linux/block/blk-throttle.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Interface for controlling IO bandwidth on a request queue
   4 *
   5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/bio.h>
  12#include <linux/blktrace_api.h>
  13#include "blk.h"
  14#include "blk-cgroup-rwstat.h"
  15#include "blk-stat.h"
  16#include "blk-throttle.h"
  17
  18/* Max dispatch from a group in 1 round */
  19#define THROTL_GRP_QUANTUM 8
  20
  21/* Total max dispatch from all groups in one round */
  22#define THROTL_QUANTUM 32
  23
  24/* Throttling is performed over a slice and after that slice is renewed */
  25#define DFL_THROTL_SLICE_HD (HZ / 10)
  26#define DFL_THROTL_SLICE_SSD (HZ / 50)
  27#define MAX_THROTL_SLICE (HZ)
  28#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
  29#define MIN_THROTL_BPS (320 * 1024)
  30#define MIN_THROTL_IOPS (10)
  31#define DFL_LATENCY_TARGET (-1L)
  32#define DFL_IDLE_THRESHOLD (0)
  33#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
  34#define LATENCY_FILTERED_SSD (0)
  35/*
  36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
  37 * help determine if its IO is impacted by others, hence we ignore the IO
  38 */
  39#define LATENCY_FILTERED_HD (1000L) /* 1ms */
  40
  41/* A workqueue to queue throttle related work */
  42static struct workqueue_struct *kthrotld_workqueue;
  43
  44#define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
  45
  46/* We measure latency for request size from <= 4k to >= 1M */
  47#define LATENCY_BUCKET_SIZE 9
  48
  49struct latency_bucket {
  50        unsigned long total_latency; /* ns / 1024 */
  51        int samples;
  52};
  53
  54struct avg_latency_bucket {
  55        unsigned long latency; /* ns / 1024 */
  56        bool valid;
  57};
  58
  59struct throtl_data
  60{
  61        /* service tree for active throtl groups */
  62        struct throtl_service_queue service_queue;
  63
  64        struct request_queue *queue;
  65
  66        /* Total Number of queued bios on READ and WRITE lists */
  67        unsigned int nr_queued[2];
  68
  69        unsigned int throtl_slice;
  70
  71        /* Work for dispatching throttled bios */
  72        struct work_struct dispatch_work;
  73        unsigned int limit_index;
  74        bool limit_valid[LIMIT_CNT];
  75
  76        unsigned long low_upgrade_time;
  77        unsigned long low_downgrade_time;
  78
  79        unsigned int scale;
  80
  81        struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
  82        struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
  83        struct latency_bucket __percpu *latency_buckets[2];
  84        unsigned long last_calculate_time;
  85        unsigned long filtered_latency;
  86
  87        bool track_bio_latency;
  88};
  89
  90static void throtl_pending_timer_fn(struct timer_list *t);
  91
  92static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
  93{
  94        return pd_to_blkg(&tg->pd);
  95}
  96
  97/**
  98 * sq_to_tg - return the throl_grp the specified service queue belongs to
  99 * @sq: the throtl_service_queue of interest
 100 *
 101 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 102 * embedded in throtl_data, %NULL is returned.
 103 */
 104static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
 105{
 106        if (sq && sq->parent_sq)
 107                return container_of(sq, struct throtl_grp, service_queue);
 108        else
 109                return NULL;
 110}
 111
 112/**
 113 * sq_to_td - return throtl_data the specified service queue belongs to
 114 * @sq: the throtl_service_queue of interest
 115 *
 116 * A service_queue can be embedded in either a throtl_grp or throtl_data.
 117 * Determine the associated throtl_data accordingly and return it.
 118 */
 119static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
 120{
 121        struct throtl_grp *tg = sq_to_tg(sq);
 122
 123        if (tg)
 124                return tg->td;
 125        else
 126                return container_of(sq, struct throtl_data, service_queue);
 127}
 128
 129/*
 130 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 131 * make the IO dispatch more smooth.
 132 * Scale up: linearly scale up according to elapsed time since upgrade. For
 133 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 134 *           limit hits .max limit
 135 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 136 */
 137static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
 138{
 139        /* arbitrary value to avoid too big scale */
 140        if (td->scale < 4096 && time_after_eq(jiffies,
 141            td->low_upgrade_time + td->scale * td->throtl_slice))
 142                td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
 143
 144        return low + (low >> 1) * td->scale;
 145}
 146
 147static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
 148{
 149        struct blkcg_gq *blkg = tg_to_blkg(tg);
 150        struct throtl_data *td;
 151        uint64_t ret;
 152
 153        if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 154                return U64_MAX;
 155
 156        td = tg->td;
 157        ret = tg->bps[rw][td->limit_index];
 158        if (ret == 0 && td->limit_index == LIMIT_LOW) {
 159                /* intermediate node or iops isn't 0 */
 160                if (!list_empty(&blkg->blkcg->css.children) ||
 161                    tg->iops[rw][td->limit_index])
 162                        return U64_MAX;
 163                else
 164                        return MIN_THROTL_BPS;
 165        }
 166
 167        if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
 168            tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
 169                uint64_t adjusted;
 170
 171                adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
 172                ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
 173        }
 174        return ret;
 175}
 176
 177static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
 178{
 179        struct blkcg_gq *blkg = tg_to_blkg(tg);
 180        struct throtl_data *td;
 181        unsigned int ret;
 182
 183        if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
 184                return UINT_MAX;
 185
 186        td = tg->td;
 187        ret = tg->iops[rw][td->limit_index];
 188        if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
 189                /* intermediate node or bps isn't 0 */
 190                if (!list_empty(&blkg->blkcg->css.children) ||
 191                    tg->bps[rw][td->limit_index])
 192                        return UINT_MAX;
 193                else
 194                        return MIN_THROTL_IOPS;
 195        }
 196
 197        if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
 198            tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
 199                uint64_t adjusted;
 200
 201                adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
 202                if (adjusted > UINT_MAX)
 203                        adjusted = UINT_MAX;
 204                ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
 205        }
 206        return ret;
 207}
 208
 209#define request_bucket_index(sectors) \
 210        clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
 211
 212/**
 213 * throtl_log - log debug message via blktrace
 214 * @sq: the service_queue being reported
 215 * @fmt: printf format string
 216 * @args: printf args
 217 *
 218 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 219 * throtl_grp; otherwise, just "throtl".
 220 */
 221#define throtl_log(sq, fmt, args...)    do {                            \
 222        struct throtl_grp *__tg = sq_to_tg((sq));                       \
 223        struct throtl_data *__td = sq_to_td((sq));                      \
 224                                                                        \
 225        (void)__td;                                                     \
 226        if (likely(!blk_trace_note_message_enabled(__td->queue)))       \
 227                break;                                                  \
 228        if ((__tg)) {                                                   \
 229                blk_add_cgroup_trace_msg(__td->queue,                   \
 230                        &tg_to_blkg(__tg)->blkcg->css, "throtl " fmt, ##args);\
 231        } else {                                                        \
 232                blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
 233        }                                                               \
 234} while (0)
 235
 236static inline unsigned int throtl_bio_data_size(struct bio *bio)
 237{
 238        /* assume it's one sector */
 239        if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
 240                return 512;
 241        return bio->bi_iter.bi_size;
 242}
 243
 244static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
 245{
 246        INIT_LIST_HEAD(&qn->node);
 247        bio_list_init(&qn->bios);
 248        qn->tg = tg;
 249}
 250
 251/**
 252 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 253 * @bio: bio being added
 254 * @qn: qnode to add bio to
 255 * @queued: the service_queue->queued[] list @qn belongs to
 256 *
 257 * Add @bio to @qn and put @qn on @queued if it's not already on.
 258 * @qn->tg's reference count is bumped when @qn is activated.  See the
 259 * comment on top of throtl_qnode definition for details.
 260 */
 261static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
 262                                 struct list_head *queued)
 263{
 264        bio_list_add(&qn->bios, bio);
 265        if (list_empty(&qn->node)) {
 266                list_add_tail(&qn->node, queued);
 267                blkg_get(tg_to_blkg(qn->tg));
 268        }
 269}
 270
 271/**
 272 * throtl_peek_queued - peek the first bio on a qnode list
 273 * @queued: the qnode list to peek
 274 */
 275static struct bio *throtl_peek_queued(struct list_head *queued)
 276{
 277        struct throtl_qnode *qn;
 278        struct bio *bio;
 279
 280        if (list_empty(queued))
 281                return NULL;
 282
 283        qn = list_first_entry(queued, struct throtl_qnode, node);
 284        bio = bio_list_peek(&qn->bios);
 285        WARN_ON_ONCE(!bio);
 286        return bio;
 287}
 288
 289/**
 290 * throtl_pop_queued - pop the first bio form a qnode list
 291 * @queued: the qnode list to pop a bio from
 292 * @tg_to_put: optional out argument for throtl_grp to put
 293 *
 294 * Pop the first bio from the qnode list @queued.  After popping, the first
 295 * qnode is removed from @queued if empty or moved to the end of @queued so
 296 * that the popping order is round-robin.
 297 *
 298 * When the first qnode is removed, its associated throtl_grp should be put
 299 * too.  If @tg_to_put is NULL, this function automatically puts it;
 300 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 301 * responsible for putting it.
 302 */
 303static struct bio *throtl_pop_queued(struct list_head *queued,
 304                                     struct throtl_grp **tg_to_put)
 305{
 306        struct throtl_qnode *qn;
 307        struct bio *bio;
 308
 309        if (list_empty(queued))
 310                return NULL;
 311
 312        qn = list_first_entry(queued, struct throtl_qnode, node);
 313        bio = bio_list_pop(&qn->bios);
 314        WARN_ON_ONCE(!bio);
 315
 316        if (bio_list_empty(&qn->bios)) {
 317                list_del_init(&qn->node);
 318                if (tg_to_put)
 319                        *tg_to_put = qn->tg;
 320                else
 321                        blkg_put(tg_to_blkg(qn->tg));
 322        } else {
 323                list_move_tail(&qn->node, queued);
 324        }
 325
 326        return bio;
 327}
 328
 329/* init a service_queue, assumes the caller zeroed it */
 330static void throtl_service_queue_init(struct throtl_service_queue *sq)
 331{
 332        INIT_LIST_HEAD(&sq->queued[READ]);
 333        INIT_LIST_HEAD(&sq->queued[WRITE]);
 334        sq->pending_tree = RB_ROOT_CACHED;
 335        timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
 336}
 337
 338static struct blkg_policy_data *throtl_pd_alloc(struct gendisk *disk,
 339                struct blkcg *blkcg, gfp_t gfp)
 340{
 341        struct throtl_grp *tg;
 342        int rw;
 343
 344        tg = kzalloc_node(sizeof(*tg), gfp, disk->node_id);
 345        if (!tg)
 346                return NULL;
 347
 348        if (blkg_rwstat_init(&tg->stat_bytes, gfp))
 349                goto err_free_tg;
 350
 351        if (blkg_rwstat_init(&tg->stat_ios, gfp))
 352                goto err_exit_stat_bytes;
 353
 354        throtl_service_queue_init(&tg->service_queue);
 355
 356        for (rw = READ; rw <= WRITE; rw++) {
 357                throtl_qnode_init(&tg->qnode_on_self[rw], tg);
 358                throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
 359        }
 360
 361        RB_CLEAR_NODE(&tg->rb_node);
 362        tg->bps[READ][LIMIT_MAX] = U64_MAX;
 363        tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
 364        tg->iops[READ][LIMIT_MAX] = UINT_MAX;
 365        tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
 366        tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
 367        tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
 368        tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
 369        tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
 370        /* LIMIT_LOW will have default value 0 */
 371
 372        tg->latency_target = DFL_LATENCY_TARGET;
 373        tg->latency_target_conf = DFL_LATENCY_TARGET;
 374        tg->idletime_threshold = DFL_IDLE_THRESHOLD;
 375        tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
 376
 377        return &tg->pd;
 378
 379err_exit_stat_bytes:
 380        blkg_rwstat_exit(&tg->stat_bytes);
 381err_free_tg:
 382        kfree(tg);
 383        return NULL;
 384}
 385
 386static void throtl_pd_init(struct blkg_policy_data *pd)
 387{
 388        struct throtl_grp *tg = pd_to_tg(pd);
 389        struct blkcg_gq *blkg = tg_to_blkg(tg);
 390        struct throtl_data *td = blkg->q->td;
 391        struct throtl_service_queue *sq = &tg->service_queue;
 392
 393        /*
 394         * If on the default hierarchy, we switch to properly hierarchical
 395         * behavior where limits on a given throtl_grp are applied to the
 396         * whole subtree rather than just the group itself.  e.g. If 16M
 397         * read_bps limit is set on a parent group, summary bps of
 398         * parent group and its subtree groups can't exceed 16M for the
 399         * device.
 400         *
 401         * If not on the default hierarchy, the broken flat hierarchy
 402         * behavior is retained where all throtl_grps are treated as if
 403         * they're all separate root groups right below throtl_data.
 404         * Limits of a group don't interact with limits of other groups
 405         * regardless of the position of the group in the hierarchy.
 406         */
 407        sq->parent_sq = &td->service_queue;
 408        if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
 409                sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
 410        tg->td = td;
 411}
 412
 413/*
 414 * Set has_rules[] if @tg or any of its parents have limits configured.
 415 * This doesn't require walking up to the top of the hierarchy as the
 416 * parent's has_rules[] is guaranteed to be correct.
 417 */
 418static void tg_update_has_rules(struct throtl_grp *tg)
 419{
 420        struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
 421        struct throtl_data *td = tg->td;
 422        int rw;
 423
 424        for (rw = READ; rw <= WRITE; rw++) {
 425                tg->has_rules_iops[rw] =
 426                        (parent_tg && parent_tg->has_rules_iops[rw]) ||
 427                        (td->limit_valid[td->limit_index] &&
 428                          tg_iops_limit(tg, rw) != UINT_MAX);
 429                tg->has_rules_bps[rw] =
 430                        (parent_tg && parent_tg->has_rules_bps[rw]) ||
 431                        (td->limit_valid[td->limit_index] &&
 432                         (tg_bps_limit(tg, rw) != U64_MAX));
 433        }
 434}
 435
 436static void throtl_pd_online(struct blkg_policy_data *pd)
 437{
 438        struct throtl_grp *tg = pd_to_tg(pd);
 439        /*
 440         * We don't want new groups to escape the limits of its ancestors.
 441         * Update has_rules[] after a new group is brought online.
 442         */
 443        tg_update_has_rules(tg);
 444}
 445
 446#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
 447static void blk_throtl_update_limit_valid(struct throtl_data *td)
 448{
 449        struct cgroup_subsys_state *pos_css;
 450        struct blkcg_gq *blkg;
 451        bool low_valid = false;
 452
 453        rcu_read_lock();
 454        blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
 455                struct throtl_grp *tg = blkg_to_tg(blkg);
 456
 457                if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
 458                    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
 459                        low_valid = true;
 460                        break;
 461                }
 462        }
 463        rcu_read_unlock();
 464
 465        td->limit_valid[LIMIT_LOW] = low_valid;
 466}
 467#else
 468static inline void blk_throtl_update_limit_valid(struct throtl_data *td)
 469{
 470}
 471#endif
 472
 473static void throtl_upgrade_state(struct throtl_data *td);
 474static void throtl_pd_offline(struct blkg_policy_data *pd)
 475{
 476        struct throtl_grp *tg = pd_to_tg(pd);
 477
 478        tg->bps[READ][LIMIT_LOW] = 0;
 479        tg->bps[WRITE][LIMIT_LOW] = 0;
 480        tg->iops[READ][LIMIT_LOW] = 0;
 481        tg->iops[WRITE][LIMIT_LOW] = 0;
 482
 483        blk_throtl_update_limit_valid(tg->td);
 484
 485        if (!tg->td->limit_valid[tg->td->limit_index])
 486                throtl_upgrade_state(tg->td);
 487}
 488
 489static void throtl_pd_free(struct blkg_policy_data *pd)
 490{
 491        struct throtl_grp *tg = pd_to_tg(pd);
 492
 493        del_timer_sync(&tg->service_queue.pending_timer);
 494        blkg_rwstat_exit(&tg->stat_bytes);
 495        blkg_rwstat_exit(&tg->stat_ios);
 496        kfree(tg);
 497}
 498
 499static struct throtl_grp *
 500throtl_rb_first(struct throtl_service_queue *parent_sq)
 501{
 502        struct rb_node *n;
 503
 504        n = rb_first_cached(&parent_sq->pending_tree);
 505        WARN_ON_ONCE(!n);
 506        if (!n)
 507                return NULL;
 508        return rb_entry_tg(n);
 509}
 510
 511static void throtl_rb_erase(struct rb_node *n,
 512                            struct throtl_service_queue *parent_sq)
 513{
 514        rb_erase_cached(n, &parent_sq->pending_tree);
 515        RB_CLEAR_NODE(n);
 516}
 517
 518static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
 519{
 520        struct throtl_grp *tg;
 521
 522        tg = throtl_rb_first(parent_sq);
 523        if (!tg)
 524                return;
 525
 526        parent_sq->first_pending_disptime = tg->disptime;
 527}
 528
 529static void tg_service_queue_add(struct throtl_grp *tg)
 530{
 531        struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
 532        struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
 533        struct rb_node *parent = NULL;
 534        struct throtl_grp *__tg;
 535        unsigned long key = tg->disptime;
 536        bool leftmost = true;
 537
 538        while (*node != NULL) {
 539                parent = *node;
 540                __tg = rb_entry_tg(parent);
 541
 542                if (time_before(key, __tg->disptime))
 543                        node = &parent->rb_left;
 544                else {
 545                        node = &parent->rb_right;
 546                        leftmost = false;
 547                }
 548        }
 549
 550        rb_link_node(&tg->rb_node, parent, node);
 551        rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
 552                               leftmost);
 553}
 554
 555static void throtl_enqueue_tg(struct throtl_grp *tg)
 556{
 557        if (!(tg->flags & THROTL_TG_PENDING)) {
 558                tg_service_queue_add(tg);
 559                tg->flags |= THROTL_TG_PENDING;
 560                tg->service_queue.parent_sq->nr_pending++;
 561        }
 562}
 563
 564static void throtl_dequeue_tg(struct throtl_grp *tg)
 565{
 566        if (tg->flags & THROTL_TG_PENDING) {
 567                struct throtl_service_queue *parent_sq =
 568                        tg->service_queue.parent_sq;
 569
 570                throtl_rb_erase(&tg->rb_node, parent_sq);
 571                --parent_sq->nr_pending;
 572                tg->flags &= ~THROTL_TG_PENDING;
 573        }
 574}
 575
 576/* Call with queue lock held */
 577static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
 578                                          unsigned long expires)
 579{
 580        unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
 581
 582        /*
 583         * Since we are adjusting the throttle limit dynamically, the sleep
 584         * time calculated according to previous limit might be invalid. It's
 585         * possible the cgroup sleep time is very long and no other cgroups
 586         * have IO running so notify the limit changes. Make sure the cgroup
 587         * doesn't sleep too long to avoid the missed notification.
 588         */
 589        if (time_after(expires, max_expire))
 590                expires = max_expire;
 591        mod_timer(&sq->pending_timer, expires);
 592        throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
 593                   expires - jiffies, jiffies);
 594}
 595
 596/**
 597 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 598 * @sq: the service_queue to schedule dispatch for
 599 * @force: force scheduling
 600 *
 601 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 602 * dispatch time of the first pending child.  Returns %true if either timer
 603 * is armed or there's no pending child left.  %false if the current
 604 * dispatch window is still open and the caller should continue
 605 * dispatching.
 606 *
 607 * If @force is %true, the dispatch timer is always scheduled and this
 608 * function is guaranteed to return %true.  This is to be used when the
 609 * caller can't dispatch itself and needs to invoke pending_timer
 610 * unconditionally.  Note that forced scheduling is likely to induce short
 611 * delay before dispatch starts even if @sq->first_pending_disptime is not
 612 * in the future and thus shouldn't be used in hot paths.
 613 */
 614static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
 615                                          bool force)
 616{
 617        /* any pending children left? */
 618        if (!sq->nr_pending)
 619                return true;
 620
 621        update_min_dispatch_time(sq);
 622
 623        /* is the next dispatch time in the future? */
 624        if (force || time_after(sq->first_pending_disptime, jiffies)) {
 625                throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
 626                return true;
 627        }
 628
 629        /* tell the caller to continue dispatching */
 630        return false;
 631}
 632
 633static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
 634                bool rw, unsigned long start)
 635{
 636        tg->bytes_disp[rw] = 0;
 637        tg->io_disp[rw] = 0;
 638        tg->carryover_bytes[rw] = 0;
 639        tg->carryover_ios[rw] = 0;
 640
 641        /*
 642         * Previous slice has expired. We must have trimmed it after last
 643         * bio dispatch. That means since start of last slice, we never used
 644         * that bandwidth. Do try to make use of that bandwidth while giving
 645         * credit.
 646         */
 647        if (time_after(start, tg->slice_start[rw]))
 648                tg->slice_start[rw] = start;
 649
 650        tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 651        throtl_log(&tg->service_queue,
 652                   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
 653                   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 654                   tg->slice_end[rw], jiffies);
 655}
 656
 657static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw,
 658                                          bool clear_carryover)
 659{
 660        tg->bytes_disp[rw] = 0;
 661        tg->io_disp[rw] = 0;
 662        tg->slice_start[rw] = jiffies;
 663        tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
 664        if (clear_carryover) {
 665                tg->carryover_bytes[rw] = 0;
 666                tg->carryover_ios[rw] = 0;
 667        }
 668
 669        throtl_log(&tg->service_queue,
 670                   "[%c] new slice start=%lu end=%lu jiffies=%lu",
 671                   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 672                   tg->slice_end[rw], jiffies);
 673}
 674
 675static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
 676                                        unsigned long jiffy_end)
 677{
 678        tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
 679}
 680
 681static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
 682                                       unsigned long jiffy_end)
 683{
 684        throtl_set_slice_end(tg, rw, jiffy_end);
 685        throtl_log(&tg->service_queue,
 686                   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
 687                   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 688                   tg->slice_end[rw], jiffies);
 689}
 690
 691/* Determine if previously allocated or extended slice is complete or not */
 692static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
 693{
 694        if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
 695                return false;
 696
 697        return true;
 698}
 699
 700static unsigned int calculate_io_allowed(u32 iops_limit,
 701                                         unsigned long jiffy_elapsed)
 702{
 703        unsigned int io_allowed;
 704        u64 tmp;
 705
 706        /*
 707         * jiffy_elapsed should not be a big value as minimum iops can be
 708         * 1 then at max jiffy elapsed should be equivalent of 1 second as we
 709         * will allow dispatch after 1 second and after that slice should
 710         * have been trimmed.
 711         */
 712
 713        tmp = (u64)iops_limit * jiffy_elapsed;
 714        do_div(tmp, HZ);
 715
 716        if (tmp > UINT_MAX)
 717                io_allowed = UINT_MAX;
 718        else
 719                io_allowed = tmp;
 720
 721        return io_allowed;
 722}
 723
 724static u64 calculate_bytes_allowed(u64 bps_limit, unsigned long jiffy_elapsed)
 725{
 726        /*
 727         * Can result be wider than 64 bits?
 728         * We check against 62, not 64, due to ilog2 truncation.
 729         */
 730        if (ilog2(bps_limit) + ilog2(jiffy_elapsed) - ilog2(HZ) > 62)
 731                return U64_MAX;
 732        return mul_u64_u64_div_u64(bps_limit, (u64)jiffy_elapsed, (u64)HZ);
 733}
 734
 735/* Trim the used slices and adjust slice start accordingly */
 736static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
 737{
 738        unsigned long time_elapsed;
 739        long long bytes_trim;
 740        int io_trim;
 741
 742        BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
 743
 744        /*
 745         * If bps are unlimited (-1), then time slice don't get
 746         * renewed. Don't try to trim the slice if slice is used. A new
 747         * slice will start when appropriate.
 748         */
 749        if (throtl_slice_used(tg, rw))
 750                return;
 751
 752        /*
 753         * A bio has been dispatched. Also adjust slice_end. It might happen
 754         * that initially cgroup limit was very low resulting in high
 755         * slice_end, but later limit was bumped up and bio was dispatched
 756         * sooner, then we need to reduce slice_end. A high bogus slice_end
 757         * is bad because it does not allow new slice to start.
 758         */
 759
 760        throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
 761
 762        time_elapsed = rounddown(jiffies - tg->slice_start[rw],
 763                                 tg->td->throtl_slice);
 764        if (!time_elapsed)
 765                return;
 766
 767        bytes_trim = calculate_bytes_allowed(tg_bps_limit(tg, rw),
 768                                             time_elapsed) +
 769                     tg->carryover_bytes[rw];
 770        io_trim = calculate_io_allowed(tg_iops_limit(tg, rw), time_elapsed) +
 771                  tg->carryover_ios[rw];
 772        if (bytes_trim <= 0 && io_trim <= 0)
 773                return;
 774
 775        tg->carryover_bytes[rw] = 0;
 776        if ((long long)tg->bytes_disp[rw] >= bytes_trim)
 777                tg->bytes_disp[rw] -= bytes_trim;
 778        else
 779                tg->bytes_disp[rw] = 0;
 780
 781        tg->carryover_ios[rw] = 0;
 782        if ((int)tg->io_disp[rw] >= io_trim)
 783                tg->io_disp[rw] -= io_trim;
 784        else
 785                tg->io_disp[rw] = 0;
 786
 787        tg->slice_start[rw] += time_elapsed;
 788
 789        throtl_log(&tg->service_queue,
 790                   "[%c] trim slice nr=%lu bytes=%lld io=%d start=%lu end=%lu jiffies=%lu",
 791                   rw == READ ? 'R' : 'W', time_elapsed / tg->td->throtl_slice,
 792                   bytes_trim, io_trim, tg->slice_start[rw], tg->slice_end[rw],
 793                   jiffies);
 794}
 795
 796static void __tg_update_carryover(struct throtl_grp *tg, bool rw)
 797{
 798        unsigned long jiffy_elapsed = jiffies - tg->slice_start[rw];
 799        u64 bps_limit = tg_bps_limit(tg, rw);
 800        u32 iops_limit = tg_iops_limit(tg, rw);
 801
 802        /*
 803         * If config is updated while bios are still throttled, calculate and
 804         * accumulate how many bytes/ios are waited across changes. And
 805         * carryover_bytes/ios will be used to calculate new wait time under new
 806         * configuration.
 807         */
 808        if (bps_limit != U64_MAX)
 809                tg->carryover_bytes[rw] +=
 810                        calculate_bytes_allowed(bps_limit, jiffy_elapsed) -
 811                        tg->bytes_disp[rw];
 812        if (iops_limit != UINT_MAX)
 813                tg->carryover_ios[rw] +=
 814                        calculate_io_allowed(iops_limit, jiffy_elapsed) -
 815                        tg->io_disp[rw];
 816}
 817
 818static void tg_update_carryover(struct throtl_grp *tg)
 819{
 820        if (tg->service_queue.nr_queued[READ])
 821                __tg_update_carryover(tg, READ);
 822        if (tg->service_queue.nr_queued[WRITE])
 823                __tg_update_carryover(tg, WRITE);
 824
 825        /* see comments in struct throtl_grp for meaning of these fields. */
 826        throtl_log(&tg->service_queue, "%s: %lld %lld %d %d\n", __func__,
 827                   tg->carryover_bytes[READ], tg->carryover_bytes[WRITE],
 828                   tg->carryover_ios[READ], tg->carryover_ios[WRITE]);
 829}
 830
 831static unsigned long tg_within_iops_limit(struct throtl_grp *tg, struct bio *bio,
 832                                 u32 iops_limit)
 833{
 834        bool rw = bio_data_dir(bio);
 835        int io_allowed;
 836        unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 837
 838        if (iops_limit == UINT_MAX) {
 839                return 0;
 840        }
 841
 842        jiffy_elapsed = jiffies - tg->slice_start[rw];
 843
 844        /* Round up to the next throttle slice, wait time must be nonzero */
 845        jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
 846        io_allowed = calculate_io_allowed(iops_limit, jiffy_elapsed_rnd) +
 847                     tg->carryover_ios[rw];
 848        if (io_allowed > 0 && tg->io_disp[rw] + 1 <= io_allowed)
 849                return 0;
 850
 851        /* Calc approx time to dispatch */
 852        jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
 853        return jiffy_wait;
 854}
 855
 856static unsigned long tg_within_bps_limit(struct throtl_grp *tg, struct bio *bio,
 857                                u64 bps_limit)
 858{
 859        bool rw = bio_data_dir(bio);
 860        long long bytes_allowed;
 861        u64 extra_bytes;
 862        unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 863        unsigned int bio_size = throtl_bio_data_size(bio);
 864
 865        /* no need to throttle if this bio's bytes have been accounted */
 866        if (bps_limit == U64_MAX || bio_flagged(bio, BIO_BPS_THROTTLED)) {
 867                return 0;
 868        }
 869
 870        jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 871
 872        /* Slice has just started. Consider one slice interval */
 873        if (!jiffy_elapsed)
 874                jiffy_elapsed_rnd = tg->td->throtl_slice;
 875
 876        jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
 877        bytes_allowed = calculate_bytes_allowed(bps_limit, jiffy_elapsed_rnd) +
 878                        tg->carryover_bytes[rw];
 879        if (bytes_allowed > 0 && tg->bytes_disp[rw] + bio_size <= bytes_allowed)
 880                return 0;
 881
 882        /* Calc approx time to dispatch */
 883        extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
 884        jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
 885
 886        if (!jiffy_wait)
 887                jiffy_wait = 1;
 888
 889        /*
 890         * This wait time is without taking into consideration the rounding
 891         * up we did. Add that time also.
 892         */
 893        jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
 894        return jiffy_wait;
 895}
 896
 897/*
 898 * Returns whether one can dispatch a bio or not. Also returns approx number
 899 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 900 */
 901static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
 902                            unsigned long *wait)
 903{
 904        bool rw = bio_data_dir(bio);
 905        unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
 906        u64 bps_limit = tg_bps_limit(tg, rw);
 907        u32 iops_limit = tg_iops_limit(tg, rw);
 908
 909        /*
 910         * Currently whole state machine of group depends on first bio
 911         * queued in the group bio list. So one should not be calling
 912         * this function with a different bio if there are other bios
 913         * queued.
 914         */
 915        BUG_ON(tg->service_queue.nr_queued[rw] &&
 916               bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
 917
 918        /* If tg->bps = -1, then BW is unlimited */
 919        if ((bps_limit == U64_MAX && iops_limit == UINT_MAX) ||
 920            tg->flags & THROTL_TG_CANCELING) {
 921                if (wait)
 922                        *wait = 0;
 923                return true;
 924        }
 925
 926        /*
 927         * If previous slice expired, start a new one otherwise renew/extend
 928         * existing slice to make sure it is at least throtl_slice interval
 929         * long since now. New slice is started only for empty throttle group.
 930         * If there is queued bio, that means there should be an active
 931         * slice and it should be extended instead.
 932         */
 933        if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
 934                throtl_start_new_slice(tg, rw, true);
 935        else {
 936                if (time_before(tg->slice_end[rw],
 937                    jiffies + tg->td->throtl_slice))
 938                        throtl_extend_slice(tg, rw,
 939                                jiffies + tg->td->throtl_slice);
 940        }
 941
 942        bps_wait = tg_within_bps_limit(tg, bio, bps_limit);
 943        iops_wait = tg_within_iops_limit(tg, bio, iops_limit);
 944        if (bps_wait + iops_wait == 0) {
 945                if (wait)
 946                        *wait = 0;
 947                return true;
 948        }
 949
 950        max_wait = max(bps_wait, iops_wait);
 951
 952        if (wait)
 953                *wait = max_wait;
 954
 955        if (time_before(tg->slice_end[rw], jiffies + max_wait))
 956                throtl_extend_slice(tg, rw, jiffies + max_wait);
 957
 958        return false;
 959}
 960
 961static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
 962{
 963        bool rw = bio_data_dir(bio);
 964        unsigned int bio_size = throtl_bio_data_size(bio);
 965
 966        /* Charge the bio to the group */
 967        if (!bio_flagged(bio, BIO_BPS_THROTTLED)) {
 968                tg->bytes_disp[rw] += bio_size;
 969                tg->last_bytes_disp[rw] += bio_size;
 970        }
 971
 972        tg->io_disp[rw]++;
 973        tg->last_io_disp[rw]++;
 974}
 975
 976/**
 977 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 978 * @bio: bio to add
 979 * @qn: qnode to use
 980 * @tg: the target throtl_grp
 981 *
 982 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 983 * tg->qnode_on_self[] is used.
 984 */
 985static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
 986                              struct throtl_grp *tg)
 987{
 988        struct throtl_service_queue *sq = &tg->service_queue;
 989        bool rw = bio_data_dir(bio);
 990
 991        if (!qn)
 992                qn = &tg->qnode_on_self[rw];
 993
 994        /*
 995         * If @tg doesn't currently have any bios queued in the same
 996         * direction, queueing @bio can change when @tg should be
 997         * dispatched.  Mark that @tg was empty.  This is automatically
 998         * cleared on the next tg_update_disptime().
 999         */
1000        if (!sq->nr_queued[rw])
1001                tg->flags |= THROTL_TG_WAS_EMPTY;
1002
1003        throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1004
1005        sq->nr_queued[rw]++;
1006        throtl_enqueue_tg(tg);
1007}
1008
1009static void tg_update_disptime(struct throtl_grp *tg)
1010{
1011        struct throtl_service_queue *sq = &tg->service_queue;
1012        unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1013        struct bio *bio;
1014
1015        bio = throtl_peek_queued(&sq->queued[READ]);
1016        if (bio)
1017                tg_may_dispatch(tg, bio, &read_wait);
1018
1019        bio = throtl_peek_queued(&sq->queued[WRITE]);
1020        if (bio)
1021                tg_may_dispatch(tg, bio, &write_wait);
1022
1023        min_wait = min(read_wait, write_wait);
1024        disptime = jiffies + min_wait;
1025
1026        /* Update dispatch time */
1027        throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
1028        tg->disptime = disptime;
1029        tg_service_queue_add(tg);
1030
1031        /* see throtl_add_bio_tg() */
1032        tg->flags &= ~THROTL_TG_WAS_EMPTY;
1033}
1034
1035static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1036                                        struct throtl_grp *parent_tg, bool rw)
1037{
1038        if (throtl_slice_used(parent_tg, rw)) {
1039                throtl_start_new_slice_with_credit(parent_tg, rw,
1040                                child_tg->slice_start[rw]);
1041        }
1042
1043}
1044
1045static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1046{
1047        struct throtl_service_queue *sq = &tg->service_queue;
1048        struct throtl_service_queue *parent_sq = sq->parent_sq;
1049        struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1050        struct throtl_grp *tg_to_put = NULL;
1051        struct bio *bio;
1052
1053        /*
1054         * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1055         * from @tg may put its reference and @parent_sq might end up
1056         * getting released prematurely.  Remember the tg to put and put it
1057         * after @bio is transferred to @parent_sq.
1058         */
1059        bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1060        sq->nr_queued[rw]--;
1061
1062        throtl_charge_bio(tg, bio);
1063
1064        /*
1065         * If our parent is another tg, we just need to transfer @bio to
1066         * the parent using throtl_add_bio_tg().  If our parent is
1067         * @td->service_queue, @bio is ready to be issued.  Put it on its
1068         * bio_lists[] and decrease total number queued.  The caller is
1069         * responsible for issuing these bios.
1070         */
1071        if (parent_tg) {
1072                throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1073                start_parent_slice_with_credit(tg, parent_tg, rw);
1074        } else {
1075                bio_set_flag(bio, BIO_BPS_THROTTLED);
1076                throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1077                                     &parent_sq->queued[rw]);
1078                BUG_ON(tg->td->nr_queued[rw] <= 0);
1079                tg->td->nr_queued[rw]--;
1080        }
1081
1082        throtl_trim_slice(tg, rw);
1083
1084        if (tg_to_put)
1085                blkg_put(tg_to_blkg(tg_to_put));
1086}
1087
1088static int throtl_dispatch_tg(struct throtl_grp *tg)
1089{
1090        struct throtl_service_queue *sq = &tg->service_queue;
1091        unsigned int nr_reads = 0, nr_writes = 0;
1092        unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1093        unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1094        struct bio *bio;
1095
1096        /* Try to dispatch 75% READS and 25% WRITES */
1097
1098        while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1099               tg_may_dispatch(tg, bio, NULL)) {
1100
1101                tg_dispatch_one_bio(tg, bio_data_dir(bio));
1102                nr_reads++;
1103
1104                if (nr_reads >= max_nr_reads)
1105                        break;
1106        }
1107
1108        while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1109               tg_may_dispatch(tg, bio, NULL)) {
1110
1111                tg_dispatch_one_bio(tg, bio_data_dir(bio));
1112                nr_writes++;
1113
1114                if (nr_writes >= max_nr_writes)
1115                        break;
1116        }
1117
1118        return nr_reads + nr_writes;
1119}
1120
1121static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1122{
1123        unsigned int nr_disp = 0;
1124
1125        while (1) {
1126                struct throtl_grp *tg;
1127                struct throtl_service_queue *sq;
1128
1129                if (!parent_sq->nr_pending)
1130                        break;
1131
1132                tg = throtl_rb_first(parent_sq);
1133                if (!tg)
1134                        break;
1135
1136                if (time_before(jiffies, tg->disptime))
1137                        break;
1138
1139                nr_disp += throtl_dispatch_tg(tg);
1140
1141                sq = &tg->service_queue;
1142                if (sq->nr_queued[READ] || sq->nr_queued[WRITE])
1143                        tg_update_disptime(tg);
1144                else
1145                        throtl_dequeue_tg(tg);
1146
1147                if (nr_disp >= THROTL_QUANTUM)
1148                        break;
1149        }
1150
1151        return nr_disp;
1152}
1153
1154static bool throtl_can_upgrade(struct throtl_data *td,
1155        struct throtl_grp *this_tg);
1156/**
1157 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1158 * @t: the pending_timer member of the throtl_service_queue being serviced
1159 *
1160 * This timer is armed when a child throtl_grp with active bio's become
1161 * pending and queued on the service_queue's pending_tree and expires when
1162 * the first child throtl_grp should be dispatched.  This function
1163 * dispatches bio's from the children throtl_grps to the parent
1164 * service_queue.
1165 *
1166 * If the parent's parent is another throtl_grp, dispatching is propagated
1167 * by either arming its pending_timer or repeating dispatch directly.  If
1168 * the top-level service_tree is reached, throtl_data->dispatch_work is
1169 * kicked so that the ready bio's are issued.
1170 */
1171static void throtl_pending_timer_fn(struct timer_list *t)
1172{
1173        struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1174        struct throtl_grp *tg = sq_to_tg(sq);
1175        struct throtl_data *td = sq_to_td(sq);
1176        struct throtl_service_queue *parent_sq;
1177        struct request_queue *q;
1178        bool dispatched;
1179        int ret;
1180
1181        /* throtl_data may be gone, so figure out request queue by blkg */
1182        if (tg)
1183                q = tg->pd.blkg->q;
1184        else
1185                q = td->queue;
1186
1187        spin_lock_irq(&q->queue_lock);
1188
1189        if (!q->root_blkg)
1190                goto out_unlock;
1191
1192        if (throtl_can_upgrade(td, NULL))
1193                throtl_upgrade_state(td);
1194
1195again:
1196        parent_sq = sq->parent_sq;
1197        dispatched = false;
1198
1199        while (true) {
1200                throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1201                           sq->nr_queued[READ] + sq->nr_queued[WRITE],
1202                           sq->nr_queued[READ], sq->nr_queued[WRITE]);
1203
1204                ret = throtl_select_dispatch(sq);
1205                if (ret) {
1206                        throtl_log(sq, "bios disp=%u", ret);
1207                        dispatched = true;
1208                }
1209
1210                if (throtl_schedule_next_dispatch(sq, false))
1211                        break;
1212
1213                /* this dispatch windows is still open, relax and repeat */
1214                spin_unlock_irq(&q->queue_lock);
1215                cpu_relax();
1216                spin_lock_irq(&q->queue_lock);
1217        }
1218
1219        if (!dispatched)
1220                goto out_unlock;
1221
1222        if (parent_sq) {
1223                /* @parent_sq is another throl_grp, propagate dispatch */
1224                if (tg->flags & THROTL_TG_WAS_EMPTY) {
1225                        tg_update_disptime(tg);
1226                        if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1227                                /* window is already open, repeat dispatching */
1228                                sq = parent_sq;
1229                                tg = sq_to_tg(sq);
1230                                goto again;
1231                        }
1232                }
1233        } else {
1234                /* reached the top-level, queue issuing */
1235                queue_work(kthrotld_workqueue, &td->dispatch_work);
1236        }
1237out_unlock:
1238        spin_unlock_irq(&q->queue_lock);
1239}
1240
1241/**
1242 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1243 * @work: work item being executed
1244 *
1245 * This function is queued for execution when bios reach the bio_lists[]
1246 * of throtl_data->service_queue.  Those bios are ready and issued by this
1247 * function.
1248 */
1249static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1250{
1251        struct throtl_data *td = container_of(work, struct throtl_data,
1252                                              dispatch_work);
1253        struct throtl_service_queue *td_sq = &td->service_queue;
1254        struct request_queue *q = td->queue;
1255        struct bio_list bio_list_on_stack;
1256        struct bio *bio;
1257        struct blk_plug plug;
1258        int rw;
1259
1260        bio_list_init(&bio_list_on_stack);
1261
1262        spin_lock_irq(&q->queue_lock);
1263        for (rw = READ; rw <= WRITE; rw++)
1264                while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1265                        bio_list_add(&bio_list_on_stack, bio);
1266        spin_unlock_irq(&q->queue_lock);
1267
1268        if (!bio_list_empty(&bio_list_on_stack)) {
1269                blk_start_plug(&plug);
1270                while ((bio = bio_list_pop(&bio_list_on_stack)))
1271                        submit_bio_noacct_nocheck(bio);
1272                blk_finish_plug(&plug);
1273        }
1274}
1275
1276static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1277                              int off)
1278{
1279        struct throtl_grp *tg = pd_to_tg(pd);
1280        u64 v = *(u64 *)((void *)tg + off);
1281
1282        if (v == U64_MAX)
1283                return 0;
1284        return __blkg_prfill_u64(sf, pd, v);
1285}
1286
1287static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1288                               int off)
1289{
1290        struct throtl_grp *tg = pd_to_tg(pd);
1291        unsigned int v = *(unsigned int *)((void *)tg + off);
1292
1293        if (v == UINT_MAX)
1294                return 0;
1295        return __blkg_prfill_u64(sf, pd, v);
1296}
1297
1298static int tg_print_conf_u64(struct seq_file *sf, void *v)
1299{
1300        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1301                          &blkcg_policy_throtl, seq_cft(sf)->private, false);
1302        return 0;
1303}
1304
1305static int tg_print_conf_uint(struct seq_file *sf, void *v)
1306{
1307        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1308                          &blkcg_policy_throtl, seq_cft(sf)->private, false);
1309        return 0;
1310}
1311
1312static void tg_conf_updated(struct throtl_grp *tg, bool global)
1313{
1314        struct throtl_service_queue *sq = &tg->service_queue;
1315        struct cgroup_subsys_state *pos_css;
1316        struct blkcg_gq *blkg;
1317
1318        throtl_log(&tg->service_queue,
1319                   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1320                   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1321                   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1322
1323        rcu_read_lock();
1324        /*
1325         * Update has_rules[] flags for the updated tg's subtree.  A tg is
1326         * considered to have rules if either the tg itself or any of its
1327         * ancestors has rules.  This identifies groups without any
1328         * restrictions in the whole hierarchy and allows them to bypass
1329         * blk-throttle.
1330         */
1331        blkg_for_each_descendant_pre(blkg, pos_css,
1332                        global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1333                struct throtl_grp *this_tg = blkg_to_tg(blkg);
1334                struct throtl_grp *parent_tg;
1335
1336                tg_update_has_rules(this_tg);
1337                /* ignore root/second level */
1338                if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1339                    !blkg->parent->parent)
1340                        continue;
1341                parent_tg = blkg_to_tg(blkg->parent);
1342                /*
1343                 * make sure all children has lower idle time threshold and
1344                 * higher latency target
1345                 */
1346                this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1347                                parent_tg->idletime_threshold);
1348                this_tg->latency_target = max(this_tg->latency_target,
1349                                parent_tg->latency_target);
1350        }
1351        rcu_read_unlock();
1352
1353        /*
1354         * We're already holding queue_lock and know @tg is valid.  Let's
1355         * apply the new config directly.
1356         *
1357         * Restart the slices for both READ and WRITES. It might happen
1358         * that a group's limit are dropped suddenly and we don't want to
1359         * account recently dispatched IO with new low rate.
1360         */
1361        throtl_start_new_slice(tg, READ, false);
1362        throtl_start_new_slice(tg, WRITE, false);
1363
1364        if (tg->flags & THROTL_TG_PENDING) {
1365                tg_update_disptime(tg);
1366                throtl_schedule_next_dispatch(sq->parent_sq, true);
1367        }
1368}
1369
1370static ssize_t tg_set_conf(struct kernfs_open_file *of,
1371                           char *buf, size_t nbytes, loff_t off, bool is_u64)
1372{
1373        struct blkcg *blkcg = css_to_blkcg(of_css(of));
1374        struct blkg_conf_ctx ctx;
1375        struct throtl_grp *tg;
1376        int ret;
1377        u64 v;
1378
1379        blkg_conf_init(&ctx, buf);
1380
1381        ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1382        if (ret)
1383                goto out_finish;
1384
1385        ret = -EINVAL;
1386        if (sscanf(ctx.body, "%llu", &v) != 1)
1387                goto out_finish;
1388        if (!v)
1389                v = U64_MAX;
1390
1391        tg = blkg_to_tg(ctx.blkg);
1392        tg_update_carryover(tg);
1393
1394        if (is_u64)
1395                *(u64 *)((void *)tg + of_cft(of)->private) = v;
1396        else
1397                *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1398
1399        tg_conf_updated(tg, false);
1400        ret = 0;
1401out_finish:
1402        blkg_conf_exit(&ctx);
1403        return ret ?: nbytes;
1404}
1405
1406static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1407                               char *buf, size_t nbytes, loff_t off)
1408{
1409        return tg_set_conf(of, buf, nbytes, off, true);
1410}
1411
1412static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1413                                char *buf, size_t nbytes, loff_t off)
1414{
1415        return tg_set_conf(of, buf, nbytes, off, false);
1416}
1417
1418static int tg_print_rwstat(struct seq_file *sf, void *v)
1419{
1420        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1421                          blkg_prfill_rwstat, &blkcg_policy_throtl,
1422                          seq_cft(sf)->private, true);
1423        return 0;
1424}
1425
1426static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1427                                      struct blkg_policy_data *pd, int off)
1428{
1429        struct blkg_rwstat_sample sum;
1430
1431        blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1432                                  &sum);
1433        return __blkg_prfill_rwstat(sf, pd, &sum);
1434}
1435
1436static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1437{
1438        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1439                          tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1440                          seq_cft(sf)->private, true);
1441        return 0;
1442}
1443
1444static struct cftype throtl_legacy_files[] = {
1445        {
1446                .name = "throttle.read_bps_device",
1447                .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1448                .seq_show = tg_print_conf_u64,
1449                .write = tg_set_conf_u64,
1450        },
1451        {
1452                .name = "throttle.write_bps_device",
1453                .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1454                .seq_show = tg_print_conf_u64,
1455                .write = tg_set_conf_u64,
1456        },
1457        {
1458                .name = "throttle.read_iops_device",
1459                .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1460                .seq_show = tg_print_conf_uint,
1461                .write = tg_set_conf_uint,
1462        },
1463        {
1464                .name = "throttle.write_iops_device",
1465                .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1466                .seq_show = tg_print_conf_uint,
1467                .write = tg_set_conf_uint,
1468        },
1469        {
1470                .name = "throttle.io_service_bytes",
1471                .private = offsetof(struct throtl_grp, stat_bytes),
1472                .seq_show = tg_print_rwstat,
1473        },
1474        {
1475                .name = "throttle.io_service_bytes_recursive",
1476                .private = offsetof(struct throtl_grp, stat_bytes),
1477                .seq_show = tg_print_rwstat_recursive,
1478        },
1479        {
1480                .name = "throttle.io_serviced",
1481                .private = offsetof(struct throtl_grp, stat_ios),
1482                .seq_show = tg_print_rwstat,
1483        },
1484        {
1485                .name = "throttle.io_serviced_recursive",
1486                .private = offsetof(struct throtl_grp, stat_ios),
1487                .seq_show = tg_print_rwstat_recursive,
1488        },
1489        { }     /* terminate */
1490};
1491
1492static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1493                         int off)
1494{
1495        struct throtl_grp *tg = pd_to_tg(pd);
1496        const char *dname = blkg_dev_name(pd->blkg);
1497        char bufs[4][21] = { "max", "max", "max", "max" };
1498        u64 bps_dft;
1499        unsigned int iops_dft;
1500        char idle_time[26] = "";
1501        char latency_time[26] = "";
1502
1503        if (!dname)
1504                return 0;
1505
1506        if (off == LIMIT_LOW) {
1507                bps_dft = 0;
1508                iops_dft = 0;
1509        } else {
1510                bps_dft = U64_MAX;
1511                iops_dft = UINT_MAX;
1512        }
1513
1514        if (tg->bps_conf[READ][off] == bps_dft &&
1515            tg->bps_conf[WRITE][off] == bps_dft &&
1516            tg->iops_conf[READ][off] == iops_dft &&
1517            tg->iops_conf[WRITE][off] == iops_dft &&
1518            (off != LIMIT_LOW ||
1519             (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1520              tg->latency_target_conf == DFL_LATENCY_TARGET)))
1521                return 0;
1522
1523        if (tg->bps_conf[READ][off] != U64_MAX)
1524                snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1525                        tg->bps_conf[READ][off]);
1526        if (tg->bps_conf[WRITE][off] != U64_MAX)
1527                snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1528                        tg->bps_conf[WRITE][off]);
1529        if (tg->iops_conf[READ][off] != UINT_MAX)
1530                snprintf(bufs[2], sizeof(bufs[2]), "%u",
1531                        tg->iops_conf[READ][off]);
1532        if (tg->iops_conf[WRITE][off] != UINT_MAX)
1533                snprintf(bufs[3], sizeof(bufs[3]), "%u",
1534                        tg->iops_conf[WRITE][off]);
1535        if (off == LIMIT_LOW) {
1536                if (tg->idletime_threshold_conf == ULONG_MAX)
1537                        strcpy(idle_time, " idle=max");
1538                else
1539                        snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1540                                tg->idletime_threshold_conf);
1541
1542                if (tg->latency_target_conf == ULONG_MAX)
1543                        strcpy(latency_time, " latency=max");
1544                else
1545                        snprintf(latency_time, sizeof(latency_time),
1546                                " latency=%lu", tg->latency_target_conf);
1547        }
1548
1549        seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1550                   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1551                   latency_time);
1552        return 0;
1553}
1554
1555static int tg_print_limit(struct seq_file *sf, void *v)
1556{
1557        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1558                          &blkcg_policy_throtl, seq_cft(sf)->private, false);
1559        return 0;
1560}
1561
1562static ssize_t tg_set_limit(struct kernfs_open_file *of,
1563                          char *buf, size_t nbytes, loff_t off)
1564{
1565        struct blkcg *blkcg = css_to_blkcg(of_css(of));
1566        struct blkg_conf_ctx ctx;
1567        struct throtl_grp *tg;
1568        u64 v[4];
1569        unsigned long idle_time;
1570        unsigned long latency_time;
1571        int ret;
1572        int index = of_cft(of)->private;
1573
1574        blkg_conf_init(&ctx, buf);
1575
1576        ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, &ctx);
1577        if (ret)
1578                goto out_finish;
1579
1580        tg = blkg_to_tg(ctx.blkg);
1581        tg_update_carryover(tg);
1582
1583        v[0] = tg->bps_conf[READ][index];
1584        v[1] = tg->bps_conf[WRITE][index];
1585        v[2] = tg->iops_conf[READ][index];
1586        v[3] = tg->iops_conf[WRITE][index];
1587
1588        idle_time = tg->idletime_threshold_conf;
1589        latency_time = tg->latency_target_conf;
1590        while (true) {
1591                char tok[27];   /* wiops=18446744073709551616 */
1592                char *p;
1593                u64 val = U64_MAX;
1594                int len;
1595
1596                if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1597                        break;
1598                if (tok[0] == '\0')
1599                        break;
1600                ctx.body += len;
1601
1602                ret = -EINVAL;
1603                p = tok;
1604                strsep(&p, "=");
1605                if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1606                        goto out_finish;
1607
1608                ret = -ERANGE;
1609                if (!val)
1610                        goto out_finish;
1611
1612                ret = -EINVAL;
1613                if (!strcmp(tok, "rbps") && val > 1)
1614                        v[0] = val;
1615                else if (!strcmp(tok, "wbps") && val > 1)
1616                        v[1] = val;
1617                else if (!strcmp(tok, "riops") && val > 1)
1618                        v[2] = min_t(u64, val, UINT_MAX);
1619                else if (!strcmp(tok, "wiops") && val > 1)
1620                        v[3] = min_t(u64, val, UINT_MAX);
1621                else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1622                        idle_time = val;
1623                else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1624                        latency_time = val;
1625                else
1626                        goto out_finish;
1627        }
1628
1629        tg->bps_conf[READ][index] = v[0];
1630        tg->bps_conf[WRITE][index] = v[1];
1631        tg->iops_conf[READ][index] = v[2];
1632        tg->iops_conf[WRITE][index] = v[3];
1633
1634        if (index == LIMIT_MAX) {
1635                tg->bps[READ][index] = v[0];
1636                tg->bps[WRITE][index] = v[1];
1637                tg->iops[READ][index] = v[2];
1638                tg->iops[WRITE][index] = v[3];
1639        }
1640        tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1641                tg->bps_conf[READ][LIMIT_MAX]);
1642        tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1643                tg->bps_conf[WRITE][LIMIT_MAX]);
1644        tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1645                tg->iops_conf[READ][LIMIT_MAX]);
1646        tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1647                tg->iops_conf[WRITE][LIMIT_MAX]);
1648        tg->idletime_threshold_conf = idle_time;
1649        tg->latency_target_conf = latency_time;
1650
1651        /* force user to configure all settings for low limit  */
1652        if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1653              tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1654            tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1655            tg->latency_target_conf == DFL_LATENCY_TARGET) {
1656                tg->bps[READ][LIMIT_LOW] = 0;
1657                tg->bps[WRITE][LIMIT_LOW] = 0;
1658                tg->iops[READ][LIMIT_LOW] = 0;
1659                tg->iops[WRITE][LIMIT_LOW] = 0;
1660                tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1661                tg->latency_target = DFL_LATENCY_TARGET;
1662        } else if (index == LIMIT_LOW) {
1663                tg->idletime_threshold = tg->idletime_threshold_conf;
1664                tg->latency_target = tg->latency_target_conf;
1665        }
1666
1667        blk_throtl_update_limit_valid(tg->td);
1668        if (tg->td->limit_valid[LIMIT_LOW]) {
1669                if (index == LIMIT_LOW)
1670                        tg->td->limit_index = LIMIT_LOW;
1671        } else
1672                tg->td->limit_index = LIMIT_MAX;
1673        tg_conf_updated(tg, index == LIMIT_LOW &&
1674                tg->td->limit_valid[LIMIT_LOW]);
1675        ret = 0;
1676out_finish:
1677        blkg_conf_exit(&ctx);
1678        return ret ?: nbytes;
1679}
1680
1681static struct cftype throtl_files[] = {
1682#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1683        {
1684                .name = "low",
1685                .flags = CFTYPE_NOT_ON_ROOT,
1686                .seq_show = tg_print_limit,
1687                .write = tg_set_limit,
1688                .private = LIMIT_LOW,
1689        },
1690#endif
1691        {
1692                .name = "max",
1693                .flags = CFTYPE_NOT_ON_ROOT,
1694                .seq_show = tg_print_limit,
1695                .write = tg_set_limit,
1696                .private = LIMIT_MAX,
1697        },
1698        { }     /* terminate */
1699};
1700
1701static void throtl_shutdown_wq(struct request_queue *q)
1702{
1703        struct throtl_data *td = q->td;
1704
1705        cancel_work_sync(&td->dispatch_work);
1706}
1707
1708struct blkcg_policy blkcg_policy_throtl = {
1709        .dfl_cftypes            = throtl_files,
1710        .legacy_cftypes         = throtl_legacy_files,
1711
1712        .pd_alloc_fn            = throtl_pd_alloc,
1713        .pd_init_fn             = throtl_pd_init,
1714        .pd_online_fn           = throtl_pd_online,
1715        .pd_offline_fn          = throtl_pd_offline,
1716        .pd_free_fn             = throtl_pd_free,
1717};
1718
1719void blk_throtl_cancel_bios(struct gendisk *disk)
1720{
1721        struct request_queue *q = disk->queue;
1722        struct cgroup_subsys_state *pos_css;
1723        struct blkcg_gq *blkg;
1724
1725        spin_lock_irq(&q->queue_lock);
1726        /*
1727         * queue_lock is held, rcu lock is not needed here technically.
1728         * However, rcu lock is still held to emphasize that following
1729         * path need RCU protection and to prevent warning from lockdep.
1730         */
1731        rcu_read_lock();
1732        blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
1733                struct throtl_grp *tg = blkg_to_tg(blkg);
1734                struct throtl_service_queue *sq = &tg->service_queue;
1735
1736                /*
1737                 * Set the flag to make sure throtl_pending_timer_fn() won't
1738                 * stop until all throttled bios are dispatched.
1739                 */
1740                tg->flags |= THROTL_TG_CANCELING;
1741
1742                /*
1743                 * Do not dispatch cgroup without THROTL_TG_PENDING or cgroup
1744                 * will be inserted to service queue without THROTL_TG_PENDING
1745                 * set in tg_update_disptime below. Then IO dispatched from
1746                 * child in tg_dispatch_one_bio will trigger double insertion
1747                 * and corrupt the tree.
1748                 */
1749                if (!(tg->flags & THROTL_TG_PENDING))
1750                        continue;
1751
1752                /*
1753                 * Update disptime after setting the above flag to make sure
1754                 * throtl_select_dispatch() won't exit without dispatching.
1755                 */
1756                tg_update_disptime(tg);
1757
1758                throtl_schedule_pending_timer(sq, jiffies + 1);
1759        }
1760        rcu_read_unlock();
1761        spin_unlock_irq(&q->queue_lock);
1762}
1763
1764#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1765static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1766{
1767        unsigned long rtime = jiffies, wtime = jiffies;
1768
1769        if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1770                rtime = tg->last_low_overflow_time[READ];
1771        if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1772                wtime = tg->last_low_overflow_time[WRITE];
1773        return min(rtime, wtime);
1774}
1775
1776static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1777{
1778        struct throtl_service_queue *parent_sq;
1779        struct throtl_grp *parent = tg;
1780        unsigned long ret = __tg_last_low_overflow_time(tg);
1781
1782        while (true) {
1783                parent_sq = parent->service_queue.parent_sq;
1784                parent = sq_to_tg(parent_sq);
1785                if (!parent)
1786                        break;
1787
1788                /*
1789                 * The parent doesn't have low limit, it always reaches low
1790                 * limit. Its overflow time is useless for children
1791                 */
1792                if (!parent->bps[READ][LIMIT_LOW] &&
1793                    !parent->iops[READ][LIMIT_LOW] &&
1794                    !parent->bps[WRITE][LIMIT_LOW] &&
1795                    !parent->iops[WRITE][LIMIT_LOW])
1796                        continue;
1797                if (time_after(__tg_last_low_overflow_time(parent), ret))
1798                        ret = __tg_last_low_overflow_time(parent);
1799        }
1800        return ret;
1801}
1802
1803static bool throtl_tg_is_idle(struct throtl_grp *tg)
1804{
1805        /*
1806         * cgroup is idle if:
1807         * - single idle is too long, longer than a fixed value (in case user
1808         *   configure a too big threshold) or 4 times of idletime threshold
1809         * - average think time is more than threshold
1810         * - IO latency is largely below threshold
1811         */
1812        unsigned long time;
1813        bool ret;
1814
1815        time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1816        ret = tg->latency_target == DFL_LATENCY_TARGET ||
1817              tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1818              (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1819              tg->avg_idletime > tg->idletime_threshold ||
1820              (tg->latency_target && tg->bio_cnt &&
1821                tg->bad_bio_cnt * 5 < tg->bio_cnt);
1822        throtl_log(&tg->service_queue,
1823                "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1824                tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1825                tg->bio_cnt, ret, tg->td->scale);
1826        return ret;
1827}
1828
1829static bool throtl_low_limit_reached(struct throtl_grp *tg, int rw)
1830{
1831        struct throtl_service_queue *sq = &tg->service_queue;
1832        bool limit = tg->bps[rw][LIMIT_LOW] || tg->iops[rw][LIMIT_LOW];
1833
1834        /*
1835         * if low limit is zero, low limit is always reached.
1836         * if low limit is non-zero, we can check if there is any request
1837         * is queued to determine if low limit is reached as we throttle
1838         * request according to limit.
1839         */
1840        return !limit || sq->nr_queued[rw];
1841}
1842
1843static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1844{
1845        /*
1846         * cgroup reaches low limit when low limit of READ and WRITE are
1847         * both reached, it's ok to upgrade to next limit if cgroup reaches
1848         * low limit
1849         */
1850        if (throtl_low_limit_reached(tg, READ) &&
1851            throtl_low_limit_reached(tg, WRITE))
1852                return true;
1853
1854        if (time_after_eq(jiffies,
1855                tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1856            throtl_tg_is_idle(tg))
1857                return true;
1858        return false;
1859}
1860
1861static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1862{
1863        while (true) {
1864                if (throtl_tg_can_upgrade(tg))
1865                        return true;
1866                tg = sq_to_tg(tg->service_queue.parent_sq);
1867                if (!tg || !tg_to_blkg(tg)->parent)
1868                        return false;
1869        }
1870        return false;
1871}
1872
1873static bool throtl_can_upgrade(struct throtl_data *td,
1874        struct throtl_grp *this_tg)
1875{
1876        struct cgroup_subsys_state *pos_css;
1877        struct blkcg_gq *blkg;
1878
1879        if (td->limit_index != LIMIT_LOW)
1880                return false;
1881
1882        if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1883                return false;
1884
1885        rcu_read_lock();
1886        blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1887                struct throtl_grp *tg = blkg_to_tg(blkg);
1888
1889                if (tg == this_tg)
1890                        continue;
1891                if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1892                        continue;
1893                if (!throtl_hierarchy_can_upgrade(tg)) {
1894                        rcu_read_unlock();
1895                        return false;
1896                }
1897        }
1898        rcu_read_unlock();
1899        return true;
1900}
1901
1902static void throtl_upgrade_check(struct throtl_grp *tg)
1903{
1904        unsigned long now = jiffies;
1905
1906        if (tg->td->limit_index != LIMIT_LOW)
1907                return;
1908
1909        if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1910                return;
1911
1912        tg->last_check_time = now;
1913
1914        if (!time_after_eq(now,
1915             __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1916                return;
1917
1918        if (throtl_can_upgrade(tg->td, NULL))
1919                throtl_upgrade_state(tg->td);
1920}
1921
1922static void throtl_upgrade_state(struct throtl_data *td)
1923{
1924        struct cgroup_subsys_state *pos_css;
1925        struct blkcg_gq *blkg;
1926
1927        throtl_log(&td->service_queue, "upgrade to max");
1928        td->limit_index = LIMIT_MAX;
1929        td->low_upgrade_time = jiffies;
1930        td->scale = 0;
1931        rcu_read_lock();
1932        blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1933                struct throtl_grp *tg = blkg_to_tg(blkg);
1934                struct throtl_service_queue *sq = &tg->service_queue;
1935
1936                tg->disptime = jiffies - 1;
1937                throtl_select_dispatch(sq);
1938                throtl_schedule_next_dispatch(sq, true);
1939        }
1940        rcu_read_unlock();
1941        throtl_select_dispatch(&td->service_queue);
1942        throtl_schedule_next_dispatch(&td->service_queue, true);
1943        queue_work(kthrotld_workqueue, &td->dispatch_work);
1944}
1945
1946static void throtl_downgrade_state(struct throtl_data *td)
1947{
1948        td->scale /= 2;
1949
1950        throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1951        if (td->scale) {
1952                td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
1953                return;
1954        }
1955
1956        td->limit_index = LIMIT_LOW;
1957        td->low_downgrade_time = jiffies;
1958}
1959
1960static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
1961{
1962        struct throtl_data *td = tg->td;
1963        unsigned long now = jiffies;
1964
1965        /*
1966         * If cgroup is below low limit, consider downgrade and throttle other
1967         * cgroups
1968         */
1969        if (time_after_eq(now, tg_last_low_overflow_time(tg) +
1970                                        td->throtl_slice) &&
1971            (!throtl_tg_is_idle(tg) ||
1972             !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
1973                return true;
1974        return false;
1975}
1976
1977static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
1978{
1979        struct throtl_data *td = tg->td;
1980
1981        if (time_before(jiffies, td->low_upgrade_time + td->throtl_slice))
1982                return false;
1983
1984        while (true) {
1985                if (!throtl_tg_can_downgrade(tg))
1986                        return false;
1987                tg = sq_to_tg(tg->service_queue.parent_sq);
1988                if (!tg || !tg_to_blkg(tg)->parent)
1989                        break;
1990        }
1991        return true;
1992}
1993
1994static void throtl_downgrade_check(struct throtl_grp *tg)
1995{
1996        uint64_t bps;
1997        unsigned int iops;
1998        unsigned long elapsed_time;
1999        unsigned long now = jiffies;
2000
2001        if (tg->td->limit_index != LIMIT_MAX ||
2002            !tg->td->limit_valid[LIMIT_LOW])
2003                return;
2004        if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2005                return;
2006        if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2007                return;
2008
2009        elapsed_time = now - tg->last_check_time;
2010        tg->last_check_time = now;
2011
2012        if (time_before(now, tg_last_low_overflow_time(tg) +
2013                        tg->td->throtl_slice))
2014                return;
2015
2016        if (tg->bps[READ][LIMIT_LOW]) {
2017                bps = tg->last_bytes_disp[READ] * HZ;
2018                do_div(bps, elapsed_time);
2019                if (bps >= tg->bps[READ][LIMIT_LOW])
2020                        tg->last_low_overflow_time[READ] = now;
2021        }
2022
2023        if (tg->bps[WRITE][LIMIT_LOW]) {
2024                bps = tg->last_bytes_disp[WRITE] * HZ;
2025                do_div(bps, elapsed_time);
2026                if (bps >= tg->bps[WRITE][LIMIT_LOW])
2027                        tg->last_low_overflow_time[WRITE] = now;
2028        }
2029
2030        if (tg->iops[READ][LIMIT_LOW]) {
2031                iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2032                if (iops >= tg->iops[READ][LIMIT_LOW])
2033                        tg->last_low_overflow_time[READ] = now;
2034        }
2035
2036        if (tg->iops[WRITE][LIMIT_LOW]) {
2037                iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2038                if (iops >= tg->iops[WRITE][LIMIT_LOW])
2039                        tg->last_low_overflow_time[WRITE] = now;
2040        }
2041
2042        /*
2043         * If cgroup is below low limit, consider downgrade and throttle other
2044         * cgroups
2045         */
2046        if (throtl_hierarchy_can_downgrade(tg))
2047                throtl_downgrade_state(tg->td);
2048
2049        tg->last_bytes_disp[READ] = 0;
2050        tg->last_bytes_disp[WRITE] = 0;
2051        tg->last_io_disp[READ] = 0;
2052        tg->last_io_disp[WRITE] = 0;
2053}
2054
2055static void blk_throtl_update_idletime(struct throtl_grp *tg)
2056{
2057        unsigned long now;
2058        unsigned long last_finish_time = tg->last_finish_time;
2059
2060        if (last_finish_time == 0)
2061                return;
2062
2063        now = ktime_get_ns() >> 10;
2064        if (now <= last_finish_time ||
2065            last_finish_time == tg->checked_last_finish_time)
2066                return;
2067
2068        tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2069        tg->checked_last_finish_time = last_finish_time;
2070}
2071
2072static void throtl_update_latency_buckets(struct throtl_data *td)
2073{
2074        struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2075        int i, cpu, rw;
2076        unsigned long last_latency[2] = { 0 };
2077        unsigned long latency[2];
2078
2079        if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2080                return;
2081        if (time_before(jiffies, td->last_calculate_time + HZ))
2082                return;
2083        td->last_calculate_time = jiffies;
2084
2085        memset(avg_latency, 0, sizeof(avg_latency));
2086        for (rw = READ; rw <= WRITE; rw++) {
2087                for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2088                        struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2089
2090                        for_each_possible_cpu(cpu) {
2091                                struct latency_bucket *bucket;
2092
2093                                /* this isn't race free, but ok in practice */
2094                                bucket = per_cpu_ptr(td->latency_buckets[rw],
2095                                        cpu);
2096                                tmp->total_latency += bucket[i].total_latency;
2097                                tmp->samples += bucket[i].samples;
2098                                bucket[i].total_latency = 0;
2099                                bucket[i].samples = 0;
2100                        }
2101
2102                        if (tmp->samples >= 32) {
2103                                int samples = tmp->samples;
2104
2105                                latency[rw] = tmp->total_latency;
2106
2107                                tmp->total_latency = 0;
2108                                tmp->samples = 0;
2109                                latency[rw] /= samples;
2110                                if (latency[rw] == 0)
2111                                        continue;
2112                                avg_latency[rw][i].latency = latency[rw];
2113                        }
2114                }
2115        }
2116
2117        for (rw = READ; rw <= WRITE; rw++) {
2118                for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2119                        if (!avg_latency[rw][i].latency) {
2120                                if (td->avg_buckets[rw][i].latency < last_latency[rw])
2121                                        td->avg_buckets[rw][i].latency =
2122                                                last_latency[rw];
2123                                continue;
2124                        }
2125
2126                        if (!td->avg_buckets[rw][i].valid)
2127                                latency[rw] = avg_latency[rw][i].latency;
2128                        else
2129                                latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2130                                        avg_latency[rw][i].latency) >> 3;
2131
2132                        td->avg_buckets[rw][i].latency = max(latency[rw],
2133                                last_latency[rw]);
2134                        td->avg_buckets[rw][i].valid = true;
2135                        last_latency[rw] = td->avg_buckets[rw][i].latency;
2136                }
2137        }
2138
2139        for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2140                throtl_log(&td->service_queue,
2141                        "Latency bucket %d: read latency=%ld, read valid=%d, "
2142                        "write latency=%ld, write valid=%d", i,
2143                        td->avg_buckets[READ][i].latency,
2144                        td->avg_buckets[READ][i].valid,
2145                        td->avg_buckets[WRITE][i].latency,
2146                        td->avg_buckets[WRITE][i].valid);
2147}
2148#else
2149static inline void throtl_update_latency_buckets(struct throtl_data *td)
2150{
2151}
2152
2153static void blk_throtl_update_idletime(struct throtl_grp *tg)
2154{
2155}
2156
2157static void throtl_downgrade_check(struct throtl_grp *tg)
2158{
2159}
2160
2161static void throtl_upgrade_check(struct throtl_grp *tg)
2162{
2163}
2164
2165static bool throtl_can_upgrade(struct throtl_data *td,
2166        struct throtl_grp *this_tg)
2167{
2168        return false;
2169}
2170
2171static void throtl_upgrade_state(struct throtl_data *td)
2172{
2173}
2174#endif
2175
2176bool __blk_throtl_bio(struct bio *bio)
2177{
2178        struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2179        struct blkcg_gq *blkg = bio->bi_blkg;
2180        struct throtl_qnode *qn = NULL;
2181        struct throtl_grp *tg = blkg_to_tg(blkg);
2182        struct throtl_service_queue *sq;
2183        bool rw = bio_data_dir(bio);
2184        bool throttled = false;
2185        struct throtl_data *td = tg->td;
2186
2187        rcu_read_lock();
2188
2189        spin_lock_irq(&q->queue_lock);
2190
2191        throtl_update_latency_buckets(td);
2192
2193        blk_throtl_update_idletime(tg);
2194
2195        sq = &tg->service_queue;
2196
2197again:
2198        while (true) {
2199                if (tg->last_low_overflow_time[rw] == 0)
2200                        tg->last_low_overflow_time[rw] = jiffies;
2201                throtl_downgrade_check(tg);
2202                throtl_upgrade_check(tg);
2203                /* throtl is FIFO - if bios are already queued, should queue */
2204                if (sq->nr_queued[rw])
2205                        break;
2206
2207                /* if above limits, break to queue */
2208                if (!tg_may_dispatch(tg, bio, NULL)) {
2209                        tg->last_low_overflow_time[rw] = jiffies;
2210                        if (throtl_can_upgrade(td, tg)) {
2211                                throtl_upgrade_state(td);
2212                                goto again;
2213                        }
2214                        break;
2215                }
2216
2217                /* within limits, let's charge and dispatch directly */
2218                throtl_charge_bio(tg, bio);
2219
2220                /*
2221                 * We need to trim slice even when bios are not being queued
2222                 * otherwise it might happen that a bio is not queued for
2223                 * a long time and slice keeps on extending and trim is not
2224                 * called for a long time. Now if limits are reduced suddenly
2225                 * we take into account all the IO dispatched so far at new
2226                 * low rate and * newly queued IO gets a really long dispatch
2227                 * time.
2228                 *
2229                 * So keep on trimming slice even if bio is not queued.
2230                 */
2231                throtl_trim_slice(tg, rw);
2232
2233                /*
2234                 * @bio passed through this layer without being throttled.
2235                 * Climb up the ladder.  If we're already at the top, it
2236                 * can be executed directly.
2237                 */
2238                qn = &tg->qnode_on_parent[rw];
2239                sq = sq->parent_sq;
2240                tg = sq_to_tg(sq);
2241                if (!tg) {
2242                        bio_set_flag(bio, BIO_BPS_THROTTLED);
2243                        goto out_unlock;
2244                }
2245        }
2246
2247        /* out-of-limit, queue to @tg */
2248        throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2249                   rw == READ ? 'R' : 'W',
2250                   tg->bytes_disp[rw], bio->bi_iter.bi_size,
2251                   tg_bps_limit(tg, rw),
2252                   tg->io_disp[rw], tg_iops_limit(tg, rw),
2253                   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2254
2255        tg->last_low_overflow_time[rw] = jiffies;
2256
2257        td->nr_queued[rw]++;
2258        throtl_add_bio_tg(bio, qn, tg);
2259        throttled = true;
2260
2261        /*
2262         * Update @tg's dispatch time and force schedule dispatch if @tg
2263         * was empty before @bio.  The forced scheduling isn't likely to
2264         * cause undue delay as @bio is likely to be dispatched directly if
2265         * its @tg's disptime is not in the future.
2266         */
2267        if (tg->flags & THROTL_TG_WAS_EMPTY) {
2268                tg_update_disptime(tg);
2269                throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2270        }
2271
2272out_unlock:
2273#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2274        if (throttled || !td->track_bio_latency)
2275                bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2276#endif
2277        spin_unlock_irq(&q->queue_lock);
2278
2279        rcu_read_unlock();
2280        return throttled;
2281}
2282
2283#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2284static void throtl_track_latency(struct throtl_data *td, sector_t size,
2285                                 enum req_op op, unsigned long time)
2286{
2287        const bool rw = op_is_write(op);
2288        struct latency_bucket *latency;
2289        int index;
2290
2291        if (!td || td->limit_index != LIMIT_LOW ||
2292            !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2293            !blk_queue_nonrot(td->queue))
2294                return;
2295
2296        index = request_bucket_index(size);
2297
2298        latency = get_cpu_ptr(td->latency_buckets[rw]);
2299        latency[index].total_latency += time;
2300        latency[index].samples++;
2301        put_cpu_ptr(td->latency_buckets[rw]);
2302}
2303
2304void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2305{
2306        struct request_queue *q = rq->q;
2307        struct throtl_data *td = q->td;
2308
2309        throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2310                             time_ns >> 10);
2311}
2312
2313void blk_throtl_bio_endio(struct bio *bio)
2314{
2315        struct blkcg_gq *blkg;
2316        struct throtl_grp *tg;
2317        u64 finish_time_ns;
2318        unsigned long finish_time;
2319        unsigned long start_time;
2320        unsigned long lat;
2321        int rw = bio_data_dir(bio);
2322
2323        blkg = bio->bi_blkg;
2324        if (!blkg)
2325                return;
2326        tg = blkg_to_tg(blkg);
2327        if (!tg->td->limit_valid[LIMIT_LOW])
2328                return;
2329
2330        finish_time_ns = ktime_get_ns();
2331        tg->last_finish_time = finish_time_ns >> 10;
2332
2333        start_time = bio_issue_time(&bio->bi_issue) >> 10;
2334        finish_time = __bio_issue_time(finish_time_ns) >> 10;
2335        if (!start_time || finish_time <= start_time)
2336                return;
2337
2338        lat = finish_time - start_time;
2339        /* this is only for bio based driver */
2340        if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2341                throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2342                                     bio_op(bio), lat);
2343
2344        if (tg->latency_target && lat >= tg->td->filtered_latency) {
2345                int bucket;
2346                unsigned int threshold;
2347
2348                bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2349                threshold = tg->td->avg_buckets[rw][bucket].latency +
2350                        tg->latency_target;
2351                if (lat > threshold)
2352                        tg->bad_bio_cnt++;
2353                /*
2354                 * Not race free, could get wrong count, which means cgroups
2355                 * will be throttled
2356                 */
2357                tg->bio_cnt++;
2358        }
2359
2360        if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2361                tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2362                tg->bio_cnt /= 2;
2363                tg->bad_bio_cnt /= 2;
2364        }
2365}
2366#endif
2367
2368int blk_throtl_init(struct gendisk *disk)
2369{
2370        struct request_queue *q = disk->queue;
2371        struct throtl_data *td;
2372        int ret;
2373
2374        td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2375        if (!td)
2376                return -ENOMEM;
2377        td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2378                LATENCY_BUCKET_SIZE, __alignof__(u64));
2379        if (!td->latency_buckets[READ]) {
2380                kfree(td);
2381                return -ENOMEM;
2382        }
2383        td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2384                LATENCY_BUCKET_SIZE, __alignof__(u64));
2385        if (!td->latency_buckets[WRITE]) {
2386                free_percpu(td->latency_buckets[READ]);
2387                kfree(td);
2388                return -ENOMEM;
2389        }
2390
2391        INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2392        throtl_service_queue_init(&td->service_queue);
2393
2394        q->td = td;
2395        td->queue = q;
2396
2397        td->limit_valid[LIMIT_MAX] = true;
2398        td->limit_index = LIMIT_MAX;
2399        td->low_upgrade_time = jiffies;
2400        td->low_downgrade_time = jiffies;
2401
2402        /* activate policy */
2403        ret = blkcg_activate_policy(disk, &blkcg_policy_throtl);
2404        if (ret) {
2405                free_percpu(td->latency_buckets[READ]);
2406                free_percpu(td->latency_buckets[WRITE]);
2407                kfree(td);
2408        }
2409        return ret;
2410}
2411
2412void blk_throtl_exit(struct gendisk *disk)
2413{
2414        struct request_queue *q = disk->queue;
2415
2416        BUG_ON(!q->td);
2417        del_timer_sync(&q->td->service_queue.pending_timer);
2418        throtl_shutdown_wq(q);
2419        blkcg_deactivate_policy(disk, &blkcg_policy_throtl);
2420        free_percpu(q->td->latency_buckets[READ]);
2421        free_percpu(q->td->latency_buckets[WRITE]);
2422        kfree(q->td);
2423}
2424
2425void blk_throtl_register(struct gendisk *disk)
2426{
2427        struct request_queue *q = disk->queue;
2428        struct throtl_data *td;
2429        int i;
2430
2431        td = q->td;
2432        BUG_ON(!td);
2433
2434        if (blk_queue_nonrot(q)) {
2435                td->throtl_slice = DFL_THROTL_SLICE_SSD;
2436                td->filtered_latency = LATENCY_FILTERED_SSD;
2437        } else {
2438                td->throtl_slice = DFL_THROTL_SLICE_HD;
2439                td->filtered_latency = LATENCY_FILTERED_HD;
2440                for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2441                        td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2442                        td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2443                }
2444        }
2445#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2446        /* if no low limit, use previous default */
2447        td->throtl_slice = DFL_THROTL_SLICE_HD;
2448
2449#else
2450        td->track_bio_latency = !queue_is_mq(q);
2451        if (!td->track_bio_latency)
2452                blk_stat_enable_accounting(q);
2453#endif
2454}
2455
2456#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2457ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2458{
2459        if (!q->td)
2460                return -EINVAL;
2461        return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2462}
2463
2464ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2465        const char *page, size_t count)
2466{
2467        unsigned long v;
2468        unsigned long t;
2469
2470        if (!q->td)
2471                return -EINVAL;
2472        if (kstrtoul(page, 10, &v))
2473                return -EINVAL;
2474        t = msecs_to_jiffies(v);
2475        if (t == 0 || t > MAX_THROTL_SLICE)
2476                return -EINVAL;
2477        q->td->throtl_slice = t;
2478        return count;
2479}
2480#endif
2481
2482static int __init throtl_init(void)
2483{
2484        kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2485        if (!kthrotld_workqueue)
2486                panic("Failed to create kthrotld\n");
2487
2488        return blkcg_policy_register(&blkcg_policy_throtl);
2489}
2490
2491module_init(throtl_init);
2492