (ret < 0)
1781                        return ret;
1782                if (!bprm->interpreter)
1783                        break;
1784
1785                exec = bprm->file;
1786                bprm->file = bprm->interpreter;
1787                bprm->interpreter = NULL;
1788
1789                allow_write_access(exec);
1790                if (unlikely(bprm->have_execfd)) {
1791                        if (bprm->executable) {
1792                                fput(exec);
1793                                return -ENOEXEC;
1794                        }
1795                        bprm->executable = exec;
1796                } else
1797                        fput(exec);
1798        }
1799
1800        audit_bprm(bprm);
1801        trace_sched_process_exec(current, old_pid, bprm);
1802        ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1803        proc_exec_connector(current);
1804        return 0;
1805}
1806
1807/*
1808 * sys_execve() executes a new program.
1809 */
1810static int bprm_execve(struct linux_binprm *bprm,
1811                       int fd, struct filename *filename, int flags)
1812{
1813        struct file *file;
1814        int retval;
1815
1816        retval = prepare_bprm_creds(bprm);
1817        if (retval)
1818                return retval;
1819
1820        /*
1821         * Check for unsafe execution states before exec_binprm(), which
1822         * will call back into begin_new_exec(), into bprm_creds_from_file(),
1823         * where setuid-ness is evaluated.
1824         */
1825        check_unsafe_exec(bprm);
1826        current->in_execve = 1;
1827        sched_mm_cid_before_execve(current);
1828
1829        file = do_open_execat(fd, filename, flags);
1830        retval = PTR_ERR(file);
1831        if (IS_ERR(file))
1832                goto out_unmark;
1833
1834        sched_exec();
1835
1836        bprm->file = file;
1837        /*
1838         * Record that a name derived from an O_CLOEXEC fd will be
1839         * inaccessible after exec.  This allows the code in exec to
1840         * choose to fail when the executable is not mmaped into the
1841         * interpreter and an open file descriptor is not passed to
1842         * the interpreter.  This makes for a better user experience
1843         * than having the interpreter start and then immediately fail
1844         * when it finds the executable is inaccessible.
1845         */
1846        if (bprm->fdpath && get_close_on_exec(fd))
1847                bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1848
1849        /* Set the unchanging part of bprm->cred */
1850        retval = security_bprm_creds_for_exec(bprm);
1851        if (retval)
1852                goto out;
1853
1854        retval = exec_binprm(bprm);
1855        if (retval < 0)
1856                goto out;
1857
1858        sched_mm_cid_after_execve(current);
1859        /* execve succeeded */
1860        current->fs->in_exec = 0;
1861        current->in_execve = 0;
1862        rseq_execve(current);
1863        user_events_execve(current);
1864        acct_update_integrals(current);
1865        task_numa_free(current, false);
1866        return retval;
1867
1868out:
1869        /*
1870         * If past the point of no return ensure the code never
1871         * returns to the userspace process.  Use an existing fatal
1872         * signal if present otherwise terminate the process with
1873         * SIGSEGV.
1874         */
1875        if (bprm->point_of_no_return && !fatal_signal_pending(current))
1876                force_fatal_sig(SIGSEGV);
1877
1878out_unmark:
1879        sched_mm_cid_after_execve(current);
1880        current->fs->in_exec = 0;
1881        current->in_execve = 0;
1882
1883        return retval;
1884}
1885
1886static int do_execveat_common(int fd, struct filename *filename,
1887                              struct user_arg_ptr argv,
1888                              struct user_arg_ptr envp,
1889                              int flags)
1890{
1891        struct linux_binprm *bprm;
1892        int retval;
1893
1894        if (IS_ERR(filename))
1895                return PTR_ERR(filename);
1896
1897        /*
1898         * We move the actual failure in case of RLIMIT_NPROC excess from
1899         * set*uid() to execve() because too many poorly written programs
1900         * don't check setuid() return code.  Here we additionally recheck
1901         * whether NPROC limit is still exceeded.
1902         */
1903        if ((current->flags & PF_NPROC_EXCEEDED) &&
1904            is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1905                retval = -EAGAIN;
1906                goto out_ret;
1907        }
1908
1909        /* We're below the limit (still or again), so we don't want to make
1910         * further execve() calls fail. */
1911        current->flags &= ~PF_NPROC_EXCEEDED;
1912
1913        bprm = alloc_bprm(fd, filename);
1914        if (IS_ERR(bprm)) {
1915                retval = PTR_ERR(bprm);
1916                goto out_ret;
1917        }
1918
1919        retval = count(argv, MAX_ARG_STRINGS);
1920        if (retval == 0)
1921                pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1922                             current->comm, bprm->filename);
1923        if (retval < 0)
1924                goto out_free;
1925        bprm->argc = retval;
1926
1927        retval = count(envp, MAX_ARG_STRINGS);
1928        if (retval < 0)
1929                goto out_free;
1930        bprm->envc = retval;
1931
1932        retval = bprm_stack_limits(bprm);
1933        if (retval < 0)
1934                goto out_free;
1935
1936        retval = copy_string_kernel(bprm->filename, bprm);
1937        if (retval < 0)
1938                goto out_free;
1939        bprm->exec = bprm->p;
1940
1941        retval = copy_strings(bprm->envc, envp, bprm);
1942        if (retval < 0)
1943                goto out_free;
1944
1945        retval = copy_strings(bprm->argc, argv, bprm);
1946        if (retval < 0)
1947                goto out_free;
1948
1949        /*
1950         * When argv is empty, add an empty string ("") as argv[0] to
1951         * ensure confused userspace programs that start processing
1952         * from argv[1] won't end up walking envp. See also
1953         * bprm_stack_limits().
1954         */
1955        if (bprm->argc == 0) {
1956                retval = copy_string_kernel("", bprm);
1957                if (retval < 0)
1958                        goto out_free;
1959                bprm->argc = 1;
1960        }
1961
1962        retval = bprm_execve(bprm, fd, filename, flags);
1963out_free:
1964        free_bprm(bprm);
1965
1966out_ret:
1967        putname(filename);
1968        return retval;
1969}
1970
1971int kernel_execve(const char *kernel_filename,
1972                  const char *const *argv, const char *const *envp)
1973{
1974        struct filename *filename;
1975        struct linux_binprm *bprm;
1976        int fd = AT_FDCWD;
1977        int retval;
1978
1979        /* It is non-sense for kernel threads to call execve */
1980        if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1981                return -EINVAL;
1982
1983        filename = getname_kernel(kernel_filename);
1984        if (IS_ERR(filename))
1985                return PTR_ERR(filename);
1986
1987        bprm = alloc_bprm(fd, filename);
1988        if (IS_ERR(bprm)) {
1989                retval = PTR_ERR(bprm);
1990                goto out_ret;
1991        }
1992
1993        retval = count_strings_kernel(argv);
1994        if (WARN_ON_ONCE(retval == 0))
1995                retval = -EINVAL;
1996        if (retval < 0)
1997                goto out_free;
1998        bprm->argc = retval;
1999
2000        retval = count_strings_kernel(envp);
2001        if (retval < 0)
2002                goto out_free;
2003        bprm->envc = retval;
2004
2005        retval = bprm_stack_limits(bprm);
2006        if (retval < 0)
2007                goto out_free;
2008
2009        retval = copy_string_kernel(bprm->filename, bprm);
2010        if (retval < 0)
2011                goto out_free;
2012        bprm->exec = bprm->p;
2013
2014        retval = copy_strings_kernel(bprm->envc, envp, bprm);
2015        if (retval < 0)
2016                goto out_free;
2017
2018        retval = copy_strings_kernel(bprm->argc, argv, bprm);
2019        if (retval < 0)
2020                goto out_free;
2021
2022        retval = bprm_execve(bprm, fd, filename, 0);
2023out_free:
2024        free_bprm(bprm);
2025out_ret:
2026        putname(filename);
2027        return retval;
2028}
2029
2030static int do_execve(struct filename *filename,
2031        const char __user *const __user *__argv,
2032        const char __user *const __user *__envp)
2033{
2034        struct user_arg_ptr argv = { .ptr.native = __argv };
2035        struct user_arg_ptr envp = { .ptr.native = __envp };
2036        return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2037}
2038
2039static int do_execveat(int fd, struct filename *filename,
2040                const char __user *const __user *__argv,
2041                const char __user *const __user *__envp,
2042                int flags)
2043{
2044        struct user_arg_ptr argv = { .ptr.native = __argv };
2045        struct user_arg_ptr envp = { .ptr.native = __envp };
2046
2047        return do_execveat_common(fd, filename, argv, envp, flags);
2048}
2049
2050#ifdef CONFIG_COMPAT
2051static int compat_do_execve(struct filename *filename,
2052        const compat_uptr_t __user *__argv,
2053        const compat_uptr_t __user *__envp)
2054{
2055        struct user_arg_ptr argv = {
2056                .is_compat = true,
2057                .ptr.compat = __argv,
2058        };
2059        struct user_arg_ptr envp = {
2060                .is_compat = true,
2061                .ptr.compat = __envp,
2062        };
2063        return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2064}
2065
2066static int compat_do_execveat(int fd, struct filename *filename,
2067                              const compat_uptr_t __user *__argv,
2068                              const compat_uptr_t __user *__envp,
2069                              int flags)
2070{
2071        struct user_arg_ptr argv = {
2072                .is_compat = true,
2073                .ptr.compat = __argv,
2074        };
2075        struct user_arg_ptr envp = {
2076                .is_compat = true,
2077                .ptr.compat = __envp,
2078        };
2079        return do_execveat_common(fd, filename, argv, envp, flags);
2080}
2081#endif
2082
2083void set_binfmt(struct linux_binfmt *new)
2084{
2085        struct mm_struct *mm = current->mm;
2086
2087        if (mm->binfmt)
2088                module_put(mm->binfmt->module);
2089
2090        mm->binfmt = new;
2091        if (new)
2092                __module_get(new->module);
2093}
2094EXPORT_SYMBOL(set_binfmt);
2095
2096/*
2097 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2098 */
2099void set_dumpable(struct mm_struct *mm, int value)
2100{
2101        if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2102                return;
2103
2104        set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2105}
2106
2107SYSCALL_DEFINE3(execve,
2108                const char __user *, filename,
2109                const char __user *const __user *, argv,
2110                const char __user *const __user *, envp)
2111{
2112        return do_execve(getname(filename), argv, envp);
2113}
2114
2115SYSCALL_DEFINE5(execveat,
2116                int, fd, const char __user *, filename,
2117                const char __user *const __user *, argv,
2118                const char __user *const __user *, envp,
2119                int, flags)
2120{
2121        return do_execveat(fd,
2122                           getname_uflags(filename, flags),
2123                           argv, envp, flags);
2124}
2125
2126#ifdef CONFIG_COMPAT
2127COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2128        const compat_uptr_t __user *, argv,
2129        const compat_uptr_t __user *, envp)
2130{
2131        return compat_do_execve(getname(filename), argv, envp);
2132}
2133
2134COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2135                       const char __user *, filename,
2136                       const compat_uptr_t __user *, argv,
2137                       const compat_uptr_t __user *, envp,
2138                       int,  flags)
2139{
2140        return compat_do_execveat(fd,
2141                                  getname_uflags(filename, flags),
2142                                  argv, envp, flags);
2143}
2144#endif
2145
2146#ifdef CONFIG_SYSCTL
2147
2148static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2149                void *buffer, size_t *lenp, loff_t *ppos)
2150{
2151        int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2152
2153        if (!error)
2154                validate_coredump_safety();
2155        return error;
2156}
2157
2158static struct ctl_table fs_exec_sysctls[] = {
2159        {
2160                .procname       = "suid_dumpable",
2161                .data           = &suid_dumpable,
2162                .maxlen         = sizeof(int),
2163                .mode           = 0644,
2164                .proc_handler   = proc_dointvec_minmax_coredump,
2165                .extra1         = SYSCTL_ZERO,
2166                .extra2         = SYSCTL_TWO,
2167        },
2168        { }
2169};
2170
2171static int __init init_fs_exec_sysctls(void)
2172{
2173        register_sysctl_init("fs", fs_exec_sysctls);
2174        return 0;
2175}
2176
2177fs_initcall(init_fs_exec_sysctls);
2178#endif /* CONFIG_SYSCTL */
2179