linux/block/blk-crypto.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright 2019 Google LLC
   4 */
   5
   6/*
   7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation.
   8 */
   9
  10#define pr_fmt(fmt) "blk-crypto: " fmt
  11
  12#include <linux/bio.h>
  13#include <linux/blkdev.h>
  14#include <linux/blk-crypto-profile.h>
  15#include <linux/module.h>
  16#include <linux/ratelimit.h>
  17#include <linux/slab.h>
  18
  19#include "blk-crypto-internal.h"
  20
  21const struct blk_crypto_mode blk_crypto_modes[] = {
  22        [BLK_ENCRYPTION_MODE_AES_256_XTS] = {
  23                .name = "AES-256-XTS",
  24                .cipher_str = "xts(aes)",
  25                .keysize = 64,
  26                .ivsize = 16,
  27        },
  28        [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = {
  29                .name = "AES-128-CBC-ESSIV",
  30                .cipher_str = "essiv(cbc(aes),sha256)",
  31                .keysize = 16,
  32                .ivsize = 16,
  33        },
  34        [BLK_ENCRYPTION_MODE_ADIANTUM] = {
  35                .name = "Adiantum",
  36                .cipher_str = "adiantum(xchacha12,aes)",
  37                .keysize = 32,
  38                .ivsize = 32,
  39        },
  40        [BLK_ENCRYPTION_MODE_SM4_XTS] = {
  41                .name = "SM4-XTS",
  42                .cipher_str = "xts(sm4)",
  43                .keysize = 32,
  44                .ivsize = 16,
  45        },
  46};
  47
  48/*
  49 * This number needs to be at least (the number of threads doing IO
  50 * concurrently) * (maximum recursive depth of a bio), so that we don't
  51 * deadlock on crypt_ctx allocations. The default is chosen to be the same
  52 * as the default number of post read contexts in both EXT4 and F2FS.
  53 */
  54static int num_prealloc_crypt_ctxs = 128;
  55
  56module_param(num_prealloc_crypt_ctxs, int, 0444);
  57MODULE_PARM_DESC(num_prealloc_crypt_ctxs,
  58                "Number of bio crypto contexts to preallocate");
  59
  60static struct kmem_cache *bio_crypt_ctx_cache;
  61static mempool_t *bio_crypt_ctx_pool;
  62
  63static int __init bio_crypt_ctx_init(void)
  64{
  65        size_t i;
  66
  67        bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0);
  68        if (!bio_crypt_ctx_cache)
  69                goto out_no_mem;
  70
  71        bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs,
  72                                                      bio_crypt_ctx_cache);
  73        if (!bio_crypt_ctx_pool)
  74                goto out_no_mem;
  75
  76        /* This is assumed in various places. */
  77        BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0);
  78
  79        /* Sanity check that no algorithm exceeds the defined limits. */
  80        for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) {
  81                BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE);
  82                BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE);
  83        }
  84
  85        return 0;
  86out_no_mem:
  87        panic("Failed to allocate mem for bio crypt ctxs\n");
  88}
  89subsys_initcall(bio_crypt_ctx_init);
  90
  91void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key,
  92                       const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask)
  93{
  94        struct bio_crypt_ctx *bc;
  95
  96        /*
  97         * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so
  98         * that the mempool_alloc() can't fail.
  99         */
 100        WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM));
 101
 102        bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
 103
 104        bc->bc_key = key;
 105        memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun));
 106
 107        bio->bi_crypt_context = bc;
 108}
 109
 110void __bio_crypt_free_ctx(struct bio *bio)
 111{
 112        mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool);
 113        bio->bi_crypt_context = NULL;
 114}
 115
 116int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask)
 117{
 118        dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
 119        if (!dst->bi_crypt_context)
 120                return -ENOMEM;
 121        *dst->bi_crypt_context = *src->bi_crypt_context;
 122        return 0;
 123}
 124
 125/* Increments @dun by @inc, treating @dun as a multi-limb integer. */
 126void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE],
 127                             unsigned int inc)
 128{
 129        int i;
 130
 131        for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
 132                dun[i] += inc;
 133                /*
 134                 * If the addition in this limb overflowed, then we need to
 135                 * carry 1 into the next limb. Else the carry is 0.
 136                 */
 137                if (dun[i] < inc)
 138                        inc = 1;
 139                else
 140                        inc = 0;
 141        }
 142}
 143
 144void __bio_crypt_advance(struct bio *bio, unsigned int bytes)
 145{
 146        struct bio_crypt_ctx *bc = bio->bi_crypt_context;
 147
 148        bio_crypt_dun_increment(bc->bc_dun,
 149                                bytes >> bc->bc_key->data_unit_size_bits);
 150}
 151
 152/*
 153 * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to
 154 * @next_dun, treating the DUNs as multi-limb integers.
 155 */
 156bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc,
 157                                 unsigned int bytes,
 158                                 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
 159{
 160        int i;
 161        unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits;
 162
 163        for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) {
 164                if (bc->bc_dun[i] + carry != next_dun[i])
 165                        return false;
 166                /*
 167                 * If the addition in this limb overflowed, then we need to
 168                 * carry 1 into the next limb. Else the carry is 0.
 169                 */
 170                if ((bc->bc_dun[i] + carry) < carry)
 171                        carry = 1;
 172                else
 173                        carry = 0;
 174        }
 175
 176        /* If the DUN wrapped through 0, don't treat it as contiguous. */
 177        return carry == 0;
 178}
 179
 180/*
 181 * Checks that two bio crypt contexts are compatible - i.e. that
 182 * they are mergeable except for data_unit_num continuity.
 183 */
 184static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1,
 185                                     struct bio_crypt_ctx *bc2)
 186{
 187        if (!bc1)
 188                return !bc2;
 189
 190        return bc2 && bc1->bc_key == bc2->bc_key;
 191}
 192
 193bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio)
 194{
 195        return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context);
 196}
 197
 198/*
 199 * Checks that two bio crypt contexts are compatible, and also
 200 * that their data_unit_nums are continuous (and can hence be merged)
 201 * in the order @bc1 followed by @bc2.
 202 */
 203bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes,
 204                             struct bio_crypt_ctx *bc2)
 205{
 206        if (!bio_crypt_ctx_compatible(bc1, bc2))
 207                return false;
 208
 209        return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun);
 210}
 211
 212/* Check that all I/O segments are data unit aligned. */
 213static bool bio_crypt_check_alignment(struct bio *bio)
 214{
 215        const unsigned int data_unit_size =
 216                bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size;
 217        struct bvec_iter iter;
 218        struct bio_vec bv;
 219
 220        bio_for_each_segment(bv, bio, iter) {
 221                if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size))
 222                        return false;
 223        }
 224
 225        return true;
 226}
 227
 228blk_status_t __blk_crypto_rq_get_keyslot(struct request *rq)
 229{
 230        return blk_crypto_get_keyslot(rq->q->crypto_profile,
 231                                      rq->crypt_ctx->bc_key,
 232                                      &rq->crypt_keyslot);
 233}
 234
 235void __blk_crypto_rq_put_keyslot(struct request *rq)
 236{
 237        blk_crypto_put_keyslot(rq->crypt_keyslot);
 238        rq->crypt_keyslot = NULL;
 239}
 240
 241void __blk_crypto_free_request(struct request *rq)
 242{
 243        /* The keyslot, if one was needed, should have been released earlier. */
 244        if (WARN_ON_ONCE(rq->crypt_keyslot))
 245                __blk_crypto_rq_put_keyslot(rq);
 246
 247        mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool);
 248        rq->crypt_ctx = NULL;
 249}
 250
 251/**
 252 * __blk_crypto_bio_prep - Prepare bio for inline encryption
 253 *
 254 * @bio_ptr: pointer to original bio pointer
 255 *
 256 * If the bio crypt context provided for the bio is supported by the underlying
 257 * device's inline encryption hardware, do nothing.
 258 *
 259 * Otherwise, try to perform en/decryption for this bio by falling back to the
 260 * kernel crypto API. When the crypto API fallback is used for encryption,
 261 * blk-crypto may choose to split the bio into 2 - the first one that will
 262 * continue to be processed and the second one that will be resubmitted via
 263 * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents
 264 * of the aforementioned "first one", and *bio_ptr will be updated to this
 265 * bounce bio.
 266 *
 267 * Caller must ensure bio has bio_crypt_ctx.
 268 *
 269 * Return: true on success; false on error (and bio->bi_status will be set
 270 *         appropriately, and bio_endio() will have been called so bio
 271 *         submission should abort).
 272 */
 273bool __blk_crypto_bio_prep(struct bio **bio_ptr)
 274{
 275        struct bio *bio = *bio_ptr;
 276        const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key;
 277
 278        /* Error if bio has no data. */
 279        if (WARN_ON_ONCE(!bio_has_data(bio))) {
 280                bio->bi_status = BLK_STS_IOERR;
 281                goto fail;
 282        }
 283
 284        if (!bio_crypt_check_alignment(bio)) {
 285                bio->bi_status = BLK_STS_IOERR;
 286                goto fail;
 287        }
 288
 289        /*
 290         * Success if device supports the encryption context, or if we succeeded
 291         * in falling back to the crypto API.
 292         */
 293        if (blk_crypto_config_supported_natively(bio->bi_bdev,
 294                                                 &bc_key->crypto_cfg))
 295                return true;
 296        if (blk_crypto_fallback_bio_prep(bio_ptr))
 297                return true;
 298fail:
 299        bio_endio(*bio_ptr);
 300        return false;
 301}
 302
 303int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio,
 304                             gfp_t gfp_mask)
 305{
 306        if (!rq->crypt_ctx) {
 307                rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask);
 308                if (!rq->crypt_ctx)
 309                        return -ENOMEM;
 310        }
 311        *rq->crypt_ctx = *bio->bi_crypt_context;
 312        return 0;
 313}
 314
 315/**
 316 * blk_crypto_init_key() - Prepare a key for use with blk-crypto
 317 * @blk_key: Pointer to the blk_crypto_key to initialize.
 318 * @raw_key: Pointer to the raw key. Must be the correct length for the chosen
 319 *           @crypto_mode; see blk_crypto_modes[].
 320 * @crypto_mode: identifier for the encryption algorithm to use
 321 * @dun_bytes: number of bytes that will be used to specify the DUN when this
 322 *             key is used
 323 * @data_unit_size: the data unit size to use for en/decryption
 324 *
 325 * Return: 0 on success, -errno on failure.  The caller is responsible for
 326 *         zeroizing both blk_key and raw_key when done with them.
 327 */
 328int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key,
 329                        enum blk_crypto_mode_num crypto_mode,
 330                        unsigned int dun_bytes,
 331                        unsigned int data_unit_size)
 332{
 333        const struct blk_crypto_mode *mode;
 334
 335        memset(blk_key, 0, sizeof(*blk_key));
 336
 337        if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes))
 338                return -EINVAL;
 339
 340        mode = &blk_crypto_modes[crypto_mode];
 341        if (mode->keysize == 0)
 342                return -EINVAL;
 343
 344        if (dun_bytes == 0 || dun_bytes > mode->ivsize)
 345                return -EINVAL;
 346
 347        if (!is_power_of_2(data_unit_size))
 348                return -EINVAL;
 349
 350        blk_key->crypto_cfg.crypto_mode = crypto_mode;
 351        blk_key->crypto_cfg.dun_bytes = dun_bytes;
 352        blk_key->crypto_cfg.data_unit_size = data_unit_size;
 353        blk_key->data_unit_size_bits = ilog2(data_unit_size);
 354        blk_key->size = mode->keysize;
 355        memcpy(blk_key->raw, raw_key, mode->keysize);
 356
 357        return 0;
 358}
 359
 360bool blk_crypto_config_supported_natively(struct block_device *bdev,
 361                                          const struct blk_crypto_config *cfg)
 362{
 363        return __blk_crypto_cfg_supported(bdev_get_queue(bdev)->crypto_profile,
 364                                          cfg);
 365}
 366
 367/*
 368 * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the
 369 * block_device it's submitted to supports inline crypto, or the
 370 * blk-crypto-fallback is enabled and supports the cfg).
 371 */
 372bool blk_crypto_config_supported(struct block_device *bdev,
 373                                 const struct blk_crypto_config *cfg)
 374{
 375        return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) ||
 376               blk_crypto_config_supported_natively(bdev, cfg);
 377}
 378
 379/**
 380 * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device
 381 * @bdev: block device to operate on
 382 * @key: A key to use on the device
 383 *
 384 * Upper layers must call this function to ensure that either the hardware
 385 * supports the key's crypto settings, or the crypto API fallback has transforms
 386 * for the needed mode allocated and ready to go. This function may allocate
 387 * an skcipher, and *should not* be called from the data path, since that might
 388 * cause a deadlock
 389 *
 390 * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and
 391 *         blk-crypto-fallback is either disabled or the needed algorithm
 392 *         is disabled in the crypto API; or another -errno code.
 393 */
 394int blk_crypto_start_using_key(struct block_device *bdev,
 395                               const struct blk_crypto_key *key)
 396{
 397        if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
 398                return 0;
 399        return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode);
 400}
 401
 402/**
 403 * blk_crypto_evict_key() - Evict a blk_crypto_key from a block_device
 404 * @bdev: a block_device on which I/O using the key may have been done
 405 * @key: the key to evict
 406 *
 407 * For a given block_device, this function removes the given blk_crypto_key from
 408 * the keyslot management structures and evicts it from any underlying hardware
 409 * keyslot(s) or blk-crypto-fallback keyslot it may have been programmed into.
 410 *
 411 * Upper layers must call this before freeing the blk_crypto_key.  It must be
 412 * called for every block_device the key may have been used on.  The key must no
 413 * longer be in use by any I/O when this function is called.
 414 *
 415 * Context: May sleep.
 416 */
 417void blk_crypto_evict_key(struct block_device *bdev,
 418                          const struct blk_crypto_key *key)
 419{
 420        struct request_queue *q = bdev_get_queue(bdev);
 421        int err;
 422
 423        if (blk_crypto_config_supported_natively(bdev, &key->crypto_cfg))
 424                err = __blk_crypto_evict_key(q->crypto_profile, key);
 425        else
 426                err = blk_crypto_fallback_evict_key(key);
 427        /*
 428         * An error can only occur here if the key failed to be evicted from a
 429         * keyslot (due to a hardware or driver issue) or is allegedly still in
 430         * use by I/O (due to a kernel bug).  Even in these cases, the key is
 431         * still unlinked from the keyslot management structures, and the caller
 432         * is allowed and expected to free it right away.  There's nothing
 433         * callers can do to handle errors, so just log them and return void.
 434         */
 435        if (err)
 436                pr_warn_ratelimited("%pg: error %d evicting key\n", bdev, err);
 437}
 438EXPORT_SYMBOL_GPL(blk_crypto_evict_key);
 439