linux/block/bio-integrity.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * bio-integrity.c - bio data integrity extensions
   4 *
   5 * Copyright (C) 2007, 2008, 2009 Oracle Corporation
   6 * Written by: Martin K. Petersen <martin.petersen@oracle.com>
   7 */
   8
   9#include <linux/blk-integrity.h>
  10#include <linux/mempool.h>
  11#include <linux/export.h>
  12#include <linux/bio.h>
  13#include <linux/workqueue.h>
  14#include <linux/slab.h>
  15#include "blk.h"
  16
  17static struct kmem_cache *bip_slab;
  18static struct workqueue_struct *kintegrityd_wq;
  19
  20void blk_flush_integrity(void)
  21{
  22        flush_workqueue(kintegrityd_wq);
  23}
  24
  25static void __bio_integrity_free(struct bio_set *bs,
  26                                 struct bio_integrity_payload *bip)
  27{
  28        if (bs && mempool_initialized(&bs->bio_integrity_pool)) {
  29                if (bip->bip_vec)
  30                        bvec_free(&bs->bvec_integrity_pool, bip->bip_vec,
  31                                  bip->bip_max_vcnt);
  32                mempool_free(bip, &bs->bio_integrity_pool);
  33        } else {
  34                kfree(bip);
  35        }
  36}
  37
  38/**
  39 * bio_integrity_alloc - Allocate integrity payload and attach it to bio
  40 * @bio:        bio to attach integrity metadata to
  41 * @gfp_mask:   Memory allocation mask
  42 * @nr_vecs:    Number of integrity metadata scatter-gather elements
  43 *
  44 * Description: This function prepares a bio for attaching integrity
  45 * metadata.  nr_vecs specifies the maximum number of pages containing
  46 * integrity metadata that can be attached.
  47 */
  48struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
  49                                                  gfp_t gfp_mask,
  50                                                  unsigned int nr_vecs)
  51{
  52        struct bio_integrity_payload *bip;
  53        struct bio_set *bs = bio->bi_pool;
  54        unsigned inline_vecs;
  55
  56        if (WARN_ON_ONCE(bio_has_crypt_ctx(bio)))
  57                return ERR_PTR(-EOPNOTSUPP);
  58
  59        if (!bs || !mempool_initialized(&bs->bio_integrity_pool)) {
  60                bip = kmalloc(struct_size(bip, bip_inline_vecs, nr_vecs), gfp_mask);
  61                inline_vecs = nr_vecs;
  62        } else {
  63                bip = mempool_alloc(&bs->bio_integrity_pool, gfp_mask);
  64                inline_vecs = BIO_INLINE_VECS;
  65        }
  66
  67        if (unlikely(!bip))
  68                return ERR_PTR(-ENOMEM);
  69
  70        memset(bip, 0, sizeof(*bip));
  71
  72        if (nr_vecs > inline_vecs) {
  73                bip->bip_max_vcnt = nr_vecs;
  74                bip->bip_vec = bvec_alloc(&bs->bvec_integrity_pool,
  75                                          &bip->bip_max_vcnt, gfp_mask);
  76                if (!bip->bip_vec)
  77                        goto err;
  78        } else {
  79                bip->bip_vec = bip->bip_inline_vecs;
  80                bip->bip_max_vcnt = inline_vecs;
  81        }
  82
  83        bip->bip_bio = bio;
  84        bio->bi_integrity = bip;
  85        bio->bi_opf |= REQ_INTEGRITY;
  86
  87        return bip;
  88err:
  89        __bio_integrity_free(bs, bip);
  90        return ERR_PTR(-ENOMEM);
  91}
  92EXPORT_SYMBOL(bio_integrity_alloc);
  93
  94/**
  95 * bio_integrity_free - Free bio integrity payload
  96 * @bio:        bio containing bip to be freed
  97 *
  98 * Description: Used to free the integrity portion of a bio. Usually
  99 * called from bio_free().
 100 */
 101void bio_integrity_free(struct bio *bio)
 102{
 103        struct bio_integrity_payload *bip = bio_integrity(bio);
 104        struct bio_set *bs = bio->bi_pool;
 105
 106        if (bip->bip_flags & BIP_BLOCK_INTEGRITY)
 107                kfree(bvec_virt(bip->bip_vec));
 108
 109        __bio_integrity_free(bs, bip);
 110        bio->bi_integrity = NULL;
 111        bio->bi_opf &= ~REQ_INTEGRITY;
 112}
 113
 114/**
 115 * bio_integrity_add_page - Attach integrity metadata
 116 * @bio:        bio to update
 117 * @page:       page containing integrity metadata
 118 * @len:        number of bytes of integrity metadata in page
 119 * @offset:     start offset within page
 120 *
 121 * Description: Attach a page containing integrity metadata to bio.
 122 */
 123int bio_integrity_add_page(struct bio *bio, struct page *page,
 124                           unsigned int len, unsigned int offset)
 125{
 126        struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 127        struct bio_integrity_payload *bip = bio_integrity(bio);
 128
 129        if (((bip->bip_iter.bi_size + len) >> SECTOR_SHIFT) >
 130            queue_max_hw_sectors(q))
 131                return 0;
 132
 133        if (bip->bip_vcnt > 0) {
 134                struct bio_vec *bv = &bip->bip_vec[bip->bip_vcnt - 1];
 135                bool same_page = false;
 136
 137                if (bvec_try_merge_hw_page(q, bv, page, len, offset,
 138                                           &same_page)) {
 139                        bip->bip_iter.bi_size += len;
 140                        return len;
 141                }
 142
 143                if (bip->bip_vcnt >=
 144                    min(bip->bip_max_vcnt, queue_max_integrity_segments(q)))
 145                        return 0;
 146
 147                /*
 148                 * If the queue doesn't support SG gaps and adding this segment
 149                 * would create a gap, disallow it.
 150                 */
 151                if (bvec_gap_to_prev(&q->limits, bv, offset))
 152                        return 0;
 153        }
 154
 155        bvec_set_page(&bip->bip_vec[bip->bip_vcnt], page, len, offset);
 156        bip->bip_vcnt++;
 157        bip->bip_iter.bi_size += len;
 158
 159        return len;
 160}
 161EXPORT_SYMBOL(bio_integrity_add_page);
 162
 163/**
 164 * bio_integrity_process - Process integrity metadata for a bio
 165 * @bio:        bio to generate/verify integrity metadata for
 166 * @proc_iter:  iterator to process
 167 * @proc_fn:    Pointer to the relevant processing function
 168 */
 169static blk_status_t bio_integrity_process(struct bio *bio,
 170                struct bvec_iter *proc_iter, integrity_processing_fn *proc_fn)
 171{
 172        struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
 173        struct blk_integrity_iter iter;
 174        struct bvec_iter bviter;
 175        struct bio_vec bv;
 176        struct bio_integrity_payload *bip = bio_integrity(bio);
 177        blk_status_t ret = BLK_STS_OK;
 178
 179        iter.disk_name = bio->bi_bdev->bd_disk->disk_name;
 180        iter.interval = 1 << bi->interval_exp;
 181        iter.tuple_size = bi->tuple_size;
 182        iter.seed = proc_iter->bi_sector;
 183        iter.prot_buf = bvec_virt(bip->bip_vec);
 184
 185        __bio_for_each_segment(bv, bio, bviter, *proc_iter) {
 186                void *kaddr = bvec_kmap_local(&bv);
 187
 188                iter.data_buf = kaddr;
 189                iter.data_size = bv.bv_len;
 190                ret = proc_fn(&iter);
 191                kunmap_local(kaddr);
 192
 193                if (ret)
 194                        break;
 195
 196        }
 197        return ret;
 198}
 199
 200/**
 201 * bio_integrity_prep - Prepare bio for integrity I/O
 202 * @bio:        bio to prepare
 203 *
 204 * Description:  Checks if the bio already has an integrity payload attached.
 205 * If it does, the payload has been generated by another kernel subsystem,
 206 * and we just pass it through. Otherwise allocates integrity payload.
 207 * The bio must have data direction, target device and start sector set priot
 208 * to calling.  In the WRITE case, integrity metadata will be generated using
 209 * the block device's integrity function.  In the READ case, the buffer
 210 * will be prepared for DMA and a suitable end_io handler set up.
 211 */
 212bool bio_integrity_prep(struct bio *bio)
 213{
 214        struct bio_integrity_payload *bip;
 215        struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
 216        void *buf;
 217        unsigned long start, end;
 218        unsigned int len, nr_pages;
 219        unsigned int bytes, offset, i;
 220
 221        if (!bi)
 222                return true;
 223
 224        if (bio_op(bio) != REQ_OP_READ && bio_op(bio) != REQ_OP_WRITE)
 225                return true;
 226
 227        if (!bio_sectors(bio))
 228                return true;
 229
 230        /* Already protected? */
 231        if (bio_integrity(bio))
 232                return true;
 233
 234        if (bio_data_dir(bio) == READ) {
 235                if (!bi->profile->verify_fn ||
 236                    !(bi->flags & BLK_INTEGRITY_VERIFY))
 237                        return true;
 238        } else {
 239                if (!bi->profile->generate_fn ||
 240                    !(bi->flags & BLK_INTEGRITY_GENERATE))
 241                        return true;
 242        }
 243
 244        /* Allocate kernel buffer for protection data */
 245        len = bio_integrity_bytes(bi, bio_sectors(bio));
 246        buf = kmalloc(len, GFP_NOIO);
 247        if (unlikely(buf == NULL)) {
 248                printk(KERN_ERR "could not allocate integrity buffer\n");
 249                goto err_end_io;
 250        }
 251
 252        end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 253        start = ((unsigned long) buf) >> PAGE_SHIFT;
 254        nr_pages = end - start;
 255
 256        /* Allocate bio integrity payload and integrity vectors */
 257        bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
 258        if (IS_ERR(bip)) {
 259                printk(KERN_ERR "could not allocate data integrity bioset\n");
 260                kfree(buf);
 261                goto err_end_io;
 262        }
 263
 264        bip->bip_flags |= BIP_BLOCK_INTEGRITY;
 265        bip_set_seed(bip, bio->bi_iter.bi_sector);
 266
 267        if (bi->flags & BLK_INTEGRITY_IP_CHECKSUM)
 268                bip->bip_flags |= BIP_IP_CHECKSUM;
 269
 270        /* Map it */
 271        offset = offset_in_page(buf);
 272        for (i = 0; i < nr_pages && len > 0; i++) {
 273                bytes = PAGE_SIZE - offset;
 274
 275                if (bytes > len)
 276                        bytes = len;
 277
 278                if (bio_integrity_add_page(bio, virt_to_page(buf),
 279                                           bytes, offset) < bytes) {
 280                        printk(KERN_ERR "could not attach integrity payload\n");
 281                        goto err_end_io;
 282                }
 283
 284                buf += bytes;
 285                len -= bytes;
 286                offset = 0;
 287        }
 288
 289        /* Auto-generate integrity metadata if this is a write */
 290        if (bio_data_dir(bio) == WRITE) {
 291                bio_integrity_process(bio, &bio->bi_iter,
 292                                      bi->profile->generate_fn);
 293        } else {
 294                bip->bio_iter = bio->bi_iter;
 295        }
 296        return true;
 297
 298err_end_io:
 299        bio->bi_status = BLK_STS_RESOURCE;
 300        bio_endio(bio);
 301        return false;
 302}
 303EXPORT_SYMBOL(bio_integrity_prep);
 304
 305/**
 306 * bio_integrity_verify_fn - Integrity I/O completion worker
 307 * @work:       Work struct stored in bio to be verified
 308 *
 309 * Description: This workqueue function is called to complete a READ
 310 * request.  The function verifies the transferred integrity metadata
 311 * and then calls the original bio end_io function.
 312 */
 313static void bio_integrity_verify_fn(struct work_struct *work)
 314{
 315        struct bio_integrity_payload *bip =
 316                container_of(work, struct bio_integrity_payload, bip_work);
 317        struct bio *bio = bip->bip_bio;
 318        struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
 319
 320        /*
 321         * At the moment verify is called bio's iterator was advanced
 322         * during split and completion, we need to rewind iterator to
 323         * it's original position.
 324         */
 325        bio->bi_status = bio_integrity_process(bio, &bip->bio_iter,
 326                                                bi->profile->verify_fn);
 327        bio_integrity_free(bio);
 328        bio_endio(bio);
 329}
 330
 331/**
 332 * __bio_integrity_endio - Integrity I/O completion function
 333 * @bio:        Protected bio
 334 *
 335 * Description: Completion for integrity I/O
 336 *
 337 * Normally I/O completion is done in interrupt context.  However,
 338 * verifying I/O integrity is a time-consuming task which must be run
 339 * in process context.  This function postpones completion
 340 * accordingly.
 341 */
 342bool __bio_integrity_endio(struct bio *bio)
 343{
 344        struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
 345        struct bio_integrity_payload *bip = bio_integrity(bio);
 346
 347        if (bio_op(bio) == REQ_OP_READ && !bio->bi_status &&
 348            (bip->bip_flags & BIP_BLOCK_INTEGRITY) && bi->profile->verify_fn) {
 349                INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
 350                queue_work(kintegrityd_wq, &bip->bip_work);
 351                return false;
 352        }
 353
 354        bio_integrity_free(bio);
 355        return true;
 356}
 357
 358/**
 359 * bio_integrity_advance - Advance integrity vector
 360 * @bio:        bio whose integrity vector to update
 361 * @bytes_done: number of data bytes that have been completed
 362 *
 363 * Description: This function calculates how many integrity bytes the
 364 * number of completed data bytes correspond to and advances the
 365 * integrity vector accordingly.
 366 */
 367void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
 368{
 369        struct bio_integrity_payload *bip = bio_integrity(bio);
 370        struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
 371        unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
 372
 373        bip->bip_iter.bi_sector += bio_integrity_intervals(bi, bytes_done >> 9);
 374        bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
 375}
 376
 377/**
 378 * bio_integrity_trim - Trim integrity vector
 379 * @bio:        bio whose integrity vector to update
 380 *
 381 * Description: Used to trim the integrity vector in a cloned bio.
 382 */
 383void bio_integrity_trim(struct bio *bio)
 384{
 385        struct bio_integrity_payload *bip = bio_integrity(bio);
 386        struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
 387
 388        bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
 389}
 390EXPORT_SYMBOL(bio_integrity_trim);
 391
 392/**
 393 * bio_integrity_clone - Callback for cloning bios with integrity metadata
 394 * @bio:        New bio
 395 * @bio_src:    Original bio
 396 * @gfp_mask:   Memory allocation mask
 397 *
 398 * Description: Called to allocate a bip when cloning a bio
 399 */
 400int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
 401                        gfp_t gfp_mask)
 402{
 403        struct bio_integrity_payload *bip_src = bio_integrity(bio_src);
 404        struct bio_integrity_payload *bip;
 405
 406        BUG_ON(bip_src == NULL);
 407
 408        bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt);
 409        if (IS_ERR(bip))
 410                return PTR_ERR(bip);
 411
 412        memcpy(bip->bip_vec, bip_src->bip_vec,
 413               bip_src->bip_vcnt * sizeof(struct bio_vec));
 414
 415        bip->bip_vcnt = bip_src->bip_vcnt;
 416        bip->bip_iter = bip_src->bip_iter;
 417        bip->bip_flags = bip_src->bip_flags & ~BIP_BLOCK_INTEGRITY;
 418
 419        return 0;
 420}
 421
 422int bioset_integrity_create(struct bio_set *bs, int pool_size)
 423{
 424        if (mempool_initialized(&bs->bio_integrity_pool))
 425                return 0;
 426
 427        if (mempool_init_slab_pool(&bs->bio_integrity_pool,
 428                                   pool_size, bip_slab))
 429                return -1;
 430
 431        if (biovec_init_pool(&bs->bvec_integrity_pool, pool_size)) {
 432                mempool_exit(&bs->bio_integrity_pool);
 433                return -1;
 434        }
 435
 436        return 0;
 437}
 438EXPORT_SYMBOL(bioset_integrity_create);
 439
 440void bioset_integrity_free(struct bio_set *bs)
 441{
 442        mempool_exit(&bs->bio_integrity_pool);
 443        mempool_exit(&bs->bvec_integrity_pool);
 444}
 445
 446void __init bio_integrity_init(void)
 447{
 448        /*
 449         * kintegrityd won't block much but may burn a lot of CPU cycles.
 450         * Make it highpri CPU intensive wq with max concurrency of 1.
 451         */
 452        kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
 453                                         WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
 454        if (!kintegrityd_wq)
 455                panic("Failed to create kintegrityd\n");
 456
 457        bip_slab = kmem_cache_create("bio_integrity_payload",
 458                                     sizeof(struct bio_integrity_payload) +
 459                                     sizeof(struct bio_vec) * BIO_INLINE_VECS,
 460                                     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
 461}
 462