linux/block/blk-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1991, 1992 Linus Torvalds
   4 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   5 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   8 *      -  July2000
   9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10 */
  11
  12/*
  13 * This handles all read/write requests to block devices
  14 */
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-pm.h>
  20#include <linux/blk-integrity.h>
  21#include <linux/highmem.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kernel_stat.h>
  25#include <linux/string.h>
  26#include <linux/init.h>
  27#include <linux/completion.h>
  28#include <linux/slab.h>
  29#include <linux/swap.h>
  30#include <linux/writeback.h>
  31#include <linux/task_io_accounting_ops.h>
  32#include <linux/fault-inject.h>
  33#include <linux/list_sort.h>
  34#include <linux/delay.h>
  35#include <linux/ratelimit.h>
  36#include <linux/pm_runtime.h>
  37#include <linux/t10-pi.h>
  38#include <linux/debugfs.h>
  39#include <linux/bpf.h>
  40#include <linux/part_stat.h>
  41#include <linux/sched/sysctl.h>
  42#include <linux/blk-crypto.h>
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/block.h>
  46
  47#include "blk.h"
  48#include "blk-mq-sched.h"
  49#include "blk-pm.h"
  50#include "blk-cgroup.h"
  51#include "blk-throttle.h"
  52
  53struct dentry *blk_debugfs_root;
  54
  55EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  56EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  58EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  59EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  60EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
  61
  62static DEFINE_IDA(blk_queue_ida);
  63
  64/*
  65 * For queue allocation
  66 */
  67static struct kmem_cache *blk_requestq_cachep;
  68
  69/*
  70 * Controlling structure to kblockd
  71 */
  72static struct workqueue_struct *kblockd_workqueue;
  73
  74/**
  75 * blk_queue_flag_set - atomically set a queue flag
  76 * @flag: flag to be set
  77 * @q: request queue
  78 */
  79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
  80{
  81        set_bit(flag, &q->queue_flags);
  82}
  83EXPORT_SYMBOL(blk_queue_flag_set);
  84
  85/**
  86 * blk_queue_flag_clear - atomically clear a queue flag
  87 * @flag: flag to be cleared
  88 * @q: request queue
  89 */
  90void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
  91{
  92        clear_bit(flag, &q->queue_flags);
  93}
  94EXPORT_SYMBOL(blk_queue_flag_clear);
  95
  96/**
  97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
  98 * @flag: flag to be set
  99 * @q: request queue
 100 *
 101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 102 * the flag was already set.
 103 */
 104bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
 105{
 106        return test_and_set_bit(flag, &q->queue_flags);
 107}
 108EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
 109
 110#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
 111static const char *const blk_op_name[] = {
 112        REQ_OP_NAME(READ),
 113        REQ_OP_NAME(WRITE),
 114        REQ_OP_NAME(FLUSH),
 115        REQ_OP_NAME(DISCARD),
 116        REQ_OP_NAME(SECURE_ERASE),
 117        REQ_OP_NAME(ZONE_RESET),
 118        REQ_OP_NAME(ZONE_RESET_ALL),
 119        REQ_OP_NAME(ZONE_OPEN),
 120        REQ_OP_NAME(ZONE_CLOSE),
 121        REQ_OP_NAME(ZONE_FINISH),
 122        REQ_OP_NAME(ZONE_APPEND),
 123        REQ_OP_NAME(WRITE_ZEROES),
 124        REQ_OP_NAME(DRV_IN),
 125        REQ_OP_NAME(DRV_OUT),
 126};
 127#undef REQ_OP_NAME
 128
 129/**
 130 * blk_op_str - Return string XXX in the REQ_OP_XXX.
 131 * @op: REQ_OP_XXX.
 132 *
 133 * Description: Centralize block layer function to convert REQ_OP_XXX into
 134 * string format. Useful in the debugging and tracing bio or request. For
 135 * invalid REQ_OP_XXX it returns string "UNKNOWN".
 136 */
 137inline const char *blk_op_str(enum req_op op)
 138{
 139        const char *op_str = "UNKNOWN";
 140
 141        if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
 142                op_str = blk_op_name[op];
 143
 144        return op_str;
 145}
 146EXPORT_SYMBOL_GPL(blk_op_str);
 147
 148static const struct {
 149        int             errno;
 150        const char      *name;
 151} blk_errors[] = {
 152        [BLK_STS_OK]            = { 0,          "" },
 153        [BLK_STS_NOTSUPP]       = { -EOPNOTSUPP, "operation not supported" },
 154        [BLK_STS_TIMEOUT]       = { -ETIMEDOUT, "timeout" },
 155        [BLK_STS_NOSPC]         = { -ENOSPC,    "critical space allocation" },
 156        [BLK_STS_TRANSPORT]     = { -ENOLINK,   "recoverable transport" },
 157        [BLK_STS_TARGET]        = { -EREMOTEIO, "critical target" },
 158        [BLK_STS_RESV_CONFLICT] = { -EBADE,     "reservation conflict" },
 159        [BLK_STS_MEDIUM]        = { -ENODATA,   "critical medium" },
 160        [BLK_STS_PROTECTION]    = { -EILSEQ,    "protection" },
 161        [BLK_STS_RESOURCE]      = { -ENOMEM,    "kernel resource" },
 162        [BLK_STS_DEV_RESOURCE]  = { -EBUSY,     "device resource" },
 163        [BLK_STS_AGAIN]         = { -EAGAIN,    "nonblocking retry" },
 164        [BLK_STS_OFFLINE]       = { -ENODEV,    "device offline" },
 165
 166        /* device mapper special case, should not leak out: */
 167        [BLK_STS_DM_REQUEUE]    = { -EREMCHG, "dm internal retry" },
 168
 169        /* zone device specific errors */
 170        [BLK_STS_ZONE_OPEN_RESOURCE]    = { -ETOOMANYREFS, "open zones exceeded" },
 171        [BLK_STS_ZONE_ACTIVE_RESOURCE]  = { -EOVERFLOW, "active zones exceeded" },
 172
 173        /* Command duration limit device-side timeout */
 174        [BLK_STS_DURATION_LIMIT]        = { -ETIME, "duration limit exceeded" },
 175
 176        /* everything else not covered above: */
 177        [BLK_STS_IOERR]         = { -EIO,       "I/O" },
 178};
 179
 180blk_status_t errno_to_blk_status(int errno)
 181{
 182        int i;
 183
 184        for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
 185                if (blk_errors[i].errno == errno)
 186                        return (__force blk_status_t)i;
 187        }
 188
 189        return BLK_STS_IOERR;
 190}
 191EXPORT_SYMBOL_GPL(errno_to_blk_status);
 192
 193int blk_status_to_errno(blk_status_t status)
 194{
 195        int idx = (__force int)status;
 196
 197        if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 198                return -EIO;
 199        return blk_errors[idx].errno;
 200}
 201EXPORT_SYMBOL_GPL(blk_status_to_errno);
 202
 203const char *blk_status_to_str(blk_status_t status)
 204{
 205        int idx = (__force int)status;
 206
 207        if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 208                return "<null>";
 209        return blk_errors[idx].name;
 210}
 211EXPORT_SYMBOL_GPL(blk_status_to_str);
 212
 213/**
 214 * blk_sync_queue - cancel any pending callbacks on a queue
 215 * @q: the queue
 216 *
 217 * Description:
 218 *     The block layer may perform asynchronous callback activity
 219 *     on a queue, such as calling the unplug function after a timeout.
 220 *     A block device may call blk_sync_queue to ensure that any
 221 *     such activity is cancelled, thus allowing it to release resources
 222 *     that the callbacks might use. The caller must already have made sure
 223 *     that its ->submit_bio will not re-add plugging prior to calling
 224 *     this function.
 225 *
 226 *     This function does not cancel any asynchronous activity arising
 227 *     out of elevator or throttling code. That would require elevator_exit()
 228 *     and blkcg_exit_queue() to be called with queue lock initialized.
 229 *
 230 */
 231void blk_sync_queue(struct request_queue *q)
 232{
 233        del_timer_sync(&q->timeout);
 234        cancel_work_sync(&q->timeout_work);
 235}
 236EXPORT_SYMBOL(blk_sync_queue);
 237
 238/**
 239 * blk_set_pm_only - increment pm_only counter
 240 * @q: request queue pointer
 241 */
 242void blk_set_pm_only(struct request_queue *q)
 243{
 244        atomic_inc(&q->pm_only);
 245}
 246EXPORT_SYMBOL_GPL(blk_set_pm_only);
 247
 248void blk_clear_pm_only(struct request_queue *q)
 249{
 250        int pm_only;
 251
 252        pm_only = atomic_dec_return(&q->pm_only);
 253        WARN_ON_ONCE(pm_only < 0);
 254        if (pm_only == 0)
 255                wake_up_all(&q->mq_freeze_wq);
 256}
 257EXPORT_SYMBOL_GPL(blk_clear_pm_only);
 258
 259static void blk_free_queue_rcu(struct rcu_head *rcu_head)
 260{
 261        struct request_queue *q = container_of(rcu_head,
 262                        struct request_queue, rcu_head);
 263
 264        percpu_ref_exit(&q->q_usage_counter);
 265        kmem_cache_free(blk_requestq_cachep, q);
 266}
 267
 268static void blk_free_queue(struct request_queue *q)
 269{
 270        blk_free_queue_stats(q->stats);
 271        if (queue_is_mq(q))
 272                blk_mq_release(q);
 273
 274        ida_free(&blk_queue_ida, q->id);
 275        call_rcu(&q->rcu_head, blk_free_queue_rcu);
 276}
 277
 278/**
 279 * blk_put_queue - decrement the request_queue refcount
 280 * @q: the request_queue structure to decrement the refcount for
 281 *
 282 * Decrements the refcount of the request_queue and free it when the refcount
 283 * reaches 0.
 284 */
 285void blk_put_queue(struct request_queue *q)
 286{
 287        if (refcount_dec_and_test(&q->refs))
 288                blk_free_queue(q);
 289}
 290EXPORT_SYMBOL(blk_put_queue);
 291
 292void blk_queue_start_drain(struct request_queue *q)
 293{
 294        /*
 295         * When queue DYING flag is set, we need to block new req
 296         * entering queue, so we call blk_freeze_queue_start() to
 297         * prevent I/O from crossing blk_queue_enter().
 298         */
 299        blk_freeze_queue_start(q);
 300        if (queue_is_mq(q))
 301                blk_mq_wake_waiters(q);
 302        /* Make blk_queue_enter() reexamine the DYING flag. */
 303        wake_up_all(&q->mq_freeze_wq);
 304}
 305
 306/**
 307 * blk_queue_enter() - try to increase q->q_usage_counter
 308 * @q: request queue pointer
 309 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
 310 */
 311int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
 312{
 313        const bool pm = flags & BLK_MQ_REQ_PM;
 314
 315        while (!blk_try_enter_queue(q, pm)) {
 316                if (flags & BLK_MQ_REQ_NOWAIT)
 317                        return -EAGAIN;
 318
 319                /*
 320                 * read pair of barrier in blk_freeze_queue_start(), we need to
 321                 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
 322                 * reading .mq_freeze_depth or queue dying flag, otherwise the
 323                 * following wait may never return if the two reads are
 324                 * reordered.
 325                 */
 326                smp_rmb();
 327                wait_event(q->mq_freeze_wq,
 328                           (!q->mq_freeze_depth &&
 329                            blk_pm_resume_queue(pm, q)) ||
 330                           blk_queue_dying(q));
 331                if (blk_queue_dying(q))
 332                        return -ENODEV;
 333        }
 334
 335        return 0;
 336}
 337
 338int __bio_queue_enter(struct request_queue *q, struct bio *bio)
 339{
 340        while (!blk_try_enter_queue(q, false)) {
 341                struct gendisk *disk = bio->bi_bdev->bd_disk;
 342
 343                if (bio->bi_opf & REQ_NOWAIT) {
 344                        if (test_bit(GD_DEAD, &disk->state))
 345                                goto dead;
 346                        bio_wouldblock_error(bio);
 347                        return -EAGAIN;
 348                }
 349
 350                /*
 351                 * read pair of barrier in blk_freeze_queue_start(), we need to
 352                 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
 353                 * reading .mq_freeze_depth or queue dying flag, otherwise the
 354                 * following wait may never return if the two reads are
 355                 * reordered.
 356                 */
 357                smp_rmb();
 358                wait_event(q->mq_freeze_wq,
 359                           (!q->mq_freeze_depth &&
 360                            blk_pm_resume_queue(false, q)) ||
 361                           test_bit(GD_DEAD, &disk->state));
 362                if (test_bit(GD_DEAD, &disk->state))
 363                        goto dead;
 364        }
 365
 366        return 0;
 367dead:
 368        bio_io_error(bio);
 369        return -ENODEV;
 370}
 371
 372void blk_queue_exit(struct request_queue *q)
 373{
 374        percpu_ref_put(&q->q_usage_counter);
 375}
 376
 377static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 378{
 379        struct request_queue *q =
 380                container_of(ref, struct request_queue, q_usage_counter);
 381
 382        wake_up_all(&q->mq_freeze_wq);
 383}
 384
 385static void blk_rq_timed_out_timer(struct timer_list *t)
 386{
 387        struct request_queue *q = from_timer(q, t, timeout);
 388
 389        kblockd_schedule_work(&q->timeout_work);
 390}
 391
 392static void blk_timeout_work(struct work_struct *work)
 393{
 394}
 395
 396struct request_queue *blk_alloc_queue(int node_id)
 397{
 398        struct request_queue *q;
 399
 400        q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
 401                                  node_id);
 402        if (!q)
 403                return NULL;
 404
 405        q->last_merge = NULL;
 406
 407        q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
 408        if (q->id < 0)
 409                goto fail_q;
 410
 411        q->stats = blk_alloc_queue_stats();
 412        if (!q->stats)
 413                goto fail_id;
 414
 415        q->node = node_id;
 416
 417        atomic_set(&q->nr_active_requests_shared_tags, 0);
 418
 419        timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
 420        INIT_WORK(&q->timeout_work, blk_timeout_work);
 421        INIT_LIST_HEAD(&q->icq_list);
 422
 423        refcount_set(&q->refs, 1);
 424        mutex_init(&q->debugfs_mutex);
 425        mutex_init(&q->sysfs_lock);
 426        mutex_init(&q->sysfs_dir_lock);
 427        mutex_init(&q->rq_qos_mutex);
 428        spin_lock_init(&q->queue_lock);
 429
 430        init_waitqueue_head(&q->mq_freeze_wq);
 431        mutex_init(&q->mq_freeze_lock);
 432
 433        /*
 434         * Init percpu_ref in atomic mode so that it's faster to shutdown.
 435         * See blk_register_queue() for details.
 436         */
 437        if (percpu_ref_init(&q->q_usage_counter,
 438                                blk_queue_usage_counter_release,
 439                                PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
 440                goto fail_stats;
 441
 442        blk_set_default_limits(&q->limits);
 443        q->nr_requests = BLKDEV_DEFAULT_RQ;
 444
 445        return q;
 446
 447fail_stats:
 448        blk_free_queue_stats(q->stats);
 449fail_id:
 450        ida_free(&blk_queue_ida, q->id);
 451fail_q:
 452        kmem_cache_free(blk_requestq_cachep, q);
 453        return NULL;
 454}
 455
 456/**
 457 * blk_get_queue - increment the request_queue refcount
 458 * @q: the request_queue structure to increment the refcount for
 459 *
 460 * Increment the refcount of the request_queue kobject.
 461 *
 462 * Context: Any context.
 463 */
 464bool blk_get_queue(struct request_queue *q)
 465{
 466        if (unlikely(blk_queue_dying(q)))
 467                return false;
 468        refcount_inc(&q->refs);
 469        return true;
 470}
 471EXPORT_SYMBOL(blk_get_queue);
 472
 473#ifdef CONFIG_FAIL_MAKE_REQUEST
 474
 475static DECLARE_FAULT_ATTR(fail_make_request);
 476
 477static int __init setup_fail_make_request(char *str)
 478{
 479        return setup_fault_attr(&fail_make_request, str);
 480}
 481__setup("fail_make_request=", setup_fail_make_request);
 482
 483bool should_fail_request(struct block_device *part, unsigned int bytes)
 484{
 485        return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
 486}
 487
 488static int __init fail_make_request_debugfs(void)
 489{
 490        struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
 491                                                NULL, &fail_make_request);
 492
 493        return PTR_ERR_OR_ZERO(dir);
 494}
 495
 496late_initcall(fail_make_request_debugfs);
 497#endif /* CONFIG_FAIL_MAKE_REQUEST */
 498
 499static inline void bio_check_ro(struct bio *bio)
 500{
 501        if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
 502                if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
 503                        return;
 504
 505                if (bio->bi_bdev->bd_ro_warned)
 506                        return;
 507
 508                bio->bi_bdev->bd_ro_warned = true;
 509                /*
 510                 * Use ioctl to set underlying disk of raid/dm to read-only
 511                 * will trigger this.
 512                 */
 513                pr_warn("Trying to write to read-only block-device %pg\n",
 514                        bio->bi_bdev);
 515        }
 516}
 517
 518static noinline int should_fail_bio(struct bio *bio)
 519{
 520        if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
 521                return -EIO;
 522        return 0;
 523}
 524ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
 525
 526/*
 527 * Check whether this bio extends beyond the end of the device or partition.
 528 * This may well happen - the kernel calls bread() without checking the size of
 529 * the device, e.g., when mounting a file system.
 530 */
 531static inline int bio_check_eod(struct bio *bio)
 532{
 533        sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
 534        unsigned int nr_sectors = bio_sectors(bio);
 535
 536        if (nr_sectors &&
 537            (nr_sectors > maxsector ||
 538             bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
 539                pr_info_ratelimited("%s: attempt to access beyond end of device\n"
 540                                    "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
 541                                    current->comm, bio->bi_bdev, bio->bi_opf,
 542                                    bio->bi_iter.bi_sector, nr_sectors, maxsector);
 543                return -EIO;
 544        }
 545        return 0;
 546}
 547
 548/*
 549 * Remap block n of partition p to block n+start(p) of the disk.
 550 */
 551static int blk_partition_remap(struct bio *bio)
 552{
 553        struct block_device *p = bio->bi_bdev;
 554
 555        if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
 556                return -EIO;
 557        if (bio_sectors(bio)) {
 558                bio->bi_iter.bi_sector += p->bd_start_sect;
 559                trace_block_bio_remap(bio, p->bd_dev,
 560                                      bio->bi_iter.bi_sector -
 561                                      p->bd_start_sect);
 562        }
 563        bio_set_flag(bio, BIO_REMAPPED);
 564        return 0;
 565}
 566
 567/*
 568 * Check write append to a zoned block device.
 569 */
 570static inline blk_status_t blk_check_zone_append(struct request_queue *q,
 571                                                 struct bio *bio)
 572{
 573        int nr_sectors = bio_sectors(bio);
 574
 575        /* Only applicable to zoned block devices */
 576        if (!bdev_is_zoned(bio->bi_bdev))
 577                return BLK_STS_NOTSUPP;
 578
 579        /* The bio sector must point to the start of a sequential zone */
 580        if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector) ||
 581            !bio_zone_is_seq(bio))
 582                return BLK_STS_IOERR;
 583
 584        /*
 585         * Not allowed to cross zone boundaries. Otherwise, the BIO will be
 586         * split and could result in non-contiguous sectors being written in
 587         * different zones.
 588         */
 589        if (nr_sectors > q->limits.chunk_sectors)
 590                return BLK_STS_IOERR;
 591
 592        /* Make sure the BIO is small enough and will not get split */
 593        if (nr_sectors > q->limits.max_zone_append_sectors)
 594                return BLK_STS_IOERR;
 595
 596        bio->bi_opf |= REQ_NOMERGE;
 597
 598        return BLK_STS_OK;
 599}
 600
 601static void __submit_bio(struct bio *bio)
 602{
 603        if (unlikely(!blk_crypto_bio_prep(&bio)))
 604                return;
 605
 606        if (!bio->bi_bdev->bd_has_submit_bio) {
 607                blk_mq_submit_bio(bio);
 608        } else if (likely(bio_queue_enter(bio) == 0)) {
 609                struct gendisk *disk = bio->bi_bdev->bd_disk;
 610
 611                disk->fops->submit_bio(bio);
 612                blk_queue_exit(disk->queue);
 613        }
 614}
 615
 616/*
 617 * The loop in this function may be a bit non-obvious, and so deserves some
 618 * explanation:
 619 *
 620 *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
 621 *    that), so we have a list with a single bio.
 622 *  - We pretend that we have just taken it off a longer list, so we assign
 623 *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
 624 *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
 625 *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
 626 *    non-NULL value in bio_list and re-enter the loop from the top.
 627 *  - In this case we really did just take the bio of the top of the list (no
 628 *    pretending) and so remove it from bio_list, and call into ->submit_bio()
 629 *    again.
 630 *
 631 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
 632 * bio_list_on_stack[1] contains bios that were submitted before the current
 633 *      ->submit_bio, but that haven't been processed yet.
 634 */
 635static void __submit_bio_noacct(struct bio *bio)
 636{
 637        struct bio_list bio_list_on_stack[2];
 638
 639        BUG_ON(bio->bi_next);
 640
 641        bio_list_init(&bio_list_on_stack[0]);
 642        current->bio_list = bio_list_on_stack;
 643
 644        do {
 645                struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 646                struct bio_list lower, same;
 647
 648                /*
 649                 * Create a fresh bio_list for all subordinate requests.
 650                 */
 651                bio_list_on_stack[1] = bio_list_on_stack[0];
 652                bio_list_init(&bio_list_on_stack[0]);
 653
 654                __submit_bio(bio);
 655
 656                /*
 657                 * Sort new bios into those for a lower level and those for the
 658                 * same level.
 659                 */
 660                bio_list_init(&lower);
 661                bio_list_init(&same);
 662                while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
 663                        if (q == bdev_get_queue(bio->bi_bdev))
 664                                bio_list_add(&same, bio);
 665                        else
 666                                bio_list_add(&lower, bio);
 667
 668                /*
 669                 * Now assemble so we handle the lowest level first.
 670                 */
 671                bio_list_merge(&bio_list_on_stack[0], &lower);
 672                bio_list_merge(&bio_list_on_stack[0], &same);
 673                bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
 674        } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
 675
 676        current->bio_list = NULL;
 677}
 678
 679static void __submit_bio_noacct_mq(struct bio *bio)
 680{
 681        struct bio_list bio_list[2] = { };
 682
 683        current->bio_list = bio_list;
 684
 685        do {
 686                __submit_bio(bio);
 687        } while ((bio = bio_list_pop(&bio_list[0])));
 688
 689        current->bio_list = NULL;
 690}
 691
 692void submit_bio_noacct_nocheck(struct bio *bio)
 693{
 694        blk_cgroup_bio_start(bio);
 695        blkcg_bio_issue_init(bio);
 696
 697        if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
 698                trace_block_bio_queue(bio);
 699                /*
 700                 * Now that enqueuing has been traced, we need to trace
 701                 * completion as well.
 702                 */
 703                bio_set_flag(bio, BIO_TRACE_COMPLETION);
 704        }
 705
 706        /*
 707         * We only want one ->submit_bio to be active at a time, else stack
 708         * usage with stacked devices could be a problem.  Use current->bio_list
 709         * to collect a list of requests submited by a ->submit_bio method while
 710         * it is active, and then process them after it returned.
 711         */
 712        if (current->bio_list)
 713                bio_list_add(&current->bio_list[0], bio);
 714        else if (!bio->bi_bdev->bd_has_submit_bio)
 715                __submit_bio_noacct_mq(bio);
 716        else
 717                __submit_bio_noacct(bio);
 718}
 719
 720/**
 721 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
 722 * @bio:  The bio describing the location in memory and on the device.
 723 *
 724 * This is a version of submit_bio() that shall only be used for I/O that is
 725 * resubmitted to lower level drivers by stacking block drivers.  All file
 726 * systems and other upper level users of the block layer should use
 727 * submit_bio() instead.
 728 */
 729void submit_bio_noacct(struct bio *bio)
 730{
 731        struct block_device *bdev = bio->bi_bdev;
 732        struct request_queue *q = bdev_get_queue(bdev);
 733        blk_status_t status = BLK_STS_IOERR;
 734
 735        might_sleep();
 736
 737        /*
 738         * For a REQ_NOWAIT based request, return -EOPNOTSUPP
 739         * if queue does not support NOWAIT.
 740         */
 741        if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
 742                goto not_supported;
 743
 744        if (should_fail_bio(bio))
 745                goto end_io;
 746        bio_check_ro(bio);
 747        if (!bio_flagged(bio, BIO_REMAPPED)) {
 748                if (unlikely(bio_check_eod(bio)))
 749                        goto end_io;
 750                if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
 751                        goto end_io;
 752        }
 753
 754        /*
 755         * Filter flush bio's early so that bio based drivers without flush
 756         * support don't have to worry about them.
 757         */
 758        if (op_is_flush(bio->bi_opf)) {
 759                if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
 760                                 bio_op(bio) != REQ_OP_ZONE_APPEND))
 761                        goto end_io;
 762                if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
 763                        bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
 764                        if (!bio_sectors(bio)) {
 765                                status = BLK_STS_OK;
 766                                goto end_io;
 767                        }
 768                }
 769        }
 770
 771        if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
 772                bio_clear_polled(bio);
 773
 774        switch (bio_op(bio)) {
 775        case REQ_OP_DISCARD:
 776                if (!bdev_max_discard_sectors(bdev))
 777                        goto not_supported;
 778                break;
 779        case REQ_OP_SECURE_ERASE:
 780                if (!bdev_max_secure_erase_sectors(bdev))
 781                        goto not_supported;
 782                break;
 783        case REQ_OP_ZONE_APPEND:
 784                status = blk_check_zone_append(q, bio);
 785                if (status != BLK_STS_OK)
 786                        goto end_io;
 787                break;
 788        case REQ_OP_ZONE_RESET:
 789        case REQ_OP_ZONE_OPEN:
 790        case REQ_OP_ZONE_CLOSE:
 791        case REQ_OP_ZONE_FINISH:
 792                if (!bdev_is_zoned(bio->bi_bdev))
 793                        goto not_supported;
 794                break;
 795        case REQ_OP_ZONE_RESET_ALL:
 796                if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
 797                        goto not_supported;
 798                break;
 799        case REQ_OP_WRITE_ZEROES:
 800                if (!q->limits.max_write_zeroes_sectors)
 801                        goto not_supported;
 802                break;
 803        default:
 804                break;
 805        }
 806
 807        if (blk_throtl_bio(bio))
 808                return;
 809        submit_bio_noacct_nocheck(bio);
 810        return;
 811
 812not_supported:
 813        status = BLK_STS_NOTSUPP;
 814end_io:
 815        bio->bi_status = status;
 816        bio_endio(bio);
 817}
 818EXPORT_SYMBOL(submit_bio_noacct);
 819
 820/**
 821 * submit_bio - submit a bio to the block device layer for I/O
 822 * @bio: The &struct bio which describes the I/O
 823 *
 824 * submit_bio() is used to submit I/O requests to block devices.  It is passed a
 825 * fully set up &struct bio that describes the I/O that needs to be done.  The
 826 * bio will be send to the device described by the bi_bdev field.
 827 *
 828 * The success/failure status of the request, along with notification of
 829 * completion, is delivered asynchronously through the ->bi_end_io() callback
 830 * in @bio.  The bio must NOT be touched by the caller until ->bi_end_io() has
 831 * been called.
 832 */
 833void submit_bio(struct bio *bio)
 834{
 835        if (bio_op(bio) == REQ_OP_READ) {
 836                task_io_account_read(bio->bi_iter.bi_size);
 837                count_vm_events(PGPGIN, bio_sectors(bio));
 838        } else if (bio_op(bio) == REQ_OP_WRITE) {
 839                count_vm_events(PGPGOUT, bio_sectors(bio));
 840        }
 841
 842        submit_bio_noacct(bio);
 843}
 844EXPORT_SYMBOL(submit_bio);
 845
 846/**
 847 * bio_poll - poll for BIO completions
 848 * @bio: bio to poll for
 849 * @iob: batches of IO
 850 * @flags: BLK_POLL_* flags that control the behavior
 851 *
 852 * Poll for completions on queue associated with the bio. Returns number of
 853 * completed entries found.
 854 *
 855 * Note: the caller must either be the context that submitted @bio, or
 856 * be in a RCU critical section to prevent freeing of @bio.
 857 */
 858int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
 859{
 860        blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
 861        struct block_device *bdev;
 862        struct request_queue *q;
 863        int ret = 0;
 864
 865        bdev = READ_ONCE(bio->bi_bdev);
 866        if (!bdev)
 867                return 0;
 868
 869        q = bdev_get_queue(bdev);
 870        if (cookie == BLK_QC_T_NONE ||
 871            !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
 872                return 0;
 873
 874        /*
 875         * As the requests that require a zone lock are not plugged in the
 876         * first place, directly accessing the plug instead of using
 877         * blk_mq_plug() should not have any consequences during flushing for
 878         * zoned devices.
 879         */
 880        blk_flush_plug(current->plug, false);
 881
 882        /*
 883         * We need to be able to enter a frozen queue, similar to how
 884         * timeouts also need to do that. If that is blocked, then we can
 885         * have pending IO when a queue freeze is started, and then the
 886         * wait for the freeze to finish will wait for polled requests to
 887         * timeout as the poller is preventer from entering the queue and
 888         * completing them. As long as we prevent new IO from being queued,
 889         * that should be all that matters.
 890         */
 891        if (!percpu_ref_tryget(&q->q_usage_counter))
 892                return 0;
 893        if (queue_is_mq(q)) {
 894                ret = blk_mq_poll(q, cookie, iob, flags);
 895        } else {
 896                struct gendisk *disk = q->disk;
 897
 898                if (disk && disk->fops->poll_bio)
 899                        ret = disk->fops->poll_bio(bio, iob, flags);
 900        }
 901        blk_queue_exit(q);
 902        return ret;
 903}
 904EXPORT_SYMBOL_GPL(bio_poll);
 905
 906/*
 907 * Helper to implement file_operations.iopoll.  Requires the bio to be stored
 908 * in iocb->private, and cleared before freeing the bio.
 909 */
 910int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
 911                    unsigned int flags)
 912{
 913        struct bio *bio;
 914        int ret = 0;
 915
 916        /*
 917         * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
 918         * point to a freshly allocated bio at this point.  If that happens
 919         * we have a few cases to consider:
 920         *
 921         *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
 922         *     simply nothing in this case
 923         *  2) the bio points to a not poll enabled device.  bio_poll will catch
 924         *     this and return 0
 925         *  3) the bio points to a poll capable device, including but not
 926         *     limited to the one that the original bio pointed to.  In this
 927         *     case we will call into the actual poll method and poll for I/O,
 928         *     even if we don't need to, but it won't cause harm either.
 929         *
 930         * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
 931         * is still allocated. Because partitions hold a reference to the whole
 932         * device bdev and thus disk, the disk is also still valid.  Grabbing
 933         * a reference to the queue in bio_poll() ensures the hctxs and requests
 934         * are still valid as well.
 935         */
 936        rcu_read_lock();
 937        bio = READ_ONCE(kiocb->private);
 938        if (bio)
 939                ret = bio_poll(bio, iob, flags);
 940        rcu_read_unlock();
 941
 942        return ret;
 943}
 944EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
 945
 946void update_io_ticks(struct block_device *part, unsigned long now, bool end)
 947{
 948        unsigned long stamp;
 949again:
 950        stamp = READ_ONCE(part->bd_stamp);
 951        if (unlikely(time_after(now, stamp))) {
 952                if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now)))
 953                        __part_stat_add(part, io_ticks, end ? now - stamp : 1);
 954        }
 955        if (part->bd_partno) {
 956                part = bdev_whole(part);
 957                goto again;
 958        }
 959}
 960
 961unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
 962                                 unsigned long start_time)
 963{
 964        part_stat_lock();
 965        update_io_ticks(bdev, start_time, false);
 966        part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
 967        part_stat_unlock();
 968
 969        return start_time;
 970}
 971EXPORT_SYMBOL(bdev_start_io_acct);
 972
 973/**
 974 * bio_start_io_acct - start I/O accounting for bio based drivers
 975 * @bio:        bio to start account for
 976 *
 977 * Returns the start time that should be passed back to bio_end_io_acct().
 978 */
 979unsigned long bio_start_io_acct(struct bio *bio)
 980{
 981        return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
 982}
 983EXPORT_SYMBOL_GPL(bio_start_io_acct);
 984
 985void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
 986                      unsigned int sectors, unsigned long start_time)
 987{
 988        const int sgrp = op_stat_group(op);
 989        unsigned long now = READ_ONCE(jiffies);
 990        unsigned long duration = now - start_time;
 991
 992        part_stat_lock();
 993        update_io_ticks(bdev, now, true);
 994        part_stat_inc(bdev, ios[sgrp]);
 995        part_stat_add(bdev, sectors[sgrp], sectors);
 996        part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
 997        part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
 998        part_stat_unlock();
 999}
1000EXPORT_SYMBOL(bdev_end_io_acct);
1001
1002void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1003                              struct block_device *orig_bdev)
1004{
1005        bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
1006}
1007EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1008
1009/**
1010 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1011 * @q : the queue of the device being checked
1012 *
1013 * Description:
1014 *    Check if underlying low-level drivers of a device are busy.
1015 *    If the drivers want to export their busy state, they must set own
1016 *    exporting function using blk_queue_lld_busy() first.
1017 *
1018 *    Basically, this function is used only by request stacking drivers
1019 *    to stop dispatching requests to underlying devices when underlying
1020 *    devices are busy.  This behavior helps more I/O merging on the queue
1021 *    of the request stacking driver and prevents I/O throughput regression
1022 *    on burst I/O load.
1023 *
1024 * Return:
1025 *    0 - Not busy (The request stacking driver should dispatch request)
1026 *    1 - Busy (The request stacking driver should stop dispatching request)
1027 */
1028int blk_lld_busy(struct request_queue *q)
1029{
1030        if (queue_is_mq(q) && q->mq_ops->busy)
1031                return q->mq_ops->busy(q);
1032
1033        return 0;
1034}
1035EXPORT_SYMBOL_GPL(blk_lld_busy);
1036
1037int kblockd_schedule_work(struct work_struct *work)
1038{
1039        return queue_work(kblockd_workqueue, work);
1040}
1041EXPORT_SYMBOL(kblockd_schedule_work);
1042
1043int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1044                                unsigned long delay)
1045{
1046        return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1047}
1048EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1049
1050void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1051{
1052        struct task_struct *tsk = current;
1053
1054        /*
1055         * If this is a nested plug, don't actually assign it.
1056         */
1057        if (tsk->plug)
1058                return;
1059
1060        plug->mq_list = NULL;
1061        plug->cached_rq = NULL;
1062        plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1063        plug->rq_count = 0;
1064        plug->multiple_queues = false;
1065        plug->has_elevator = false;
1066        INIT_LIST_HEAD(&plug->cb_list);
1067
1068        /*
1069         * Store ordering should not be needed here, since a potential
1070         * preempt will imply a full memory barrier
1071         */
1072        tsk->plug = plug;
1073}
1074
1075/**
1076 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1077 * @plug:       The &struct blk_plug that needs to be initialized
1078 *
1079 * Description:
1080 *   blk_start_plug() indicates to the block layer an intent by the caller
1081 *   to submit multiple I/O requests in a batch.  The block layer may use
1082 *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1083 *   is called.  However, the block layer may choose to submit requests
1084 *   before a call to blk_finish_plug() if the number of queued I/Os
1085 *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1086 *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1087 *   the task schedules (see below).
1088 *
1089 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1090 *   pending I/O should the task end up blocking between blk_start_plug() and
1091 *   blk_finish_plug(). This is important from a performance perspective, but
1092 *   also ensures that we don't deadlock. For instance, if the task is blocking
1093 *   for a memory allocation, memory reclaim could end up wanting to free a
1094 *   page belonging to that request that is currently residing in our private
1095 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1096 *   this kind of deadlock.
1097 */
1098void blk_start_plug(struct blk_plug *plug)
1099{
1100        blk_start_plug_nr_ios(plug, 1);
1101}
1102EXPORT_SYMBOL(blk_start_plug);
1103
1104static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1105{
1106        LIST_HEAD(callbacks);
1107
1108        while (!list_empty(&plug->cb_list)) {
1109                list_splice_init(&plug->cb_list, &callbacks);
1110
1111                while (!list_empty(&callbacks)) {
1112                        struct blk_plug_cb *cb = list_first_entry(&callbacks,
1113                                                          struct blk_plug_cb,
1114                                                          list);
1115                        list_del(&cb->list);
1116                        cb->callback(cb, from_schedule);
1117                }
1118        }
1119}
1120
1121struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1122                                      int size)
1123{
1124        struct blk_plug *plug = current->plug;
1125        struct blk_plug_cb *cb;
1126
1127        if (!plug)
1128                return NULL;
1129
1130        list_for_each_entry(cb, &plug->cb_list, list)
1131                if (cb->callback == unplug && cb->data == data)
1132                        return cb;
1133
1134        /* Not currently on the callback list */
1135        BUG_ON(size < sizeof(*cb));
1136        cb = kzalloc(size, GFP_ATOMIC);
1137        if (cb) {
1138                cb->data = data;
1139                cb->callback = unplug;
1140                list_add(&cb->list, &plug->cb_list);
1141        }
1142        return cb;
1143}
1144EXPORT_SYMBOL(blk_check_plugged);
1145
1146void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1147{
1148        if (!list_empty(&plug->cb_list))
1149                flush_plug_callbacks(plug, from_schedule);
1150        blk_mq_flush_plug_list(plug, from_schedule);
1151        /*
1152         * Unconditionally flush out cached requests, even if the unplug
1153         * event came from schedule. Since we know hold references to the
1154         * queue for cached requests, we don't want a blocked task holding
1155         * up a queue freeze/quiesce event.
1156         */
1157        if (unlikely(!rq_list_empty(plug->cached_rq)))
1158                blk_mq_free_plug_rqs(plug);
1159}
1160
1161/**
1162 * blk_finish_plug - mark the end of a batch of submitted I/O
1163 * @plug:       The &struct blk_plug passed to blk_start_plug()
1164 *
1165 * Description:
1166 * Indicate that a batch of I/O submissions is complete.  This function
1167 * must be paired with an initial call to blk_start_plug().  The intent
1168 * is to allow the block layer to optimize I/O submission.  See the
1169 * documentation for blk_start_plug() for more information.
1170 */
1171void blk_finish_plug(struct blk_plug *plug)
1172{
1173        if (plug == current->plug) {
1174                __blk_flush_plug(plug, false);
1175                current->plug = NULL;
1176        }
1177}
1178EXPORT_SYMBOL(blk_finish_plug);
1179
1180void blk_io_schedule(void)
1181{
1182        /* Prevent hang_check timer from firing at us during very long I/O */
1183        unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1184
1185        if (timeout)
1186                io_schedule_timeout(timeout);
1187        else
1188                io_schedule();
1189}
1190EXPORT_SYMBOL_GPL(blk_io_schedule);
1191
1192int __init blk_dev_init(void)
1193{
1194        BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1195        BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1196                        sizeof_field(struct request, cmd_flags));
1197        BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1198                        sizeof_field(struct bio, bi_opf));
1199
1200        /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1201        kblockd_workqueue = alloc_workqueue("kblockd",
1202                                            WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1203        if (!kblockd_workqueue)
1204                panic("Failed to create kblockd\n");
1205
1206        blk_requestq_cachep = kmem_cache_create("request_queue",
1207                        sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1208
1209        blk_debugfs_root = debugfs_create_dir("block", NULL);
1210
1211        return 0;
1212}
1213