linux/block/blk-settings.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Functions related to setting various queue properties from drivers
   4 */
   5#include <linux/kernel.h>
   6#include <linux/module.h>
   7#include <linux/init.h>
   8#include <linux/bio.h>
   9#include <linux/blkdev.h>
  10#include <linux/pagemap.h>
  11#include <linux/backing-dev-defs.h>
  12#include <linux/gcd.h>
  13#include <linux/lcm.h>
  14#include <linux/jiffies.h>
  15#include <linux/gfp.h>
  16#include <linux/dma-mapping.h>
  17
  18#include "blk.h"
  19#include "blk-rq-qos.h"
  20#include "blk-wbt.h"
  21
  22void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
  23{
  24        q->rq_timeout = timeout;
  25}
  26EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
  27
  28/**
  29 * blk_set_default_limits - reset limits to default values
  30 * @lim:  the queue_limits structure to reset
  31 *
  32 * Description:
  33 *   Returns a queue_limit struct to its default state.
  34 */
  35void blk_set_default_limits(struct queue_limits *lim)
  36{
  37        lim->max_segments = BLK_MAX_SEGMENTS;
  38        lim->max_discard_segments = 1;
  39        lim->max_integrity_segments = 0;
  40        lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
  41        lim->virt_boundary_mask = 0;
  42        lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
  43        lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
  44        lim->max_user_sectors = lim->max_dev_sectors = 0;
  45        lim->chunk_sectors = 0;
  46        lim->max_write_zeroes_sectors = 0;
  47        lim->max_zone_append_sectors = 0;
  48        lim->max_discard_sectors = 0;
  49        lim->max_hw_discard_sectors = 0;
  50        lim->max_secure_erase_sectors = 0;
  51        lim->discard_granularity = 0;
  52        lim->discard_alignment = 0;
  53        lim->discard_misaligned = 0;
  54        lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
  55        lim->bounce = BLK_BOUNCE_NONE;
  56        lim->alignment_offset = 0;
  57        lim->io_opt = 0;
  58        lim->misaligned = 0;
  59        lim->zoned = BLK_ZONED_NONE;
  60        lim->zone_write_granularity = 0;
  61        lim->dma_alignment = 511;
  62}
  63
  64/**
  65 * blk_set_stacking_limits - set default limits for stacking devices
  66 * @lim:  the queue_limits structure to reset
  67 *
  68 * Description:
  69 *   Returns a queue_limit struct to its default state. Should be used
  70 *   by stacking drivers like DM that have no internal limits.
  71 */
  72void blk_set_stacking_limits(struct queue_limits *lim)
  73{
  74        blk_set_default_limits(lim);
  75
  76        /* Inherit limits from component devices */
  77        lim->max_segments = USHRT_MAX;
  78        lim->max_discard_segments = USHRT_MAX;
  79        lim->max_hw_sectors = UINT_MAX;
  80        lim->max_segment_size = UINT_MAX;
  81        lim->max_sectors = UINT_MAX;
  82        lim->max_dev_sectors = UINT_MAX;
  83        lim->max_write_zeroes_sectors = UINT_MAX;
  84        lim->max_zone_append_sectors = UINT_MAX;
  85}
  86EXPORT_SYMBOL(blk_set_stacking_limits);
  87
  88/**
  89 * blk_queue_bounce_limit - set bounce buffer limit for queue
  90 * @q: the request queue for the device
  91 * @bounce: bounce limit to enforce
  92 *
  93 * Description:
  94 *    Force bouncing for ISA DMA ranges or highmem.
  95 *
  96 *    DEPRECATED, don't use in new code.
  97 **/
  98void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
  99{
 100        q->limits.bounce = bounce;
 101}
 102EXPORT_SYMBOL(blk_queue_bounce_limit);
 103
 104/**
 105 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
 106 * @q:  the request queue for the device
 107 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
 108 *
 109 * Description:
 110 *    Enables a low level driver to set a hard upper limit,
 111 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
 112 *    the device driver based upon the capabilities of the I/O
 113 *    controller.
 114 *
 115 *    max_dev_sectors is a hard limit imposed by the storage device for
 116 *    READ/WRITE requests. It is set by the disk driver.
 117 *
 118 *    max_sectors is a soft limit imposed by the block layer for
 119 *    filesystem type requests.  This value can be overridden on a
 120 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
 121 *    The soft limit can not exceed max_hw_sectors.
 122 **/
 123void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
 124{
 125        struct queue_limits *limits = &q->limits;
 126        unsigned int max_sectors;
 127
 128        if ((max_hw_sectors << 9) < PAGE_SIZE) {
 129                max_hw_sectors = 1 << (PAGE_SHIFT - 9);
 130                printk(KERN_INFO "%s: set to minimum %d\n",
 131                       __func__, max_hw_sectors);
 132        }
 133
 134        max_hw_sectors = round_down(max_hw_sectors,
 135                                    limits->logical_block_size >> SECTOR_SHIFT);
 136        limits->max_hw_sectors = max_hw_sectors;
 137
 138        max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
 139
 140        if (limits->max_user_sectors)
 141                max_sectors = min(max_sectors, limits->max_user_sectors);
 142        else
 143                max_sectors = min(max_sectors, BLK_DEF_MAX_SECTORS);
 144
 145        max_sectors = round_down(max_sectors,
 146                                 limits->logical_block_size >> SECTOR_SHIFT);
 147        limits->max_sectors = max_sectors;
 148
 149        if (!q->disk)
 150                return;
 151        q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
 152}
 153EXPORT_SYMBOL(blk_queue_max_hw_sectors);
 154
 155/**
 156 * blk_queue_chunk_sectors - set size of the chunk for this queue
 157 * @q:  the request queue for the device
 158 * @chunk_sectors:  chunk sectors in the usual 512b unit
 159 *
 160 * Description:
 161 *    If a driver doesn't want IOs to cross a given chunk size, it can set
 162 *    this limit and prevent merging across chunks. Note that the block layer
 163 *    must accept a page worth of data at any offset. So if the crossing of
 164 *    chunks is a hard limitation in the driver, it must still be prepared
 165 *    to split single page bios.
 166 **/
 167void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
 168{
 169        q->limits.chunk_sectors = chunk_sectors;
 170}
 171EXPORT_SYMBOL(blk_queue_chunk_sectors);
 172
 173/**
 174 * blk_queue_max_discard_sectors - set max sectors for a single discard
 175 * @q:  the request queue for the device
 176 * @max_discard_sectors: maximum number of sectors to discard
 177 **/
 178void blk_queue_max_discard_sectors(struct request_queue *q,
 179                unsigned int max_discard_sectors)
 180{
 181        q->limits.max_hw_discard_sectors = max_discard_sectors;
 182        q->limits.max_discard_sectors = max_discard_sectors;
 183}
 184EXPORT_SYMBOL(blk_queue_max_discard_sectors);
 185
 186/**
 187 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
 188 * @q:  the request queue for the device
 189 * @max_sectors: maximum number of sectors to secure_erase
 190 **/
 191void blk_queue_max_secure_erase_sectors(struct request_queue *q,
 192                unsigned int max_sectors)
 193{
 194        q->limits.max_secure_erase_sectors = max_sectors;
 195}
 196EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
 197
 198/**
 199 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
 200 *                                      write zeroes
 201 * @q:  the request queue for the device
 202 * @max_write_zeroes_sectors: maximum number of sectors to write per command
 203 **/
 204void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
 205                unsigned int max_write_zeroes_sectors)
 206{
 207        q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
 208}
 209EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
 210
 211/**
 212 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
 213 * @q:  the request queue for the device
 214 * @max_zone_append_sectors: maximum number of sectors to write per command
 215 **/
 216void blk_queue_max_zone_append_sectors(struct request_queue *q,
 217                unsigned int max_zone_append_sectors)
 218{
 219        unsigned int max_sectors;
 220
 221        if (WARN_ON(!blk_queue_is_zoned(q)))
 222                return;
 223
 224        max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
 225        max_sectors = min(q->limits.chunk_sectors, max_sectors);
 226
 227        /*
 228         * Signal eventual driver bugs resulting in the max_zone_append sectors limit
 229         * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
 230         * or the max_hw_sectors limit not set.
 231         */
 232        WARN_ON(!max_sectors);
 233
 234        q->limits.max_zone_append_sectors = max_sectors;
 235}
 236EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
 237
 238/**
 239 * blk_queue_max_segments - set max hw segments for a request for this queue
 240 * @q:  the request queue for the device
 241 * @max_segments:  max number of segments
 242 *
 243 * Description:
 244 *    Enables a low level driver to set an upper limit on the number of
 245 *    hw data segments in a request.
 246 **/
 247void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
 248{
 249        if (!max_segments) {
 250                max_segments = 1;
 251                printk(KERN_INFO "%s: set to minimum %d\n",
 252                       __func__, max_segments);
 253        }
 254
 255        q->limits.max_segments = max_segments;
 256}
 257EXPORT_SYMBOL(blk_queue_max_segments);
 258
 259/**
 260 * blk_queue_max_discard_segments - set max segments for discard requests
 261 * @q:  the request queue for the device
 262 * @max_segments:  max number of segments
 263 *
 264 * Description:
 265 *    Enables a low level driver to set an upper limit on the number of
 266 *    segments in a discard request.
 267 **/
 268void blk_queue_max_discard_segments(struct request_queue *q,
 269                unsigned short max_segments)
 270{
 271        q->limits.max_discard_segments = max_segments;
 272}
 273EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
 274
 275/**
 276 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
 277 * @q:  the request queue for the device
 278 * @max_size:  max size of segment in bytes
 279 *
 280 * Description:
 281 *    Enables a low level driver to set an upper limit on the size of a
 282 *    coalesced segment
 283 **/
 284void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
 285{
 286        if (max_size < PAGE_SIZE) {
 287                max_size = PAGE_SIZE;
 288                printk(KERN_INFO "%s: set to minimum %d\n",
 289                       __func__, max_size);
 290        }
 291
 292        /* see blk_queue_virt_boundary() for the explanation */
 293        WARN_ON_ONCE(q->limits.virt_boundary_mask);
 294
 295        q->limits.max_segment_size = max_size;
 296}
 297EXPORT_SYMBOL(blk_queue_max_segment_size);
 298
 299/**
 300 * blk_queue_logical_block_size - set logical block size for the queue
 301 * @q:  the request queue for the device
 302 * @size:  the logical block size, in bytes
 303 *
 304 * Description:
 305 *   This should be set to the lowest possible block size that the
 306 *   storage device can address.  The default of 512 covers most
 307 *   hardware.
 308 **/
 309void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
 310{
 311        struct queue_limits *limits = &q->limits;
 312
 313        limits->logical_block_size = size;
 314
 315        if (limits->physical_block_size < size)
 316                limits->physical_block_size = size;
 317
 318        if (limits->io_min < limits->physical_block_size)
 319                limits->io_min = limits->physical_block_size;
 320
 321        limits->max_hw_sectors =
 322                round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
 323        limits->max_sectors =
 324                round_down(limits->max_sectors, size >> SECTOR_SHIFT);
 325}
 326EXPORT_SYMBOL(blk_queue_logical_block_size);
 327
 328/**
 329 * blk_queue_physical_block_size - set physical block size for the queue
 330 * @q:  the request queue for the device
 331 * @size:  the physical block size, in bytes
 332 *
 333 * Description:
 334 *   This should be set to the lowest possible sector size that the
 335 *   hardware can operate on without reverting to read-modify-write
 336 *   operations.
 337 */
 338void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
 339{
 340        q->limits.physical_block_size = size;
 341
 342        if (q->limits.physical_block_size < q->limits.logical_block_size)
 343                q->limits.physical_block_size = q->limits.logical_block_size;
 344
 345        if (q->limits.io_min < q->limits.physical_block_size)
 346                q->limits.io_min = q->limits.physical_block_size;
 347}
 348EXPORT_SYMBOL(blk_queue_physical_block_size);
 349
 350/**
 351 * blk_queue_zone_write_granularity - set zone write granularity for the queue
 352 * @q:  the request queue for the zoned device
 353 * @size:  the zone write granularity size, in bytes
 354 *
 355 * Description:
 356 *   This should be set to the lowest possible size allowing to write in
 357 *   sequential zones of a zoned block device.
 358 */
 359void blk_queue_zone_write_granularity(struct request_queue *q,
 360                                      unsigned int size)
 361{
 362        if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
 363                return;
 364
 365        q->limits.zone_write_granularity = size;
 366
 367        if (q->limits.zone_write_granularity < q->limits.logical_block_size)
 368                q->limits.zone_write_granularity = q->limits.logical_block_size;
 369}
 370EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
 371
 372/**
 373 * blk_queue_alignment_offset - set physical block alignment offset
 374 * @q:  the request queue for the device
 375 * @offset: alignment offset in bytes
 376 *
 377 * Description:
 378 *   Some devices are naturally misaligned to compensate for things like
 379 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
 380 *   should call this function for devices whose first sector is not
 381 *   naturally aligned.
 382 */
 383void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
 384{
 385        q->limits.alignment_offset =
 386                offset & (q->limits.physical_block_size - 1);
 387        q->limits.misaligned = 0;
 388}
 389EXPORT_SYMBOL(blk_queue_alignment_offset);
 390
 391void disk_update_readahead(struct gendisk *disk)
 392{
 393        struct request_queue *q = disk->queue;
 394
 395        /*
 396         * For read-ahead of large files to be effective, we need to read ahead
 397         * at least twice the optimal I/O size.
 398         */
 399        disk->bdi->ra_pages =
 400                max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
 401        disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9);
 402}
 403EXPORT_SYMBOL_GPL(disk_update_readahead);
 404
 405/**
 406 * blk_limits_io_min - set minimum request size for a device
 407 * @limits: the queue limits
 408 * @min:  smallest I/O size in bytes
 409 *
 410 * Description:
 411 *   Some devices have an internal block size bigger than the reported
 412 *   hardware sector size.  This function can be used to signal the
 413 *   smallest I/O the device can perform without incurring a performance
 414 *   penalty.
 415 */
 416void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
 417{
 418        limits->io_min = min;
 419
 420        if (limits->io_min < limits->logical_block_size)
 421                limits->io_min = limits->logical_block_size;
 422
 423        if (limits->io_min < limits->physical_block_size)
 424                limits->io_min = limits->physical_block_size;
 425}
 426EXPORT_SYMBOL(blk_limits_io_min);
 427
 428/**
 429 * blk_queue_io_min - set minimum request size for the queue
 430 * @q:  the request queue for the device
 431 * @min:  smallest I/O size in bytes
 432 *
 433 * Description:
 434 *   Storage devices may report a granularity or preferred minimum I/O
 435 *   size which is the smallest request the device can perform without
 436 *   incurring a performance penalty.  For disk drives this is often the
 437 *   physical block size.  For RAID arrays it is often the stripe chunk
 438 *   size.  A properly aligned multiple of minimum_io_size is the
 439 *   preferred request size for workloads where a high number of I/O
 440 *   operations is desired.
 441 */
 442void blk_queue_io_min(struct request_queue *q, unsigned int min)
 443{
 444        blk_limits_io_min(&q->limits, min);
 445}
 446EXPORT_SYMBOL(blk_queue_io_min);
 447
 448/**
 449 * blk_limits_io_opt - set optimal request size for a device
 450 * @limits: the queue limits
 451 * @opt:  smallest I/O size in bytes
 452 *
 453 * Description:
 454 *   Storage devices may report an optimal I/O size, which is the
 455 *   device's preferred unit for sustained I/O.  This is rarely reported
 456 *   for disk drives.  For RAID arrays it is usually the stripe width or
 457 *   the internal track size.  A properly aligned multiple of
 458 *   optimal_io_size is the preferred request size for workloads where
 459 *   sustained throughput is desired.
 460 */
 461void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
 462{
 463        limits->io_opt = opt;
 464}
 465EXPORT_SYMBOL(blk_limits_io_opt);
 466
 467/**
 468 * blk_queue_io_opt - set optimal request size for the queue
 469 * @q:  the request queue for the device
 470 * @opt:  optimal request size in bytes
 471 *
 472 * Description:
 473 *   Storage devices may report an optimal I/O size, which is the
 474 *   device's preferred unit for sustained I/O.  This is rarely reported
 475 *   for disk drives.  For RAID arrays it is usually the stripe width or
 476 *   the internal track size.  A properly aligned multiple of
 477 *   optimal_io_size is the preferred request size for workloads where
 478 *   sustained throughput is desired.
 479 */
 480void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
 481{
 482        blk_limits_io_opt(&q->limits, opt);
 483        if (!q->disk)
 484                return;
 485        q->disk->bdi->ra_pages =
 486                max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
 487}
 488EXPORT_SYMBOL(blk_queue_io_opt);
 489
 490static int queue_limit_alignment_offset(const struct queue_limits *lim,
 491                sector_t sector)
 492{
 493        unsigned int granularity = max(lim->physical_block_size, lim->io_min);
 494        unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
 495                << SECTOR_SHIFT;
 496
 497        return (granularity + lim->alignment_offset - alignment) % granularity;
 498}
 499
 500static unsigned int queue_limit_discard_alignment(
 501                const struct queue_limits *lim, sector_t sector)
 502{
 503        unsigned int alignment, granularity, offset;
 504
 505        if (!lim->max_discard_sectors)
 506                return 0;
 507
 508        /* Why are these in bytes, not sectors? */
 509        alignment = lim->discard_alignment >> SECTOR_SHIFT;
 510        granularity = lim->discard_granularity >> SECTOR_SHIFT;
 511        if (!granularity)
 512                return 0;
 513
 514        /* Offset of the partition start in 'granularity' sectors */
 515        offset = sector_div(sector, granularity);
 516
 517        /* And why do we do this modulus *again* in blkdev_issue_discard()? */
 518        offset = (granularity + alignment - offset) % granularity;
 519
 520        /* Turn it back into bytes, gaah */
 521        return offset << SECTOR_SHIFT;
 522}
 523
 524static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
 525{
 526        sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
 527        if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
 528                sectors = PAGE_SIZE >> SECTOR_SHIFT;
 529        return sectors;
 530}
 531
 532/**
 533 * blk_stack_limits - adjust queue_limits for stacked devices
 534 * @t:  the stacking driver limits (top device)
 535 * @b:  the underlying queue limits (bottom, component device)
 536 * @start:  first data sector within component device
 537 *
 538 * Description:
 539 *    This function is used by stacking drivers like MD and DM to ensure
 540 *    that all component devices have compatible block sizes and
 541 *    alignments.  The stacking driver must provide a queue_limits
 542 *    struct (top) and then iteratively call the stacking function for
 543 *    all component (bottom) devices.  The stacking function will
 544 *    attempt to combine the values and ensure proper alignment.
 545 *
 546 *    Returns 0 if the top and bottom queue_limits are compatible.  The
 547 *    top device's block sizes and alignment offsets may be adjusted to
 548 *    ensure alignment with the bottom device. If no compatible sizes
 549 *    and alignments exist, -1 is returned and the resulting top
 550 *    queue_limits will have the misaligned flag set to indicate that
 551 *    the alignment_offset is undefined.
 552 */
 553int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
 554                     sector_t start)
 555{
 556        unsigned int top, bottom, alignment, ret = 0;
 557
 558        t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
 559        t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
 560        t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
 561        t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
 562                                        b->max_write_zeroes_sectors);
 563        t->max_zone_append_sectors = min(t->max_zone_append_sectors,
 564                                        b->max_zone_append_sectors);
 565        t->bounce = max(t->bounce, b->bounce);
 566
 567        t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
 568                                            b->seg_boundary_mask);
 569        t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
 570                                            b->virt_boundary_mask);
 571
 572        t->max_segments = min_not_zero(t->max_segments, b->max_segments);
 573        t->max_discard_segments = min_not_zero(t->max_discard_segments,
 574                                               b->max_discard_segments);
 575        t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
 576                                                 b->max_integrity_segments);
 577
 578        t->max_segment_size = min_not_zero(t->max_segment_size,
 579                                           b->max_segment_size);
 580
 581        t->misaligned |= b->misaligned;
 582
 583        alignment = queue_limit_alignment_offset(b, start);
 584
 585        /* Bottom device has different alignment.  Check that it is
 586         * compatible with the current top alignment.
 587         */
 588        if (t->alignment_offset != alignment) {
 589
 590                top = max(t->physical_block_size, t->io_min)
 591                        + t->alignment_offset;
 592                bottom = max(b->physical_block_size, b->io_min) + alignment;
 593
 594                /* Verify that top and bottom intervals line up */
 595                if (max(top, bottom) % min(top, bottom)) {
 596                        t->misaligned = 1;
 597                        ret = -1;
 598                }
 599        }
 600
 601        t->logical_block_size = max(t->logical_block_size,
 602                                    b->logical_block_size);
 603
 604        t->physical_block_size = max(t->physical_block_size,
 605                                     b->physical_block_size);
 606
 607        t->io_min = max(t->io_min, b->io_min);
 608        t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
 609        t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
 610
 611        /* Set non-power-of-2 compatible chunk_sectors boundary */
 612        if (b->chunk_sectors)
 613                t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
 614
 615        /* Physical block size a multiple of the logical block size? */
 616        if (t->physical_block_size & (t->logical_block_size - 1)) {
 617                t->physical_block_size = t->logical_block_size;
 618                t->misaligned = 1;
 619                ret = -1;
 620        }
 621
 622        /* Minimum I/O a multiple of the physical block size? */
 623        if (t->io_min & (t->physical_block_size - 1)) {
 624                t->io_min = t->physical_block_size;
 625                t->misaligned = 1;
 626                ret = -1;
 627        }
 628
 629        /* Optimal I/O a multiple of the physical block size? */
 630        if (t->io_opt & (t->physical_block_size - 1)) {
 631                t->io_opt = 0;
 632                t->misaligned = 1;
 633                ret = -1;
 634        }
 635
 636        /* chunk_sectors a multiple of the physical block size? */
 637        if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
 638                t->chunk_sectors = 0;
 639                t->misaligned = 1;
 640                ret = -1;
 641        }
 642
 643        t->raid_partial_stripes_expensive =
 644                max(t->raid_partial_stripes_expensive,
 645                    b->raid_partial_stripes_expensive);
 646
 647        /* Find lowest common alignment_offset */
 648        t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
 649                % max(t->physical_block_size, t->io_min);
 650
 651        /* Verify that new alignment_offset is on a logical block boundary */
 652        if (t->alignment_offset & (t->logical_block_size - 1)) {
 653                t->misaligned = 1;
 654                ret = -1;
 655        }
 656
 657        t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
 658        t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
 659        t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
 660
 661        /* Discard alignment and granularity */
 662        if (b->discard_granularity) {
 663                alignment = queue_limit_discard_alignment(b, start);
 664
 665                if (t->discard_granularity != 0 &&
 666                    t->discard_alignment != alignment) {
 667                        top = t->discard_granularity + t->discard_alignment;
 668                        bottom = b->discard_granularity + alignment;
 669
 670                        /* Verify that top and bottom intervals line up */
 671                        if ((max(top, bottom) % min(top, bottom)) != 0)
 672                                t->discard_misaligned = 1;
 673                }
 674
 675                t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
 676                                                      b->max_discard_sectors);
 677                t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
 678                                                         b->max_hw_discard_sectors);
 679                t->discard_granularity = max(t->discard_granularity,
 680                                             b->discard_granularity);
 681                t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
 682                        t->discard_granularity;
 683        }
 684        t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
 685                                                   b->max_secure_erase_sectors);
 686        t->zone_write_granularity = max(t->zone_write_granularity,
 687                                        b->zone_write_granularity);
 688        t->zoned = max(t->zoned, b->zoned);
 689        return ret;
 690}
 691EXPORT_SYMBOL(blk_stack_limits);
 692
 693/**
 694 * disk_stack_limits - adjust queue limits for stacked drivers
 695 * @disk:  MD/DM gendisk (top)
 696 * @bdev:  the underlying block device (bottom)
 697 * @offset:  offset to beginning of data within component device
 698 *
 699 * Description:
 700 *    Merges the limits for a top level gendisk and a bottom level
 701 *    block_device.
 702 */
 703void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
 704                       sector_t offset)
 705{
 706        struct request_queue *t = disk->queue;
 707
 708        if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
 709                        get_start_sect(bdev) + (offset >> 9)) < 0)
 710                pr_notice("%s: Warning: Device %pg is misaligned\n",
 711                        disk->disk_name, bdev);
 712
 713        disk_update_readahead(disk);
 714}
 715EXPORT_SYMBOL(disk_stack_limits);
 716
 717/**
 718 * blk_queue_update_dma_pad - update pad mask
 719 * @q:     the request queue for the device
 720 * @mask:  pad mask
 721 *
 722 * Update dma pad mask.
 723 *
 724 * Appending pad buffer to a request modifies the last entry of a
 725 * scatter list such that it includes the pad buffer.
 726 **/
 727void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
 728{
 729        if (mask > q->dma_pad_mask)
 730                q->dma_pad_mask = mask;
 731}
 732EXPORT_SYMBOL(blk_queue_update_dma_pad);
 733
 734/**
 735 * blk_queue_segment_boundary - set boundary rules for segment merging
 736 * @q:  the request queue for the device
 737 * @mask:  the memory boundary mask
 738 **/
 739void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
 740{
 741        if (mask < PAGE_SIZE - 1) {
 742                mask = PAGE_SIZE - 1;
 743                printk(KERN_INFO "%s: set to minimum %lx\n",
 744                       __func__, mask);
 745        }
 746
 747        q->limits.seg_boundary_mask = mask;
 748}
 749EXPORT_SYMBOL(blk_queue_segment_boundary);
 750
 751/**
 752 * blk_queue_virt_boundary - set boundary rules for bio merging
 753 * @q:  the request queue for the device
 754 * @mask:  the memory boundary mask
 755 **/
 756void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
 757{
 758        q->limits.virt_boundary_mask = mask;
 759
 760        /*
 761         * Devices that require a virtual boundary do not support scatter/gather
 762         * I/O natively, but instead require a descriptor list entry for each
 763         * page (which might not be idential to the Linux PAGE_SIZE).  Because
 764         * of that they are not limited by our notion of "segment size".
 765         */
 766        if (mask)
 767                q->limits.max_segment_size = UINT_MAX;
 768}
 769EXPORT_SYMBOL(blk_queue_virt_boundary);
 770
 771/**
 772 * blk_queue_dma_alignment - set dma length and memory alignment
 773 * @q:     the request queue for the device
 774 * @mask:  alignment mask
 775 *
 776 * description:
 777 *    set required memory and length alignment for direct dma transactions.
 778 *    this is used when building direct io requests for the queue.
 779 *
 780 **/
 781void blk_queue_dma_alignment(struct request_queue *q, int mask)
 782{
 783        q->limits.dma_alignment = mask;
 784}
 785EXPORT_SYMBOL(blk_queue_dma_alignment);
 786
 787/**
 788 * blk_queue_update_dma_alignment - update dma length and memory alignment
 789 * @q:     the request queue for the device
 790 * @mask:  alignment mask
 791 *
 792 * description:
 793 *    update required memory and length alignment for direct dma transactions.
 794 *    If the requested alignment is larger than the current alignment, then
 795 *    the current queue alignment is updated to the new value, otherwise it
 796 *    is left alone.  The design of this is to allow multiple objects
 797 *    (driver, device, transport etc) to set their respective
 798 *    alignments without having them interfere.
 799 *
 800 **/
 801void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
 802{
 803        BUG_ON(mask > PAGE_SIZE);
 804
 805        if (mask > q->limits.dma_alignment)
 806                q->limits.dma_alignment = mask;
 807}
 808EXPORT_SYMBOL(blk_queue_update_dma_alignment);
 809
 810/**
 811 * blk_set_queue_depth - tell the block layer about the device queue depth
 812 * @q:          the request queue for the device
 813 * @depth:              queue depth
 814 *
 815 */
 816void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
 817{
 818        q->queue_depth = depth;
 819        rq_qos_queue_depth_changed(q);
 820}
 821EXPORT_SYMBOL(blk_set_queue_depth);
 822
 823/**
 824 * blk_queue_write_cache - configure queue's write cache
 825 * @q:          the request queue for the device
 826 * @wc:         write back cache on or off
 827 * @fua:        device supports FUA writes, if true
 828 *
 829 * Tell the block layer about the write cache of @q.
 830 */
 831void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
 832{
 833        if (wc) {
 834                blk_queue_flag_set(QUEUE_FLAG_HW_WC, q);
 835                blk_queue_flag_set(QUEUE_FLAG_WC, q);
 836        } else {
 837                blk_queue_flag_clear(QUEUE_FLAG_HW_WC, q);
 838                blk_queue_flag_clear(QUEUE_FLAG_WC, q);
 839        }
 840        if (fua)
 841                blk_queue_flag_set(QUEUE_FLAG_FUA, q);
 842        else
 843                blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
 844
 845        wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
 846}
 847EXPORT_SYMBOL_GPL(blk_queue_write_cache);
 848
 849/**
 850 * blk_queue_required_elevator_features - Set a queue required elevator features
 851 * @q:          the request queue for the target device
 852 * @features:   Required elevator features OR'ed together
 853 *
 854 * Tell the block layer that for the device controlled through @q, only the
 855 * only elevators that can be used are those that implement at least the set of
 856 * features specified by @features.
 857 */
 858void blk_queue_required_elevator_features(struct request_queue *q,
 859                                          unsigned int features)
 860{
 861        q->required_elevator_features = features;
 862}
 863EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
 864
 865/**
 866 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
 867 * @q:          the request queue for the device
 868 * @dev:        the device pointer for dma
 869 *
 870 * Tell the block layer about merging the segments by dma map of @q.
 871 */
 872bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
 873                                       struct device *dev)
 874{
 875        unsigned long boundary = dma_get_merge_boundary(dev);
 876
 877        if (!boundary)
 878                return false;
 879
 880        /* No need to update max_segment_size. see blk_queue_virt_boundary() */
 881        blk_queue_virt_boundary(q, boundary);
 882
 883        return true;
 884}
 885EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
 886
 887static bool disk_has_partitions(struct gendisk *disk)
 888{
 889        unsigned long idx;
 890        struct block_device *part;
 891        bool ret = false;
 892
 893        rcu_read_lock();
 894        xa_for_each(&disk->part_tbl, idx, part) {
 895                if (bdev_is_partition(part)) {
 896                        ret = true;
 897                        break;
 898                }
 899        }
 900        rcu_read_unlock();
 901
 902        return ret;
 903}
 904
 905/**
 906 * disk_set_zoned - configure the zoned model for a disk
 907 * @disk:       the gendisk of the queue to configure
 908 * @model:      the zoned model to set
 909 *
 910 * Set the zoned model of @disk to @model.
 911 *
 912 * When @model is BLK_ZONED_HM (host managed), this should be called only
 913 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
 914 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
 915 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
 916 * on the disk.
 917 */
 918void disk_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
 919{
 920        struct request_queue *q = disk->queue;
 921        unsigned int old_model = q->limits.zoned;
 922
 923        switch (model) {
 924        case BLK_ZONED_HM:
 925                /*
 926                 * Host managed devices are supported only if
 927                 * CONFIG_BLK_DEV_ZONED is enabled.
 928                 */
 929                WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
 930                break;
 931        case BLK_ZONED_HA:
 932                /*
 933                 * Host aware devices can be treated either as regular block
 934                 * devices (similar to drive managed devices) or as zoned block
 935                 * devices to take advantage of the zone command set, similarly
 936                 * to host managed devices. We try the latter if there are no
 937                 * partitions and zoned block device support is enabled, else
 938                 * we do nothing special as far as the block layer is concerned.
 939                 */
 940                if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
 941                    disk_has_partitions(disk))
 942                        model = BLK_ZONED_NONE;
 943                break;
 944        case BLK_ZONED_NONE:
 945        default:
 946                if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
 947                        model = BLK_ZONED_NONE;
 948                break;
 949        }
 950
 951        q->limits.zoned = model;
 952        if (model != BLK_ZONED_NONE) {
 953                /*
 954                 * Set the zone write granularity to the device logical block
 955                 * size by default. The driver can change this value if needed.
 956                 */
 957                blk_queue_zone_write_granularity(q,
 958                                                queue_logical_block_size(q));
 959        } else if (old_model != BLK_ZONED_NONE) {
 960                disk_clear_zone_settings(disk);
 961        }
 962}
 963EXPORT_SYMBOL_GPL(disk_set_zoned);
 964
 965int bdev_alignment_offset(struct block_device *bdev)
 966{
 967        struct request_queue *q = bdev_get_queue(bdev);
 968
 969        if (q->limits.misaligned)
 970                return -1;
 971        if (bdev_is_partition(bdev))
 972                return queue_limit_alignment_offset(&q->limits,
 973                                bdev->bd_start_sect);
 974        return q->limits.alignment_offset;
 975}
 976EXPORT_SYMBOL_GPL(bdev_alignment_offset);
 977
 978unsigned int bdev_discard_alignment(struct block_device *bdev)
 979{
 980        struct request_queue *q = bdev_get_queue(bdev);
 981
 982        if (bdev_is_partition(bdev))
 983                return queue_limit_discard_alignment(&q->limits,
 984                                bdev->bd_start_sect);
 985        return q->limits.discard_alignment;
 986}
 987EXPORT_SYMBOL_GPL(bdev_discard_alignment);
 988