linux/block/mq-deadline.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  MQ Deadline i/o scheduler - adaptation of the legacy deadline scheduler,
   4 *  for the blk-mq scheduling framework
   5 *
   6 *  Copyright (C) 2016 Jens Axboe <axboe@kernel.dk>
   7 */
   8#include <linux/kernel.h>
   9#include <linux/fs.h>
  10#include <linux/blkdev.h>
  11#include <linux/bio.h>
  12#include <linux/module.h>
  13#include <linux/slab.h>
  14#include <linux/init.h>
  15#include <linux/compiler.h>
  16#include <linux/rbtree.h>
  17#include <linux/sbitmap.h>
  18
  19#include <trace/events/block.h>
  20
  21#include "elevator.h"
  22#include "blk.h"
  23#include "blk-mq.h"
  24#include "blk-mq-debugfs.h"
  25#include "blk-mq-sched.h"
  26
  27/*
  28 * See Documentation/block/deadline-iosched.rst
  29 */
  30static const int read_expire = HZ / 2;  /* max time before a read is submitted. */
  31static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */
  32/*
  33 * Time after which to dispatch lower priority requests even if higher
  34 * priority requests are pending.
  35 */
  36static const int prio_aging_expire = 10 * HZ;
  37static const int writes_starved = 2;    /* max times reads can starve a write */
  38static const int fifo_batch = 16;       /* # of sequential requests treated as one
  39                                     by the above parameters. For throughput. */
  40
  41enum dd_data_dir {
  42        DD_READ         = READ,
  43        DD_WRITE        = WRITE,
  44};
  45
  46enum { DD_DIR_COUNT = 2 };
  47
  48enum dd_prio {
  49        DD_RT_PRIO      = 0,
  50        DD_BE_PRIO      = 1,
  51        DD_IDLE_PRIO    = 2,
  52        DD_PRIO_MAX     = 2,
  53};
  54
  55enum { DD_PRIO_COUNT = 3 };
  56
  57/*
  58 * I/O statistics per I/O priority. It is fine if these counters overflow.
  59 * What matters is that these counters are at least as wide as
  60 * log2(max_outstanding_requests).
  61 */
  62struct io_stats_per_prio {
  63        uint32_t inserted;
  64        uint32_t merged;
  65        uint32_t dispatched;
  66        atomic_t completed;
  67};
  68
  69/*
  70 * Deadline scheduler data per I/O priority (enum dd_prio). Requests are
  71 * present on both sort_list[] and fifo_list[].
  72 */
  73struct dd_per_prio {
  74        struct list_head dispatch;
  75        struct rb_root sort_list[DD_DIR_COUNT];
  76        struct list_head fifo_list[DD_DIR_COUNT];
  77        /* Position of the most recently dispatched request. */
  78        sector_t latest_pos[DD_DIR_COUNT];
  79        struct io_stats_per_prio stats;
  80};
  81
  82struct deadline_data {
  83        /*
  84         * run time data
  85         */
  86
  87        struct dd_per_prio per_prio[DD_PRIO_COUNT];
  88
  89        /* Data direction of latest dispatched request. */
  90        enum dd_data_dir last_dir;
  91        unsigned int batching;          /* number of sequential requests made */
  92        unsigned int starved;           /* times reads have starved writes */
  93
  94        /*
  95         * settings that change how the i/o scheduler behaves
  96         */
  97        int fifo_expire[DD_DIR_COUNT];
  98        int fifo_batch;
  99        int writes_starved;
 100        int front_merges;
 101        u32 async_depth;
 102        int prio_aging_expire;
 103
 104        spinlock_t lock;
 105        spinlock_t zone_lock;
 106};
 107
 108/* Maps an I/O priority class to a deadline scheduler priority. */
 109static const enum dd_prio ioprio_class_to_prio[] = {
 110        [IOPRIO_CLASS_NONE]     = DD_BE_PRIO,
 111        [IOPRIO_CLASS_RT]       = DD_RT_PRIO,
 112        [IOPRIO_CLASS_BE]       = DD_BE_PRIO,
 113        [IOPRIO_CLASS_IDLE]     = DD_IDLE_PRIO,
 114};
 115
 116static inline struct rb_root *
 117deadline_rb_root(struct dd_per_prio *per_prio, struct request *rq)
 118{
 119        return &per_prio->sort_list[rq_data_dir(rq)];
 120}
 121
 122/*
 123 * Returns the I/O priority class (IOPRIO_CLASS_*) that has been assigned to a
 124 * request.
 125 */
 126static u8 dd_rq_ioclass(struct request *rq)
 127{
 128        return IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
 129}
 130
 131/*
 132 * get the request before `rq' in sector-sorted order
 133 */
 134static inline struct request *
 135deadline_earlier_request(struct request *rq)
 136{
 137        struct rb_node *node = rb_prev(&rq->rb_node);
 138
 139        if (node)
 140                return rb_entry_rq(node);
 141
 142        return NULL;
 143}
 144
 145/*
 146 * get the request after `rq' in sector-sorted order
 147 */
 148static inline struct request *
 149deadline_latter_request(struct request *rq)
 150{
 151        struct rb_node *node = rb_next(&rq->rb_node);
 152
 153        if (node)
 154                return rb_entry_rq(node);
 155
 156        return NULL;
 157}
 158
 159/*
 160 * Return the first request for which blk_rq_pos() >= @pos. For zoned devices,
 161 * return the first request after the start of the zone containing @pos.
 162 */
 163static inline struct request *deadline_from_pos(struct dd_per_prio *per_prio,
 164                                enum dd_data_dir data_dir, sector_t pos)
 165{
 166        struct rb_node *node = per_prio->sort_list[data_dir].rb_node;
 167        struct request *rq, *res = NULL;
 168
 169        if (!node)
 170                return NULL;
 171
 172        rq = rb_entry_rq(node);
 173        /*
 174         * A zoned write may have been requeued with a starting position that
 175         * is below that of the most recently dispatched request. Hence, for
 176         * zoned writes, start searching from the start of a zone.
 177         */
 178        if (blk_rq_is_seq_zoned_write(rq))
 179                pos = round_down(pos, rq->q->limits.chunk_sectors);
 180
 181        while (node) {
 182                rq = rb_entry_rq(node);
 183                if (blk_rq_pos(rq) >= pos) {
 184                        res = rq;
 185                        node = node->rb_left;
 186                } else {
 187                        node = node->rb_right;
 188                }
 189        }
 190        return res;
 191}
 192
 193static void
 194deadline_add_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
 195{
 196        struct rb_root *root = deadline_rb_root(per_prio, rq);
 197
 198        elv_rb_add(root, rq);
 199}
 200
 201static inline void
 202deadline_del_rq_rb(struct dd_per_prio *per_prio, struct request *rq)
 203{
 204        elv_rb_del(deadline_rb_root(per_prio, rq), rq);
 205}
 206
 207/*
 208 * remove rq from rbtree and fifo.
 209 */
 210static void deadline_remove_request(struct request_queue *q,
 211                                    struct dd_per_prio *per_prio,
 212                                    struct request *rq)
 213{
 214        list_del_init(&rq->queuelist);
 215
 216        /*
 217         * We might not be on the rbtree, if we are doing an insert merge
 218         */
 219        if (!RB_EMPTY_NODE(&rq->rb_node))
 220                deadline_del_rq_rb(per_prio, rq);
 221
 222        elv_rqhash_del(q, rq);
 223        if (q->last_merge == rq)
 224                q->last_merge = NULL;
 225}
 226
 227static void dd_request_merged(struct request_queue *q, struct request *req,
 228                              enum elv_merge type)
 229{
 230        struct deadline_data *dd = q->elevator->elevator_data;
 231        const u8 ioprio_class = dd_rq_ioclass(req);
 232        const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
 233        struct dd_per_prio *per_prio = &dd->per_prio[prio];
 234
 235        /*
 236         * if the merge was a front merge, we need to reposition request
 237         */
 238        if (type == ELEVATOR_FRONT_MERGE) {
 239                elv_rb_del(deadline_rb_root(per_prio, req), req);
 240                deadline_add_rq_rb(per_prio, req);
 241        }
 242}
 243
 244/*
 245 * Callback function that is invoked after @next has been merged into @req.
 246 */
 247static void dd_merged_requests(struct request_queue *q, struct request *req,
 248                               struct request *next)
 249{
 250        struct deadline_data *dd = q->elevator->elevator_data;
 251        const u8 ioprio_class = dd_rq_ioclass(next);
 252        const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
 253
 254        lockdep_assert_held(&dd->lock);
 255
 256        dd->per_prio[prio].stats.merged++;
 257
 258        /*
 259         * if next expires before rq, assign its expire time to rq
 260         * and move into next position (next will be deleted) in fifo
 261         */
 262        if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
 263                if (time_before((unsigned long)next->fifo_time,
 264                                (unsigned long)req->fifo_time)) {
 265                        list_move(&req->queuelist, &next->queuelist);
 266                        req->fifo_time = next->fifo_time;
 267                }
 268        }
 269
 270        /*
 271         * kill knowledge of next, this one is a goner
 272         */
 273        deadline_remove_request(q, &dd->per_prio[prio], next);
 274}
 275
 276/*
 277 * move an entry to dispatch queue
 278 */
 279static void
 280deadline_move_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
 281                      struct request *rq)
 282{
 283        /*
 284         * take it off the sort and fifo list
 285         */
 286        deadline_remove_request(rq->q, per_prio, rq);
 287}
 288
 289/* Number of requests queued for a given priority level. */
 290static u32 dd_queued(struct deadline_data *dd, enum dd_prio prio)
 291{
 292        const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;
 293
 294        lockdep_assert_held(&dd->lock);
 295
 296        return stats->inserted - atomic_read(&stats->completed);
 297}
 298
 299/*
 300 * deadline_check_fifo returns true if and only if there are expired requests
 301 * in the FIFO list. Requires !list_empty(&dd->fifo_list[data_dir]).
 302 */
 303static inline bool deadline_check_fifo(struct dd_per_prio *per_prio,
 304                                       enum dd_data_dir data_dir)
 305{
 306        struct request *rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
 307
 308        return time_is_before_eq_jiffies((unsigned long)rq->fifo_time);
 309}
 310
 311/*
 312 * Check if rq has a sequential request preceding it.
 313 */
 314static bool deadline_is_seq_write(struct deadline_data *dd, struct request *rq)
 315{
 316        struct request *prev = deadline_earlier_request(rq);
 317
 318        if (!prev)
 319                return false;
 320
 321        return blk_rq_pos(prev) + blk_rq_sectors(prev) == blk_rq_pos(rq);
 322}
 323
 324/*
 325 * Skip all write requests that are sequential from @rq, even if we cross
 326 * a zone boundary.
 327 */
 328static struct request *deadline_skip_seq_writes(struct deadline_data *dd,
 329                                                struct request *rq)
 330{
 331        sector_t pos = blk_rq_pos(rq);
 332
 333        do {
 334                pos += blk_rq_sectors(rq);
 335                rq = deadline_latter_request(rq);
 336        } while (rq && blk_rq_pos(rq) == pos);
 337
 338        return rq;
 339}
 340
 341/*
 342 * For the specified data direction, return the next request to
 343 * dispatch using arrival ordered lists.
 344 */
 345static struct request *
 346deadline_fifo_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
 347                      enum dd_data_dir data_dir)
 348{
 349        struct request *rq, *rb_rq, *next;
 350        unsigned long flags;
 351
 352        if (list_empty(&per_prio->fifo_list[data_dir]))
 353                return NULL;
 354
 355        rq = rq_entry_fifo(per_prio->fifo_list[data_dir].next);
 356        if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
 357                return rq;
 358
 359        /*
 360         * Look for a write request that can be dispatched, that is one with
 361         * an unlocked target zone. For some HDDs, breaking a sequential
 362         * write stream can lead to lower throughput, so make sure to preserve
 363         * sequential write streams, even if that stream crosses into the next
 364         * zones and these zones are unlocked.
 365         */
 366        spin_lock_irqsave(&dd->zone_lock, flags);
 367        list_for_each_entry_safe(rq, next, &per_prio->fifo_list[DD_WRITE],
 368                                 queuelist) {
 369                /* Check whether a prior request exists for the same zone. */
 370                rb_rq = deadline_from_pos(per_prio, data_dir, blk_rq_pos(rq));
 371                if (rb_rq && blk_rq_pos(rb_rq) < blk_rq_pos(rq))
 372                        rq = rb_rq;
 373                if (blk_req_can_dispatch_to_zone(rq) &&
 374                    (blk_queue_nonrot(rq->q) ||
 375                     !deadline_is_seq_write(dd, rq)))
 376                        goto out;
 377        }
 378        rq = NULL;
 379out:
 380        spin_unlock_irqrestore(&dd->zone_lock, flags);
 381
 382        return rq;
 383}
 384
 385/*
 386 * For the specified data direction, return the next request to
 387 * dispatch using sector position sorted lists.
 388 */
 389static struct request *
 390deadline_next_request(struct deadline_data *dd, struct dd_per_prio *per_prio,
 391                      enum dd_data_dir data_dir)
 392{
 393        struct request *rq;
 394        unsigned long flags;
 395
 396        rq = deadline_from_pos(per_prio, data_dir,
 397                               per_prio->latest_pos[data_dir]);
 398        if (!rq)
 399                return NULL;
 400
 401        if (data_dir == DD_READ || !blk_queue_is_zoned(rq->q))
 402                return rq;
 403
 404        /*
 405         * Look for a write request that can be dispatched, that is one with
 406         * an unlocked target zone. For some HDDs, breaking a sequential
 407         * write stream can lead to lower throughput, so make sure to preserve
 408         * sequential write streams, even if that stream crosses into the next
 409         * zones and these zones are unlocked.
 410         */
 411        spin_lock_irqsave(&dd->zone_lock, flags);
 412        while (rq) {
 413                if (blk_req_can_dispatch_to_zone(rq))
 414                        break;
 415                if (blk_queue_nonrot(rq->q))
 416                        rq = deadline_latter_request(rq);
 417                else
 418                        rq = deadline_skip_seq_writes(dd, rq);
 419        }
 420        spin_unlock_irqrestore(&dd->zone_lock, flags);
 421
 422        return rq;
 423}
 424
 425/*
 426 * Returns true if and only if @rq started after @latest_start where
 427 * @latest_start is in jiffies.
 428 */
 429static bool started_after(struct deadline_data *dd, struct request *rq,
 430                          unsigned long latest_start)
 431{
 432        unsigned long start_time = (unsigned long)rq->fifo_time;
 433
 434        start_time -= dd->fifo_expire[rq_data_dir(rq)];
 435
 436        return time_after(start_time, latest_start);
 437}
 438
 439/*
 440 * deadline_dispatch_requests selects the best request according to
 441 * read/write expire, fifo_batch, etc and with a start time <= @latest_start.
 442 */
 443static struct request *__dd_dispatch_request(struct deadline_data *dd,
 444                                             struct dd_per_prio *per_prio,
 445                                             unsigned long latest_start)
 446{
 447        struct request *rq, *next_rq;
 448        enum dd_data_dir data_dir;
 449        enum dd_prio prio;
 450        u8 ioprio_class;
 451
 452        lockdep_assert_held(&dd->lock);
 453
 454        if (!list_empty(&per_prio->dispatch)) {
 455                rq = list_first_entry(&per_prio->dispatch, struct request,
 456                                      queuelist);
 457                if (started_after(dd, rq, latest_start))
 458                        return NULL;
 459                list_del_init(&rq->queuelist);
 460                data_dir = rq_data_dir(rq);
 461                goto done;
 462        }
 463
 464        /*
 465         * batches are currently reads XOR writes
 466         */
 467        rq = deadline_next_request(dd, per_prio, dd->last_dir);
 468        if (rq && dd->batching < dd->fifo_batch) {
 469                /* we have a next request and are still entitled to batch */
 470                data_dir = rq_data_dir(rq);
 471                goto dispatch_request;
 472        }
 473
 474        /*
 475         * at this point we are not running a batch. select the appropriate
 476         * data direction (read / write)
 477         */
 478
 479        if (!list_empty(&per_prio->fifo_list[DD_READ])) {
 480                BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_READ]));
 481
 482                if (deadline_fifo_request(dd, per_prio, DD_WRITE) &&
 483                    (dd->starved++ >= dd->writes_starved))
 484                        goto dispatch_writes;
 485
 486                data_dir = DD_READ;
 487
 488                goto dispatch_find_request;
 489        }
 490
 491        /*
 492         * there are either no reads or writes have been starved
 493         */
 494
 495        if (!list_empty(&per_prio->fifo_list[DD_WRITE])) {
 496dispatch_writes:
 497                BUG_ON(RB_EMPTY_ROOT(&per_prio->sort_list[DD_WRITE]));
 498
 499                dd->starved = 0;
 500
 501                data_dir = DD_WRITE;
 502
 503                goto dispatch_find_request;
 504        }
 505
 506        return NULL;
 507
 508dispatch_find_request:
 509        /*
 510         * we are not running a batch, find best request for selected data_dir
 511         */
 512        next_rq = deadline_next_request(dd, per_prio, data_dir);
 513        if (deadline_check_fifo(per_prio, data_dir) || !next_rq) {
 514                /*
 515                 * A deadline has expired, the last request was in the other
 516                 * direction, or we have run out of higher-sectored requests.
 517                 * Start again from the request with the earliest expiry time.
 518                 */
 519                rq = deadline_fifo_request(dd, per_prio, data_dir);
 520        } else {
 521                /*
 522                 * The last req was the same dir and we have a next request in
 523                 * sort order. No expired requests so continue on from here.
 524                 */
 525                rq = next_rq;
 526        }
 527
 528        /*
 529         * For a zoned block device, if we only have writes queued and none of
 530         * them can be dispatched, rq will be NULL.
 531         */
 532        if (!rq)
 533                return NULL;
 534
 535        dd->last_dir = data_dir;
 536        dd->batching = 0;
 537
 538dispatch_request:
 539        if (started_after(dd, rq, latest_start))
 540                return NULL;
 541
 542        /*
 543         * rq is the selected appropriate request.
 544         */
 545        dd->batching++;
 546        deadline_move_request(dd, per_prio, rq);
 547done:
 548        ioprio_class = dd_rq_ioclass(rq);
 549        prio = ioprio_class_to_prio[ioprio_class];
 550        dd->per_prio[prio].latest_pos[data_dir] = blk_rq_pos(rq);
 551        dd->per_prio[prio].stats.dispatched++;
 552        /*
 553         * If the request needs its target zone locked, do it.
 554         */
 555        blk_req_zone_write_lock(rq);
 556        rq->rq_flags |= RQF_STARTED;
 557        return rq;
 558}
 559
 560/*
 561 * Check whether there are any requests with priority other than DD_RT_PRIO
 562 * that were inserted more than prio_aging_expire jiffies ago.
 563 */
 564static struct request *dd_dispatch_prio_aged_requests(struct deadline_data *dd,
 565                                                      unsigned long now)
 566{
 567        struct request *rq;
 568        enum dd_prio prio;
 569        int prio_cnt;
 570
 571        lockdep_assert_held(&dd->lock);
 572
 573        prio_cnt = !!dd_queued(dd, DD_RT_PRIO) + !!dd_queued(dd, DD_BE_PRIO) +
 574                   !!dd_queued(dd, DD_IDLE_PRIO);
 575        if (prio_cnt < 2)
 576                return NULL;
 577
 578        for (prio = DD_BE_PRIO; prio <= DD_PRIO_MAX; prio++) {
 579                rq = __dd_dispatch_request(dd, &dd->per_prio[prio],
 580                                           now - dd->prio_aging_expire);
 581                if (rq)
 582                        return rq;
 583        }
 584
 585        return NULL;
 586}
 587
 588/*
 589 * Called from blk_mq_run_hw_queue() -> __blk_mq_sched_dispatch_requests().
 590 *
 591 * One confusing aspect here is that we get called for a specific
 592 * hardware queue, but we may return a request that is for a
 593 * different hardware queue. This is because mq-deadline has shared
 594 * state for all hardware queues, in terms of sorting, FIFOs, etc.
 595 */
 596static struct request *dd_dispatch_request(struct blk_mq_hw_ctx *hctx)
 597{
 598        struct deadline_data *dd = hctx->queue->elevator->elevator_data;
 599        const unsigned long now = jiffies;
 600        struct request *rq;
 601        enum dd_prio prio;
 602
 603        spin_lock(&dd->lock);
 604        rq = dd_dispatch_prio_aged_requests(dd, now);
 605        if (rq)
 606                goto unlock;
 607
 608        /*
 609         * Next, dispatch requests in priority order. Ignore lower priority
 610         * requests if any higher priority requests are pending.
 611         */
 612        for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
 613                rq = __dd_dispatch_request(dd, &dd->per_prio[prio], now);
 614                if (rq || dd_queued(dd, prio))
 615                        break;
 616        }
 617
 618unlock:
 619        spin_unlock(&dd->lock);
 620
 621        return rq;
 622}
 623
 624/*
 625 * Called by __blk_mq_alloc_request(). The shallow_depth value set by this
 626 * function is used by __blk_mq_get_tag().
 627 */
 628static void dd_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
 629{
 630        struct deadline_data *dd = data->q->elevator->elevator_data;
 631
 632        /* Do not throttle synchronous reads. */
 633        if (op_is_sync(opf) && !op_is_write(opf))
 634                return;
 635
 636        /*
 637         * Throttle asynchronous requests and writes such that these requests
 638         * do not block the allocation of synchronous requests.
 639         */
 640        data->shallow_depth = dd->async_depth;
 641}
 642
 643/* Called by blk_mq_update_nr_requests(). */
 644static void dd_depth_updated(struct blk_mq_hw_ctx *hctx)
 645{
 646        struct request_queue *q = hctx->queue;
 647        struct deadline_data *dd = q->elevator->elevator_data;
 648        struct blk_mq_tags *tags = hctx->sched_tags;
 649        unsigned int shift = tags->bitmap_tags.sb.shift;
 650
 651        dd->async_depth = max(1U, 3 * (1U << shift)  / 4);
 652
 653        sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, dd->async_depth);
 654}
 655
 656/* Called by blk_mq_init_hctx() and blk_mq_init_sched(). */
 657static int dd_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 658{
 659        dd_depth_updated(hctx);
 660        return 0;
 661}
 662
 663static void dd_exit_sched(struct elevator_queue *e)
 664{
 665        struct deadline_data *dd = e->elevator_data;
 666        enum dd_prio prio;
 667
 668        for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
 669                struct dd_per_prio *per_prio = &dd->per_prio[prio];
 670                const struct io_stats_per_prio *stats = &per_prio->stats;
 671                uint32_t queued;
 672
 673                WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_READ]));
 674                WARN_ON_ONCE(!list_empty(&per_prio->fifo_list[DD_WRITE]));
 675
 676                spin_lock(&dd->lock);
 677                queued = dd_queued(dd, prio);
 678                spin_unlock(&dd->lock);
 679
 680                WARN_ONCE(queued != 0,
 681                          "statistics for priority %d: i %u m %u d %u c %u\n",
 682                          prio, stats->inserted, stats->merged,
 683                          stats->dispatched, atomic_read(&stats->completed));
 684        }
 685
 686        kfree(dd);
 687}
 688
 689/*
 690 * initialize elevator private data (deadline_data).
 691 */
 692static int dd_init_sched(struct request_queue *q, struct elevator_type *e)
 693{
 694        struct deadline_data *dd;
 695        struct elevator_queue *eq;
 696        enum dd_prio prio;
 697        int ret = -ENOMEM;
 698
 699        eq = elevator_alloc(q, e);
 700        if (!eq)
 701                return ret;
 702
 703        dd = kzalloc_node(sizeof(*dd), GFP_KERNEL, q->node);
 704        if (!dd)
 705                goto put_eq;
 706
 707        eq->elevator_data = dd;
 708
 709        for (prio = 0; prio <= DD_PRIO_MAX; prio++) {
 710                struct dd_per_prio *per_prio = &dd->per_prio[prio];
 711
 712                INIT_LIST_HEAD(&per_prio->dispatch);
 713                INIT_LIST_HEAD(&per_prio->fifo_list[DD_READ]);
 714                INIT_LIST_HEAD(&per_prio->fifo_list[DD_WRITE]);
 715                per_prio->sort_list[DD_READ] = RB_ROOT;
 716                per_prio->sort_list[DD_WRITE] = RB_ROOT;
 717        }
 718        dd->fifo_expire[DD_READ] = read_expire;
 719        dd->fifo_expire[DD_WRITE] = write_expire;
 720        dd->writes_starved = writes_starved;
 721        dd->front_merges = 1;
 722        dd->last_dir = DD_WRITE;
 723        dd->fifo_batch = fifo_batch;
 724        dd->prio_aging_expire = prio_aging_expire;
 725        spin_lock_init(&dd->lock);
 726        spin_lock_init(&dd->zone_lock);
 727
 728        /* We dispatch from request queue wide instead of hw queue */
 729        blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q);
 730
 731        q->elevator = eq;
 732        return 0;
 733
 734put_eq:
 735        kobject_put(&eq->kobj);
 736        return ret;
 737}
 738
 739/*
 740 * Try to merge @bio into an existing request. If @bio has been merged into
 741 * an existing request, store the pointer to that request into *@rq.
 742 */
 743static int dd_request_merge(struct request_queue *q, struct request **rq,
 744                            struct bio *bio)
 745{
 746        struct deadline_data *dd = q->elevator->elevator_data;
 747        const u8 ioprio_class = IOPRIO_PRIO_CLASS(bio->bi_ioprio);
 748        const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
 749        struct dd_per_prio *per_prio = &dd->per_prio[prio];
 750        sector_t sector = bio_end_sector(bio);
 751        struct request *__rq;
 752
 753        if (!dd->front_merges)
 754                return ELEVATOR_NO_MERGE;
 755
 756        __rq = elv_rb_find(&per_prio->sort_list[bio_data_dir(bio)], sector);
 757        if (__rq) {
 758                BUG_ON(sector != blk_rq_pos(__rq));
 759
 760                if (elv_bio_merge_ok(__rq, bio)) {
 761                        *rq = __rq;
 762                        if (blk_discard_mergable(__rq))
 763                                return ELEVATOR_DISCARD_MERGE;
 764                        return ELEVATOR_FRONT_MERGE;
 765                }
 766        }
 767
 768        return ELEVATOR_NO_MERGE;
 769}
 770
 771/*
 772 * Attempt to merge a bio into an existing request. This function is called
 773 * before @bio is associated with a request.
 774 */
 775static bool dd_bio_merge(struct request_queue *q, struct bio *bio,
 776                unsigned int nr_segs)
 777{
 778        struct deadline_data *dd = q->elevator->elevator_data;
 779        struct request *free = NULL;
 780        bool ret;
 781
 782        spin_lock(&dd->lock);
 783        ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
 784        spin_unlock(&dd->lock);
 785
 786        if (free)
 787                blk_mq_free_request(free);
 788
 789        return ret;
 790}
 791
 792/*
 793 * add rq to rbtree and fifo
 794 */
 795static void dd_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
 796                              blk_insert_t flags, struct list_head *free)
 797{
 798        struct request_queue *q = hctx->queue;
 799        struct deadline_data *dd = q->elevator->elevator_data;
 800        const enum dd_data_dir data_dir = rq_data_dir(rq);
 801        u16 ioprio = req_get_ioprio(rq);
 802        u8 ioprio_class = IOPRIO_PRIO_CLASS(ioprio);
 803        struct dd_per_prio *per_prio;
 804        enum dd_prio prio;
 805
 806        lockdep_assert_held(&dd->lock);
 807
 808        /*
 809         * This may be a requeue of a write request that has locked its
 810         * target zone. If it is the case, this releases the zone lock.
 811         */
 812        blk_req_zone_write_unlock(rq);
 813
 814        prio = ioprio_class_to_prio[ioprio_class];
 815        per_prio = &dd->per_prio[prio];
 816        if (!rq->elv.priv[0]) {
 817                per_prio->stats.inserted++;
 818                rq->elv.priv[0] = (void *)(uintptr_t)1;
 819        }
 820
 821        if (blk_mq_sched_try_insert_merge(q, rq, free))
 822                return;
 823
 824        trace_block_rq_insert(rq);
 825
 826        if (flags & BLK_MQ_INSERT_AT_HEAD) {
 827                list_add(&rq->queuelist, &per_prio->dispatch);
 828                rq->fifo_time = jiffies;
 829        } else {
 830                struct list_head *insert_before;
 831
 832                deadline_add_rq_rb(per_prio, rq);
 833
 834                if (rq_mergeable(rq)) {
 835                        elv_rqhash_add(q, rq);
 836                        if (!q->last_merge)
 837                                q->last_merge = rq;
 838                }
 839
 840                /*
 841                 * set expire time and add to fifo list
 842                 */
 843                rq->fifo_time = jiffies + dd->fifo_expire[data_dir];
 844                insert_before = &per_prio->fifo_list[data_dir];
 845#ifdef CONFIG_BLK_DEV_ZONED
 846                /*
 847                 * Insert zoned writes such that requests are sorted by
 848                 * position per zone.
 849                 */
 850                if (blk_rq_is_seq_zoned_write(rq)) {
 851                        struct request *rq2 = deadline_latter_request(rq);
 852
 853                        if (rq2 && blk_rq_zone_no(rq2) == blk_rq_zone_no(rq))
 854                                insert_before = &rq2->queuelist;
 855                }
 856#endif
 857                list_add_tail(&rq->queuelist, insert_before);
 858        }
 859}
 860
 861/*
 862 * Called from blk_mq_insert_request() or blk_mq_dispatch_plug_list().
 863 */
 864static void dd_insert_requests(struct blk_mq_hw_ctx *hctx,
 865                               struct list_head *list,
 866                               blk_insert_t flags)
 867{
 868        struct request_queue *q = hctx->queue;
 869        struct deadline_data *dd = q->elevator->elevator_data;
 870        LIST_HEAD(free);
 871
 872        spin_lock(&dd->lock);
 873        while (!list_empty(list)) {
 874                struct request *rq;
 875
 876                rq = list_first_entry(list, struct request, queuelist);
 877                list_del_init(&rq->queuelist);
 878                dd_insert_request(hctx, rq, flags, &free);
 879        }
 880        spin_unlock(&dd->lock);
 881
 882        blk_mq_free_requests(&free);
 883}
 884
 885/* Callback from inside blk_mq_rq_ctx_init(). */
 886static void dd_prepare_request(struct request *rq)
 887{
 888        rq->elv.priv[0] = NULL;
 889}
 890
 891static bool dd_has_write_work(struct blk_mq_hw_ctx *hctx)
 892{
 893        struct deadline_data *dd = hctx->queue->elevator->elevator_data;
 894        enum dd_prio p;
 895
 896        for (p = 0; p <= DD_PRIO_MAX; p++)
 897                if (!list_empty_careful(&dd->per_prio[p].fifo_list[DD_WRITE]))
 898                        return true;
 899
 900        return false;
 901}
 902
 903/*
 904 * Callback from inside blk_mq_free_request().
 905 *
 906 * For zoned block devices, write unlock the target zone of
 907 * completed write requests. Do this while holding the zone lock
 908 * spinlock so that the zone is never unlocked while deadline_fifo_request()
 909 * or deadline_next_request() are executing. This function is called for
 910 * all requests, whether or not these requests complete successfully.
 911 *
 912 * For a zoned block device, __dd_dispatch_request() may have stopped
 913 * dispatching requests if all the queued requests are write requests directed
 914 * at zones that are already locked due to on-going write requests. To ensure
 915 * write request dispatch progress in this case, mark the queue as needing a
 916 * restart to ensure that the queue is run again after completion of the
 917 * request and zones being unlocked.
 918 */
 919static void dd_finish_request(struct request *rq)
 920{
 921        struct request_queue *q = rq->q;
 922        struct deadline_data *dd = q->elevator->elevator_data;
 923        const u8 ioprio_class = dd_rq_ioclass(rq);
 924        const enum dd_prio prio = ioprio_class_to_prio[ioprio_class];
 925        struct dd_per_prio *per_prio = &dd->per_prio[prio];
 926
 927        /*
 928         * The block layer core may call dd_finish_request() without having
 929         * called dd_insert_requests(). Skip requests that bypassed I/O
 930         * scheduling. See also blk_mq_request_bypass_insert().
 931         */
 932        if (!rq->elv.priv[0])
 933                return;
 934
 935        atomic_inc(&per_prio->stats.completed);
 936
 937        if (blk_queue_is_zoned(q)) {
 938                unsigned long flags;
 939
 940                spin_lock_irqsave(&dd->zone_lock, flags);
 941                blk_req_zone_write_unlock(rq);
 942                spin_unlock_irqrestore(&dd->zone_lock, flags);
 943
 944                if (dd_has_write_work(rq->mq_hctx))
 945                        blk_mq_sched_mark_restart_hctx(rq->mq_hctx);
 946        }
 947}
 948
 949static bool dd_has_work_for_prio(struct dd_per_prio *per_prio)
 950{
 951        return !list_empty_careful(&per_prio->dispatch) ||
 952                !list_empty_careful(&per_prio->fifo_list[DD_READ]) ||
 953                !list_empty_careful(&per_prio->fifo_list[DD_WRITE]);
 954}
 955
 956static bool dd_has_work(struct blk_mq_hw_ctx *hctx)
 957{
 958        struct deadline_data *dd = hctx->queue->elevator->elevator_data;
 959        enum dd_prio prio;
 960
 961        for (prio = 0; prio <= DD_PRIO_MAX; prio++)
 962                if (dd_has_work_for_prio(&dd->per_prio[prio]))
 963                        return true;
 964
 965        return false;
 966}
 967
 968/*
 969 * sysfs parts below
 970 */
 971#define SHOW_INT(__FUNC, __VAR)                                         \
 972static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
 973{                                                                       \
 974        struct deadline_data *dd = e->elevator_data;                    \
 975                                                                        \
 976        return sysfs_emit(page, "%d\n", __VAR);                         \
 977}
 978#define SHOW_JIFFIES(__FUNC, __VAR) SHOW_INT(__FUNC, jiffies_to_msecs(__VAR))
 979SHOW_JIFFIES(deadline_read_expire_show, dd->fifo_expire[DD_READ]);
 980SHOW_JIFFIES(deadline_write_expire_show, dd->fifo_expire[DD_WRITE]);
 981SHOW_JIFFIES(deadline_prio_aging_expire_show, dd->prio_aging_expire);
 982SHOW_INT(deadline_writes_starved_show, dd->writes_starved);
 983SHOW_INT(deadline_front_merges_show, dd->front_merges);
 984SHOW_INT(deadline_async_depth_show, dd->async_depth);
 985SHOW_INT(deadline_fifo_batch_show, dd->fifo_batch);
 986#undef SHOW_INT
 987#undef SHOW_JIFFIES
 988
 989#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
 990static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
 991{                                                                       \
 992        struct deadline_data *dd = e->elevator_data;                    \
 993        int __data, __ret;                                              \
 994                                                                        \
 995        __ret = kstrtoint(page, 0, &__data);                            \
 996        if (__ret < 0)                                                  \
 997                return __ret;                                           \
 998        if (__data < (MIN))                                             \
 999                __data = (MIN);                                         \
1000        else if (__data > (MAX))                                        \
1001                __data = (MAX);                                         \
1002        *(__PTR) = __CONV(__data);                                      \
1003        return count;                                                   \
1004}
1005#define STORE_INT(__FUNC, __PTR, MIN, MAX)                              \
1006        STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, )
1007#define STORE_JIFFIES(__FUNC, __PTR, MIN, MAX)                          \
1008        STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, msecs_to_jiffies)
1009STORE_JIFFIES(deadline_read_expire_store, &dd->fifo_expire[DD_READ], 0, INT_MAX);
1010STORE_JIFFIES(deadline_write_expire_store, &dd->fifo_expire[DD_WRITE], 0, INT_MAX);
1011STORE_JIFFIES(deadline_prio_aging_expire_store, &dd->prio_aging_expire, 0, INT_MAX);
1012STORE_INT(deadline_writes_starved_store, &dd->writes_starved, INT_MIN, INT_MAX);
1013STORE_INT(deadline_front_merges_store, &dd->front_merges, 0, 1);
1014STORE_INT(deadline_async_depth_store, &dd->async_depth, 1, INT_MAX);
1015STORE_INT(deadline_fifo_batch_store, &dd->fifo_batch, 0, INT_MAX);
1016#undef STORE_FUNCTION
1017#undef STORE_INT
1018#undef STORE_JIFFIES
1019
1020#define DD_ATTR(name) \
1021        __ATTR(name, 0644, deadline_##name##_show, deadline_##name##_store)
1022
1023static struct elv_fs_entry deadline_attrs[] = {
1024        DD_ATTR(read_expire),
1025        DD_ATTR(write_expire),
1026        DD_ATTR(writes_starved),
1027        DD_ATTR(front_merges),
1028        DD_ATTR(async_depth),
1029        DD_ATTR(fifo_batch),
1030        DD_ATTR(prio_aging_expire),
1031        __ATTR_NULL
1032};
1033
1034#ifdef CONFIG_BLK_DEBUG_FS
1035#define DEADLINE_DEBUGFS_DDIR_ATTRS(prio, data_dir, name)               \
1036static void *deadline_##name##_fifo_start(struct seq_file *m,           \
1037                                          loff_t *pos)                  \
1038        __acquires(&dd->lock)                                           \
1039{                                                                       \
1040        struct request_queue *q = m->private;                           \
1041        struct deadline_data *dd = q->elevator->elevator_data;          \
1042        struct dd_per_prio *per_prio = &dd->per_prio[prio];             \
1043                                                                        \
1044        spin_lock(&dd->lock);                                           \
1045        return seq_list_start(&per_prio->fifo_list[data_dir], *pos);    \
1046}                                                                       \
1047                                                                        \
1048static void *deadline_##name##_fifo_next(struct seq_file *m, void *v,   \
1049                                         loff_t *pos)                   \
1050{                                                                       \
1051        struct request_queue *q = m->private;                           \
1052        struct deadline_data *dd = q->elevator->elevator_data;          \
1053        struct dd_per_prio *per_prio = &dd->per_prio[prio];             \
1054                                                                        \
1055        return seq_list_next(v, &per_prio->fifo_list[data_dir], pos);   \
1056}                                                                       \
1057                                                                        \
1058static void deadline_##name##_fifo_stop(struct seq_file *m, void *v)    \
1059        __releases(&dd->lock)                                           \
1060{                                                                       \
1061        struct request_queue *q = m->private;                           \
1062        struct deadline_data *dd = q->elevator->elevator_data;          \
1063                                                                        \
1064        spin_unlock(&dd->lock);                                         \
1065}                                                                       \
1066                                                                        \
1067static const struct seq_operations deadline_##name##_fifo_seq_ops = {   \
1068        .start  = deadline_##name##_fifo_start,                         \
1069        .next   = deadline_##name##_fifo_next,                          \
1070        .stop   = deadline_##name##_fifo_stop,                          \
1071        .show   = blk_mq_debugfs_rq_show,                               \
1072};                                                                      \
1073                                                                        \
1074static int deadline_##name##_next_rq_show(void *data,                   \
1075                                          struct seq_file *m)           \
1076{                                                                       \
1077        struct request_queue *q = data;                                 \
1078        struct deadline_data *dd = q->elevator->elevator_data;          \
1079        struct dd_per_prio *per_prio = &dd->per_prio[prio];             \
1080        struct request *rq;                                             \
1081                                                                        \
1082        rq = deadline_from_pos(per_prio, data_dir,                      \
1083                               per_prio->latest_pos[data_dir]);         \
1084        if (rq)                                                         \
1085                __blk_mq_debugfs_rq_show(m, rq);                        \
1086        return 0;                                                       \
1087}
1088
1089DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_READ, read0);
1090DEADLINE_DEBUGFS_DDIR_ATTRS(DD_RT_PRIO, DD_WRITE, write0);
1091DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_READ, read1);
1092DEADLINE_DEBUGFS_DDIR_ATTRS(DD_BE_PRIO, DD_WRITE, write1);
1093DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_READ, read2);
1094DEADLINE_DEBUGFS_DDIR_ATTRS(DD_IDLE_PRIO, DD_WRITE, write2);
1095#undef DEADLINE_DEBUGFS_DDIR_ATTRS
1096
1097static int deadline_batching_show(void *data, struct seq_file *m)
1098{
1099        struct request_queue *q = data;
1100        struct deadline_data *dd = q->elevator->elevator_data;
1101
1102        seq_printf(m, "%u\n", dd->batching);
1103        return 0;
1104}
1105
1106static int deadline_starved_show(void *data, struct seq_file *m)
1107{
1108        struct request_queue *q = data;
1109        struct deadline_data *dd = q->elevator->elevator_data;
1110
1111        seq_printf(m, "%u\n", dd->starved);
1112        return 0;
1113}
1114
1115static int dd_async_depth_show(void *data, struct seq_file *m)
1116{
1117        struct request_queue *q = data;
1118        struct deadline_data *dd = q->elevator->elevator_data;
1119
1120        seq_printf(m, "%u\n", dd->async_depth);
1121        return 0;
1122}
1123
1124static int dd_queued_show(void *data, struct seq_file *m)
1125{
1126        struct request_queue *q = data;
1127        struct deadline_data *dd = q->elevator->elevator_data;
1128        u32 rt, be, idle;
1129
1130        spin_lock(&dd->lock);
1131        rt = dd_queued(dd, DD_RT_PRIO);
1132        be = dd_queued(dd, DD_BE_PRIO);
1133        idle = dd_queued(dd, DD_IDLE_PRIO);
1134        spin_unlock(&dd->lock);
1135
1136        seq_printf(m, "%u %u %u\n", rt, be, idle);
1137
1138        return 0;
1139}
1140
1141/* Number of requests owned by the block driver for a given priority. */
1142static u32 dd_owned_by_driver(struct deadline_data *dd, enum dd_prio prio)
1143{
1144        const struct io_stats_per_prio *stats = &dd->per_prio[prio].stats;
1145
1146        lockdep_assert_held(&dd->lock);
1147
1148        return stats->dispatched + stats->merged -
1149                atomic_read(&stats->completed);
1150}
1151
1152static int dd_owned_by_driver_show(void *data, struct seq_file *m)
1153{
1154        struct request_queue *q = data;
1155        struct deadline_data *dd = q->elevator->elevator_data;
1156        u32 rt, be, idle;
1157
1158        spin_lock(&dd->lock);
1159        rt = dd_owned_by_driver(dd, DD_RT_PRIO);
1160        be = dd_owned_by_driver(dd, DD_BE_PRIO);
1161        idle = dd_owned_by_driver(dd, DD_IDLE_PRIO);
1162        spin_unlock(&dd->lock);
1163
1164        seq_printf(m, "%u %u %u\n", rt, be, idle);
1165
1166        return 0;
1167}
1168
1169#define DEADLINE_DISPATCH_ATTR(prio)                                    \
1170static void *deadline_dispatch##prio##_start(struct seq_file *m,        \
1171                                             loff_t *pos)               \
1172        __acquires(&dd->lock)                                           \
1173{                                                                       \
1174        struct request_queue *q = m->private;                           \
1175        struct deadline_data *dd = q->elevator->elevator_data;          \
1176        struct dd_per_prio *per_prio = &dd->per_prio[prio];             \
1177                                                                        \
1178        spin_lock(&dd->lock);                                           \
1179        return seq_list_start(&per_prio->dispatch, *pos);               \
1180}                                                                       \
1181                                                                        \
1182static void *deadline_dispatch##prio##_next(struct seq_file *m,         \
1183                                            void *v, loff_t *pos)       \
1184{                                                                       \
1185        struct request_queue *q = m->private;                           \
1186        struct deadline_data *dd = q->elevator->elevator_data;          \
1187        struct dd_per_prio *per_prio = &dd->per_prio[prio];             \
1188                                                                        \
1189        return seq_list_next(v, &per_prio->dispatch, pos);              \
1190}                                                                       \
1191                                                                        \
1192static void deadline_dispatch##prio##_stop(struct seq_file *m, void *v) \
1193        __releases(&dd->lock)                                           \
1194{                                                                       \
1195        struct request_queue *q = m->private;                           \
1196        struct deadline_data *dd = q->elevator->elevator_data;          \
1197                                                                        \
1198        spin_unlock(&dd->lock);                                         \
1199}                                                                       \
1200                                                                        \
1201static const struct seq_operations deadline_dispatch##prio##_seq_ops = { \
1202        .start  = deadline_dispatch##prio##_start,                      \
1203        .next   = deadline_dispatch##prio##_next,                       \
1204        .stop   = deadline_dispatch##prio##_stop,                       \
1205        .show   = blk_mq_debugfs_rq_show,                               \
1206}
1207
1208DEADLINE_DISPATCH_ATTR(0);
1209DEADLINE_DISPATCH_ATTR(1);
1210DEADLINE_DISPATCH_ATTR(2);
1211#undef DEADLINE_DISPATCH_ATTR
1212
1213#define DEADLINE_QUEUE_DDIR_ATTRS(name)                                 \
1214        {#name "_fifo_list", 0400,                                      \
1215                        .seq_ops = &deadline_##name##_fifo_seq_ops}
1216#define DEADLINE_NEXT_RQ_ATTR(name)                                     \
1217        {#name "_next_rq", 0400, deadline_##name##_next_rq_show}
1218static const struct blk_mq_debugfs_attr deadline_queue_debugfs_attrs[] = {
1219        DEADLINE_QUEUE_DDIR_ATTRS(read0),
1220        DEADLINE_QUEUE_DDIR_ATTRS(write0),
1221        DEADLINE_QUEUE_DDIR_ATTRS(read1),
1222        DEADLINE_QUEUE_DDIR_ATTRS(write1),
1223        DEADLINE_QUEUE_DDIR_ATTRS(read2),
1224        DEADLINE_QUEUE_DDIR_ATTRS(write2),
1225        DEADLINE_NEXT_RQ_ATTR(read0),
1226        DEADLINE_NEXT_RQ_ATTR(write0),
1227        DEADLINE_NEXT_RQ_ATTR(read1),
1228        DEADLINE_NEXT_RQ_ATTR(write1),
1229        DEADLINE_NEXT_RQ_ATTR(read2),
1230        DEADLINE_NEXT_RQ_ATTR(write2),
1231        {"batching", 0400, deadline_batching_show},
1232        {"starved", 0400, deadline_starved_show},
1233        {"async_depth", 0400, dd_async_depth_show},
1234        {"dispatch0", 0400, .seq_ops = &deadline_dispatch0_seq_ops},
1235        {"dispatch1", 0400, .seq_ops = &deadline_dispatch1_seq_ops},
1236        {"dispatch2", 0400, .seq_ops = &deadline_dispatch2_seq_ops},
1237        {"owned_by_driver", 0400, dd_owned_by_driver_show},
1238        {"queued", 0400, dd_queued_show},
1239        {},
1240};
1241#undef DEADLINE_QUEUE_DDIR_ATTRS
1242#endif
1243
1244static struct elevator_type mq_deadline = {
1245        .ops = {
1246                .depth_updated          = dd_depth_updated,
1247                .limit_depth            = dd_limit_depth,
1248                .insert_requests        = dd_insert_requests,
1249                .dispatch_request       = dd_dispatch_request,
1250                .prepare_request        = dd_prepare_request,
1251                .finish_request         = dd_finish_request,
1252                .next_request           = elv_rb_latter_request,
1253                .former_request         = elv_rb_former_request,
1254                .bio_merge              = dd_bio_merge,
1255                .request_merge          = dd_request_merge,
1256                .requests_merged        = dd_merged_requests,
1257                .request_merged         = dd_request_merged,
1258                .has_work               = dd_has_work,
1259                .init_sched             = dd_init_sched,
1260                .exit_sched             = dd_exit_sched,
1261                .init_hctx              = dd_init_hctx,
1262        },
1263
1264#ifdef CONFIG_BLK_DEBUG_FS
1265        .queue_debugfs_attrs = deadline_queue_debugfs_attrs,
1266#endif
1267        .elevator_attrs = deadline_attrs,
1268        .elevator_name = "mq-deadline",
1269        .elevator_alias = "deadline",
1270        .elevator_features = ELEVATOR_F_ZBD_SEQ_WRITE,
1271        .elevator_owner = THIS_MODULE,
1272};
1273MODULE_ALIAS("mq-deadline-iosched");
1274
1275static int __init deadline_init(void)
1276{
1277        return elv_register(&mq_deadline);
1278}
1279
1280static void __exit deadline_exit(void)
1281{
1282        elv_unregister(&mq_deadline);
1283}
1284
1285module_init(deadline_init);
1286module_exit(deadline_exit);
1287
1288MODULE_AUTHOR("Jens Axboe, Damien Le Moal and Bart Van Assche");
1289MODULE_LICENSE("GPL");
1290MODULE_DESCRIPTION("MQ deadline IO scheduler");
1291