linux/crypto/jitterentropy.c
<<
>>
Prefs
   1/*
   2 * Non-physical true random number generator based on timing jitter --
   3 * Jitter RNG standalone code.
   4 *
   5 * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
   6 *
   7 * Design
   8 * ======
   9 *
  10 * See https://www.chronox.de/jent.html
  11 *
  12 * License
  13 * =======
  14 *
  15 * Redistribution and use in source and binary forms, with or without
  16 * modification, are permitted provided that the following conditions
  17 * are met:
  18 * 1. Redistributions of source code must retain the above copyright
  19 *    notice, and the entire permission notice in its entirety,
  20 *    including the disclaimer of warranties.
  21 * 2. Redistributions in binary form must reproduce the above copyright
  22 *    notice, this list of conditions and the following disclaimer in the
  23 *    documentation and/or other materials provided with the distribution.
  24 * 3. The name of the author may not be used to endorse or promote
  25 *    products derived from this software without specific prior
  26 *    written permission.
  27 *
  28 * ALTERNATIVELY, this product may be distributed under the terms of
  29 * the GNU General Public License, in which case the provisions of the GPL2 are
  30 * required INSTEAD OF the above restrictions.  (This clause is
  31 * necessary due to a potential bad interaction between the GPL and
  32 * the restrictions contained in a BSD-style copyright.)
  33 *
  34 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  35 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  36 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  37 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  38 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  39 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  40 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  41 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  42 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  44 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  45 * DAMAGE.
  46 */
  47
  48/*
  49 * This Jitterentropy RNG is based on the jitterentropy library
  50 * version 3.4.0 provided at https://www.chronox.de/jent.html
  51 */
  52
  53#ifdef __OPTIMIZE__
  54 #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
  55#endif
  56
  57typedef unsigned long long      __u64;
  58typedef long long               __s64;
  59typedef unsigned int            __u32;
  60typedef unsigned char           u8;
  61#define NULL    ((void *) 0)
  62
  63/* The entropy pool */
  64struct rand_data {
  65        /* SHA3-256 is used as conditioner */
  66#define DATA_SIZE_BITS 256
  67        /* all data values that are vital to maintain the security
  68         * of the RNG are marked as SENSITIVE. A user must not
  69         * access that information while the RNG executes its loops to
  70         * calculate the next random value. */
  71        void *hash_state;               /* SENSITIVE hash state entropy pool */
  72        __u64 prev_time;                /* SENSITIVE Previous time stamp */
  73        __u64 last_delta;               /* SENSITIVE stuck test */
  74        __s64 last_delta2;              /* SENSITIVE stuck test */
  75
  76        unsigned int flags;             /* Flags used to initialize */
  77        unsigned int osr;               /* Oversample rate */
  78#define JENT_MEMORY_ACCESSLOOPS 128
  79#define JENT_MEMORY_SIZE                                                \
  80        (CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS *                    \
  81         CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE)
  82        unsigned char *mem;     /* Memory access location with size of
  83                                 * memblocks * memblocksize */
  84        unsigned int memlocation; /* Pointer to byte in *mem */
  85        unsigned int memblocks; /* Number of memory blocks in *mem */
  86        unsigned int memblocksize; /* Size of one memory block in bytes */
  87        unsigned int memaccessloops; /* Number of memory accesses per random
  88                                      * bit generation */
  89
  90        /* Repetition Count Test */
  91        unsigned int rct_count;                 /* Number of stuck values */
  92
  93        /* Adaptive Proportion Test cutoff values */
  94        unsigned int apt_cutoff; /* Intermittent health test failure */
  95        unsigned int apt_cutoff_permanent; /* Permanent health test failure */
  96#define JENT_APT_WINDOW_SIZE    512     /* Data window size */
  97        /* LSB of time stamp to process */
  98#define JENT_APT_LSB            16
  99#define JENT_APT_WORD_MASK      (JENT_APT_LSB - 1)
 100        unsigned int apt_observations;  /* Number of collected observations */
 101        unsigned int apt_count;         /* APT counter */
 102        unsigned int apt_base;          /* APT base reference */
 103        unsigned int health_failure;    /* Record health failure */
 104
 105        unsigned int apt_base_set:1;    /* APT base reference set? */
 106};
 107
 108/* Flags that can be used to initialize the RNG */
 109#define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
 110                                           * entropy, saves MEMORY_SIZE RAM for
 111                                           * entropy collector */
 112
 113/* -- error codes for init function -- */
 114#define JENT_ENOTIME            1 /* Timer service not available */
 115#define JENT_ECOARSETIME        2 /* Timer too coarse for RNG */
 116#define JENT_ENOMONOTONIC       3 /* Timer is not monotonic increasing */
 117#define JENT_EVARVAR            5 /* Timer does not produce variations of
 118                                   * variations (2nd derivation of time is
 119                                   * zero). */
 120#define JENT_ESTUCK             8 /* Too many stuck results during init. */
 121#define JENT_EHEALTH            9 /* Health test failed during initialization */
 122#define JENT_ERCT              10 /* RCT failed during initialization */
 123#define JENT_EHASH             11 /* Hash self test failed */
 124#define JENT_EMEM              12 /* Can't allocate memory for initialization */
 125
 126#define JENT_RCT_FAILURE        1 /* Failure in RCT health test. */
 127#define JENT_APT_FAILURE        2 /* Failure in APT health test. */
 128#define JENT_PERMANENT_FAILURE_SHIFT    16
 129#define JENT_PERMANENT_FAILURE(x)       (x << JENT_PERMANENT_FAILURE_SHIFT)
 130#define JENT_RCT_FAILURE_PERMANENT      JENT_PERMANENT_FAILURE(JENT_RCT_FAILURE)
 131#define JENT_APT_FAILURE_PERMANENT      JENT_PERMANENT_FAILURE(JENT_APT_FAILURE)
 132
 133/*
 134 * The output n bits can receive more than n bits of min entropy, of course,
 135 * but the fixed output of the conditioning function can only asymptotically
 136 * approach the output size bits of min entropy, not attain that bound. Random
 137 * maps will tend to have output collisions, which reduces the creditable
 138 * output entropy (that is what SP 800-90B Section 3.1.5.1.2 attempts to bound).
 139 *
 140 * The value "64" is justified in Appendix A.4 of the current 90C draft,
 141 * and aligns with NIST's in "epsilon" definition in this document, which is
 142 * that a string can be considered "full entropy" if you can bound the min
 143 * entropy in each bit of output to at least 1-epsilon, where epsilon is
 144 * required to be <= 2^(-32).
 145 */
 146#define JENT_ENTROPY_SAFETY_FACTOR      64
 147
 148#include <linux/fips.h>
 149#include "jitterentropy.h"
 150
 151/***************************************************************************
 152 * Adaptive Proportion Test
 153 *
 154 * This test complies with SP800-90B section 4.4.2.
 155 ***************************************************************************/
 156
 157/*
 158 * See the SP 800-90B comment #10b for the corrected cutoff for the SP 800-90B
 159 * APT.
 160 * http://www.untruth.org/~josh/sp80090b/UL%20SP800-90B-final%20comments%20v1.9%2020191212.pdf
 161 * In in the syntax of R, this is C = 2 + qbinom(1 \xE2\x88\x92 2^(\xE2\x88\x9230), 511, 2^(-1/osr)).
 162 * (The original formula wasn't correct because the first symbol must
 163 * necessarily have been observed, so there is no chance of observing 0 of these
 164 * symbols.)
 165 *
 166 * For the alpha < 2^-53, R cannot be used as it uses a float data type without
 167 * arbitrary precision. A SageMath script is used to calculate those cutoff
 168 * values.
 169 *
 170 * For any value above 14, this yields the maximal allowable value of 512
 171 * (by FIPS 140-2 IG 7.19 Resolution # 16, we cannot choose a cutoff value that
 172 * renders the test unable to fail).
 173 */
 174static const unsigned int jent_apt_cutoff_lookup[15] = {
 175        325, 422, 459, 477, 488, 494, 499, 502,
 176        505, 507, 508, 509, 510, 511, 512 };
 177static const unsigned int jent_apt_cutoff_permanent_lookup[15] = {
 178        355, 447, 479, 494, 502, 507, 510, 512,
 179        512, 512, 512, 512, 512, 512, 512 };
 180#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
 181
 182static void jent_apt_init(struct rand_data *ec, unsigned int osr)
 183{
 184        /*
 185         * Establish the apt_cutoff based on the presumed entropy rate of
 186         * 1/osr.
 187         */
 188        if (osr >= ARRAY_SIZE(jent_apt_cutoff_lookup)) {
 189                ec->apt_cutoff = jent_apt_cutoff_lookup[
 190                        ARRAY_SIZE(jent_apt_cutoff_lookup) - 1];
 191                ec->apt_cutoff_permanent = jent_apt_cutoff_permanent_lookup[
 192                        ARRAY_SIZE(jent_apt_cutoff_permanent_lookup) - 1];
 193        } else {
 194                ec->apt_cutoff = jent_apt_cutoff_lookup[osr - 1];
 195                ec->apt_cutoff_permanent =
 196                                jent_apt_cutoff_permanent_lookup[osr - 1];
 197        }
 198}
 199/*
 200 * Reset the APT counter
 201 *
 202 * @ec [in] Reference to entropy collector
 203 */
 204static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked)
 205{
 206        /* Reset APT counter */
 207        ec->apt_count = 0;
 208        ec->apt_base = delta_masked;
 209        ec->apt_observations = 0;
 210}
 211
 212/*
 213 * Insert a new entropy event into APT
 214 *
 215 * @ec [in] Reference to entropy collector
 216 * @delta_masked [in] Masked time delta to process
 217 */
 218static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked)
 219{
 220        /* Initialize the base reference */
 221        if (!ec->apt_base_set) {
 222                ec->apt_base = delta_masked;
 223                ec->apt_base_set = 1;
 224                return;
 225        }
 226
 227        if (delta_masked == ec->apt_base) {
 228                ec->apt_count++;
 229
 230                /* Note, ec->apt_count starts with one. */
 231                if (ec->apt_count >= ec->apt_cutoff_permanent)
 232                        ec->health_failure |= JENT_APT_FAILURE_PERMANENT;
 233                else if (ec->apt_count >= ec->apt_cutoff)
 234                        ec->health_failure |= JENT_APT_FAILURE;
 235        }
 236
 237        ec->apt_observations++;
 238
 239        if (ec->apt_observations >= JENT_APT_WINDOW_SIZE)
 240                jent_apt_reset(ec, delta_masked);
 241}
 242
 243/***************************************************************************
 244 * Stuck Test and its use as Repetition Count Test
 245 *
 246 * The Jitter RNG uses an enhanced version of the Repetition Count Test
 247 * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical
 248 * back-to-back values, the input to the RCT is the counting of the stuck
 249 * values during the generation of one Jitter RNG output block.
 250 *
 251 * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8.
 252 *
 253 * During the counting operation, the Jitter RNG always calculates the RCT
 254 * cut-off value of C. If that value exceeds the allowed cut-off value,
 255 * the Jitter RNG output block will be calculated completely but discarded at
 256 * the end. The caller of the Jitter RNG is informed with an error code.
 257 ***************************************************************************/
 258
 259/*
 260 * Repetition Count Test as defined in SP800-90B section 4.4.1
 261 *
 262 * @ec [in] Reference to entropy collector
 263 * @stuck [in] Indicator whether the value is stuck
 264 */
 265static void jent_rct_insert(struct rand_data *ec, int stuck)
 266{
 267        if (stuck) {
 268                ec->rct_count++;
 269
 270                /*
 271                 * The cutoff value is based on the following consideration:
 272                 * alpha = 2^-30 or 2^-60 as recommended in SP800-90B.
 273                 * In addition, we require an entropy value H of 1/osr as this
 274                 * is the minimum entropy required to provide full entropy.
 275                 * Note, we collect (DATA_SIZE_BITS + ENTROPY_SAFETY_FACTOR)*osr
 276                 * deltas for inserting them into the entropy pool which should
 277                 * then have (close to) DATA_SIZE_BITS bits of entropy in the
 278                 * conditioned output.
 279                 *
 280                 * Note, ec->rct_count (which equals to value B in the pseudo
 281                 * code of SP800-90B section 4.4.1) starts with zero. Hence
 282                 * we need to subtract one from the cutoff value as calculated
 283                 * following SP800-90B. Thus C = ceil(-log_2(alpha)/H) = 30*osr
 284                 * or 60*osr.
 285                 */
 286                if ((unsigned int)ec->rct_count >= (60 * ec->osr)) {
 287                        ec->rct_count = -1;
 288                        ec->health_failure |= JENT_RCT_FAILURE_PERMANENT;
 289                } else if ((unsigned int)ec->rct_count >= (30 * ec->osr)) {
 290                        ec->rct_count = -1;
 291                        ec->health_failure |= JENT_RCT_FAILURE;
 292                }
 293        } else {
 294                /* Reset RCT */
 295                ec->rct_count = 0;
 296        }
 297}
 298
 299static inline __u64 jent_delta(__u64 prev, __u64 next)
 300{
 301#define JENT_UINT64_MAX         (__u64)(~((__u64) 0))
 302        return (prev < next) ? (next - prev) :
 303                               (JENT_UINT64_MAX - prev + 1 + next);
 304}
 305
 306/*
 307 * Stuck test by checking the:
 308 *      1st derivative of the jitter measurement (time delta)
 309 *      2nd derivative of the jitter measurement (delta of time deltas)
 310 *      3rd derivative of the jitter measurement (delta of delta of time deltas)
 311 *
 312 * All values must always be non-zero.
 313 *
 314 * @ec [in] Reference to entropy collector
 315 * @current_delta [in] Jitter time delta
 316 *
 317 * @return
 318 *      0 jitter measurement not stuck (good bit)
 319 *      1 jitter measurement stuck (reject bit)
 320 */
 321static int jent_stuck(struct rand_data *ec, __u64 current_delta)
 322{
 323        __u64 delta2 = jent_delta(ec->last_delta, current_delta);
 324        __u64 delta3 = jent_delta(ec->last_delta2, delta2);
 325
 326        ec->last_delta = current_delta;
 327        ec->last_delta2 = delta2;
 328
 329        /*
 330         * Insert the result of the comparison of two back-to-back time
 331         * deltas.
 332         */
 333        jent_apt_insert(ec, current_delta);
 334
 335        if (!current_delta || !delta2 || !delta3) {
 336                /* RCT with a stuck bit */
 337                jent_rct_insert(ec, 1);
 338                return 1;
 339        }
 340
 341        /* RCT with a non-stuck bit */
 342        jent_rct_insert(ec, 0);
 343
 344        return 0;
 345}
 346
 347/*
 348 * Report any health test failures
 349 *
 350 * @ec [in] Reference to entropy collector
 351 *
 352 * @return a bitmask indicating which tests failed
 353 *      0 No health test failure
 354 *      1 RCT failure
 355 *      2 APT failure
 356 *      1<<JENT_PERMANENT_FAILURE_SHIFT RCT permanent failure
 357 *      2<<JENT_PERMANENT_FAILURE_SHIFT APT permanent failure
 358 */
 359static unsigned int jent_health_failure(struct rand_data *ec)
 360{
 361        /* Test is only enabled in FIPS mode */
 362        if (!fips_enabled)
 363                return 0;
 364
 365        return ec->health_failure;
 366}
 367
 368/***************************************************************************
 369 * Noise sources
 370 ***************************************************************************/
 371
 372/*
 373 * Update of the loop count used for the next round of
 374 * an entropy collection.
 375 *
 376 * Input:
 377 * @bits is the number of low bits of the timer to consider
 378 * @min is the number of bits we shift the timer value to the right at
 379 *      the end to make sure we have a guaranteed minimum value
 380 *
 381 * @return Newly calculated loop counter
 382 */
 383static __u64 jent_loop_shuffle(unsigned int bits, unsigned int min)
 384{
 385        __u64 time = 0;
 386        __u64 shuffle = 0;
 387        unsigned int i = 0;
 388        unsigned int mask = (1<<bits) - 1;
 389
 390        jent_get_nstime(&time);
 391
 392        /*
 393         * We fold the time value as much as possible to ensure that as many
 394         * bits of the time stamp are included as possible.
 395         */
 396        for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
 397                shuffle ^= time & mask;
 398                time = time >> bits;
 399        }
 400
 401        /*
 402         * We add a lower boundary value to ensure we have a minimum
 403         * RNG loop count.
 404         */
 405        return (shuffle + (1<<min));
 406}
 407
 408/*
 409 * CPU Jitter noise source -- this is the noise source based on the CPU
 410 *                            execution time jitter
 411 *
 412 * This function injects the individual bits of the time value into the
 413 * entropy pool using a hash.
 414 *
 415 * ec [in] entropy collector
 416 * time [in] time stamp to be injected
 417 * stuck [in] Is the time stamp identified as stuck?
 418 *
 419 * Output:
 420 * updated hash context in the entropy collector or error code
 421 */
 422static int jent_condition_data(struct rand_data *ec, __u64 time, int stuck)
 423{
 424#define SHA3_HASH_LOOP (1<<3)
 425        struct {
 426                int rct_count;
 427                unsigned int apt_observations;
 428                unsigned int apt_count;
 429                unsigned int apt_base;
 430        } addtl = {
 431                ec->rct_count,
 432                ec->apt_observations,
 433                ec->apt_count,
 434                ec->apt_base
 435        };
 436
 437        return jent_hash_time(ec->hash_state, time, (u8 *)&addtl, sizeof(addtl),
 438                              SHA3_HASH_LOOP, stuck);
 439}
 440
 441/*
 442 * Memory Access noise source -- this is a noise source based on variations in
 443 *                               memory access times
 444 *
 445 * This function performs memory accesses which will add to the timing
 446 * variations due to an unknown amount of CPU wait states that need to be
 447 * added when accessing memory. The memory size should be larger than the L1
 448 * caches as outlined in the documentation and the associated testing.
 449 *
 450 * The L1 cache has a very high bandwidth, albeit its access rate is  usually
 451 * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
 452 * variations as the CPU has hardly to wait. Starting with L2, significant
 453 * variations are added because L2 typically does not belong to the CPU any more
 454 * and therefore a wider range of CPU wait states is necessary for accesses.
 455 * L3 and real memory accesses have even a wider range of wait states. However,
 456 * to reliably access either L3 or memory, the ec->mem memory must be quite
 457 * large which is usually not desirable.
 458 *
 459 * @ec [in] Reference to the entropy collector with the memory access data -- if
 460 *          the reference to the memory block to be accessed is NULL, this noise
 461 *          source is disabled
 462 * @loop_cnt [in] if a value not equal to 0 is set, use the given value
 463 *                number of loops to perform the LFSR
 464 */
 465static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
 466{
 467        unsigned int wrap = 0;
 468        __u64 i = 0;
 469#define MAX_ACC_LOOP_BIT 7
 470#define MIN_ACC_LOOP_BIT 0
 471        __u64 acc_loop_cnt =
 472                jent_loop_shuffle(MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
 473
 474        if (NULL == ec || NULL == ec->mem)
 475                return;
 476        wrap = ec->memblocksize * ec->memblocks;
 477
 478        /*
 479         * testing purposes -- allow test app to set the counter, not
 480         * needed during runtime
 481         */
 482        if (loop_cnt)
 483                acc_loop_cnt = loop_cnt;
 484
 485        for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
 486                unsigned char *tmpval = ec->mem + ec->memlocation;
 487                /*
 488                 * memory access: just add 1 to one byte,
 489                 * wrap at 255 -- memory access implies read
 490                 * from and write to memory location
 491                 */
 492                *tmpval = (*tmpval + 1) & 0xff;
 493                /*
 494                 * Addition of memblocksize - 1 to pointer
 495                 * with wrap around logic to ensure that every
 496                 * memory location is hit evenly
 497                 */
 498                ec->memlocation = ec->memlocation + ec->memblocksize - 1;
 499                ec->memlocation = ec->memlocation % wrap;
 500        }
 501}
 502
 503/***************************************************************************
 504 * Start of entropy processing logic
 505 ***************************************************************************/
 506/*
 507 * This is the heart of the entropy generation: calculate time deltas and
 508 * use the CPU jitter in the time deltas. The jitter is injected into the
 509 * entropy pool.
 510 *
 511 * WARNING: ensure that ->prev_time is primed before using the output
 512 *          of this function! This can be done by calling this function
 513 *          and not using its result.
 514 *
 515 * @ec [in] Reference to entropy collector
 516 *
 517 * @return result of stuck test
 518 */
 519static int jent_measure_jitter(struct rand_data *ec, __u64 *ret_current_delta)
 520{
 521        __u64 time = 0;
 522        __u64 current_delta = 0;
 523        int stuck;
 524
 525        /* Invoke one noise source before time measurement to add variations */
 526        jent_memaccess(ec, 0);
 527
 528        /*
 529         * Get time stamp and calculate time delta to previous
 530         * invocation to measure the timing variations
 531         */
 532        jent_get_nstime(&time);
 533        current_delta = jent_delta(ec->prev_time, time);
 534        ec->prev_time = time;
 535
 536        /* Check whether we have a stuck measurement. */
 537        stuck = jent_stuck(ec, current_delta);
 538
 539        /* Now call the next noise sources which also injects the data */
 540        if (jent_condition_data(ec, current_delta, stuck))
 541                stuck = 1;
 542
 543        /* return the raw entropy value */
 544        if (ret_current_delta)
 545                *ret_current_delta = current_delta;
 546
 547        return stuck;
 548}
 549
 550/*
 551 * Generator of one 64 bit random number
 552 * Function fills rand_data->hash_state
 553 *
 554 * @ec [in] Reference to entropy collector
 555 */
 556static void jent_gen_entropy(struct rand_data *ec)
 557{
 558        unsigned int k = 0, safety_factor = 0;
 559
 560        if (fips_enabled)
 561                safety_factor = JENT_ENTROPY_SAFETY_FACTOR;
 562
 563        /* priming of the ->prev_time value */
 564        jent_measure_jitter(ec, NULL);
 565
 566        while (!jent_health_failure(ec)) {
 567                /* If a stuck measurement is received, repeat measurement */
 568                if (jent_measure_jitter(ec, NULL))
 569                        continue;
 570
 571                /*
 572                 * We multiply the loop value with ->osr to obtain the
 573                 * oversampling rate requested by the caller
 574                 */
 575                if (++k >= ((DATA_SIZE_BITS + safety_factor) * ec->osr))
 576                        break;
 577        }
 578}
 579
 580/*
 581 * Entry function: Obtain entropy for the caller.
 582 *
 583 * This function invokes the entropy gathering logic as often to generate
 584 * as many bytes as requested by the caller. The entropy gathering logic
 585 * creates 64 bit per invocation.
 586 *
 587 * This function truncates the last 64 bit entropy value output to the exact
 588 * size specified by the caller.
 589 *
 590 * @ec [in] Reference to entropy collector
 591 * @data [in] pointer to buffer for storing random data -- buffer must already
 592 *            exist
 593 * @len [in] size of the buffer, specifying also the requested number of random
 594 *           in bytes
 595 *
 596 * @return 0 when request is fulfilled or an error
 597 *
 598 * The following error codes can occur:
 599 *      -1      entropy_collector is NULL or the generation failed
 600 *      -2      Intermittent health failure
 601 *      -3      Permanent health failure
 602 */
 603int jent_read_entropy(struct rand_data *ec, unsigned char *data,
 604                      unsigned int len)
 605{
 606        unsigned char *p = data;
 607
 608        if (!ec)
 609                return -1;
 610
 611        while (len > 0) {
 612                unsigned int tocopy, health_test_result;
 613
 614                jent_gen_entropy(ec);
 615
 616                health_test_result = jent_health_failure(ec);
 617                if (health_test_result > JENT_PERMANENT_FAILURE_SHIFT) {
 618                        /*
 619                         * At this point, the Jitter RNG instance is considered
 620                         * as a failed instance. There is no rerun of the
 621                         * startup test any more, because the caller
 622                         * is assumed to not further use this instance.
 623                         */
 624                        return -3;
 625                } else if (health_test_result) {
 626                        /*
 627                         * Perform startup health tests and return permanent
 628                         * error if it fails.
 629                         */
 630                        if (jent_entropy_init(0, 0, NULL, ec)) {
 631                                /* Mark the permanent error */
 632                                ec->health_failure &=
 633                                        JENT_RCT_FAILURE_PERMANENT |
 634                                        JENT_APT_FAILURE_PERMANENT;
 635                                return -3;
 636                        }
 637
 638                        return -2;
 639                }
 640
 641                if ((DATA_SIZE_BITS / 8) < len)
 642                        tocopy = (DATA_SIZE_BITS / 8);
 643                else
 644                        tocopy = len;
 645                if (jent_read_random_block(ec->hash_state, p, tocopy))
 646                        return -1;
 647
 648                len -= tocopy;
 649                p += tocopy;
 650        }
 651
 652        return 0;
 653}
 654
 655/***************************************************************************
 656 * Initialization logic
 657 ***************************************************************************/
 658
 659struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
 660                                               unsigned int flags,
 661                                               void *hash_state)
 662{
 663        struct rand_data *entropy_collector;
 664
 665        entropy_collector = jent_zalloc(sizeof(struct rand_data));
 666        if (!entropy_collector)
 667                return NULL;
 668
 669        if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
 670                /* Allocate memory for adding variations based on memory
 671                 * access
 672                 */
 673                entropy_collector->mem = jent_kvzalloc(JENT_MEMORY_SIZE);
 674                if (!entropy_collector->mem) {
 675                        jent_zfree(entropy_collector);
 676                        return NULL;
 677                }
 678                entropy_collector->memblocksize =
 679                        CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKSIZE;
 680                entropy_collector->memblocks =
 681                        CONFIG_CRYPTO_JITTERENTROPY_MEMORY_BLOCKS;
 682                entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
 683        }
 684
 685        /* verify and set the oversampling rate */
 686        if (osr == 0)
 687                osr = 1; /* H_submitter = 1 / osr */
 688        entropy_collector->osr = osr;
 689        entropy_collector->flags = flags;
 690
 691        entropy_collector->hash_state = hash_state;
 692
 693        /* Initialize the APT */
 694        jent_apt_init(entropy_collector, osr);
 695
 696        /* fill the data pad with non-zero values */
 697        jent_gen_entropy(entropy_collector);
 698
 699        return entropy_collector;
 700}
 701
 702void jent_entropy_collector_free(struct rand_data *entropy_collector)
 703{
 704        jent_kvzfree(entropy_collector->mem, JENT_MEMORY_SIZE);
 705        entropy_collector->mem = NULL;
 706        jent_zfree(entropy_collector);
 707}
 708
 709int jent_entropy_init(unsigned int osr, unsigned int flags, void *hash_state,
 710                      struct rand_data *p_ec)
 711{
 712        /*
 713         * If caller provides an allocated ec, reuse it which implies that the
 714         * health test entropy data is used to further still the available
 715         * entropy pool.
 716         */
 717        struct rand_data *ec = p_ec;
 718        int i, time_backwards = 0, ret = 0, ec_free = 0;
 719        unsigned int health_test_result;
 720
 721        if (!ec) {
 722                ec = jent_entropy_collector_alloc(osr, flags, hash_state);
 723                if (!ec)
 724                        return JENT_EMEM;
 725                ec_free = 1;
 726        } else {
 727                /* Reset the APT */
 728                jent_apt_reset(ec, 0);
 729                /* Ensure that a new APT base is obtained */
 730                ec->apt_base_set = 0;
 731                /* Reset the RCT */
 732                ec->rct_count = 0;
 733                /* Reset intermittent, leave permanent health test result */
 734                ec->health_failure &= (~JENT_RCT_FAILURE);
 735                ec->health_failure &= (~JENT_APT_FAILURE);
 736        }
 737
 738        /* We could perform statistical tests here, but the problem is
 739         * that we only have a few loop counts to do testing. These
 740         * loop counts may show some slight skew and we produce
 741         * false positives.
 742         *
 743         * Moreover, only old systems show potentially problematic
 744         * jitter entropy that could potentially be caught here. But
 745         * the RNG is intended for hardware that is available or widely
 746         * used, but not old systems that are long out of favor. Thus,
 747         * no statistical tests.
 748         */
 749
 750        /*
 751         * We could add a check for system capabilities such as clock_getres or
 752         * check for CONFIG_X86_TSC, but it does not make much sense as the
 753         * following sanity checks verify that we have a high-resolution
 754         * timer.
 755         */
 756        /*
 757         * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
 758         * definitely too little.
 759         *
 760         * SP800-90B requires at least 1024 initial test cycles.
 761         */
 762#define TESTLOOPCOUNT 1024
 763#define CLEARCACHE 100
 764        for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
 765                __u64 start_time = 0, end_time = 0, delta = 0;
 766
 767                /* Invoke core entropy collection logic */
 768                jent_measure_jitter(ec, &delta);
 769                end_time = ec->prev_time;
 770                start_time = ec->prev_time - delta;
 771
 772                /* test whether timer works */
 773                if (!start_time || !end_time) {
 774                        ret = JENT_ENOTIME;
 775                        goto out;
 776                }
 777
 778                /*
 779                 * test whether timer is fine grained enough to provide
 780                 * delta even when called shortly after each other -- this
 781                 * implies that we also have a high resolution timer
 782                 */
 783                if (!delta || (end_time == start_time)) {
 784                        ret = JENT_ECOARSETIME;
 785                        goto out;
 786                }
 787
 788                /*
 789                 * up to here we did not modify any variable that will be
 790                 * evaluated later, but we already performed some work. Thus we
 791                 * already have had an impact on the caches, branch prediction,
 792                 * etc. with the goal to clear it to get the worst case
 793                 * measurements.
 794                 */
 795                if (i < CLEARCACHE)
 796                        continue;
 797
 798                /* test whether we have an increasing timer */
 799                if (!(end_time > start_time))
 800                        time_backwards++;
 801        }
 802
 803        /*
 804         * we allow up to three times the time running backwards.
 805         * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
 806         * if such an operation just happens to interfere with our test, it
 807         * should not fail. The value of 3 should cover the NTP case being
 808         * performed during our test run.
 809         */
 810        if (time_backwards > 3) {
 811                ret = JENT_ENOMONOTONIC;
 812                goto out;
 813        }
 814
 815        /* Did we encounter a health test failure? */
 816        health_test_result = jent_health_failure(ec);
 817        if (health_test_result) {
 818                ret = (health_test_result & JENT_RCT_FAILURE) ? JENT_ERCT :
 819                                                                JENT_EHEALTH;
 820                goto out;
 821        }
 822
 823out:
 824        if (ec_free)
 825                jent_entropy_collector_free(ec);
 826
 827        return ret;
 828}
 829