linux/fs/dcache.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/dcache.c
   4 *
   5 * Complete reimplementation
   6 * (C) 1997 Thomas Schoebel-Theuer,
   7 * with heavy changes by Linus Torvalds
   8 */
   9
  10/*
  11 * Notes on the allocation strategy:
  12 *
  13 * The dcache is a master of the icache - whenever a dcache entry
  14 * exists, the inode will always exist. "iput()" is done either when
  15 * the dcache entry is deleted or garbage collected.
  16 */
  17
  18#include <linux/ratelimit.h>
  19#include <linux/string.h>
  20#include <linux/mm.h>
  21#include <linux/fs.h>
  22#include <linux/fscrypt.h>
  23#include <linux/fsnotify.h>
  24#include <linux/slab.h>
  25#include <linux/init.h>
  26#include <linux/hash.h>
  27#include <linux/cache.h>
  28#include <linux/export.h>
  29#include <linux/security.h>
  30#include <linux/seqlock.h>
  31#include <linux/memblock.h>
  32#include <linux/bit_spinlock.h>
  33#include <linux/rculist_bl.h>
  34#include <linux/list_lru.h>
  35#include "internal.h"
  36#include "mount.h"
  37
  38/*
  39 * Usage:
  40 * dcache->d_inode->i_lock protects:
  41 *   - i_dentry, d_u.d_alias, d_inode of aliases
  42 * dcache_hash_bucket lock protects:
  43 *   - the dcache hash table
  44 * s_roots bl list spinlock protects:
  45 *   - the s_roots list (see __d_drop)
  46 * dentry->d_sb->s_dentry_lru_lock protects:
  47 *   - the dcache lru lists and counters
  48 * d_lock protects:
  49 *   - d_flags
  50 *   - d_name
  51 *   - d_lru
  52 *   - d_count
  53 *   - d_unhashed()
  54 *   - d_parent and d_subdirs
  55 *   - childrens' d_child and d_parent
  56 *   - d_u.d_alias, d_inode
  57 *
  58 * Ordering:
  59 * dentry->d_inode->i_lock
  60 *   dentry->d_lock
  61 *     dentry->d_sb->s_dentry_lru_lock
  62 *     dcache_hash_bucket lock
  63 *     s_roots lock
  64 *
  65 * If there is an ancestor relationship:
  66 * dentry->d_parent->...->d_parent->d_lock
  67 *   ...
  68 *     dentry->d_parent->d_lock
  69 *       dentry->d_lock
  70 *
  71 * If no ancestor relationship:
  72 * arbitrary, since it's serialized on rename_lock
  73 */
  74int sysctl_vfs_cache_pressure __read_mostly = 100;
  75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  76
  77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  78
  79EXPORT_SYMBOL(rename_lock);
  80
  81static struct kmem_cache *dentry_cache __ro_after_init;
  82
  83const struct qstr empty_name = QSTR_INIT("", 0);
  84EXPORT_SYMBOL(empty_name);
  85const struct qstr slash_name = QSTR_INIT("/", 1);
  86EXPORT_SYMBOL(slash_name);
  87const struct qstr dotdot_name = QSTR_INIT("..", 2);
  88EXPORT_SYMBOL(dotdot_name);
  89
  90/*
  91 * This is the single most critical data structure when it comes
  92 * to the dcache: the hashtable for lookups. Somebody should try
  93 * to make this good - I've just made it work.
  94 *
  95 * This hash-function tries to avoid losing too many bits of hash
  96 * information, yet avoid using a prime hash-size or similar.
  97 */
  98
  99static unsigned int d_hash_shift __ro_after_init;
 100
 101static struct hlist_bl_head *dentry_hashtable __ro_after_init;
 102
 103static inline struct hlist_bl_head *d_hash(unsigned int hash)
 104{
 105        return dentry_hashtable + (hash >> d_hash_shift);
 106}
 107
 108#define IN_LOOKUP_SHIFT 10
 109static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
 110
 111static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
 112                                        unsigned int hash)
 113{
 114        hash += (unsigned long) parent / L1_CACHE_BYTES;
 115        return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
 116}
 117
 118struct dentry_stat_t {
 119        long nr_dentry;
 120        long nr_unused;
 121        long age_limit;         /* age in seconds */
 122        long want_pages;        /* pages requested by system */
 123        long nr_negative;       /* # of unused negative dentries */
 124        long dummy;             /* Reserved for future use */
 125};
 126
 127static DEFINE_PER_CPU(long, nr_dentry);
 128static DEFINE_PER_CPU(long, nr_dentry_unused);
 129static DEFINE_PER_CPU(long, nr_dentry_negative);
 130
 131#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
 132/* Statistics gathering. */
 133static struct dentry_stat_t dentry_stat = {
 134        .age_limit = 45,
 135};
 136
 137/*
 138 * Here we resort to our own counters instead of using generic per-cpu counters
 139 * for consistency with what the vfs inode code does. We are expected to harvest
 140 * better code and performance by having our own specialized counters.
 141 *
 142 * Please note that the loop is done over all possible CPUs, not over all online
 143 * CPUs. The reason for this is that we don't want to play games with CPUs going
 144 * on and off. If one of them goes off, we will just keep their counters.
 145 *
 146 * glommer: See cffbc8a for details, and if you ever intend to change this,
 147 * please update all vfs counters to match.
 148 */
 149static long get_nr_dentry(void)
 150{
 151        int i;
 152        long sum = 0;
 153        for_each_possible_cpu(i)
 154                sum += per_cpu(nr_dentry, i);
 155        return sum < 0 ? 0 : sum;
 156}
 157
 158static long get_nr_dentry_unused(void)
 159{
 160        int i;
 161        long sum = 0;
 162        for_each_possible_cpu(i)
 163                sum += per_cpu(nr_dentry_unused, i);
 164        return sum < 0 ? 0 : sum;
 165}
 166
 167static long get_nr_dentry_negative(void)
 168{
 169        int i;
 170        long sum = 0;
 171
 172        for_each_possible_cpu(i)
 173                sum += per_cpu(nr_dentry_negative, i);
 174        return sum < 0 ? 0 : sum;
 175}
 176
 177static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
 178                          size_t *lenp, loff_t *ppos)
 179{
 180        dentry_stat.nr_dentry = get_nr_dentry();
 181        dentry_stat.nr_unused = get_nr_dentry_unused();
 182        dentry_stat.nr_negative = get_nr_dentry_negative();
 183        return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 184}
 185
 186static struct ctl_table fs_dcache_sysctls[] = {
 187        {
 188                .procname       = "dentry-state",
 189                .data           = &dentry_stat,
 190                .maxlen         = 6*sizeof(long),
 191                .mode           = 0444,
 192                .proc_handler   = proc_nr_dentry,
 193        },
 194        { }
 195};
 196
 197static int __init init_fs_dcache_sysctls(void)
 198{
 199        register_sysctl_init("fs", fs_dcache_sysctls);
 200        return 0;
 201}
 202fs_initcall(init_fs_dcache_sysctls);
 203#endif
 204
 205/*
 206 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
 207 * The strings are both count bytes long, and count is non-zero.
 208 */
 209#ifdef CONFIG_DCACHE_WORD_ACCESS
 210
 211#include <asm/word-at-a-time.h>
 212/*
 213 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
 214 * aligned allocation for this particular component. We don't
 215 * strictly need the load_unaligned_zeropad() safety, but it
 216 * doesn't hurt either.
 217 *
 218 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
 219 * need the careful unaligned handling.
 220 */
 221static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 222{
 223        unsigned long a,b,mask;
 224
 225        for (;;) {
 226                a = read_word_at_a_time(cs);
 227                b = load_unaligned_zeropad(ct);
 228                if (tcount < sizeof(unsigned long))
 229                        break;
 230                if (unlikely(a != b))
 231                        return 1;
 232                cs += sizeof(unsigned long);
 233                ct += sizeof(unsigned long);
 234                tcount -= sizeof(unsigned long);
 235                if (!tcount)
 236                        return 0;
 237        }
 238        mask = bytemask_from_count(tcount);
 239        return unlikely(!!((a ^ b) & mask));
 240}
 241
 242#else
 243
 244static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
 245{
 246        do {
 247                if (*cs != *ct)
 248                        return 1;
 249                cs++;
 250                ct++;
 251                tcount--;
 252        } while (tcount);
 253        return 0;
 254}
 255
 256#endif
 257
 258static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
 259{
 260        /*
 261         * Be careful about RCU walk racing with rename:
 262         * use 'READ_ONCE' to fetch the name pointer.
 263         *
 264         * NOTE! Even if a rename will mean that the length
 265         * was not loaded atomically, we don't care. The
 266         * RCU walk will check the sequence count eventually,
 267         * and catch it. And we won't overrun the buffer,
 268         * because we're reading the name pointer atomically,
 269         * and a dentry name is guaranteed to be properly
 270         * terminated with a NUL byte.
 271         *
 272         * End result: even if 'len' is wrong, we'll exit
 273         * early because the data cannot match (there can
 274         * be no NUL in the ct/tcount data)
 275         */
 276        const unsigned char *cs = READ_ONCE(dentry->d_name.name);
 277
 278        return dentry_string_cmp(cs, ct, tcount);
 279}
 280
 281struct external_name {
 282        union {
 283                atomic_t count;
 284                struct rcu_head head;
 285        } u;
 286        unsigned char name[];
 287};
 288
 289static inline struct external_name *external_name(struct dentry *dentry)
 290{
 291        return container_of(dentry->d_name.name, struct external_name, name[0]);
 292}
 293
 294static void __d_free(struct rcu_head *head)
 295{
 296        struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 297
 298        kmem_cache_free(dentry_cache, dentry); 
 299}
 300
 301static void __d_free_external(struct rcu_head *head)
 302{
 303        struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
 304        kfree(external_name(dentry));
 305        kmem_cache_free(dentry_cache, dentry);
 306}
 307
 308static inline int dname_external(const struct dentry *dentry)
 309{
 310        return dentry->d_name.name != dentry->d_iname;
 311}
 312
 313void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
 314{
 315        spin_lock(&dentry->d_lock);
 316        name->name = dentry->d_name;
 317        if (unlikely(dname_external(dentry))) {
 318                atomic_inc(&external_name(dentry)->u.count);
 319        } else {
 320                memcpy(name->inline_name, dentry->d_iname,
 321                       dentry->d_name.len + 1);
 322                name->name.name = name->inline_name;
 323        }
 324        spin_unlock(&dentry->d_lock);
 325}
 326EXPORT_SYMBOL(take_dentry_name_snapshot);
 327
 328void release_dentry_name_snapshot(struct name_snapshot *name)
 329{
 330        if (unlikely(name->name.name != name->inline_name)) {
 331                struct external_name *p;
 332                p = container_of(name->name.name, struct external_name, name[0]);
 333                if (unlikely(atomic_dec_and_test(&p->u.count)))
 334                        kfree_rcu(p, u.head);
 335        }
 336}
 337EXPORT_SYMBOL(release_dentry_name_snapshot);
 338
 339static inline void __d_set_inode_and_type(struct dentry *dentry,
 340                                          struct inode *inode,
 341                                          unsigned type_flags)
 342{
 343        unsigned flags;
 344
 345        dentry->d_inode = inode;
 346        flags = READ_ONCE(dentry->d_flags);
 347        flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
 348        flags |= type_flags;
 349        smp_store_release(&dentry->d_flags, flags);
 350}
 351
 352static inline void __d_clear_type_and_inode(struct dentry *dentry)
 353{
 354        unsigned flags = READ_ONCE(dentry->d_flags);
 355
 356        flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
 357        WRITE_ONCE(dentry->d_flags, flags);
 358        dentry->d_inode = NULL;
 359        if (dentry->d_flags & DCACHE_LRU_LIST)
 360                this_cpu_inc(nr_dentry_negative);
 361}
 362
 363static void dentry_free(struct dentry *dentry)
 364{
 365        WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
 366        if (unlikely(dname_external(dentry))) {
 367                struct external_name *p = external_name(dentry);
 368                if (likely(atomic_dec_and_test(&p->u.count))) {
 369                        call_rcu(&dentry->d_u.d_rcu, __d_free_external);
 370                        return;
 371                }
 372        }
 373        /* if dentry was never visible to RCU, immediate free is OK */
 374        if (dentry->d_flags & DCACHE_NORCU)
 375                __d_free(&dentry->d_u.d_rcu);
 376        else
 377                call_rcu(&dentry->d_u.d_rcu, __d_free);
 378}
 379
 380/*
 381 * Release the dentry's inode, using the filesystem
 382 * d_iput() operation if defined.
 383 */
 384static void dentry_unlink_inode(struct dentry * dentry)
 385        __releases(dentry->d_lock)
 386        __releases(dentry->d_inode->i_lock)
 387{
 388        struct inode *inode = dentry->d_inode;
 389
 390        raw_write_seqcount_begin(&dentry->d_seq);
 391        __d_clear_type_and_inode(dentry);
 392        hlist_del_init(&dentry->d_u.d_alias);
 393        raw_write_seqcount_end(&dentry->d_seq);
 394        spin_unlock(&dentry->d_lock);
 395        spin_unlock(&inode->i_lock);
 396        if (!inode->i_nlink)
 397                fsnotify_inoderemove(inode);
 398        if (dentry->d_op && dentry->d_op->d_iput)
 399                dentry->d_op->d_iput(dentry, inode);
 400        else
 401                iput(inode);
 402}
 403
 404/*
 405 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
 406 * is in use - which includes both the "real" per-superblock
 407 * LRU list _and_ the DCACHE_SHRINK_LIST use.
 408 *
 409 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
 410 * on the shrink list (ie not on the superblock LRU list).
 411 *
 412 * The per-cpu "nr_dentry_unused" counters are updated with
 413 * the DCACHE_LRU_LIST bit.
 414 *
 415 * The per-cpu "nr_dentry_negative" counters are only updated
 416 * when deleted from or added to the per-superblock LRU list, not
 417 * from/to the shrink list. That is to avoid an unneeded dec/inc
 418 * pair when moving from LRU to shrink list in select_collect().
 419 *
 420 * These helper functions make sure we always follow the
 421 * rules. d_lock must be held by the caller.
 422 */
 423#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
 424static void d_lru_add(struct dentry *dentry)
 425{
 426        D_FLAG_VERIFY(dentry, 0);
 427        dentry->d_flags |= DCACHE_LRU_LIST;
 428        this_cpu_inc(nr_dentry_unused);
 429        if (d_is_negative(dentry))
 430                this_cpu_inc(nr_dentry_negative);
 431        WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 432}
 433
 434static void d_lru_del(struct dentry *dentry)
 435{
 436        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 437        dentry->d_flags &= ~DCACHE_LRU_LIST;
 438        this_cpu_dec(nr_dentry_unused);
 439        if (d_is_negative(dentry))
 440                this_cpu_dec(nr_dentry_negative);
 441        WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
 442}
 443
 444static void d_shrink_del(struct dentry *dentry)
 445{
 446        D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 447        list_del_init(&dentry->d_lru);
 448        dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
 449        this_cpu_dec(nr_dentry_unused);
 450}
 451
 452static void d_shrink_add(struct dentry *dentry, struct list_head *list)
 453{
 454        D_FLAG_VERIFY(dentry, 0);
 455        list_add(&dentry->d_lru, list);
 456        dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
 457        this_cpu_inc(nr_dentry_unused);
 458}
 459
 460/*
 461 * These can only be called under the global LRU lock, ie during the
 462 * callback for freeing the LRU list. "isolate" removes it from the
 463 * LRU lists entirely, while shrink_move moves it to the indicated
 464 * private list.
 465 */
 466static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
 467{
 468        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 469        dentry->d_flags &= ~DCACHE_LRU_LIST;
 470        this_cpu_dec(nr_dentry_unused);
 471        if (d_is_negative(dentry))
 472                this_cpu_dec(nr_dentry_negative);
 473        list_lru_isolate(lru, &dentry->d_lru);
 474}
 475
 476static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
 477                              struct list_head *list)
 478{
 479        D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
 480        dentry->d_flags |= DCACHE_SHRINK_LIST;
 481        if (d_is_negative(dentry))
 482                this_cpu_dec(nr_dentry_negative);
 483        list_lru_isolate_move(lru, &dentry->d_lru, list);
 484}
 485
 486static void ___d_drop(struct dentry *dentry)
 487{
 488        struct hlist_bl_head *b;
 489        /*
 490         * Hashed dentries are normally on the dentry hashtable,
 491         * with the exception of those newly allocated by
 492         * d_obtain_root, which are always IS_ROOT:
 493         */
 494        if (unlikely(IS_ROOT(dentry)))
 495                b = &dentry->d_sb->s_roots;
 496        else
 497                b = d_hash(dentry->d_name.hash);
 498
 499        hlist_bl_lock(b);
 500        __hlist_bl_del(&dentry->d_hash);
 501        hlist_bl_unlock(b);
 502}
 503
 504void __d_drop(struct dentry *dentry)
 505{
 506        if (!d_unhashed(dentry)) {
 507                ___d_drop(dentry);
 508                dentry->d_hash.pprev = NULL;
 509                write_seqcount_invalidate(&dentry->d_seq);
 510        }
 511}
 512EXPORT_SYMBOL(__d_drop);
 513
 514/**
 515 * d_drop - drop a dentry
 516 * @dentry: dentry to drop
 517 *
 518 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
 519 * be found through a VFS lookup any more. Note that this is different from
 520 * deleting the dentry - d_delete will try to mark the dentry negative if
 521 * possible, giving a successful _negative_ lookup, while d_drop will
 522 * just make the cache lookup fail.
 523 *
 524 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
 525 * reason (NFS timeouts or autofs deletes).
 526 *
 527 * __d_drop requires dentry->d_lock
 528 *
 529 * ___d_drop doesn't mark dentry as "unhashed"
 530 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
 531 */
 532void d_drop(struct dentry *dentry)
 533{
 534        spin_lock(&dentry->d_lock);
 535        __d_drop(dentry);
 536        spin_unlock(&dentry->d_lock);
 537}
 538EXPORT_SYMBOL(d_drop);
 539
 540static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
 541{
 542        struct dentry *next;
 543        /*
 544         * Inform d_walk() and shrink_dentry_list() that we are no longer
 545         * attached to the dentry tree
 546         */
 547        dentry->d_flags |= DCACHE_DENTRY_KILLED;
 548        if (unlikely(list_empty(&dentry->d_child)))
 549                return;
 550        __list_del_entry(&dentry->d_child);
 551        /*
 552         * Cursors can move around the list of children.  While we'd been
 553         * a normal list member, it didn't matter - ->d_child.next would've
 554         * been updated.  However, from now on it won't be and for the
 555         * things like d_walk() it might end up with a nasty surprise.
 556         * Normally d_walk() doesn't care about cursors moving around -
 557         * ->d_lock on parent prevents that and since a cursor has no children
 558         * of its own, we get through it without ever unlocking the parent.
 559         * There is one exception, though - if we ascend from a child that
 560         * gets killed as soon as we unlock it, the next sibling is found
 561         * using the value left in its ->d_child.next.  And if _that_
 562         * pointed to a cursor, and cursor got moved (e.g. by lseek())
 563         * before d_walk() regains parent->d_lock, we'll end up skipping
 564         * everything the cursor had been moved past.
 565         *
 566         * Solution: make sure that the pointer left behind in ->d_child.next
 567         * points to something that won't be moving around.  I.e. skip the
 568         * cursors.
 569         */
 570        while (dentry->d_child.next != &parent->d_subdirs) {
 571                next = list_entry(dentry->d_child.next, struct dentry, d_child);
 572                if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
 573                        break;
 574                dentry->d_child.next = next->d_child.next;
 575        }
 576}
 577
 578static void __dentry_kill(struct dentry *dentry)
 579{
 580        struct dentry *parent = NULL;
 581        bool can_free = true;
 582        if (!IS_ROOT(dentry))
 583                parent = dentry->d_parent;
 584
 585        /*
 586         * The dentry is now unrecoverably dead to the world.
 587         */
 588        lockref_mark_dead(&dentry->d_lockref);
 589
 590        /*
 591         * inform the fs via d_prune that this dentry is about to be
 592         * unhashed and destroyed.
 593         */
 594        if (dentry->d_flags & DCACHE_OP_PRUNE)
 595                dentry->d_op->d_prune(dentry);
 596
 597        if (dentry->d_flags & DCACHE_LRU_LIST) {
 598                if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
 599                        d_lru_del(dentry);
 600        }
 601        /* if it was on the hash then remove it */
 602        __d_drop(dentry);
 603        dentry_unlist(dentry, parent);
 604        if (parent)
 605                spin_unlock(&parent->d_lock);
 606        if (dentry->d_inode)
 607                dentry_unlink_inode(dentry);
 608        else
 609                spin_unlock(&dentry->d_lock);
 610        this_cpu_dec(nr_dentry);
 611        if (dentry->d_op && dentry->d_op->d_release)
 612                dentry->d_op->d_release(dentry);
 613
 614        spin_lock(&dentry->d_lock);
 615        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
 616                dentry->d_flags |= DCACHE_MAY_FREE;
 617                can_free = false;
 618        }
 619        spin_unlock(&dentry->d_lock);
 620        if (likely(can_free))
 621                dentry_free(dentry);
 622        cond_resched();
 623}
 624
 625static struct dentry *__lock_parent(struct dentry *dentry)
 626{
 627        struct dentry *parent;
 628        rcu_read_lock();
 629        spin_unlock(&dentry->d_lock);
 630again:
 631        parent = READ_ONCE(dentry->d_parent);
 632        spin_lock(&parent->d_lock);
 633        /*
 634         * We can't blindly lock dentry until we are sure
 635         * that we won't violate the locking order.
 636         * Any changes of dentry->d_parent must have
 637         * been done with parent->d_lock held, so
 638         * spin_lock() above is enough of a barrier
 639         * for checking if it's still our child.
 640         */
 641        if (unlikely(parent != dentry->d_parent)) {
 642                spin_unlock(&parent->d_lock);
 643                goto again;
 644        }
 645        rcu_read_unlock();
 646        if (parent != dentry)
 647                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
 648        else
 649                parent = NULL;
 650        return parent;
 651}
 652
 653static inline struct dentry *lock_parent(struct dentry *dentry)
 654{
 655        struct dentry *parent = dentry->d_parent;
 656        if (IS_ROOT(dentry))
 657                return NULL;
 658        if (likely(spin_trylock(&parent->d_lock)))
 659                return parent;
 660        return __lock_parent(dentry);
 661}
 662
 663static inline bool retain_dentry(struct dentry *dentry)
 664{
 665        WARN_ON(d_in_lookup(dentry));
 666
 667        /* Unreachable? Get rid of it */
 668        if (unlikely(d_unhashed(dentry)))
 669                return false;
 670
 671        if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
 672                return false;
 673
 674        if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
 675                if (dentry->d_op->d_delete(dentry))
 676                        return false;
 677        }
 678
 679        if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
 680                return false;
 681
 682        /* retain; LRU fodder */
 683        dentry->d_lockref.count--;
 684        if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
 685                d_lru_add(dentry);
 686        else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
 687                dentry->d_flags |= DCACHE_REFERENCED;
 688        return true;
 689}
 690
 691void d_mark_dontcache(struct inode *inode)
 692{
 693        struct dentry *de;
 694
 695        spin_lock(&inode->i_lock);
 696        hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
 697                spin_lock(&de->d_lock);
 698                de->d_flags |= DCACHE_DONTCACHE;
 699                spin_unlock(&de->d_lock);
 700        }
 701        inode->i_state |= I_DONTCACHE;
 702        spin_unlock(&inode->i_lock);
 703}
 704EXPORT_SYMBOL(d_mark_dontcache);
 705
 706/*
 707 * Finish off a dentry we've decided to kill.
 708 * dentry->d_lock must be held, returns with it unlocked.
 709 * Returns dentry requiring refcount drop, or NULL if we're done.
 710 */
 711static struct dentry *dentry_kill(struct dentry *dentry)
 712        __releases(dentry->d_lock)
 713{
 714        struct inode *inode = dentry->d_inode;
 715        struct dentry *parent = NULL;
 716
 717        if (inode && unlikely(!spin_trylock(&inode->i_lock)))
 718                goto slow_positive;
 719
 720        if (!IS_ROOT(dentry)) {
 721                parent = dentry->d_parent;
 722                if (unlikely(!spin_trylock(&parent->d_lock))) {
 723                        parent = __lock_parent(dentry);
 724                        if (likely(inode || !dentry->d_inode))
 725                                goto got_locks;
 726                        /* negative that became positive */
 727                        if (parent)
 728                                spin_unlock(&parent->d_lock);
 729                        inode = dentry->d_inode;
 730                        goto slow_positive;
 731                }
 732        }
 733        __dentry_kill(dentry);
 734        return parent;
 735
 736slow_positive:
 737        spin_unlock(&dentry->d_lock);
 738        spin_lock(&inode->i_lock);
 739        spin_lock(&dentry->d_lock);
 740        parent = lock_parent(dentry);
 741got_locks:
 742        if (unlikely(dentry->d_lockref.count != 1)) {
 743                dentry->d_lockref.count--;
 744        } else if (likely(!retain_dentry(dentry))) {
 745                __dentry_kill(dentry);
 746                return parent;
 747        }
 748        /* we are keeping it, after all */
 749        if (inode)
 750                spin_unlock(&inode->i_lock);
 751        if (parent)
 752                spin_unlock(&parent->d_lock);
 753        spin_unlock(&dentry->d_lock);
 754        return NULL;
 755}
 756
 757/*
 758 * Try to do a lockless dput(), and return whether that was successful.
 759 *
 760 * If unsuccessful, we return false, having already taken the dentry lock.
 761 *
 762 * The caller needs to hold the RCU read lock, so that the dentry is
 763 * guaranteed to stay around even if the refcount goes down to zero!
 764 */
 765static inline bool fast_dput(struct dentry *dentry)
 766{
 767        int ret;
 768        unsigned int d_flags;
 769
 770        /*
 771         * If we have a d_op->d_delete() operation, we sould not
 772         * let the dentry count go to zero, so use "put_or_lock".
 773         */
 774        if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
 775                return lockref_put_or_lock(&dentry->d_lockref);
 776
 777        /*
 778         * .. otherwise, we can try to just decrement the
 779         * lockref optimistically.
 780         */
 781        ret = lockref_put_return(&dentry->d_lockref);
 782
 783        /*
 784         * If the lockref_put_return() failed due to the lock being held
 785         * by somebody else, the fast path has failed. We will need to
 786         * get the lock, and then check the count again.
 787         */
 788        if (unlikely(ret < 0)) {
 789                spin_lock(&dentry->d_lock);
 790                if (dentry->d_lockref.count > 1) {
 791                        dentry->d_lockref.count--;
 792                        spin_unlock(&dentry->d_lock);
 793                        return true;
 794                }
 795                return false;
 796        }
 797
 798        /*
 799         * If we weren't the last ref, we're done.
 800         */
 801        if (ret)
 802                return true;
 803
 804        /*
 805         * Careful, careful. The reference count went down
 806         * to zero, but we don't hold the dentry lock, so
 807         * somebody else could get it again, and do another
 808         * dput(), and we need to not race with that.
 809         *
 810         * However, there is a very special and common case
 811         * where we don't care, because there is nothing to
 812         * do: the dentry is still hashed, it does not have
 813         * a 'delete' op, and it's referenced and already on
 814         * the LRU list.
 815         *
 816         * NOTE! Since we aren't locked, these values are
 817         * not "stable". However, it is sufficient that at
 818         * some point after we dropped the reference the
 819         * dentry was hashed and the flags had the proper
 820         * value. Other dentry users may have re-gotten
 821         * a reference to the dentry and change that, but
 822         * our work is done - we can leave the dentry
 823         * around with a zero refcount.
 824         *
 825         * Nevertheless, there are two cases that we should kill
 826         * the dentry anyway.
 827         * 1. free disconnected dentries as soon as their refcount
 828         *    reached zero.
 829         * 2. free dentries if they should not be cached.
 830         */
 831        smp_rmb();
 832        d_flags = READ_ONCE(dentry->d_flags);
 833        d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
 834                        DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
 835
 836        /* Nothing to do? Dropping the reference was all we needed? */
 837        if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
 838                return true;
 839
 840        /*
 841         * Not the fast normal case? Get the lock. We've already decremented
 842         * the refcount, but we'll need to re-check the situation after
 843         * getting the lock.
 844         */
 845        spin_lock(&dentry->d_lock);
 846
 847        /*
 848         * Did somebody else grab a reference to it in the meantime, and
 849         * we're no longer the last user after all? Alternatively, somebody
 850         * else could have killed it and marked it dead. Either way, we
 851         * don't need to do anything else.
 852         */
 853        if (dentry->d_lockref.count) {
 854                spin_unlock(&dentry->d_lock);
 855                return true;
 856        }
 857
 858        /*
 859         * Re-get the reference we optimistically dropped. We hold the
 860         * lock, and we just tested that it was zero, so we can just
 861         * set it to 1.
 862         */
 863        dentry->d_lockref.count = 1;
 864        return false;
 865}
 866
 867
 868/* 
 869 * This is dput
 870 *
 871 * This is complicated by the fact that we do not want to put
 872 * dentries that are no longer on any hash chain on the unused
 873 * list: we'd much rather just get rid of them immediately.
 874 *
 875 * However, that implies that we have to traverse the dentry
 876 * tree upwards to the parents which might _also_ now be
 877 * scheduled for deletion (it may have been only waiting for
 878 * its last child to go away).
 879 *
 880 * This tail recursion is done by hand as we don't want to depend
 881 * on the compiler to always get this right (gcc generally doesn't).
 882 * Real recursion would eat up our stack space.
 883 */
 884
 885/*
 886 * dput - release a dentry
 887 * @dentry: dentry to release 
 888 *
 889 * Release a dentry. This will drop the usage count and if appropriate
 890 * call the dentry unlink method as well as removing it from the queues and
 891 * releasing its resources. If the parent dentries were scheduled for release
 892 * they too may now get deleted.
 893 */
 894void dput(struct dentry *dentry)
 895{
 896        while (dentry) {
 897                might_sleep();
 898
 899                rcu_read_lock();
 900                if (likely(fast_dput(dentry))) {
 901                        rcu_read_unlock();
 902                        return;
 903                }
 904
 905                /* Slow case: now with the dentry lock held */
 906                rcu_read_unlock();
 907
 908                if (likely(retain_dentry(dentry))) {
 909                        spin_unlock(&dentry->d_lock);
 910                        return;
 911                }
 912
 913                dentry = dentry_kill(dentry);
 914        }
 915}
 916EXPORT_SYMBOL(dput);
 917
 918static void __dput_to_list(struct dentry *dentry, struct list_head *list)
 919__must_hold(&dentry->d_lock)
 920{
 921        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
 922                /* let the owner of the list it's on deal with it */
 923                --dentry->d_lockref.count;
 924        } else {
 925                if (dentry->d_flags & DCACHE_LRU_LIST)
 926                        d_lru_del(dentry);
 927                if (!--dentry->d_lockref.count)
 928                        d_shrink_add(dentry, list);
 929        }
 930}
 931
 932void dput_to_list(struct dentry *dentry, struct list_head *list)
 933{
 934        rcu_read_lock();
 935        if (likely(fast_dput(dentry))) {
 936                rcu_read_unlock();
 937                return;
 938        }
 939        rcu_read_unlock();
 940        if (!retain_dentry(dentry))
 941                __dput_to_list(dentry, list);
 942        spin_unlock(&dentry->d_lock);
 943}
 944
 945/* This must be called with d_lock held */
 946static inline void __dget_dlock(struct dentry *dentry)
 947{
 948        dentry->d_lockref.count++;
 949}
 950
 951static inline void __dget(struct dentry *dentry)
 952{
 953        lockref_get(&dentry->d_lockref);
 954}
 955
 956struct dentry *dget_parent(struct dentry *dentry)
 957{
 958        int gotref;
 959        struct dentry *ret;
 960        unsigned seq;
 961
 962        /*
 963         * Do optimistic parent lookup without any
 964         * locking.
 965         */
 966        rcu_read_lock();
 967        seq = raw_seqcount_begin(&dentry->d_seq);
 968        ret = READ_ONCE(dentry->d_parent);
 969        gotref = lockref_get_not_zero(&ret->d_lockref);
 970        rcu_read_unlock();
 971        if (likely(gotref)) {
 972                if (!read_seqcount_retry(&dentry->d_seq, seq))
 973                        return ret;
 974                dput(ret);
 975        }
 976
 977repeat:
 978        /*
 979         * Don't need rcu_dereference because we re-check it was correct under
 980         * the lock.
 981         */
 982        rcu_read_lock();
 983        ret = dentry->d_parent;
 984        spin_lock(&ret->d_lock);
 985        if (unlikely(ret != dentry->d_parent)) {
 986                spin_unlock(&ret->d_lock);
 987                rcu_read_unlock();
 988                goto repeat;
 989        }
 990        rcu_read_unlock();
 991        BUG_ON(!ret->d_lockref.count);
 992        ret->d_lockref.count++;
 993        spin_unlock(&ret->d_lock);
 994        return ret;
 995}
 996EXPORT_SYMBOL(dget_parent);
 997
 998static struct dentry * __d_find_any_alias(struct inode *inode)
 999{
1000        struct dentry *alias;
1001
1002        if (hlist_empty(&inode->i_dentry))
1003                return NULL;
1004        alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1005        __dget(alias);
1006        return alias;
1007}
1008
1009/**
1010 * d_find_any_alias - find any alias for a given inode
1011 * @inode: inode to find an alias for
1012 *
1013 * If any aliases exist for the given inode, take and return a
1014 * reference for one of them.  If no aliases exist, return %NULL.
1015 */
1016struct dentry *d_find_any_alias(struct inode *inode)
1017{
1018        struct dentry *de;
1019
1020        spin_lock(&inode->i_lock);
1021        de = __d_find_any_alias(inode);
1022        spin_unlock(&inode->i_lock);
1023        return de;
1024}
1025EXPORT_SYMBOL(d_find_any_alias);
1026
1027static struct dentry *__d_find_alias(struct inode *inode)
1028{
1029        struct dentry *alias;
1030
1031        if (S_ISDIR(inode->i_mode))
1032                return __d_find_any_alias(inode);
1033
1034        hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1035                spin_lock(&alias->d_lock);
1036                if (!d_unhashed(alias)) {
1037                        __dget_dlock(alias);
1038                        spin_unlock(&alias->d_lock);
1039                        return alias;
1040                }
1041                spin_unlock(&alias->d_lock);
1042        }
1043        return NULL;
1044}
1045
1046/**
1047 * d_find_alias - grab a hashed alias of inode
1048 * @inode: inode in question
1049 *
1050 * If inode has a hashed alias, or is a directory and has any alias,
1051 * acquire the reference to alias and return it. Otherwise return NULL.
1052 * Notice that if inode is a directory there can be only one alias and
1053 * it can be unhashed only if it has no children, or if it is the root
1054 * of a filesystem, or if the directory was renamed and d_revalidate
1055 * was the first vfs operation to notice.
1056 *
1057 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1058 * any other hashed alias over that one.
1059 */
1060struct dentry *d_find_alias(struct inode *inode)
1061{
1062        struct dentry *de = NULL;
1063
1064        if (!hlist_empty(&inode->i_dentry)) {
1065                spin_lock(&inode->i_lock);
1066                de = __d_find_alias(inode);
1067                spin_unlock(&inode->i_lock);
1068        }
1069        return de;
1070}
1071EXPORT_SYMBOL(d_find_alias);
1072
1073/*
1074 *  Caller MUST be holding rcu_read_lock() and be guaranteed
1075 *  that inode won't get freed until rcu_read_unlock().
1076 */
1077struct dentry *d_find_alias_rcu(struct inode *inode)
1078{
1079        struct hlist_head *l = &inode->i_dentry;
1080        struct dentry *de = NULL;
1081
1082        spin_lock(&inode->i_lock);
1083        // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1084        // used without having I_FREEING set, which means no aliases left
1085        if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1086                if (S_ISDIR(inode->i_mode)) {
1087                        de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1088                } else {
1089                        hlist_for_each_entry(de, l, d_u.d_alias)
1090                                if (!d_unhashed(de))
1091                                        break;
1092                }
1093        }
1094        spin_unlock(&inode->i_lock);
1095        return de;
1096}
1097
1098/*
1099 *      Try to kill dentries associated with this inode.
1100 * WARNING: you must own a reference to inode.
1101 */
1102void d_prune_aliases(struct inode *inode)
1103{
1104        struct dentry *dentry;
1105restart:
1106        spin_lock(&inode->i_lock);
1107        hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1108                spin_lock(&dentry->d_lock);
1109                if (!dentry->d_lockref.count) {
1110                        struct dentry *parent = lock_parent(dentry);
1111                        if (likely(!dentry->d_lockref.count)) {
1112                                __dentry_kill(dentry);
1113                                dput(parent);
1114                                goto restart;
1115                        }
1116                        if (parent)
1117                                spin_unlock(&parent->d_lock);
1118                }
1119                spin_unlock(&dentry->d_lock);
1120        }
1121        spin_unlock(&inode->i_lock);
1122}
1123EXPORT_SYMBOL(d_prune_aliases);
1124
1125/*
1126 * Lock a dentry from shrink list.
1127 * Called under rcu_read_lock() and dentry->d_lock; the former
1128 * guarantees that nothing we access will be freed under us.
1129 * Note that dentry is *not* protected from concurrent dentry_kill(),
1130 * d_delete(), etc.
1131 *
1132 * Return false if dentry has been disrupted or grabbed, leaving
1133 * the caller to kick it off-list.  Otherwise, return true and have
1134 * that dentry's inode and parent both locked.
1135 */
1136static bool shrink_lock_dentry(struct dentry *dentry)
1137{
1138        struct inode *inode;
1139        struct dentry *parent;
1140
1141        if (dentry->d_lockref.count)
1142                return false;
1143
1144        inode = dentry->d_inode;
1145        if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1146                spin_unlock(&dentry->d_lock);
1147                spin_lock(&inode->i_lock);
1148                spin_lock(&dentry->d_lock);
1149                if (unlikely(dentry->d_lockref.count))
1150                        goto out;
1151                /* changed inode means that somebody had grabbed it */
1152                if (unlikely(inode != dentry->d_inode))
1153                        goto out;
1154        }
1155
1156        parent = dentry->d_parent;
1157        if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1158                return true;
1159
1160        spin_unlock(&dentry->d_lock);
1161        spin_lock(&parent->d_lock);
1162        if (unlikely(parent != dentry->d_parent)) {
1163                spin_unlock(&parent->d_lock);
1164                spin_lock(&dentry->d_lock);
1165                goto out;
1166        }
1167        spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1168        if (likely(!dentry->d_lockref.count))
1169                return true;
1170        spin_unlock(&parent->d_lock);
1171out:
1172        if (inode)
1173                spin_unlock(&inode->i_lock);
1174        return false;
1175}
1176
1177void shrink_dentry_list(struct list_head *list)
1178{
1179        while (!list_empty(list)) {
1180                struct dentry *dentry, *parent;
1181
1182                dentry = list_entry(list->prev, struct dentry, d_lru);
1183                spin_lock(&dentry->d_lock);
1184                rcu_read_lock();
1185                if (!shrink_lock_dentry(dentry)) {
1186                        bool can_free = false;
1187                        rcu_read_unlock();
1188                        d_shrink_del(dentry);
1189                        if (dentry->d_lockref.count < 0)
1190                                can_free = dentry->d_flags & DCACHE_MAY_FREE;
1191                        spin_unlock(&dentry->d_lock);
1192                        if (can_free)
1193                                dentry_free(dentry);
1194                        continue;
1195                }
1196                rcu_read_unlock();
1197                d_shrink_del(dentry);
1198                parent = dentry->d_parent;
1199                if (parent != dentry)
1200                        __dput_to_list(parent, list);
1201                __dentry_kill(dentry);
1202        }
1203}
1204
1205static enum lru_status dentry_lru_isolate(struct list_head *item,
1206                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1207{
1208        struct list_head *freeable = arg;
1209        struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1210
1211
1212        /*
1213         * we are inverting the lru lock/dentry->d_lock here,
1214         * so use a trylock. If we fail to get the lock, just skip
1215         * it
1216         */
1217        if (!spin_trylock(&dentry->d_lock))
1218                return LRU_SKIP;
1219
1220        /*
1221         * Referenced dentries are still in use. If they have active
1222         * counts, just remove them from the LRU. Otherwise give them
1223         * another pass through the LRU.
1224         */
1225        if (dentry->d_lockref.count) {
1226                d_lru_isolate(lru, dentry);
1227                spin_unlock(&dentry->d_lock);
1228                return LRU_REMOVED;
1229        }
1230
1231        if (dentry->d_flags & DCACHE_REFERENCED) {
1232                dentry->d_flags &= ~DCACHE_REFERENCED;
1233                spin_unlock(&dentry->d_lock);
1234
1235                /*
1236                 * The list move itself will be made by the common LRU code. At
1237                 * this point, we've dropped the dentry->d_lock but keep the
1238                 * lru lock. This is safe to do, since every list movement is
1239                 * protected by the lru lock even if both locks are held.
1240                 *
1241                 * This is guaranteed by the fact that all LRU management
1242                 * functions are intermediated by the LRU API calls like
1243                 * list_lru_add and list_lru_del. List movement in this file
1244                 * only ever occur through this functions or through callbacks
1245                 * like this one, that are called from the LRU API.
1246                 *
1247                 * The only exceptions to this are functions like
1248                 * shrink_dentry_list, and code that first checks for the
1249                 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1250                 * operating only with stack provided lists after they are
1251                 * properly isolated from the main list.  It is thus, always a
1252                 * local access.
1253                 */
1254                return LRU_ROTATE;
1255        }
1256
1257        d_lru_shrink_move(lru, dentry, freeable);
1258        spin_unlock(&dentry->d_lock);
1259
1260        return LRU_REMOVED;
1261}
1262
1263/**
1264 * prune_dcache_sb - shrink the dcache
1265 * @sb: superblock
1266 * @sc: shrink control, passed to list_lru_shrink_walk()
1267 *
1268 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1269 * is done when we need more memory and called from the superblock shrinker
1270 * function.
1271 *
1272 * This function may fail to free any resources if all the dentries are in
1273 * use.
1274 */
1275long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1276{
1277        LIST_HEAD(dispose);
1278        long freed;
1279
1280        freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1281                                     dentry_lru_isolate, &dispose);
1282        shrink_dentry_list(&dispose);
1283        return freed;
1284}
1285
1286static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1287                struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1288{
1289        struct list_head *freeable = arg;
1290        struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1291
1292        /*
1293         * we are inverting the lru lock/dentry->d_lock here,
1294         * so use a trylock. If we fail to get the lock, just skip
1295         * it
1296         */
1297        if (!spin_trylock(&dentry->d_lock))
1298                return LRU_SKIP;
1299
1300        d_lru_shrink_move(lru, dentry, freeable);
1301        spin_unlock(&dentry->d_lock);
1302
1303        return LRU_REMOVED;
1304}
1305
1306
1307/**
1308 * shrink_dcache_sb - shrink dcache for a superblock
1309 * @sb: superblock
1310 *
1311 * Shrink the dcache for the specified super block. This is used to free
1312 * the dcache before unmounting a file system.
1313 */
1314void shrink_dcache_sb(struct super_block *sb)
1315{
1316        do {
1317                LIST_HEAD(dispose);
1318
1319                list_lru_walk(&sb->s_dentry_lru,
1320                        dentry_lru_isolate_shrink, &dispose, 1024);
1321                shrink_dentry_list(&dispose);
1322        } while (list_lru_count(&sb->s_dentry_lru) > 0);
1323}
1324EXPORT_SYMBOL(shrink_dcache_sb);
1325
1326/**
1327 * enum d_walk_ret - action to talke during tree walk
1328 * @D_WALK_CONTINUE:    contrinue walk
1329 * @D_WALK_QUIT:        quit walk
1330 * @D_WALK_NORETRY:     quit when retry is needed
1331 * @D_WALK_SKIP:        skip this dentry and its children
1332 */
1333enum d_walk_ret {
1334        D_WALK_CONTINUE,
1335        D_WALK_QUIT,
1336        D_WALK_NORETRY,
1337        D_WALK_SKIP,
1338};
1339
1340/**
1341 * d_walk - walk the dentry tree
1342 * @parent:     start of walk
1343 * @data:       data passed to @enter() and @finish()
1344 * @enter:      callback when first entering the dentry
1345 *
1346 * The @enter() callbacks are called with d_lock held.
1347 */
1348static void d_walk(struct dentry *parent, void *data,
1349                   enum d_walk_ret (*enter)(void *, struct dentry *))
1350{
1351        struct dentry *this_parent;
1352        struct list_head *next;
1353        unsigned seq = 0;
1354        enum d_walk_ret ret;
1355        bool retry = true;
1356
1357again:
1358        read_seqbegin_or_lock(&rename_lock, &seq);
1359        this_parent = parent;
1360        spin_lock(&this_parent->d_lock);
1361
1362        ret = enter(data, this_parent);
1363        switch (ret) {
1364        case D_WALK_CONTINUE:
1365                break;
1366        case D_WALK_QUIT:
1367        case D_WALK_SKIP:
1368                goto out_unlock;
1369        case D_WALK_NORETRY:
1370                retry = false;
1371                break;
1372        }
1373repeat:
1374        next = this_parent->d_subdirs.next;
1375resume:
1376        while (next != &this_parent->d_subdirs) {
1377                struct list_head *tmp = next;
1378                struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1379                next = tmp->next;
1380
1381                if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1382                        continue;
1383
1384                spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1385
1386                ret = enter(data, dentry);
1387                switch (ret) {
1388                case D_WALK_CONTINUE:
1389                        break;
1390                case D_WALK_QUIT:
1391                        spin_unlock(&dentry->d_lock);
1392                        goto out_unlock;
1393                case D_WALK_NORETRY:
1394                        retry = false;
1395                        break;
1396                case D_WALK_SKIP:
1397                        spin_unlock(&dentry->d_lock);
1398                        continue;
1399                }
1400
1401                if (!list_empty(&dentry->d_subdirs)) {
1402                        spin_unlock(&this_parent->d_lock);
1403                        spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1404                        this_parent = dentry;
1405                        spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1406                        goto repeat;
1407                }
1408                spin_unlock(&dentry->d_lock);
1409        }
1410        /*
1411         * All done at this level ... ascend and resume the search.
1412         */
1413        rcu_read_lock();
1414ascend:
1415        if (this_parent != parent) {
1416                struct dentry *child = this_parent;
1417                this_parent = child->d_parent;
1418
1419                spin_unlock(&child->d_lock);
1420                spin_lock(&this_parent->d_lock);
1421
1422                /* might go back up the wrong parent if we have had a rename. */
1423                if (need_seqretry(&rename_lock, seq))
1424                        goto rename_retry;
1425                /* go into the first sibling still alive */
1426                do {
1427                        next = child->d_child.next;
1428                        if (next == &this_parent->d_subdirs)
1429                                goto ascend;
1430                        child = list_entry(next, struct dentry, d_child);
1431                } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1432                rcu_read_unlock();
1433                goto resume;
1434        }
1435        if (need_seqretry(&rename_lock, seq))
1436                goto rename_retry;
1437        rcu_read_unlock();
1438
1439out_unlock:
1440        spin_unlock(&this_parent->d_lock);
1441        done_seqretry(&rename_lock, seq);
1442        return;
1443
1444rename_retry:
1445        spin_unlock(&this_parent->d_lock);
1446        rcu_read_unlock();
1447        BUG_ON(seq & 1);
1448        if (!retry)
1449                return;
1450        seq = 1;
1451        goto again;
1452}
1453
1454struct check_mount {
1455        struct vfsmount *mnt;
1456        unsigned int mounted;
1457};
1458
1459static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1460{
1461        struct check_mount *info = data;
1462        struct path path = { .mnt = info->mnt, .dentry = dentry };
1463
1464        if (likely(!d_mountpoint(dentry)))
1465                return D_WALK_CONTINUE;
1466        if (__path_is_mountpoint(&path)) {
1467                info->mounted = 1;
1468                return D_WALK_QUIT;
1469        }
1470        return D_WALK_CONTINUE;
1471}
1472
1473/**
1474 * path_has_submounts - check for mounts over a dentry in the
1475 *                      current namespace.
1476 * @parent: path to check.
1477 *
1478 * Return true if the parent or its subdirectories contain
1479 * a mount point in the current namespace.
1480 */
1481int path_has_submounts(const struct path *parent)
1482{
1483        struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1484
1485        read_seqlock_excl(&mount_lock);
1486        d_walk(parent->dentry, &data, path_check_mount);
1487        read_sequnlock_excl(&mount_lock);
1488
1489        return data.mounted;
1490}
1491EXPORT_SYMBOL(path_has_submounts);
1492
1493/*
1494 * Called by mount code to set a mountpoint and check if the mountpoint is
1495 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1496 * subtree can become unreachable).
1497 *
1498 * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1499 * this reason take rename_lock and d_lock on dentry and ancestors.
1500 */
1501int d_set_mounted(struct dentry *dentry)
1502{
1503        struct dentry *p;
1504        int ret = -ENOENT;
1505        write_seqlock(&rename_lock);
1506        for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1507                /* Need exclusion wrt. d_invalidate() */
1508                spin_lock(&p->d_lock);
1509                if (unlikely(d_unhashed(p))) {
1510                        spin_unlock(&p->d_lock);
1511                        goto out;
1512                }
1513                spin_unlock(&p->d_lock);
1514        }
1515        spin_lock(&dentry->d_lock);
1516        if (!d_unlinked(dentry)) {
1517                ret = -EBUSY;
1518                if (!d_mountpoint(dentry)) {
1519                        dentry->d_flags |= DCACHE_MOUNTED;
1520                        ret = 0;
1521                }
1522        }
1523        spin_unlock(&dentry->d_lock);
1524out:
1525        write_sequnlock(&rename_lock);
1526        return ret;
1527}
1528
1529/*
1530 * Search the dentry child list of the specified parent,
1531 * and move any unused dentries to the end of the unused
1532 * list for prune_dcache(). We descend to the next level
1533 * whenever the d_subdirs list is non-empty and continue
1534 * searching.
1535 *
1536 * It returns zero iff there are no unused children,
1537 * otherwise  it returns the number of children moved to
1538 * the end of the unused list. This may not be the total
1539 * number of unused children, because select_parent can
1540 * drop the lock and return early due to latency
1541 * constraints.
1542 */
1543
1544struct select_data {
1545        struct dentry *start;
1546        union {
1547                long found;
1548                struct dentry *victim;
1549        };
1550        struct list_head dispose;
1551};
1552
1553static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1554{
1555        struct select_data *data = _data;
1556        enum d_walk_ret ret = D_WALK_CONTINUE;
1557
1558        if (data->start == dentry)
1559                goto out;
1560
1561        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1562                data->found++;
1563        } else {
1564                if (dentry->d_flags & DCACHE_LRU_LIST)
1565                        d_lru_del(dentry);
1566                if (!dentry->d_lockref.count) {
1567                        d_shrink_add(dentry, &data->dispose);
1568                        data->found++;
1569                }
1570        }
1571        /*
1572         * We can return to the caller if we have found some (this
1573         * ensures forward progress). We'll be coming back to find
1574         * the rest.
1575         */
1576        if (!list_empty(&data->dispose))
1577                ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1578out:
1579        return ret;
1580}
1581
1582static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1583{
1584        struct select_data *data = _data;
1585        enum d_walk_ret ret = D_WALK_CONTINUE;
1586
1587        if (data->start == dentry)
1588                goto out;
1589
1590        if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1591                if (!dentry->d_lockref.count) {
1592                        rcu_read_lock();
1593                        data->victim = dentry;
1594                        return D_WALK_QUIT;
1595                }
1596        } else {
1597                if (dentry->d_flags & DCACHE_LRU_LIST)
1598                        d_lru_del(dentry);
1599                if (!dentry->d_lockref.count)
1600                        d_shrink_add(dentry, &data->dispose);
1601        }
1602        /*
1603         * We can return to the caller if we have found some (this
1604         * ensures forward progress). We'll be coming back to find
1605         * the rest.
1606         */
1607        if (!list_empty(&data->dispose))
1608                ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1609out:
1610        return ret;
1611}
1612
1613/**
1614 * shrink_dcache_parent - prune dcache
1615 * @parent: parent of entries to prune
1616 *
1617 * Prune the dcache to remove unused children of the parent dentry.
1618 */
1619void shrink_dcache_parent(struct dentry *parent)
1620{
1621        for (;;) {
1622                struct select_data data = {.start = parent};
1623
1624                INIT_LIST_HEAD(&data.dispose);
1625                d_walk(parent, &data, select_collect);
1626
1627                if (!list_empty(&data.dispose)) {
1628                        shrink_dentry_list(&data.dispose);
1629                        continue;
1630                }
1631
1632                cond_resched();
1633                if (!data.found)
1634                        break;
1635                data.victim = NULL;
1636                d_walk(parent, &data, select_collect2);
1637                if (data.victim) {
1638                        struct dentry *parent;
1639                        spin_lock(&data.victim->d_lock);
1640                        if (!shrink_lock_dentry(data.victim)) {
1641                                spin_unlock(&data.victim->d_lock);
1642                                rcu_read_unlock();
1643                        } else {
1644                                rcu_read_unlock();
1645                                parent = data.victim->d_parent;
1646                                if (parent != data.victim)
1647                                        __dput_to_list(parent, &data.dispose);
1648                                __dentry_kill(data.victim);
1649                        }
1650                }
1651                if (!list_empty(&data.dispose))
1652                        shrink_dentry_list(&data.dispose);
1653        }
1654}
1655EXPORT_SYMBOL(shrink_dcache_parent);
1656
1657static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1658{
1659        /* it has busy descendents; complain about those instead */
1660        if (!list_empty(&dentry->d_subdirs))
1661                return D_WALK_CONTINUE;
1662
1663        /* root with refcount 1 is fine */
1664        if (dentry == _data && dentry->d_lockref.count == 1)
1665                return D_WALK_CONTINUE;
1666
1667        WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1668                        " still in use (%d) [unmount of %s %s]\n",
1669                       dentry,
1670                       dentry->d_inode ?
1671                       dentry->d_inode->i_ino : 0UL,
1672                       dentry,
1673                       dentry->d_lockref.count,
1674                       dentry->d_sb->s_type->name,
1675                       dentry->d_sb->s_id);
1676        return D_WALK_CONTINUE;
1677}
1678
1679static void do_one_tree(struct dentry *dentry)
1680{
1681        shrink_dcache_parent(dentry);
1682        d_walk(dentry, dentry, umount_check);
1683        d_drop(dentry);
1684        dput(dentry);
1685}
1686
1687/*
1688 * destroy the dentries attached to a superblock on unmounting
1689 */
1690void shrink_dcache_for_umount(struct super_block *sb)
1691{
1692        struct dentry *dentry;
1693
1694        WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1695
1696        dentry = sb->s_root;
1697        sb->s_root = NULL;
1698        do_one_tree(dentry);
1699
1700        while (!hlist_bl_empty(&sb->s_roots)) {
1701                dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1702                do_one_tree(dentry);
1703        }
1704}
1705
1706static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1707{
1708        struct dentry **victim = _data;
1709        if (d_mountpoint(dentry)) {
1710                __dget_dlock(dentry);
1711                *victim = dentry;
1712                return D_WALK_QUIT;
1713        }
1714        return D_WALK_CONTINUE;
1715}
1716
1717/**
1718 * d_invalidate - detach submounts, prune dcache, and drop
1719 * @dentry: dentry to invalidate (aka detach, prune and drop)
1720 */
1721void d_invalidate(struct dentry *dentry)
1722{
1723        bool had_submounts = false;
1724        spin_lock(&dentry->d_lock);
1725        if (d_unhashed(dentry)) {
1726                spin_unlock(&dentry->d_lock);
1727                return;
1728        }
1729        __d_drop(dentry);
1730        spin_unlock(&dentry->d_lock);
1731
1732        /* Negative dentries can be dropped without further checks */
1733        if (!dentry->d_inode)
1734                return;
1735
1736        shrink_dcache_parent(dentry);
1737        for (;;) {
1738                struct dentry *victim = NULL;
1739                d_walk(dentry, &victim, find_submount);
1740                if (!victim) {
1741                        if (had_submounts)
1742                                shrink_dcache_parent(dentry);
1743                        return;
1744                }
1745                had_submounts = true;
1746                detach_mounts(victim);
1747                dput(victim);
1748        }
1749}
1750EXPORT_SYMBOL(d_invalidate);
1751
1752/**
1753 * __d_alloc    -       allocate a dcache entry
1754 * @sb: filesystem it will belong to
1755 * @name: qstr of the name
1756 *
1757 * Allocates a dentry. It returns %NULL if there is insufficient memory
1758 * available. On a success the dentry is returned. The name passed in is
1759 * copied and the copy passed in may be reused after this call.
1760 */
1761 
1762static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1763{
1764        struct dentry *dentry;
1765        char *dname;
1766        int err;
1767
1768        dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1769                                      GFP_KERNEL);
1770        if (!dentry)
1771                return NULL;
1772
1773        /*
1774         * We guarantee that the inline name is always NUL-terminated.
1775         * This way the memcpy() done by the name switching in rename
1776         * will still always have a NUL at the end, even if we might
1777         * be overwriting an internal NUL character
1778         */
1779        dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1780        if (unlikely(!name)) {
1781                name = &slash_name;
1782                dname = dentry->d_iname;
1783        } else if (name->len > DNAME_INLINE_LEN-1) {
1784                size_t size = offsetof(struct external_name, name[1]);
1785                struct external_name *p = kmalloc(size + name->len,
1786                                                  GFP_KERNEL_ACCOUNT |
1787                                                  __GFP_RECLAIMABLE);
1788                if (!p) {
1789                        kmem_cache_free(dentry_cache, dentry); 
1790                        return NULL;
1791                }
1792                atomic_set(&p->u.count, 1);
1793                dname = p->name;
1794        } else  {
1795                dname = dentry->d_iname;
1796        }       
1797
1798        dentry->d_name.len = name->len;
1799        dentry->d_name.hash = name->hash;
1800        memcpy(dname, name->name, name->len);
1801        dname[name->len] = 0;
1802
1803        /* Make sure we always see the terminating NUL character */
1804        smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1805
1806        dentry->d_lockref.count = 1;
1807        dentry->d_flags = 0;
1808        spin_lock_init(&dentry->d_lock);
1809        seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1810        dentry->d_inode = NULL;
1811        dentry->d_parent = dentry;
1812        dentry->d_sb = sb;
1813        dentry->d_op = NULL;
1814        dentry->d_fsdata = NULL;
1815        INIT_HLIST_BL_NODE(&dentry->d_hash);
1816        INIT_LIST_HEAD(&dentry->d_lru);
1817        INIT_LIST_HEAD(&dentry->d_subdirs);
1818        INIT_HLIST_NODE(&dentry->d_u.d_alias);
1819        INIT_LIST_HEAD(&dentry->d_child);
1820        d_set_d_op(dentry, dentry->d_sb->s_d_op);
1821
1822        if (dentry->d_op && dentry->d_op->d_init) {
1823                err = dentry->d_op->d_init(dentry);
1824                if (err) {
1825                        if (dname_external(dentry))
1826                                kfree(external_name(dentry));
1827                        kmem_cache_free(dentry_cache, dentry);
1828                        return NULL;
1829                }
1830        }
1831
1832        this_cpu_inc(nr_dentry);
1833
1834        return dentry;
1835}
1836
1837/**
1838 * d_alloc      -       allocate a dcache entry
1839 * @parent: parent of entry to allocate
1840 * @name: qstr of the name
1841 *
1842 * Allocates a dentry. It returns %NULL if there is insufficient memory
1843 * available. On a success the dentry is returned. The name passed in is
1844 * copied and the copy passed in may be reused after this call.
1845 */
1846struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1847{
1848        struct dentry *dentry = __d_alloc(parent->d_sb, name);
1849        if (!dentry)
1850                return NULL;
1851        spin_lock(&parent->d_lock);
1852        /*
1853         * don't need child lock because it is not subject
1854         * to concurrency here
1855         */
1856        __dget_dlock(parent);
1857        dentry->d_parent = parent;
1858        list_add(&dentry->d_child, &parent->d_subdirs);
1859        spin_unlock(&parent->d_lock);
1860
1861        return dentry;
1862}
1863EXPORT_SYMBOL(d_alloc);
1864
1865struct dentry *d_alloc_anon(struct super_block *sb)
1866{
1867        return __d_alloc(sb, NULL);
1868}
1869EXPORT_SYMBOL(d_alloc_anon);
1870
1871struct dentry *d_alloc_cursor(struct dentry * parent)
1872{
1873        struct dentry *dentry = d_alloc_anon(parent->d_sb);
1874        if (dentry) {
1875                dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1876                dentry->d_parent = dget(parent);
1877        }
1878        return dentry;
1879}
1880
1881/**
1882 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1883 * @sb: the superblock
1884 * @name: qstr of the name
1885 *
1886 * For a filesystem that just pins its dentries in memory and never
1887 * performs lookups at all, return an unhashed IS_ROOT dentry.
1888 * This is used for pipes, sockets et.al. - the stuff that should
1889 * never be anyone's children or parents.  Unlike all other
1890 * dentries, these will not have RCU delay between dropping the
1891 * last reference and freeing them.
1892 *
1893 * The only user is alloc_file_pseudo() and that's what should
1894 * be considered a public interface.  Don't use directly.
1895 */
1896struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1897{
1898        struct dentry *dentry = __d_alloc(sb, name);
1899        if (likely(dentry))
1900                dentry->d_flags |= DCACHE_NORCU;
1901        return dentry;
1902}
1903
1904struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1905{
1906        struct qstr q;
1907
1908        q.name = name;
1909        q.hash_len = hashlen_string(parent, name);
1910        return d_alloc(parent, &q);
1911}
1912EXPORT_SYMBOL(d_alloc_name);
1913
1914void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1915{
1916        WARN_ON_ONCE(dentry->d_op);
1917        WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1918                                DCACHE_OP_COMPARE       |
1919                                DCACHE_OP_REVALIDATE    |
1920                                DCACHE_OP_WEAK_REVALIDATE       |
1921                                DCACHE_OP_DELETE        |
1922                                DCACHE_OP_REAL));
1923        dentry->d_op = op;
1924        if (!op)
1925                return;
1926        if (op->d_hash)
1927                dentry->d_flags |= DCACHE_OP_HASH;
1928        if (op->d_compare)
1929                dentry->d_flags |= DCACHE_OP_COMPARE;
1930        if (op->d_revalidate)
1931                dentry->d_flags |= DCACHE_OP_REVALIDATE;
1932        if (op->d_weak_revalidate)
1933                dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1934        if (op->d_delete)
1935                dentry->d_flags |= DCACHE_OP_DELETE;
1936        if (op->d_prune)
1937                dentry->d_flags |= DCACHE_OP_PRUNE;
1938        if (op->d_real)
1939                dentry->d_flags |= DCACHE_OP_REAL;
1940
1941}
1942EXPORT_SYMBOL(d_set_d_op);
1943
1944
1945/*
1946 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1947 * @dentry - The dentry to mark
1948 *
1949 * Mark a dentry as falling through to the lower layer (as set with
1950 * d_pin_lower()).  This flag may be recorded on the medium.
1951 */
1952void d_set_fallthru(struct dentry *dentry)
1953{
1954        spin_lock(&dentry->d_lock);
1955        dentry->d_flags |= DCACHE_FALLTHRU;
1956        spin_unlock(&dentry->d_lock);
1957}
1958EXPORT_SYMBOL(d_set_fallthru);
1959
1960static unsigned d_flags_for_inode(struct inode *inode)
1961{
1962        unsigned add_flags = DCACHE_REGULAR_TYPE;
1963
1964        if (!inode)
1965                return DCACHE_MISS_TYPE;
1966
1967        if (S_ISDIR(inode->i_mode)) {
1968                add_flags = DCACHE_DIRECTORY_TYPE;
1969                if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1970                        if (unlikely(!inode->i_op->lookup))
1971                                add_flags = DCACHE_AUTODIR_TYPE;
1972                        else
1973                                inode->i_opflags |= IOP_LOOKUP;
1974                }
1975                goto type_determined;
1976        }
1977
1978        if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1979                if (unlikely(inode->i_op->get_link)) {
1980                        add_flags = DCACHE_SYMLINK_TYPE;
1981                        goto type_determined;
1982                }
1983                inode->i_opflags |= IOP_NOFOLLOW;
1984        }
1985
1986        if (unlikely(!S_ISREG(inode->i_mode)))
1987                add_flags = DCACHE_SPECIAL_TYPE;
1988
1989type_determined:
1990        if (unlikely(IS_AUTOMOUNT(inode)))
1991                add_flags |= DCACHE_NEED_AUTOMOUNT;
1992        return add_flags;
1993}
1994
1995static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1996{
1997        unsigned add_flags = d_flags_for_inode(inode);
1998        WARN_ON(d_in_lookup(dentry));
1999
2000        spin_lock(&dentry->d_lock);
2001        /*
2002         * Decrement negative dentry count if it was in the LRU list.
2003         */
2004        if (dentry->d_flags & DCACHE_LRU_LIST)
2005                this_cpu_dec(nr_dentry_negative);
2006        hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2007        raw_write_seqcount_begin(&dentry->d_seq);
2008        __d_set_inode_and_type(dentry, inode, add_flags);
2009        raw_write_seqcount_end(&dentry->d_seq);
2010        fsnotify_update_flags(dentry);
2011        spin_unlock(&dentry->d_lock);
2012}
2013
2014/**
2015 * d_instantiate - fill in inode information for a dentry
2016 * @entry: dentry to complete
2017 * @inode: inode to attach to this dentry
2018 *
2019 * Fill in inode information in the entry.
2020 *
2021 * This turns negative dentries into productive full members
2022 * of society.
2023 *
2024 * NOTE! This assumes that the inode count has been incremented
2025 * (or otherwise set) by the caller to indicate that it is now
2026 * in use by the dcache.
2027 */
2028 
2029void d_instantiate(struct dentry *entry, struct inode * inode)
2030{
2031        BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2032        if (inode) {
2033                security_d_instantiate(entry, inode);
2034                spin_lock(&inode->i_lock);
2035                __d_instantiate(entry, inode);
2036                spin_unlock(&inode->i_lock);
2037        }
2038}
2039EXPORT_SYMBOL(d_instantiate);
2040
2041/*
2042 * This should be equivalent to d_instantiate() + unlock_new_inode(),
2043 * with lockdep-related part of unlock_new_inode() done before
2044 * anything else.  Use that instead of open-coding d_instantiate()/
2045 * unlock_new_inode() combinations.
2046 */
2047void d_instantiate_new(struct dentry *entry, struct inode *inode)
2048{
2049        BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2050        BUG_ON(!inode);
2051        lockdep_annotate_inode_mutex_key(inode);
2052        security_d_instantiate(entry, inode);
2053        spin_lock(&inode->i_lock);
2054        __d_instantiate(entry, inode);
2055        WARN_ON(!(inode->i_state & I_NEW));
2056        inode->i_state &= ~I_NEW & ~I_CREATING;
2057        smp_mb();
2058        wake_up_bit(&inode->i_state, __I_NEW);
2059        spin_unlock(&inode->i_lock);
2060}
2061EXPORT_SYMBOL(d_instantiate_new);
2062
2063struct dentry *d_make_root(struct inode *root_inode)
2064{
2065        struct dentry *res = NULL;
2066
2067        if (root_inode) {
2068                res = d_alloc_anon(root_inode->i_sb);
2069                if (res)
2070                        d_instantiate(res, root_inode);
2071                else
2072                        iput(root_inode);
2073        }
2074        return res;
2075}
2076EXPORT_SYMBOL(d_make_root);
2077
2078static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2079                                           struct inode *inode,
2080                                           bool disconnected)
2081{
2082        struct dentry *res;
2083        unsigned add_flags;
2084
2085        security_d_instantiate(dentry, inode);
2086        spin_lock(&inode->i_lock);
2087        res = __d_find_any_alias(inode);
2088        if (res) {
2089                spin_unlock(&inode->i_lock);
2090                dput(dentry);
2091                goto out_iput;
2092        }
2093
2094        /* attach a disconnected dentry */
2095        add_flags = d_flags_for_inode(inode);
2096
2097        if (disconnected)
2098                add_flags |= DCACHE_DISCONNECTED;
2099
2100        spin_lock(&dentry->d_lock);
2101        __d_set_inode_and_type(dentry, inode, add_flags);
2102        hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2103        if (!disconnected) {
2104                hlist_bl_lock(&dentry->d_sb->s_roots);
2105                hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2106                hlist_bl_unlock(&dentry->d_sb->s_roots);
2107        }
2108        spin_unlock(&dentry->d_lock);
2109        spin_unlock(&inode->i_lock);
2110
2111        return dentry;
2112
2113 out_iput:
2114        iput(inode);
2115        return res;
2116}
2117
2118struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2119{
2120        return __d_instantiate_anon(dentry, inode, true);
2121}
2122EXPORT_SYMBOL(d_instantiate_anon);
2123
2124static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2125{
2126        struct dentry *tmp;
2127        struct dentry *res;
2128
2129        if (!inode)
2130                return ERR_PTR(-ESTALE);
2131        if (IS_ERR(inode))
2132                return ERR_CAST(inode);
2133
2134        res = d_find_any_alias(inode);
2135        if (res)
2136                goto out_iput;
2137
2138        tmp = d_alloc_anon(inode->i_sb);
2139        if (!tmp) {
2140                res = ERR_PTR(-ENOMEM);
2141                goto out_iput;
2142        }
2143
2144        return __d_instantiate_anon(tmp, inode, disconnected);
2145
2146out_iput:
2147        iput(inode);
2148        return res;
2149}
2150
2151/**
2152 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2153 * @inode: inode to allocate the dentry for
2154 *
2155 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2156 * similar open by handle operations.  The returned dentry may be anonymous,
2157 * or may have a full name (if the inode was already in the cache).
2158 *
2159 * When called on a directory inode, we must ensure that the inode only ever
2160 * has one dentry.  If a dentry is found, that is returned instead of
2161 * allocating a new one.
2162 *
2163 * On successful return, the reference to the inode has been transferred
2164 * to the dentry.  In case of an error the reference on the inode is released.
2165 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2166 * be passed in and the error will be propagated to the return value,
2167 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2168 */
2169struct dentry *d_obtain_alias(struct inode *inode)
2170{
2171        return __d_obtain_alias(inode, true);
2172}
2173EXPORT_SYMBOL(d_obtain_alias);
2174
2175/**
2176 * d_obtain_root - find or allocate a dentry for a given inode
2177 * @inode: inode to allocate the dentry for
2178 *
2179 * Obtain an IS_ROOT dentry for the root of a filesystem.
2180 *
2181 * We must ensure that directory inodes only ever have one dentry.  If a
2182 * dentry is found, that is returned instead of allocating a new one.
2183 *
2184 * On successful return, the reference to the inode has been transferred
2185 * to the dentry.  In case of an error the reference on the inode is
2186 * released.  A %NULL or IS_ERR inode may be passed in and will be the
2187 * error will be propagate to the return value, with a %NULL @inode
2188 * replaced by ERR_PTR(-ESTALE).
2189 */
2190struct dentry *d_obtain_root(struct inode *inode)
2191{
2192        return __d_obtain_alias(inode, false);
2193}
2194EXPORT_SYMBOL(d_obtain_root);
2195
2196/**
2197 * d_add_ci - lookup or allocate new dentry with case-exact name
2198 * @inode:  the inode case-insensitive lookup has found
2199 * @dentry: the negative dentry that was passed to the parent's lookup func
2200 * @name:   the case-exact name to be associated with the returned dentry
2201 *
2202 * This is to avoid filling the dcache with case-insensitive names to the
2203 * same inode, only the actual correct case is stored in the dcache for
2204 * case-insensitive filesystems.
2205 *
2206 * For a case-insensitive lookup match and if the case-exact dentry
2207 * already exists in the dcache, use it and return it.
2208 *
2209 * If no entry exists with the exact case name, allocate new dentry with
2210 * the exact case, and return the spliced entry.
2211 */
2212struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2213                        struct qstr *name)
2214{
2215        struct dentry *found, *res;
2216
2217        /*
2218         * First check if a dentry matching the name already exists,
2219         * if not go ahead and create it now.
2220         */
2221        found = d_hash_and_lookup(dentry->d_parent, name);
2222        if (found) {
2223                iput(inode);
2224                return found;
2225        }
2226        if (d_in_lookup(dentry)) {
2227                found = d_alloc_parallel(dentry->d_parent, name,
2228                                        dentry->d_wait);
2229                if (IS_ERR(found) || !d_in_lookup(found)) {
2230                        iput(inode);
2231                        return found;
2232                }
2233        } else {
2234                found = d_alloc(dentry->d_parent, name);
2235                if (!found) {
2236                        iput(inode);
2237                        return ERR_PTR(-ENOMEM);
2238                } 
2239        }
2240        res = d_splice_alias(inode, found);
2241        if (res) {
2242                d_lookup_done(found);
2243                dput(found);
2244                return res;
2245        }
2246        return found;
2247}
2248EXPORT_SYMBOL(d_add_ci);
2249
2250/**
2251 * d_same_name - compare dentry name with case-exact name
2252 * @parent: parent dentry
2253 * @dentry: the negative dentry that was passed to the parent's lookup func
2254 * @name:   the case-exact name to be associated with the returned dentry
2255 *
2256 * Return: true if names are same, or false
2257 */
2258bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2259                 const struct qstr *name)
2260{
2261        if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2262                if (dentry->d_name.len != name->len)
2263                        return false;
2264                return dentry_cmp(dentry, name->name, name->len) == 0;
2265        }
2266        return parent->d_op->d_compare(dentry,
2267                                       dentry->d_name.len, dentry->d_name.name,
2268                                       name) == 0;
2269}
2270EXPORT_SYMBOL_GPL(d_same_name);
2271
2272/*
2273 * This is __d_lookup_rcu() when the parent dentry has
2274 * DCACHE_OP_COMPARE, which makes things much nastier.
2275 */
2276static noinline struct dentry *__d_lookup_rcu_op_compare(
2277        const struct dentry *parent,
2278        const struct qstr *name,
2279        unsigned *seqp)
2280{
2281        u64 hashlen = name->hash_len;
2282        struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2283        struct hlist_bl_node *node;
2284        struct dentry *dentry;
2285
2286        hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2287                int tlen;
2288                const char *tname;
2289                unsigned seq;
2290
2291seqretry:
2292                seq = raw_seqcount_begin(&dentry->d_seq);
2293                if (dentry->d_parent != parent)
2294                        continue;
2295                if (d_unhashed(dentry))
2296                        continue;
2297                if (dentry->d_name.hash != hashlen_hash(hashlen))
2298                        continue;
2299                tlen = dentry->d_name.len;
2300                tname = dentry->d_name.name;
2301                /* we want a consistent (name,len) pair */
2302                if (read_seqcount_retry(&dentry->d_seq, seq)) {
2303                        cpu_relax();
2304                        goto seqretry;
2305                }
2306                if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2307                        continue;
2308                *seqp = seq;
2309                return dentry;
2310        }
2311        return NULL;
2312}
2313
2314/**
2315 * __d_lookup_rcu - search for a dentry (racy, store-free)
2316 * @parent: parent dentry
2317 * @name: qstr of name we wish to find
2318 * @seqp: returns d_seq value at the point where the dentry was found
2319 * Returns: dentry, or NULL
2320 *
2321 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2322 * resolution (store-free path walking) design described in
2323 * Documentation/filesystems/path-lookup.txt.
2324 *
2325 * This is not to be used outside core vfs.
2326 *
2327 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2328 * held, and rcu_read_lock held. The returned dentry must not be stored into
2329 * without taking d_lock and checking d_seq sequence count against @seq
2330 * returned here.
2331 *
2332 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2333 * function.
2334 *
2335 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2336 * the returned dentry, so long as its parent's seqlock is checked after the
2337 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2338 * is formed, giving integrity down the path walk.
2339 *
2340 * NOTE! The caller *has* to check the resulting dentry against the sequence
2341 * number we've returned before using any of the resulting dentry state!
2342 */
2343struct dentry *__d_lookup_rcu(const struct dentry *parent,
2344                                const struct qstr *name,
2345                                unsigned *seqp)
2346{
2347        u64 hashlen = name->hash_len;
2348        const unsigned char *str = name->name;
2349        struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2350        struct hlist_bl_node *node;
2351        struct dentry *dentry;
2352
2353        /*
2354         * Note: There is significant duplication with __d_lookup_rcu which is
2355         * required to prevent single threaded performance regressions
2356         * especially on architectures where smp_rmb (in seqcounts) are costly.
2357         * Keep the two functions in sync.
2358         */
2359
2360        if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2361                return __d_lookup_rcu_op_compare(parent, name, seqp);
2362
2363        /*
2364         * The hash list is protected using RCU.
2365         *
2366         * Carefully use d_seq when comparing a candidate dentry, to avoid
2367         * races with d_move().
2368         *
2369         * It is possible that concurrent renames can mess up our list
2370         * walk here and result in missing our dentry, resulting in the
2371         * false-negative result. d_lookup() protects against concurrent
2372         * renames using rename_lock seqlock.
2373         *
2374         * See Documentation/filesystems/path-lookup.txt for more details.
2375         */
2376        hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2377                unsigned seq;
2378
2379                /*
2380                 * The dentry sequence count protects us from concurrent
2381                 * renames, and thus protects parent and name fields.
2382                 *
2383                 * The caller must perform a seqcount check in order
2384                 * to do anything useful with the returned dentry.
2385                 *
2386                 * NOTE! We do a "raw" seqcount_begin here. That means that
2387                 * we don't wait for the sequence count to stabilize if it
2388                 * is in the middle of a sequence change. If we do the slow
2389                 * dentry compare, we will do seqretries until it is stable,
2390                 * and if we end up with a successful lookup, we actually
2391                 * want to exit RCU lookup anyway.
2392                 *
2393                 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2394                 * we are still guaranteed NUL-termination of ->d_name.name.
2395                 */
2396                seq = raw_seqcount_begin(&dentry->d_seq);
2397                if (dentry->d_parent != parent)
2398                        continue;
2399                if (d_unhashed(dentry))
2400                        continue;
2401                if (dentry->d_name.hash_len != hashlen)
2402                        continue;
2403                if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2404                        continue;
2405                *seqp = seq;
2406                return dentry;
2407        }
2408        return NULL;
2409}
2410
2411/**
2412 * d_lookup - search for a dentry
2413 * @parent: parent dentry
2414 * @name: qstr of name we wish to find
2415 * Returns: dentry, or NULL
2416 *
2417 * d_lookup searches the children of the parent dentry for the name in
2418 * question. If the dentry is found its reference count is incremented and the
2419 * dentry is returned. The caller must use dput to free the entry when it has
2420 * finished using it. %NULL is returned if the dentry does not exist.
2421 */
2422struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2423{
2424        struct dentry *dentry;
2425        unsigned seq;
2426
2427        do {
2428                seq = read_seqbegin(&rename_lock);
2429                dentry = __d_lookup(parent, name);
2430                if (dentry)
2431                        break;
2432        } while (read_seqretry(&rename_lock, seq));
2433        return dentry;
2434}
2435EXPORT_SYMBOL(d_lookup);
2436
2437/**
2438 * __d_lookup - search for a dentry (racy)
2439 * @parent: parent dentry
2440 * @name: qstr of name we wish to find
2441 * Returns: dentry, or NULL
2442 *
2443 * __d_lookup is like d_lookup, however it may (rarely) return a
2444 * false-negative result due to unrelated rename activity.
2445 *
2446 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2447 * however it must be used carefully, eg. with a following d_lookup in
2448 * the case of failure.
2449 *
2450 * __d_lookup callers must be commented.
2451 */
2452struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2453{
2454        unsigned int hash = name->hash;
2455        struct hlist_bl_head *b = d_hash(hash);
2456        struct hlist_bl_node *node;
2457        struct dentry *found = NULL;
2458        struct dentry *dentry;
2459
2460        /*
2461         * Note: There is significant duplication with __d_lookup_rcu which is
2462         * required to prevent single threaded performance regressions
2463         * especially on architectures where smp_rmb (in seqcounts) are costly.
2464         * Keep the two functions in sync.
2465         */
2466
2467        /*
2468         * The hash list is protected using RCU.
2469         *
2470         * Take d_lock when comparing a candidate dentry, to avoid races
2471         * with d_move().
2472         *
2473         * It is possible that concurrent renames can mess up our list
2474         * walk here and result in missing our dentry, resulting in the
2475         * false-negative result. d_lookup() protects against concurrent
2476         * renames using rename_lock seqlock.
2477         *
2478         * See Documentation/filesystems/path-lookup.txt for more details.
2479         */
2480        rcu_read_lock();
2481        
2482        hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2483
2484                if (dentry->d_name.hash != hash)
2485                        continue;
2486
2487                spin_lock(&dentry->d_lock);
2488                if (dentry->d_parent != parent)
2489                        goto next;
2490                if (d_unhashed(dentry))
2491                        goto next;
2492
2493                if (!d_same_name(dentry, parent, name))
2494                        goto next;
2495
2496                dentry->d_lockref.count++;
2497                found = dentry;
2498                spin_unlock(&dentry->d_lock);
2499                break;
2500next:
2501                spin_unlock(&dentry->d_lock);
2502        }
2503        rcu_read_unlock();
2504
2505        return found;
2506}
2507
2508/**
2509 * d_hash_and_lookup - hash the qstr then search for a dentry
2510 * @dir: Directory to search in
2511 * @name: qstr of name we wish to find
2512 *
2513 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2514 */
2515struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2516{
2517        /*
2518         * Check for a fs-specific hash function. Note that we must
2519         * calculate the standard hash first, as the d_op->d_hash()
2520         * routine may choose to leave the hash value unchanged.
2521         */
2522        name->hash = full_name_hash(dir, name->name, name->len);
2523        if (dir->d_flags & DCACHE_OP_HASH) {
2524                int err = dir->d_op->d_hash(dir, name);
2525                if (unlikely(err < 0))
2526                        return ERR_PTR(err);
2527        }
2528        return d_lookup(dir, name);
2529}
2530EXPORT_SYMBOL(d_hash_and_lookup);
2531
2532/*
2533 * When a file is deleted, we have two options:
2534 * - turn this dentry into a negative dentry
2535 * - unhash this dentry and free it.
2536 *
2537 * Usually, we want to just turn this into
2538 * a negative dentry, but if anybody else is
2539 * currently using the dentry or the inode
2540 * we can't do that and we fall back on removing
2541 * it from the hash queues and waiting for
2542 * it to be deleted later when it has no users
2543 */
2544 
2545/**
2546 * d_delete - delete a dentry
2547 * @dentry: The dentry to delete
2548 *
2549 * Turn the dentry into a negative dentry if possible, otherwise
2550 * remove it from the hash queues so it can be deleted later
2551 */
2552 
2553void d_delete(struct dentry * dentry)
2554{
2555        struct inode *inode = dentry->d_inode;
2556
2557        spin_lock(&inode->i_lock);
2558        spin_lock(&dentry->d_lock);
2559        /*
2560         * Are we the only user?
2561         */
2562        if (dentry->d_lockref.count == 1) {
2563                dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2564                dentry_unlink_inode(dentry);
2565        } else {
2566                __d_drop(dentry);
2567                spin_unlock(&dentry->d_lock);
2568                spin_unlock(&inode->i_lock);
2569        }
2570}
2571EXPORT_SYMBOL(d_delete);
2572
2573static void __d_rehash(struct dentry *entry)
2574{
2575        struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2576
2577        hlist_bl_lock(b);
2578        hlist_bl_add_head_rcu(&entry->d_hash, b);
2579        hlist_bl_unlock(b);
2580}
2581
2582/**
2583 * d_rehash     - add an entry back to the hash
2584 * @entry: dentry to add to the hash
2585 *
2586 * Adds a dentry to the hash according to its name.
2587 */
2588 
2589void d_rehash(struct dentry * entry)
2590{
2591        spin_lock(&entry->d_lock);
2592        __d_rehash(entry);
2593        spin_unlock(&entry->d_lock);
2594}
2595EXPORT_SYMBOL(d_rehash);
2596
2597static inline unsigned start_dir_add(struct inode *dir)
2598{
2599        preempt_disable_nested();
2600        for (;;) {
2601                unsigned n = dir->i_dir_seq;
2602                if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2603                        return n;
2604                cpu_relax();
2605        }
2606}
2607
2608static inline void end_dir_add(struct inode *dir, unsigned int n,
2609                               wait_queue_head_t *d_wait)
2610{
2611        smp_store_release(&dir->i_dir_seq, n + 2);
2612        preempt_enable_nested();
2613        wake_up_all(d_wait);
2614}
2615
2616static void d_wait_lookup(struct dentry *dentry)
2617{
2618        if (d_in_lookup(dentry)) {
2619                DECLARE_WAITQUEUE(wait, current);
2620                add_wait_queue(dentry->d_wait, &wait);
2621                do {
2622                        set_current_state(TASK_UNINTERRUPTIBLE);
2623                        spin_unlock(&dentry->d_lock);
2624                        schedule();
2625                        spin_lock(&dentry->d_lock);
2626                } while (d_in_lookup(dentry));
2627        }
2628}
2629
2630struct dentry *d_alloc_parallel(struct dentry *parent,
2631                                const struct qstr *name,
2632                                wait_queue_head_t *wq)
2633{
2634        unsigned int hash = name->hash;
2635        struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2636        struct hlist_bl_node *node;
2637        struct dentry *new = d_alloc(parent, name);
2638        struct dentry *dentry;
2639        unsigned seq, r_seq, d_seq;
2640
2641        if (unlikely(!new))
2642                return ERR_PTR(-ENOMEM);
2643
2644retry:
2645        rcu_read_lock();
2646        seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2647        r_seq = read_seqbegin(&rename_lock);
2648        dentry = __d_lookup_rcu(parent, name, &d_seq);
2649        if (unlikely(dentry)) {
2650                if (!lockref_get_not_dead(&dentry->d_lockref)) {
2651                        rcu_read_unlock();
2652                        goto retry;
2653                }
2654                if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2655                        rcu_read_unlock();
2656                        dput(dentry);
2657                        goto retry;
2658                }
2659                rcu_read_unlock();
2660                dput(new);
2661                return dentry;
2662        }
2663        if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2664                rcu_read_unlock();
2665                goto retry;
2666        }
2667
2668        if (unlikely(seq & 1)) {
2669                rcu_read_unlock();
2670                goto retry;
2671        }
2672
2673        hlist_bl_lock(b);
2674        if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2675                hlist_bl_unlock(b);
2676                rcu_read_unlock();
2677                goto retry;
2678        }
2679        /*
2680         * No changes for the parent since the beginning of d_lookup().
2681         * Since all removals from the chain happen with hlist_bl_lock(),
2682         * any potential in-lookup matches are going to stay here until
2683         * we unlock the chain.  All fields are stable in everything
2684         * we encounter.
2685         */
2686        hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2687                if (dentry->d_name.hash != hash)
2688                        continue;
2689                if (dentry->d_parent != parent)
2690                        continue;
2691                if (!d_same_name(dentry, parent, name))
2692                        continue;
2693                hlist_bl_unlock(b);
2694                /* now we can try to grab a reference */
2695                if (!lockref_get_not_dead(&dentry->d_lockref)) {
2696                        rcu_read_unlock();
2697                        goto retry;
2698                }
2699
2700                rcu_read_unlock();
2701                /*
2702                 * somebody is likely to be still doing lookup for it;
2703                 * wait for them to finish
2704                 */
2705                spin_lock(&dentry->d_lock);
2706                d_wait_lookup(dentry);
2707                /*
2708                 * it's not in-lookup anymore; in principle we should repeat
2709                 * everything from dcache lookup, but it's likely to be what
2710                 * d_lookup() would've found anyway.  If it is, just return it;
2711                 * otherwise we really have to repeat the whole thing.
2712                 */
2713                if (unlikely(dentry->d_name.hash != hash))
2714                        goto mismatch;
2715                if (unlikely(dentry->d_parent != parent))
2716                        goto mismatch;
2717                if (unlikely(d_unhashed(dentry)))
2718                        goto mismatch;
2719                if (unlikely(!d_same_name(dentry, parent, name)))
2720                        goto mismatch;
2721                /* OK, it *is* a hashed match; return it */
2722                spin_unlock(&dentry->d_lock);
2723                dput(new);
2724                return dentry;
2725        }
2726        rcu_read_unlock();
2727        /* we can't take ->d_lock here; it's OK, though. */
2728        new->d_flags |= DCACHE_PAR_LOOKUP;
2729        new->d_wait = wq;
2730        hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2731        hlist_bl_unlock(b);
2732        return new;
2733mismatch:
2734        spin_unlock(&dentry->d_lock);
2735        dput(dentry);
2736        goto retry;
2737}
2738EXPORT_SYMBOL(d_alloc_parallel);
2739
2740/*
2741 * - Unhash the dentry
2742 * - Retrieve and clear the waitqueue head in dentry
2743 * - Return the waitqueue head
2744 */
2745static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2746{
2747        wait_queue_head_t *d_wait;
2748        struct hlist_bl_head *b;
2749
2750        lockdep_assert_held(&dentry->d_lock);
2751
2752        b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2753        hlist_bl_lock(b);
2754        dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2755        __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2756        d_wait = dentry->d_wait;
2757        dentry->d_wait = NULL;
2758        hlist_bl_unlock(b);
2759        INIT_HLIST_NODE(&dentry->d_u.d_alias);
2760        INIT_LIST_HEAD(&dentry->d_lru);
2761        return d_wait;
2762}
2763
2764void __d_lookup_unhash_wake(struct dentry *dentry)
2765{
2766        spin_lock(&dentry->d_lock);
2767        wake_up_all(__d_lookup_unhash(dentry));
2768        spin_unlock(&dentry->d_lock);
2769}
2770EXPORT_SYMBOL(__d_lookup_unhash_wake);
2771
2772/* inode->i_lock held if inode is non-NULL */
2773
2774static inline void __d_add(struct dentry *dentry, struct inode *inode)
2775{
2776        wait_queue_head_t *d_wait;
2777        struct inode *dir = NULL;
2778        unsigned n;
2779        spin_lock(&dentry->d_lock);
2780        if (unlikely(d_in_lookup(dentry))) {
2781                dir = dentry->d_parent->d_inode;
2782                n = start_dir_add(dir);
2783                d_wait = __d_lookup_unhash(dentry);
2784        }
2785        if (inode) {
2786                unsigned add_flags = d_flags_for_inode(inode);
2787                hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2788                raw_write_seqcount_begin(&dentry->d_seq);
2789                __d_set_inode_and_type(dentry, inode, add_flags);
2790                raw_write_seqcount_end(&dentry->d_seq);
2791                fsnotify_update_flags(dentry);
2792        }
2793        __d_rehash(dentry);
2794        if (dir)
2795                end_dir_add(dir, n, d_wait);
2796        spin_unlock(&dentry->d_lock);
2797        if (inode)
2798                spin_unlock(&inode->i_lock);
2799}
2800
2801/**
2802 * d_add - add dentry to hash queues
2803 * @entry: dentry to add
2804 * @inode: The inode to attach to this dentry
2805 *
2806 * This adds the entry to the hash queues and initializes @inode.
2807 * The entry was actually filled in earlier during d_alloc().
2808 */
2809
2810void d_add(struct dentry *entry, struct inode *inode)
2811{
2812        if (inode) {
2813                security_d_instantiate(entry, inode);
2814                spin_lock(&inode->i_lock);
2815        }
2816        __d_add(entry, inode);
2817}
2818EXPORT_SYMBOL(d_add);
2819
2820/**
2821 * d_exact_alias - find and hash an exact unhashed alias
2822 * @entry: dentry to add
2823 * @inode: The inode to go with this dentry
2824 *
2825 * If an unhashed dentry with the same name/parent and desired
2826 * inode already exists, hash and return it.  Otherwise, return
2827 * NULL.
2828 *
2829 * Parent directory should be locked.
2830 */
2831struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2832{
2833        struct dentry *alias;
2834        unsigned int hash = entry->d_name.hash;
2835
2836        spin_lock(&inode->i_lock);
2837        hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2838                /*
2839                 * Don't need alias->d_lock here, because aliases with
2840                 * d_parent == entry->d_parent are not subject to name or
2841                 * parent changes, because the parent inode i_mutex is held.
2842                 */
2843                if (alias->d_name.hash != hash)
2844                        continue;
2845                if (alias->d_parent != entry->d_parent)
2846                        continue;
2847                if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2848                        continue;
2849                spin_lock(&alias->d_lock);
2850                if (!d_unhashed(alias)) {
2851                        spin_unlock(&alias->d_lock);
2852                        alias = NULL;
2853                } else {
2854                        __dget_dlock(alias);
2855                        __d_rehash(alias);
2856                        spin_unlock(&alias->d_lock);
2857                }
2858                spin_unlock(&inode->i_lock);
2859                return alias;
2860        }
2861        spin_unlock(&inode->i_lock);
2862        return NULL;
2863}
2864EXPORT_SYMBOL(d_exact_alias);
2865
2866static void swap_names(struct dentry *dentry, struct dentry *target)
2867{
2868        if (unlikely(dname_external(target))) {
2869                if (unlikely(dname_external(dentry))) {
2870                        /*
2871                         * Both external: swap the pointers
2872                         */
2873                        swap(target->d_name.name, dentry->d_name.name);
2874                } else {
2875                        /*
2876                         * dentry:internal, target:external.  Steal target's
2877                         * storage and make target internal.
2878                         */
2879                        memcpy(target->d_iname, dentry->d_name.name,
2880                                        dentry->d_name.len + 1);
2881                        dentry->d_name.name = target->d_name.name;
2882                        target->d_name.name = target->d_iname;
2883                }
2884        } else {
2885                if (unlikely(dname_external(dentry))) {
2886                        /*
2887                         * dentry:external, target:internal.  Give dentry's
2888                         * storage to target and make dentry internal
2889                         */
2890                        memcpy(dentry->d_iname, target->d_name.name,
2891                                        target->d_name.len + 1);
2892                        target->d_name.name = dentry->d_name.name;
2893                        dentry->d_name.name = dentry->d_iname;
2894                } else {
2895                        /*
2896                         * Both are internal.
2897                         */
2898                        unsigned int i;
2899                        BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2900                        for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2901                                swap(((long *) &dentry->d_iname)[i],
2902                                     ((long *) &target->d_iname)[i]);
2903                        }
2904                }
2905        }
2906        swap(dentry->d_name.hash_len, target->d_name.hash_len);
2907}
2908
2909static void copy_name(struct dentry *dentry, struct dentry *target)
2910{
2911        struct external_name *old_name = NULL;
2912        if (unlikely(dname_external(dentry)))
2913                old_name = external_name(dentry);
2914        if (unlikely(dname_external(target))) {
2915                atomic_inc(&external_name(target)->u.count);
2916                dentry->d_name = target->d_name;
2917        } else {
2918                memcpy(dentry->d_iname, target->d_name.name,
2919                                target->d_name.len + 1);
2920                dentry->d_name.name = dentry->d_iname;
2921                dentry->d_name.hash_len = target->d_name.hash_len;
2922        }
2923        if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2924                kfree_rcu(old_name, u.head);
2925}
2926
2927/*
2928 * __d_move - move a dentry
2929 * @dentry: entry to move
2930 * @target: new dentry
2931 * @exchange: exchange the two dentries
2932 *
2933 * Update the dcache to reflect the move of a file name. Negative
2934 * dcache entries should not be moved in this way. Caller must hold
2935 * rename_lock, the i_mutex of the source and target directories,
2936 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2937 */
2938static void __d_move(struct dentry *dentry, struct dentry *target,
2939                     bool exchange)
2940{
2941        struct dentry *old_parent, *p;
2942        wait_queue_head_t *d_wait;
2943        struct inode *dir = NULL;
2944        unsigned n;
2945
2946        WARN_ON(!dentry->d_inode);
2947        if (WARN_ON(dentry == target))
2948                return;
2949
2950        BUG_ON(d_ancestor(target, dentry));
2951        old_parent = dentry->d_parent;
2952        p = d_ancestor(old_parent, target);
2953        if (IS_ROOT(dentry)) {
2954                BUG_ON(p);
2955                spin_lock(&target->d_parent->d_lock);
2956        } else if (!p) {
2957                /* target is not a descendent of dentry->d_parent */
2958                spin_lock(&target->d_parent->d_lock);
2959                spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2960        } else {
2961                BUG_ON(p == dentry);
2962                spin_lock(&old_parent->d_lock);
2963                if (p != target)
2964                        spin_lock_nested(&target->d_parent->d_lock,
2965                                        DENTRY_D_LOCK_NESTED);
2966        }
2967        spin_lock_nested(&dentry->d_lock, 2);
2968        spin_lock_nested(&target->d_lock, 3);
2969
2970        if (unlikely(d_in_lookup(target))) {
2971                dir = target->d_parent->d_inode;
2972                n = start_dir_add(dir);
2973                d_wait = __d_lookup_unhash(target);
2974        }
2975
2976        write_seqcount_begin(&dentry->d_seq);
2977        write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2978
2979        /* unhash both */
2980        if (!d_unhashed(dentry))
2981                ___d_drop(dentry);
2982        if (!d_unhashed(target))
2983                ___d_drop(target);
2984
2985        /* ... and switch them in the tree */
2986        dentry->d_parent = target->d_parent;
2987        if (!exchange) {
2988                copy_name(dentry, target);
2989                target->d_hash.pprev = NULL;
2990                dentry->d_parent->d_lockref.count++;
2991                if (dentry != old_parent) /* wasn't IS_ROOT */
2992                        WARN_ON(!--old_parent->d_lockref.count);
2993        } else {
2994                target->d_parent = old_parent;
2995                swap_names(dentry, target);
2996                list_move(&target->d_child, &target->d_parent->d_subdirs);
2997                __d_rehash(target);
2998                fsnotify_update_flags(target);
2999        }
3000        list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
3001        __d_rehash(dentry);
3002        fsnotify_update_flags(dentry);
3003        fscrypt_handle_d_move(dentry);
3004
3005        write_seqcount_end(&target->d_seq);
3006        write_seqcount_end(&dentry->d_seq);
3007
3008        if (dir)
3009                end_dir_add(dir, n, d_wait);
3010
3011        if (dentry->d_parent != old_parent)
3012                spin_unlock(&dentry->d_parent->d_lock);
3013        if (dentry != old_parent)
3014                spin_unlock(&old_parent->d_lock);
3015        spin_unlock(&target->d_lock);
3016        spin_unlock(&dentry->d_lock);
3017}
3018
3019/*
3020 * d_move - move a dentry
3021 * @dentry: entry to move
3022 * @target: new dentry
3023 *
3024 * Update the dcache to reflect the move of a file name. Negative
3025 * dcache entries should not be moved in this way. See the locking
3026 * requirements for __d_move.
3027 */
3028void d_move(struct dentry *dentry, struct dentry *target)
3029{
3030        write_seqlock(&rename_lock);
3031        __d_move(dentry, target, false);
3032        write_sequnlock(&rename_lock);
3033}
3034EXPORT_SYMBOL(d_move);
3035
3036/*
3037 * d_exchange - exchange two dentries
3038 * @dentry1: first dentry
3039 * @dentry2: second dentry
3040 */
3041void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
3042{
3043        write_seqlock(&rename_lock);
3044
3045        WARN_ON(!dentry1->d_inode);
3046        WARN_ON(!dentry2->d_inode);
3047        WARN_ON(IS_ROOT(dentry1));
3048        WARN_ON(IS_ROOT(dentry2));
3049
3050        __d_move(dentry1, dentry2, true);
3051
3052        write_sequnlock(&rename_lock);
3053}
3054
3055/**
3056 * d_ancestor - search for an ancestor
3057 * @p1: ancestor dentry
3058 * @p2: child dentry
3059 *
3060 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3061 * an ancestor of p2, else NULL.
3062 */
3063struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3064{
3065        struct dentry *p;
3066
3067        for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3068                if (p->d_parent == p1)
3069                        return p;
3070        }
3071        return NULL;
3072}
3073
3074/*
3075 * This helper attempts to cope with remotely renamed directories
3076 *
3077 * It assumes that the caller is already holding
3078 * dentry->d_parent->d_inode->i_mutex, and rename_lock
3079 *
3080 * Note: If ever the locking in lock_rename() changes, then please
3081 * remember to update this too...
3082 */
3083static int __d_unalias(struct inode *inode,
3084                struct dentry *dentry, struct dentry *alias)
3085{
3086        struct mutex *m1 = NULL;
3087        struct rw_semaphore *m2 = NULL;
3088        int ret = -ESTALE;
3089
3090        /* If alias and dentry share a parent, then no extra locks required */
3091        if (alias->d_parent == dentry->d_parent)
3092                goto out_unalias;
3093
3094        /* See lock_rename() */
3095        if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3096                goto out_err;
3097        m1 = &dentry->d_sb->s_vfs_rename_mutex;
3098        if (!inode_trylock_shared(alias->d_parent->d_inode))
3099                goto out_err;
3100        m2 = &alias->d_parent->d_inode->i_rwsem;
3101out_unalias:
3102        __d_move(alias, dentry, false);
3103        ret = 0;
3104out_err:
3105        if (m2)
3106                up_read(m2);
3107        if (m1)
3108                mutex_unlock(m1);
3109        return ret;
3110}
3111
3112/**
3113 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3114 * @inode:  the inode which may have a disconnected dentry
3115 * @dentry: a negative dentry which we want to point to the inode.
3116 *
3117 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3118 * place of the given dentry and return it, else simply d_add the inode
3119 * to the dentry and return NULL.
3120 *
3121 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3122 * we should error out: directories can't have multiple aliases.
3123 *
3124 * This is needed in the lookup routine of any filesystem that is exportable
3125 * (via knfsd) so that we can build dcache paths to directories effectively.
3126 *
3127 * If a dentry was found and moved, then it is returned.  Otherwise NULL
3128 * is returned.  This matches the expected return value of ->lookup.
3129 *
3130 * Cluster filesystems may call this function with a negative, hashed dentry.
3131 * In that case, we know that the inode will be a regular file, and also this
3132 * will only occur during atomic_open. So we need to check for the dentry
3133 * being already hashed only in the final case.
3134 */
3135struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3136{
3137        if (IS_ERR(inode))
3138                return ERR_CAST(inode);
3139
3140        BUG_ON(!d_unhashed(dentry));
3141
3142        if (!inode)
3143                goto out;
3144
3145        security_d_instantiate(dentry, inode);
3146        spin_lock(&inode->i_lock);
3147        if (S_ISDIR(inode->i_mode)) {
3148                struct dentry *new = __d_find_any_alias(inode);
3149                if (unlikely(new)) {
3150                        /* The reference to new ensures it remains an alias */
3151                        spin_unlock(&inode->i_lock);
3152                        write_seqlock(&rename_lock);
3153                        if (unlikely(d_ancestor(new, dentry))) {
3154                                write_sequnlock(&rename_lock);
3155                                dput(new);
3156                                new = ERR_PTR(-ELOOP);
3157                                pr_warn_ratelimited(
3158                                        "VFS: Lookup of '%s' in %s %s"
3159                                        " would have caused loop\n",
3160                                        dentry->d_name.name,
3161                                        inode->i_sb->s_type->name,
3162                                        inode->i_sb->s_id);
3163                        } else if (!IS_ROOT(new)) {
3164                                struct dentry *old_parent = dget(new->d_parent);
3165                                int err = __d_unalias(inode, dentry, new);
3166                                write_sequnlock(&rename_lock);
3167                                if (err) {
3168                                        dput(new);
3169                                        new = ERR_PTR(err);
3170                                }
3171                                dput(old_parent);
3172                        } else {
3173                                __d_move(new, dentry, false);
3174                                write_sequnlock(&rename_lock);
3175                        }
3176                        iput(inode);
3177                        return new;
3178                }
3179        }
3180out:
3181        __d_add(dentry, inode);
3182        return NULL;
3183}
3184EXPORT_SYMBOL(d_splice_alias);
3185
3186/*
3187 * Test whether new_dentry is a subdirectory of old_dentry.
3188 *
3189 * Trivially implemented using the dcache structure
3190 */
3191
3192/**
3193 * is_subdir - is new dentry a subdirectory of old_dentry
3194 * @new_dentry: new dentry
3195 * @old_dentry: old dentry
3196 *
3197 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3198 * Returns false otherwise.
3199 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3200 */
3201  
3202bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3203{
3204        bool result;
3205        unsigned seq;
3206
3207        if (new_dentry == old_dentry)
3208                return true;
3209
3210        do {
3211                /* for restarting inner loop in case of seq retry */
3212                seq = read_seqbegin(&rename_lock);
3213                /*
3214                 * Need rcu_readlock to protect against the d_parent trashing
3215                 * due to d_move
3216                 */
3217                rcu_read_lock();
3218                if (d_ancestor(old_dentry, new_dentry))
3219                        result = true;
3220                else
3221                        result = false;
3222                rcu_read_unlock();
3223        } while (read_seqretry(&rename_lock, seq));
3224
3225        return result;
3226}
3227EXPORT_SYMBOL(is_subdir);
3228
3229static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3230{
3231        struct dentry *root = data;
3232        if (dentry != root) {
3233                if (d_unhashed(dentry) || !dentry->d_inode)
3234                        return D_WALK_SKIP;
3235
3236                if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3237                        dentry->d_flags |= DCACHE_GENOCIDE;
3238                        dentry->d_lockref.count--;
3239                }
3240        }
3241        return D_WALK_CONTINUE;
3242}
3243
3244void d_genocide(struct dentry *parent)
3245{
3246        d_walk(parent, parent, d_genocide_kill);
3247}
3248
3249void d_mark_tmpfile(struct file *file, struct inode *inode)
3250{
3251        struct dentry *dentry = file->f_path.dentry;
3252
3253        BUG_ON(dentry->d_name.name != dentry->d_iname ||
3254                !hlist_unhashed(&dentry->d_u.d_alias) ||
3255                !d_unlinked(dentry));
3256        spin_lock(&dentry->d_parent->d_lock);
3257        spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3258        dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3259                                (unsigned long long)inode->i_ino);
3260        spin_unlock(&dentry->d_lock);
3261        spin_unlock(&dentry->d_parent->d_lock);
3262}
3263EXPORT_SYMBOL(d_mark_tmpfile);
3264
3265void d_tmpfile(struct file *file, struct inode *inode)
3266{
3267        struct dentry *dentry = file->f_path.dentry;
3268
3269        inode_dec_link_count(inode);
3270        d_mark_tmpfile(file, inode);
3271        d_instantiate(dentry, inode);
3272}
3273EXPORT_SYMBOL(d_tmpfile);
3274
3275static __initdata unsigned long dhash_entries;
3276static int __init set_dhash_entries(char *str)
3277{
3278        if (!str)
3279                return 0;
3280        dhash_entries = simple_strtoul(str, &str, 0);
3281        return 1;
3282}
3283__setup("dhash_entries=", set_dhash_entries);
3284
3285static void __init dcache_init_early(void)
3286{
3287        /* If hashes are distributed across NUMA nodes, defer
3288         * hash allocation until vmalloc space is available.
3289         */
3290        if (hashdist)
3291                return;
3292
3293        dentry_hashtable =
3294                alloc_large_system_hash("Dentry cache",
3295                                        sizeof(struct hlist_bl_head),
3296                                        dhash_entries,
3297                                        13,
3298                                        HASH_EARLY | HASH_ZERO,
3299                                        &d_hash_shift,
3300                                        NULL,
3301                                        0,
3302                                        0);
3303        d_hash_shift = 32 - d_hash_shift;
3304}
3305
3306static void __init dcache_init(void)
3307{
3308        /*
3309         * A constructor could be added for stable state like the lists,
3310         * but it is probably not worth it because of the cache nature
3311         * of the dcache.
3312         */
3313        dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3314                SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3315                d_iname);
3316
3317        /* Hash may have been set up in dcache_init_early */
3318        if (!hashdist)
3319                return;
3320
3321        dentry_hashtable =
3322                alloc_large_system_hash("Dentry cache",
3323                                        sizeof(struct hlist_bl_head),
3324                                        dhash_entries,
3325                                        13,
3326                                        HASH_ZERO,
3327                                        &d_hash_shift,
3328                                        NULL,
3329                                        0,
3330                                        0);
3331        d_hash_shift = 32 - d_hash_shift;
3332}
3333
3334/* SLAB cache for __getname() consumers */
3335struct kmem_cache *names_cachep __ro_after_init;
3336EXPORT_SYMBOL(names_cachep);
3337
3338void __init vfs_caches_init_early(void)
3339{
3340        int i;
3341
3342        for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3343                INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3344
3345        dcache_init_early();
3346        inode_init_early();
3347}
3348
3349void __init vfs_caches_init(void)
3350{
3351        names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3352                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3353
3354        dcache_init();
3355        inode_init();
3356        files_init();
3357        files_maxfiles_init();
3358        mnt_init();
3359        bdev_cache_init();
3360        chrdev_init();
3361}
3362