linux/block/kyber-iosched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
   4 * scalable techniques.
   5 *
   6 * Copyright (C) 2017 Facebook
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/blkdev.h>
  11#include <linux/module.h>
  12#include <linux/sbitmap.h>
  13
  14#include <trace/events/block.h>
  15
  16#include "elevator.h"
  17#include "blk.h"
  18#include "blk-mq.h"
  19#include "blk-mq-debugfs.h"
  20#include "blk-mq-sched.h"
  21
  22#define CREATE_TRACE_POINTS
  23#include <trace/events/kyber.h>
  24
  25/*
  26 * Scheduling domains: the device is divided into multiple domains based on the
  27 * request type.
  28 */
  29enum {
  30        KYBER_READ,
  31        KYBER_WRITE,
  32        KYBER_DISCARD,
  33        KYBER_OTHER,
  34        KYBER_NUM_DOMAINS,
  35};
  36
  37static const char *kyber_domain_names[] = {
  38        [KYBER_READ] = "READ",
  39        [KYBER_WRITE] = "WRITE",
  40        [KYBER_DISCARD] = "DISCARD",
  41        [KYBER_OTHER] = "OTHER",
  42};
  43
  44enum {
  45        /*
  46         * In order to prevent starvation of synchronous requests by a flood of
  47         * asynchronous requests, we reserve 25% of requests for synchronous
  48         * operations.
  49         */
  50        KYBER_ASYNC_PERCENT = 75,
  51};
  52
  53/*
  54 * Maximum device-wide depth for each scheduling domain.
  55 *
  56 * Even for fast devices with lots of tags like NVMe, you can saturate the
  57 * device with only a fraction of the maximum possible queue depth. So, we cap
  58 * these to a reasonable value.
  59 */
  60static const unsigned int kyber_depth[] = {
  61        [KYBER_READ] = 256,
  62        [KYBER_WRITE] = 128,
  63        [KYBER_DISCARD] = 64,
  64        [KYBER_OTHER] = 16,
  65};
  66
  67/*
  68 * Default latency targets for each scheduling domain.
  69 */
  70static const u64 kyber_latency_targets[] = {
  71        [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
  72        [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
  73        [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
  74};
  75
  76/*
  77 * Batch size (number of requests we'll dispatch in a row) for each scheduling
  78 * domain.
  79 */
  80static const unsigned int kyber_batch_size[] = {
  81        [KYBER_READ] = 16,
  82        [KYBER_WRITE] = 8,
  83        [KYBER_DISCARD] = 1,
  84        [KYBER_OTHER] = 1,
  85};
  86
  87/*
  88 * Requests latencies are recorded in a histogram with buckets defined relative
  89 * to the target latency:
  90 *
  91 * <= 1/4 * target latency
  92 * <= 1/2 * target latency
  93 * <= 3/4 * target latency
  94 * <= target latency
  95 * <= 1 1/4 * target latency
  96 * <= 1 1/2 * target latency
  97 * <= 1 3/4 * target latency
  98 * > 1 3/4 * target latency
  99 */
 100enum {
 101        /*
 102         * The width of the latency histogram buckets is
 103         * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
 104         */
 105        KYBER_LATENCY_SHIFT = 2,
 106        /*
 107         * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
 108         * thus, "good".
 109         */
 110        KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
 111        /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
 112        KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
 113};
 114
 115/*
 116 * We measure both the total latency and the I/O latency (i.e., latency after
 117 * submitting to the device).
 118 */
 119enum {
 120        KYBER_TOTAL_LATENCY,
 121        KYBER_IO_LATENCY,
 122};
 123
 124static const char *kyber_latency_type_names[] = {
 125        [KYBER_TOTAL_LATENCY] = "total",
 126        [KYBER_IO_LATENCY] = "I/O",
 127};
 128
 129/*
 130 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
 131 * domain except for KYBER_OTHER.
 132 */
 133struct kyber_cpu_latency {
 134        atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 135};
 136
 137/*
 138 * There is a same mapping between ctx & hctx and kcq & khd,
 139 * we use request->mq_ctx->index_hw to index the kcq in khd.
 140 */
 141struct kyber_ctx_queue {
 142        /*
 143         * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
 144         * Also protect the rqs on rq_list when merge.
 145         */
 146        spinlock_t lock;
 147        struct list_head rq_list[KYBER_NUM_DOMAINS];
 148} ____cacheline_aligned_in_smp;
 149
 150struct kyber_queue_data {
 151        struct request_queue *q;
 152        dev_t dev;
 153
 154        /*
 155         * Each scheduling domain has a limited number of in-flight requests
 156         * device-wide, limited by these tokens.
 157         */
 158        struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
 159
 160        /*
 161         * Async request percentage, converted to per-word depth for
 162         * sbitmap_get_shallow().
 163         */
 164        unsigned int async_depth;
 165
 166        struct kyber_cpu_latency __percpu *cpu_latency;
 167
 168        /* Timer for stats aggregation and adjusting domain tokens. */
 169        struct timer_list timer;
 170
 171        unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 172
 173        unsigned long latency_timeout[KYBER_OTHER];
 174
 175        int domain_p99[KYBER_OTHER];
 176
 177        /* Target latencies in nanoseconds. */
 178        u64 latency_targets[KYBER_OTHER];
 179};
 180
 181struct kyber_hctx_data {
 182        spinlock_t lock;
 183        struct list_head rqs[KYBER_NUM_DOMAINS];
 184        unsigned int cur_domain;
 185        unsigned int batching;
 186        struct kyber_ctx_queue *kcqs;
 187        struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
 188        struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
 189        struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
 190        atomic_t wait_index[KYBER_NUM_DOMAINS];
 191};
 192
 193static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
 194                             void *key);
 195
 196static unsigned int kyber_sched_domain(blk_opf_t opf)
 197{
 198        switch (opf & REQ_OP_MASK) {
 199        case REQ_OP_READ:
 200                return KYBER_READ;
 201        case REQ_OP_WRITE:
 202                return KYBER_WRITE;
 203        case REQ_OP_DISCARD:
 204                return KYBER_DISCARD;
 205        default:
 206                return KYBER_OTHER;
 207        }
 208}
 209
 210static void flush_latency_buckets(struct kyber_queue_data *kqd,
 211                                  struct kyber_cpu_latency *cpu_latency,
 212                                  unsigned int sched_domain, unsigned int type)
 213{
 214        unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 215        atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
 216        unsigned int bucket;
 217
 218        for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 219                buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
 220}
 221
 222/*
 223 * Calculate the histogram bucket with the given percentile rank, or -1 if there
 224 * aren't enough samples yet.
 225 */
 226static int calculate_percentile(struct kyber_queue_data *kqd,
 227                                unsigned int sched_domain, unsigned int type,
 228                                unsigned int percentile)
 229{
 230        unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 231        unsigned int bucket, samples = 0, percentile_samples;
 232
 233        for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 234                samples += buckets[bucket];
 235
 236        if (!samples)
 237                return -1;
 238
 239        /*
 240         * We do the calculation once we have 500 samples or one second passes
 241         * since the first sample was recorded, whichever comes first.
 242         */
 243        if (!kqd->latency_timeout[sched_domain])
 244                kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
 245        if (samples < 500 &&
 246            time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
 247                return -1;
 248        }
 249        kqd->latency_timeout[sched_domain] = 0;
 250
 251        percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
 252        for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
 253                if (buckets[bucket] >= percentile_samples)
 254                        break;
 255                percentile_samples -= buckets[bucket];
 256        }
 257        memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
 258
 259        trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain],
 260                            kyber_latency_type_names[type], percentile,
 261                            bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
 262
 263        return bucket;
 264}
 265
 266static void kyber_resize_domain(struct kyber_queue_data *kqd,
 267                                unsigned int sched_domain, unsigned int depth)
 268{
 269        depth = clamp(depth, 1U, kyber_depth[sched_domain]);
 270        if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
 271                sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
 272                trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain],
 273                                   depth);
 274        }
 275}
 276
 277static void kyber_timer_fn(struct timer_list *t)
 278{
 279        struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
 280        unsigned int sched_domain;
 281        int cpu;
 282        bool bad = false;
 283
 284        /* Sum all of the per-cpu latency histograms. */
 285        for_each_online_cpu(cpu) {
 286                struct kyber_cpu_latency *cpu_latency;
 287
 288                cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
 289                for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 290                        flush_latency_buckets(kqd, cpu_latency, sched_domain,
 291                                              KYBER_TOTAL_LATENCY);
 292                        flush_latency_buckets(kqd, cpu_latency, sched_domain,
 293                                              KYBER_IO_LATENCY);
 294                }
 295        }
 296
 297        /*
 298         * Check if any domains have a high I/O latency, which might indicate
 299         * congestion in the device. Note that we use the p90; we don't want to
 300         * be too sensitive to outliers here.
 301         */
 302        for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 303                int p90;
 304
 305                p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
 306                                           90);
 307                if (p90 >= KYBER_GOOD_BUCKETS)
 308                        bad = true;
 309        }
 310
 311        /*
 312         * Adjust the scheduling domain depths. If we determined that there was
 313         * congestion, we throttle all domains with good latencies. Either way,
 314         * we ease up on throttling domains with bad latencies.
 315         */
 316        for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 317                unsigned int orig_depth, depth;
 318                int p99;
 319
 320                p99 = calculate_percentile(kqd, sched_domain,
 321                                           KYBER_TOTAL_LATENCY, 99);
 322                /*
 323                 * This is kind of subtle: different domains will not
 324                 * necessarily have enough samples to calculate the latency
 325                 * percentiles during the same window, so we have to remember
 326                 * the p99 for the next time we observe congestion; once we do,
 327                 * we don't want to throttle again until we get more data, so we
 328                 * reset it to -1.
 329                 */
 330                if (bad) {
 331                        if (p99 < 0)
 332                                p99 = kqd->domain_p99[sched_domain];
 333                        kqd->domain_p99[sched_domain] = -1;
 334                } else if (p99 >= 0) {
 335                        kqd->domain_p99[sched_domain] = p99;
 336                }
 337                if (p99 < 0)
 338                        continue;
 339
 340                /*
 341                 * If this domain has bad latency, throttle less. Otherwise,
 342                 * throttle more iff we determined that there is congestion.
 343                 *
 344                 * The new depth is scaled linearly with the p99 latency vs the
 345                 * latency target. E.g., if the p99 is 3/4 of the target, then
 346                 * we throttle down to 3/4 of the current depth, and if the p99
 347                 * is 2x the target, then we double the depth.
 348                 */
 349                if (bad || p99 >= KYBER_GOOD_BUCKETS) {
 350                        orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
 351                        depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
 352                        kyber_resize_domain(kqd, sched_domain, depth);
 353                }
 354        }
 355}
 356
 357static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
 358{
 359        struct kyber_queue_data *kqd;
 360        int ret = -ENOMEM;
 361        int i;
 362
 363        kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
 364        if (!kqd)
 365                goto err;
 366
 367        kqd->q = q;
 368        kqd->dev = disk_devt(q->disk);
 369
 370        kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
 371                                            GFP_KERNEL | __GFP_ZERO);
 372        if (!kqd->cpu_latency)
 373                goto err_kqd;
 374
 375        timer_setup(&kqd->timer, kyber_timer_fn, 0);
 376
 377        for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 378                WARN_ON(!kyber_depth[i]);
 379                WARN_ON(!kyber_batch_size[i]);
 380                ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
 381                                              kyber_depth[i], -1, false,
 382                                              GFP_KERNEL, q->node);
 383                if (ret) {
 384                        while (--i >= 0)
 385                                sbitmap_queue_free(&kqd->domain_tokens[i]);
 386                        goto err_buckets;
 387                }
 388        }
 389
 390        for (i = 0; i < KYBER_OTHER; i++) {
 391                kqd->domain_p99[i] = -1;
 392                kqd->latency_targets[i] = kyber_latency_targets[i];
 393        }
 394
 395        return kqd;
 396
 397err_buckets:
 398        free_percpu(kqd->cpu_latency);
 399err_kqd:
 400        kfree(kqd);
 401err:
 402        return ERR_PTR(ret);
 403}
 404
 405static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
 406{
 407        struct kyber_queue_data *kqd;
 408        struct elevator_queue *eq;
 409
 410        eq = elevator_alloc(q, e);
 411        if (!eq)
 412                return -ENOMEM;
 413
 414        kqd = kyber_queue_data_alloc(q);
 415        if (IS_ERR(kqd)) {
 416                kobject_put(&eq->kobj);
 417                return PTR_ERR(kqd);
 418        }
 419
 420        blk_stat_enable_accounting(q);
 421
 422        blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q);
 423
 424        eq->elevator_data = kqd;
 425        q->elevator = eq;
 426
 427        return 0;
 428}
 429
 430static void kyber_exit_sched(struct elevator_queue *e)
 431{
 432        struct kyber_queue_data *kqd = e->elevator_data;
 433        int i;
 434
 435        timer_shutdown_sync(&kqd->timer);
 436        blk_stat_disable_accounting(kqd->q);
 437
 438        for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 439                sbitmap_queue_free(&kqd->domain_tokens[i]);
 440        free_percpu(kqd->cpu_latency);
 441        kfree(kqd);
 442}
 443
 444static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
 445{
 446        unsigned int i;
 447
 448        spin_lock_init(&kcq->lock);
 449        for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 450                INIT_LIST_HEAD(&kcq->rq_list[i]);
 451}
 452
 453static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
 454{
 455        struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 456        struct blk_mq_tags *tags = hctx->sched_tags;
 457        unsigned int shift = tags->bitmap_tags.sb.shift;
 458
 459        kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
 460
 461        sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth);
 462}
 463
 464static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 465{
 466        struct kyber_hctx_data *khd;
 467        int i;
 468
 469        khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
 470        if (!khd)
 471                return -ENOMEM;
 472
 473        khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
 474                                       sizeof(struct kyber_ctx_queue),
 475                                       GFP_KERNEL, hctx->numa_node);
 476        if (!khd->kcqs)
 477                goto err_khd;
 478
 479        for (i = 0; i < hctx->nr_ctx; i++)
 480                kyber_ctx_queue_init(&khd->kcqs[i]);
 481
 482        for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 483                if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
 484                                      ilog2(8), GFP_KERNEL, hctx->numa_node,
 485                                      false, false)) {
 486                        while (--i >= 0)
 487                                sbitmap_free(&khd->kcq_map[i]);
 488                        goto err_kcqs;
 489                }
 490        }
 491
 492        spin_lock_init(&khd->lock);
 493
 494        for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 495                INIT_LIST_HEAD(&khd->rqs[i]);
 496                khd->domain_wait[i].sbq = NULL;
 497                init_waitqueue_func_entry(&khd->domain_wait[i].wait,
 498                                          kyber_domain_wake);
 499                khd->domain_wait[i].wait.private = hctx;
 500                INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
 501                atomic_set(&khd->wait_index[i], 0);
 502        }
 503
 504        khd->cur_domain = 0;
 505        khd->batching = 0;
 506
 507        hctx->sched_data = khd;
 508        kyber_depth_updated(hctx);
 509
 510        return 0;
 511
 512err_kcqs:
 513        kfree(khd->kcqs);
 514err_khd:
 515        kfree(khd);
 516        return -ENOMEM;
 517}
 518
 519static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 520{
 521        struct kyber_hctx_data *khd = hctx->sched_data;
 522        int i;
 523
 524        for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 525                sbitmap_free(&khd->kcq_map[i]);
 526        kfree(khd->kcqs);
 527        kfree(hctx->sched_data);
 528}
 529
 530static int rq_get_domain_token(struct request *rq)
 531{
 532        return (long)rq->elv.priv[0];
 533}
 534
 535static void rq_set_domain_token(struct request *rq, int token)
 536{
 537        rq->elv.priv[0] = (void *)(long)token;
 538}
 539
 540static void rq_clear_domain_token(struct kyber_queue_data *kqd,
 541                                  struct request *rq)
 542{
 543        unsigned int sched_domain;
 544        int nr;
 545
 546        nr = rq_get_domain_token(rq);
 547        if (nr != -1) {
 548                sched_domain = kyber_sched_domain(rq->cmd_flags);
 549                sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
 550                                    rq->mq_ctx->cpu);
 551        }
 552}
 553
 554static void kyber_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data)
 555{
 556        /*
 557         * We use the scheduler tags as per-hardware queue queueing tokens.
 558         * Async requests can be limited at this stage.
 559         */
 560        if (!op_is_sync(opf)) {
 561                struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
 562
 563                data->shallow_depth = kqd->async_depth;
 564        }
 565}
 566
 567static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
 568                unsigned int nr_segs)
 569{
 570        struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
 571        struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
 572        struct kyber_hctx_data *khd = hctx->sched_data;
 573        struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
 574        unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
 575        struct list_head *rq_list = &kcq->rq_list[sched_domain];
 576        bool merged;
 577
 578        spin_lock(&kcq->lock);
 579        merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
 580        spin_unlock(&kcq->lock);
 581
 582        return merged;
 583}
 584
 585static void kyber_prepare_request(struct request *rq)
 586{
 587        rq_set_domain_token(rq, -1);
 588}
 589
 590static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
 591                                  struct list_head *rq_list,
 592                                  blk_insert_t flags)
 593{
 594        struct kyber_hctx_data *khd = hctx->sched_data;
 595        struct request *rq, *next;
 596
 597        list_for_each_entry_safe(rq, next, rq_list, queuelist) {
 598                unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
 599                struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
 600                struct list_head *head = &kcq->rq_list[sched_domain];
 601
 602                spin_lock(&kcq->lock);
 603                trace_block_rq_insert(rq);
 604                if (flags & BLK_MQ_INSERT_AT_HEAD)
 605                        list_move(&rq->queuelist, head);
 606                else
 607                        list_move_tail(&rq->queuelist, head);
 608                sbitmap_set_bit(&khd->kcq_map[sched_domain],
 609                                rq->mq_ctx->index_hw[hctx->type]);
 610                spin_unlock(&kcq->lock);
 611        }
 612}
 613
 614static void kyber_finish_request(struct request *rq)
 615{
 616        struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 617
 618        rq_clear_domain_token(kqd, rq);
 619}
 620
 621static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
 622                               unsigned int sched_domain, unsigned int type,
 623                               u64 target, u64 latency)
 624{
 625        unsigned int bucket;
 626        u64 divisor;
 627
 628        if (latency > 0) {
 629                divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
 630                bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
 631                               KYBER_LATENCY_BUCKETS - 1);
 632        } else {
 633                bucket = 0;
 634        }
 635
 636        atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
 637}
 638
 639static void kyber_completed_request(struct request *rq, u64 now)
 640{
 641        struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 642        struct kyber_cpu_latency *cpu_latency;
 643        unsigned int sched_domain;
 644        u64 target;
 645
 646        sched_domain = kyber_sched_domain(rq->cmd_flags);
 647        if (sched_domain == KYBER_OTHER)
 648                return;
 649
 650        cpu_latency = get_cpu_ptr(kqd->cpu_latency);
 651        target = kqd->latency_targets[sched_domain];
 652        add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
 653                           target, now - rq->start_time_ns);
 654        add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
 655                           now - rq->io_start_time_ns);
 656        put_cpu_ptr(kqd->cpu_latency);
 657
 658        timer_reduce(&kqd->timer, jiffies + HZ / 10);
 659}
 660
 661struct flush_kcq_data {
 662        struct kyber_hctx_data *khd;
 663        unsigned int sched_domain;
 664        struct list_head *list;
 665};
 666
 667static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
 668{
 669        struct flush_kcq_data *flush_data = data;
 670        struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
 671
 672        spin_lock(&kcq->lock);
 673        list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
 674                              flush_data->list);
 675        sbitmap_clear_bit(sb, bitnr);
 676        spin_unlock(&kcq->lock);
 677
 678        return true;
 679}
 680
 681static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
 682                                  unsigned int sched_domain,
 683                                  struct list_head *list)
 684{
 685        struct flush_kcq_data data = {
 686                .khd = khd,
 687                .sched_domain = sched_domain,
 688                .list = list,
 689        };
 690
 691        sbitmap_for_each_set(&khd->kcq_map[sched_domain],
 692                             flush_busy_kcq, &data);
 693}
 694
 695static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
 696                             void *key)
 697{
 698        struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
 699        struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
 700
 701        sbitmap_del_wait_queue(wait);
 702        blk_mq_run_hw_queue(hctx, true);
 703        return 1;
 704}
 705
 706static int kyber_get_domain_token(struct kyber_queue_data *kqd,
 707                                  struct kyber_hctx_data *khd,
 708                                  struct blk_mq_hw_ctx *hctx)
 709{
 710        unsigned int sched_domain = khd->cur_domain;
 711        struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
 712        struct sbq_wait *wait = &khd->domain_wait[sched_domain];
 713        struct sbq_wait_state *ws;
 714        int nr;
 715
 716        nr = __sbitmap_queue_get(domain_tokens);
 717
 718        /*
 719         * If we failed to get a domain token, make sure the hardware queue is
 720         * run when one becomes available. Note that this is serialized on
 721         * khd->lock, but we still need to be careful about the waker.
 722         */
 723        if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
 724                ws = sbq_wait_ptr(domain_tokens,
 725                                  &khd->wait_index[sched_domain]);
 726                khd->domain_ws[sched_domain] = ws;
 727                sbitmap_add_wait_queue(domain_tokens, ws, wait);
 728
 729                /*
 730                 * Try again in case a token was freed before we got on the wait
 731                 * queue.
 732                 */
 733                nr = __sbitmap_queue_get(domain_tokens);
 734        }
 735
 736        /*
 737         * If we got a token while we were on the wait queue, remove ourselves
 738         * from the wait queue to ensure that all wake ups make forward
 739         * progress. It's possible that the waker already deleted the entry
 740         * between the !list_empty_careful() check and us grabbing the lock, but
 741         * list_del_init() is okay with that.
 742         */
 743        if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
 744                ws = khd->domain_ws[sched_domain];
 745                spin_lock_irq(&ws->wait.lock);
 746                sbitmap_del_wait_queue(wait);
 747                spin_unlock_irq(&ws->wait.lock);
 748        }
 749
 750        return nr;
 751}
 752
 753static struct request *
 754kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
 755                          struct kyber_hctx_data *khd,
 756                          struct blk_mq_hw_ctx *hctx)
 757{
 758        struct list_head *rqs;
 759        struct request *rq;
 760        int nr;
 761
 762        rqs = &khd->rqs[khd->cur_domain];
 763
 764        /*
 765         * If we already have a flushed request, then we just need to get a
 766         * token for it. Otherwise, if there are pending requests in the kcqs,
 767         * flush the kcqs, but only if we can get a token. If not, we should
 768         * leave the requests in the kcqs so that they can be merged. Note that
 769         * khd->lock serializes the flushes, so if we observed any bit set in
 770         * the kcq_map, we will always get a request.
 771         */
 772        rq = list_first_entry_or_null(rqs, struct request, queuelist);
 773        if (rq) {
 774                nr = kyber_get_domain_token(kqd, khd, hctx);
 775                if (nr >= 0) {
 776                        khd->batching++;
 777                        rq_set_domain_token(rq, nr);
 778                        list_del_init(&rq->queuelist);
 779                        return rq;
 780                } else {
 781                        trace_kyber_throttled(kqd->dev,
 782                                              kyber_domain_names[khd->cur_domain]);
 783                }
 784        } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
 785                nr = kyber_get_domain_token(kqd, khd, hctx);
 786                if (nr >= 0) {
 787                        kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
 788                        rq = list_first_entry(rqs, struct request, queuelist);
 789                        khd->batching++;
 790                        rq_set_domain_token(rq, nr);
 791                        list_del_init(&rq->queuelist);
 792                        return rq;
 793                } else {
 794                        trace_kyber_throttled(kqd->dev,
 795                                              kyber_domain_names[khd->cur_domain]);
 796                }
 797        }
 798
 799        /* There were either no pending requests or no tokens. */
 800        return NULL;
 801}
 802
 803static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
 804{
 805        struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 806        struct kyber_hctx_data *khd = hctx->sched_data;
 807        struct request *rq;
 808        int i;
 809
 810        spin_lock(&khd->lock);
 811
 812        /*
 813         * First, if we are still entitled to batch, try to dispatch a request
 814         * from the batch.
 815         */
 816        if (khd->batching < kyber_batch_size[khd->cur_domain]) {
 817                rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 818                if (rq)
 819                        goto out;
 820        }
 821
 822        /*
 823         * Either,
 824         * 1. We were no longer entitled to a batch.
 825         * 2. The domain we were batching didn't have any requests.
 826         * 3. The domain we were batching was out of tokens.
 827         *
 828         * Start another batch. Note that this wraps back around to the original
 829         * domain if no other domains have requests or tokens.
 830         */
 831        khd->batching = 0;
 832        for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 833                if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
 834                        khd->cur_domain = 0;
 835                else
 836                        khd->cur_domain++;
 837
 838                rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 839                if (rq)
 840                        goto out;
 841        }
 842
 843        rq = NULL;
 844out:
 845        spin_unlock(&khd->lock);
 846        return rq;
 847}
 848
 849static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
 850{
 851        struct kyber_hctx_data *khd = hctx->sched_data;
 852        int i;
 853
 854        for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 855                if (!list_empty_careful(&khd->rqs[i]) ||
 856                    sbitmap_any_bit_set(&khd->kcq_map[i]))
 857                        return true;
 858        }
 859
 860        return false;
 861}
 862
 863#define KYBER_LAT_SHOW_STORE(domain, name)                              \
 864static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,        \
 865                                       char *page)                      \
 866{                                                                       \
 867        struct kyber_queue_data *kqd = e->elevator_data;                \
 868                                                                        \
 869        return sprintf(page, "%llu\n", kqd->latency_targets[domain]);   \
 870}                                                                       \
 871                                                                        \
 872static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,       \
 873                                        const char *page, size_t count) \
 874{                                                                       \
 875        struct kyber_queue_data *kqd = e->elevator_data;                \
 876        unsigned long long nsec;                                        \
 877        int ret;                                                        \
 878                                                                        \
 879        ret = kstrtoull(page, 10, &nsec);                               \
 880        if (ret)                                                        \
 881                return ret;                                             \
 882                                                                        \
 883        kqd->latency_targets[domain] = nsec;                            \
 884                                                                        \
 885        return count;                                                   \
 886}
 887KYBER_LAT_SHOW_STORE(KYBER_READ, read);
 888KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
 889#undef KYBER_LAT_SHOW_STORE
 890
 891#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
 892static struct elv_fs_entry kyber_sched_attrs[] = {
 893        KYBER_LAT_ATTR(read),
 894        KYBER_LAT_ATTR(write),
 895        __ATTR_NULL
 896};
 897#undef KYBER_LAT_ATTR
 898
 899#ifdef CONFIG_BLK_DEBUG_FS
 900#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)                        \
 901static int kyber_##name##_tokens_show(void *data, struct seq_file *m)   \
 902{                                                                       \
 903        struct request_queue *q = data;                                 \
 904        struct kyber_queue_data *kqd = q->elevator->elevator_data;      \
 905                                                                        \
 906        sbitmap_queue_show(&kqd->domain_tokens[domain], m);             \
 907        return 0;                                                       \
 908}                                                                       \
 909                                                                        \
 910static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)  \
 911        __acquires(&khd->lock)                                          \
 912{                                                                       \
 913        struct blk_mq_hw_ctx *hctx = m->private;                        \
 914        struct kyber_hctx_data *khd = hctx->sched_data;                 \
 915                                                                        \
 916        spin_lock(&khd->lock);                                          \
 917        return seq_list_start(&khd->rqs[domain], *pos);                 \
 918}                                                                       \
 919                                                                        \
 920static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,       \
 921                                     loff_t *pos)                       \
 922{                                                                       \
 923        struct blk_mq_hw_ctx *hctx = m->private;                        \
 924        struct kyber_hctx_data *khd = hctx->sched_data;                 \
 925                                                                        \
 926        return seq_list_next(v, &khd->rqs[domain], pos);                \
 927}                                                                       \
 928                                                                        \
 929static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)        \
 930        __releases(&khd->lock)                                          \
 931{                                                                       \
 932        struct blk_mq_hw_ctx *hctx = m->private;                        \
 933        struct kyber_hctx_data *khd = hctx->sched_data;                 \
 934                                                                        \
 935        spin_unlock(&khd->lock);                                        \
 936}                                                                       \
 937                                                                        \
 938static const struct seq_operations kyber_##name##_rqs_seq_ops = {       \
 939        .start  = kyber_##name##_rqs_start,                             \
 940        .next   = kyber_##name##_rqs_next,                              \
 941        .stop   = kyber_##name##_rqs_stop,                              \
 942        .show   = blk_mq_debugfs_rq_show,                               \
 943};                                                                      \
 944                                                                        \
 945static int kyber_##name##_waiting_show(void *data, struct seq_file *m)  \
 946{                                                                       \
 947        struct blk_mq_hw_ctx *hctx = data;                              \
 948        struct kyber_hctx_data *khd = hctx->sched_data;                 \
 949        wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;      \
 950                                                                        \
 951        seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));       \
 952        return 0;                                                       \
 953}
 954KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
 955KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
 956KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
 957KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
 958#undef KYBER_DEBUGFS_DOMAIN_ATTRS
 959
 960static int kyber_async_depth_show(void *data, struct seq_file *m)
 961{
 962        struct request_queue *q = data;
 963        struct kyber_queue_data *kqd = q->elevator->elevator_data;
 964
 965        seq_printf(m, "%u\n", kqd->async_depth);
 966        return 0;
 967}
 968
 969static int kyber_cur_domain_show(void *data, struct seq_file *m)
 970{
 971        struct blk_mq_hw_ctx *hctx = data;
 972        struct kyber_hctx_data *khd = hctx->sched_data;
 973
 974        seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
 975        return 0;
 976}
 977
 978static int kyber_batching_show(void *data, struct seq_file *m)
 979{
 980        struct blk_mq_hw_ctx *hctx = data;
 981        struct kyber_hctx_data *khd = hctx->sched_data;
 982
 983        seq_printf(m, "%u\n", khd->batching);
 984        return 0;
 985}
 986
 987#define KYBER_QUEUE_DOMAIN_ATTRS(name)  \
 988        {#name "_tokens", 0400, kyber_##name##_tokens_show}
 989static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
 990        KYBER_QUEUE_DOMAIN_ATTRS(read),
 991        KYBER_QUEUE_DOMAIN_ATTRS(write),
 992        KYBER_QUEUE_DOMAIN_ATTRS(discard),
 993        KYBER_QUEUE_DOMAIN_ATTRS(other),
 994        {"async_depth", 0400, kyber_async_depth_show},
 995        {},
 996};
 997#undef KYBER_QUEUE_DOMAIN_ATTRS
 998
 999#define KYBER_HCTX_DOMAIN_ATTRS(name)                                   \
1000        {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},   \
1001        {#name "_waiting", 0400, kyber_##name##_waiting_show}
1002static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
1003        KYBER_HCTX_DOMAIN_ATTRS(read),
1004        KYBER_HCTX_DOMAIN_ATTRS(write),
1005        KYBER_HCTX_DOMAIN_ATTRS(discard),
1006        KYBER_HCTX_DOMAIN_ATTRS(other),
1007        {"cur_domain", 0400, kyber_cur_domain_show},
1008        {"batching", 0400, kyber_batching_show},
1009        {},
1010};
1011#undef KYBER_HCTX_DOMAIN_ATTRS
1012#endif
1013
1014static struct elevator_type kyber_sched = {
1015        .ops = {
1016                .init_sched = kyber_init_sched,
1017                .exit_sched = kyber_exit_sched,
1018                .init_hctx = kyber_init_hctx,
1019                .exit_hctx = kyber_exit_hctx,
1020                .limit_depth = kyber_limit_depth,
1021                .bio_merge = kyber_bio_merge,
1022                .prepare_request = kyber_prepare_request,
1023                .insert_requests = kyber_insert_requests,
1024                .finish_request = kyber_finish_request,
1025                .requeue_request = kyber_finish_request,
1026                .completed_request = kyber_completed_request,
1027                .dispatch_request = kyber_dispatch_request,
1028                .has_work = kyber_has_work,
1029                .depth_updated = kyber_depth_updated,
1030        },
1031#ifdef CONFIG_BLK_DEBUG_FS
1032        .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1033        .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1034#endif
1035        .elevator_attrs = kyber_sched_attrs,
1036        .elevator_name = "kyber",
1037        .elevator_owner = THIS_MODULE,
1038};
1039
1040static int __init kyber_init(void)
1041{
1042        return elv_register(&kyber_sched);
1043}
1044
1045static void __exit kyber_exit(void)
1046{
1047        elv_unregister(&kyber_sched);
1048}
1049
1050module_init(kyber_init);
1051module_exit(kyber_exit);
1052
1053MODULE_AUTHOR("Omar Sandoval");
1054MODULE_LICENSE("GPL");
1055MODULE_DESCRIPTION("Kyber I/O scheduler");
1056