linux/crypto/polyval-generic.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * POLYVAL: hash function for HCTR2.
   4 *
   5 * Copyright (c) 2007 Nokia Siemens Networks - Mikko Herranen <mh1@iki.fi>
   6 * Copyright (c) 2009 Intel Corp.
   7 *   Author: Huang Ying <ying.huang@intel.com>
   8 * Copyright 2021 Google LLC
   9 */
  10
  11/*
  12 * Code based on crypto/ghash-generic.c
  13 *
  14 * POLYVAL is a keyed hash function similar to GHASH. POLYVAL uses a different
  15 * modulus for finite field multiplication which makes hardware accelerated
  16 * implementations on little-endian machines faster. POLYVAL is used in the
  17 * kernel to implement HCTR2, but was originally specified for AES-GCM-SIV
  18 * (RFC 8452).
  19 *
  20 * For more information see:
  21 * Length-preserving encryption with HCTR2:
  22 *   https://eprint.iacr.org/2021/1441.pdf
  23 * AES-GCM-SIV: Nonce Misuse-Resistant Authenticated Encryption:
  24 *   https://datatracker.ietf.org/doc/html/rfc8452
  25 *
  26 * Like GHASH, POLYVAL is not a cryptographic hash function and should
  27 * not be used outside of crypto modes explicitly designed to use POLYVAL.
  28 *
  29 * This implementation uses a convenient trick involving the GHASH and POLYVAL
  30 * fields. This trick allows multiplication in the POLYVAL field to be
  31 * implemented by using multiplication in the GHASH field as a subroutine. An
  32 * element of the POLYVAL field can be converted to an element of the GHASH
  33 * field by computing x*REVERSE(a), where REVERSE reverses the byte-ordering of
  34 * a. Similarly, an element of the GHASH field can be converted back to the
  35 * POLYVAL field by computing REVERSE(x^{-1}*a). For more information, see:
  36 * https://datatracker.ietf.org/doc/html/rfc8452#appendix-A
  37 *
  38 * By using this trick, we do not need to implement the POLYVAL field for the
  39 * generic implementation.
  40 *
  41 * Warning: this generic implementation is not intended to be used in practice
  42 * and is not constant time. For practical use, a hardware accelerated
  43 * implementation of POLYVAL should be used instead.
  44 *
  45 */
  46
  47#include <asm/unaligned.h>
  48#include <crypto/algapi.h>
  49#include <crypto/gf128mul.h>
  50#include <crypto/polyval.h>
  51#include <crypto/internal/hash.h>
  52#include <linux/crypto.h>
  53#include <linux/init.h>
  54#include <linux/kernel.h>
  55#include <linux/module.h>
  56
  57struct polyval_tfm_ctx {
  58        struct gf128mul_4k *gf128;
  59};
  60
  61struct polyval_desc_ctx {
  62        union {
  63                u8 buffer[POLYVAL_BLOCK_SIZE];
  64                be128 buffer128;
  65        };
  66        u32 bytes;
  67};
  68
  69static void copy_and_reverse(u8 dst[POLYVAL_BLOCK_SIZE],
  70                             const u8 src[POLYVAL_BLOCK_SIZE])
  71{
  72        u64 a = get_unaligned((const u64 *)&src[0]);
  73        u64 b = get_unaligned((const u64 *)&src[8]);
  74
  75        put_unaligned(swab64(a), (u64 *)&dst[8]);
  76        put_unaligned(swab64(b), (u64 *)&dst[0]);
  77}
  78
  79/*
  80 * Performs multiplication in the POLYVAL field using the GHASH field as a
  81 * subroutine.  This function is used as a fallback for hardware accelerated
  82 * implementations when simd registers are unavailable.
  83 *
  84 * Note: This function is not used for polyval-generic, instead we use the 4k
  85 * lookup table implementation for finite field multiplication.
  86 */
  87void polyval_mul_non4k(u8 *op1, const u8 *op2)
  88{
  89        be128 a, b;
  90
  91        // Assume one argument is in Montgomery form and one is not.
  92        copy_and_reverse((u8 *)&a, op1);
  93        copy_and_reverse((u8 *)&b, op2);
  94        gf128mul_x_lle(&a, &a);
  95        gf128mul_lle(&a, &b);
  96        copy_and_reverse(op1, (u8 *)&a);
  97}
  98EXPORT_SYMBOL_GPL(polyval_mul_non4k);
  99
 100/*
 101 * Perform a POLYVAL update using non4k multiplication.  This function is used
 102 * as a fallback for hardware accelerated implementations when simd registers
 103 * are unavailable.
 104 *
 105 * Note: This function is not used for polyval-generic, instead we use the 4k
 106 * lookup table implementation of finite field multiplication.
 107 */
 108void polyval_update_non4k(const u8 *key, const u8 *in,
 109                          size_t nblocks, u8 *accumulator)
 110{
 111        while (nblocks--) {
 112                crypto_xor(accumulator, in, POLYVAL_BLOCK_SIZE);
 113                polyval_mul_non4k(accumulator, key);
 114                in += POLYVAL_BLOCK_SIZE;
 115        }
 116}
 117EXPORT_SYMBOL_GPL(polyval_update_non4k);
 118
 119static int polyval_setkey(struct crypto_shash *tfm,
 120                          const u8 *key, unsigned int keylen)
 121{
 122        struct polyval_tfm_ctx *ctx = crypto_shash_ctx(tfm);
 123        be128 k;
 124
 125        if (keylen != POLYVAL_BLOCK_SIZE)
 126                return -EINVAL;
 127
 128        gf128mul_free_4k(ctx->gf128);
 129
 130        BUILD_BUG_ON(sizeof(k) != POLYVAL_BLOCK_SIZE);
 131        copy_and_reverse((u8 *)&k, key);
 132        gf128mul_x_lle(&k, &k);
 133
 134        ctx->gf128 = gf128mul_init_4k_lle(&k);
 135        memzero_explicit(&k, POLYVAL_BLOCK_SIZE);
 136
 137        if (!ctx->gf128)
 138                return -ENOMEM;
 139
 140        return 0;
 141}
 142
 143static int polyval_init(struct shash_desc *desc)
 144{
 145        struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
 146
 147        memset(dctx, 0, sizeof(*dctx));
 148
 149        return 0;
 150}
 151
 152static int polyval_update(struct shash_desc *desc,
 153                         const u8 *src, unsigned int srclen)
 154{
 155        struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
 156        const struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm);
 157        u8 *pos;
 158        u8 tmp[POLYVAL_BLOCK_SIZE];
 159        int n;
 160
 161        if (dctx->bytes) {
 162                n = min(srclen, dctx->bytes);
 163                pos = dctx->buffer + dctx->bytes - 1;
 164
 165                dctx->bytes -= n;
 166                srclen -= n;
 167
 168                while (n--)
 169                        *pos-- ^= *src++;
 170
 171                if (!dctx->bytes)
 172                        gf128mul_4k_lle(&dctx->buffer128, ctx->gf128);
 173        }
 174
 175        while (srclen >= POLYVAL_BLOCK_SIZE) {
 176                copy_and_reverse(tmp, src);
 177                crypto_xor(dctx->buffer, tmp, POLYVAL_BLOCK_SIZE);
 178                gf128mul_4k_lle(&dctx->buffer128, ctx->gf128);
 179                src += POLYVAL_BLOCK_SIZE;
 180                srclen -= POLYVAL_BLOCK_SIZE;
 181        }
 182
 183        if (srclen) {
 184                dctx->bytes = POLYVAL_BLOCK_SIZE - srclen;
 185                pos = dctx->buffer + POLYVAL_BLOCK_SIZE - 1;
 186                while (srclen--)
 187                        *pos-- ^= *src++;
 188        }
 189
 190        return 0;
 191}
 192
 193static int polyval_final(struct shash_desc *desc, u8 *dst)
 194{
 195        struct polyval_desc_ctx *dctx = shash_desc_ctx(desc);
 196        const struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm);
 197
 198        if (dctx->bytes)
 199                gf128mul_4k_lle(&dctx->buffer128, ctx->gf128);
 200        copy_and_reverse(dst, dctx->buffer);
 201        return 0;
 202}
 203
 204static void polyval_exit_tfm(struct crypto_tfm *tfm)
 205{
 206        struct polyval_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
 207
 208        gf128mul_free_4k(ctx->gf128);
 209}
 210
 211static struct shash_alg polyval_alg = {
 212        .digestsize     = POLYVAL_DIGEST_SIZE,
 213        .init           = polyval_init,
 214        .update         = polyval_update,
 215        .final          = polyval_final,
 216        .setkey         = polyval_setkey,
 217        .descsize       = sizeof(struct polyval_desc_ctx),
 218        .base           = {
 219                .cra_name               = "polyval",
 220                .cra_driver_name        = "polyval-generic",
 221                .cra_priority           = 100,
 222                .cra_blocksize          = POLYVAL_BLOCK_SIZE,
 223                .cra_ctxsize            = sizeof(struct polyval_tfm_ctx),
 224                .cra_module             = THIS_MODULE,
 225                .cra_exit               = polyval_exit_tfm,
 226        },
 227};
 228
 229static int __init polyval_mod_init(void)
 230{
 231        return crypto_register_shash(&polyval_alg);
 232}
 233
 234static void __exit polyval_mod_exit(void)
 235{
 236        crypto_unregister_shash(&polyval_alg);
 237}
 238
 239subsys_initcall(polyval_mod_init);
 240module_exit(polyval_mod_exit);
 241
 242MODULE_LICENSE("GPL");
 243MODULE_DESCRIPTION("POLYVAL hash function");
 244MODULE_ALIAS_CRYPTO("polyval");
 245MODULE_ALIAS_CRYPTO("polyval-generic");
 246