linux/kernel/bpf/cpumap.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* bpf/cpumap.c
   3 *
   4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
   5 */
   6
   7/* The 'cpumap' is primarily used as a backend map for XDP BPF helper
   8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
   9 *
  10 * Unlike devmap which redirects XDP frames out another NIC device,
  11 * this map type redirects raw XDP frames to another CPU.  The remote
  12 * CPU will do SKB-allocation and call the normal network stack.
  13 *
  14 * This is a scalability and isolation mechanism, that allow
  15 * separating the early driver network XDP layer, from the rest of the
  16 * netstack, and assigning dedicated CPUs for this stage.  This
  17 * basically allows for 10G wirespeed pre-filtering via bpf.
  18 */
  19#include <linux/bitops.h>
  20#include <linux/bpf.h>
  21#include <linux/filter.h>
  22#include <linux/ptr_ring.h>
  23#include <net/xdp.h>
  24
  25#include <linux/sched.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/capability.h>
  29#include <trace/events/xdp.h>
  30#include <linux/btf_ids.h>
  31
  32#include <linux/netdevice.h>   /* netif_receive_skb_list */
  33#include <linux/etherdevice.h> /* eth_type_trans */
  34
  35/* General idea: XDP packets getting XDP redirected to another CPU,
  36 * will maximum be stored/queued for one driver ->poll() call.  It is
  37 * guaranteed that queueing the frame and the flush operation happen on
  38 * same CPU.  Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
  39 * which queue in bpf_cpu_map_entry contains packets.
  40 */
  41
  42#define CPU_MAP_BULK_SIZE 8  /* 8 == one cacheline on 64-bit archs */
  43struct bpf_cpu_map_entry;
  44struct bpf_cpu_map;
  45
  46struct xdp_bulk_queue {
  47        void *q[CPU_MAP_BULK_SIZE];
  48        struct list_head flush_node;
  49        struct bpf_cpu_map_entry *obj;
  50        unsigned int count;
  51};
  52
  53/* Struct for every remote "destination" CPU in map */
  54struct bpf_cpu_map_entry {
  55        u32 cpu;    /* kthread CPU and map index */
  56        int map_id; /* Back reference to map */
  57
  58        /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
  59        struct xdp_bulk_queue __percpu *bulkq;
  60
  61        struct bpf_cpu_map *cmap;
  62
  63        /* Queue with potential multi-producers, and single-consumer kthread */
  64        struct ptr_ring *queue;
  65        struct task_struct *kthread;
  66
  67        struct bpf_cpumap_val value;
  68        struct bpf_prog *prog;
  69
  70        atomic_t refcnt; /* Control when this struct can be free'ed */
  71        struct rcu_head rcu;
  72
  73        struct work_struct kthread_stop_wq;
  74};
  75
  76struct bpf_cpu_map {
  77        struct bpf_map map;
  78        /* Below members specific for map type */
  79        struct bpf_cpu_map_entry __rcu **cpu_map;
  80};
  81
  82static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
  83
  84static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
  85{
  86        u32 value_size = attr->value_size;
  87        struct bpf_cpu_map *cmap;
  88        int err = -ENOMEM;
  89
  90        if (!bpf_capable())
  91                return ERR_PTR(-EPERM);
  92
  93        /* check sanity of attributes */
  94        if (attr->max_entries == 0 || attr->key_size != 4 ||
  95            (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
  96             value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
  97            attr->map_flags & ~BPF_F_NUMA_NODE)
  98                return ERR_PTR(-EINVAL);
  99
 100        cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT);
 101        if (!cmap)
 102                return ERR_PTR(-ENOMEM);
 103
 104        bpf_map_init_from_attr(&cmap->map, attr);
 105
 106        /* Pre-limit array size based on NR_CPUS, not final CPU check */
 107        if (cmap->map.max_entries > NR_CPUS) {
 108                err = -E2BIG;
 109                goto free_cmap;
 110        }
 111
 112        /* Alloc array for possible remote "destination" CPUs */
 113        cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
 114                                           sizeof(struct bpf_cpu_map_entry *),
 115                                           cmap->map.numa_node);
 116        if (!cmap->cpu_map)
 117                goto free_cmap;
 118
 119        return &cmap->map;
 120free_cmap:
 121        kfree(cmap);
 122        return ERR_PTR(err);
 123}
 124
 125static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
 126{
 127        atomic_inc(&rcpu->refcnt);
 128}
 129
 130/* called from workqueue, to workaround syscall using preempt_disable */
 131static void cpu_map_kthread_stop(struct work_struct *work)
 132{
 133        struct bpf_cpu_map_entry *rcpu;
 134
 135        rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
 136
 137        /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
 138         * as it waits until all in-flight call_rcu() callbacks complete.
 139         */
 140        rcu_barrier();
 141
 142        /* kthread_stop will wake_up_process and wait for it to complete */
 143        kthread_stop(rcpu->kthread);
 144}
 145
 146static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
 147{
 148        /* The tear-down procedure should have made sure that queue is
 149         * empty.  See __cpu_map_entry_replace() and work-queue
 150         * invoked cpu_map_kthread_stop(). Catch any broken behaviour
 151         * gracefully and warn once.
 152         */
 153        struct xdp_frame *xdpf;
 154
 155        while ((xdpf = ptr_ring_consume(ring)))
 156                if (WARN_ON_ONCE(xdpf))
 157                        xdp_return_frame(xdpf);
 158}
 159
 160static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
 161{
 162        if (atomic_dec_and_test(&rcpu->refcnt)) {
 163                if (rcpu->prog)
 164                        bpf_prog_put(rcpu->prog);
 165                /* The queue should be empty at this point */
 166                __cpu_map_ring_cleanup(rcpu->queue);
 167                ptr_ring_cleanup(rcpu->queue, NULL);
 168                kfree(rcpu->queue);
 169                kfree(rcpu);
 170        }
 171}
 172
 173static void cpu_map_bpf_prog_run_skb(struct bpf_cpu_map_entry *rcpu,
 174                                     struct list_head *listp,
 175                                     struct xdp_cpumap_stats *stats)
 176{
 177        struct sk_buff *skb, *tmp;
 178        struct xdp_buff xdp;
 179        u32 act;
 180        int err;
 181
 182        list_for_each_entry_safe(skb, tmp, listp, list) {
 183                act = bpf_prog_run_generic_xdp(skb, &xdp, rcpu->prog);
 184                switch (act) {
 185                case XDP_PASS:
 186                        break;
 187                case XDP_REDIRECT:
 188                        skb_list_del_init(skb);
 189                        err = xdp_do_generic_redirect(skb->dev, skb, &xdp,
 190                                                      rcpu->prog);
 191                        if (unlikely(err)) {
 192                                kfree_skb(skb);
 193                                stats->drop++;
 194                        } else {
 195                                stats->redirect++;
 196                        }
 197                        return;
 198                default:
 199                        bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
 200                        fallthrough;
 201                case XDP_ABORTED:
 202                        trace_xdp_exception(skb->dev, rcpu->prog, act);
 203                        fallthrough;
 204                case XDP_DROP:
 205                        skb_list_del_init(skb);
 206                        kfree_skb(skb);
 207                        stats->drop++;
 208                        return;
 209                }
 210        }
 211}
 212
 213static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
 214                                    void **frames, int n,
 215                                    struct xdp_cpumap_stats *stats)
 216{
 217        struct xdp_rxq_info rxq;
 218        struct xdp_buff xdp;
 219        int i, nframes = 0;
 220
 221        xdp_set_return_frame_no_direct();
 222        xdp.rxq = &rxq;
 223
 224        for (i = 0; i < n; i++) {
 225                struct xdp_frame *xdpf = frames[i];
 226                u32 act;
 227                int err;
 228
 229                rxq.dev = xdpf->dev_rx;
 230                rxq.mem = xdpf->mem;
 231                /* TODO: report queue_index to xdp_rxq_info */
 232
 233                xdp_convert_frame_to_buff(xdpf, &xdp);
 234
 235                act = bpf_prog_run_xdp(rcpu->prog, &xdp);
 236                switch (act) {
 237                case XDP_PASS:
 238                        err = xdp_update_frame_from_buff(&xdp, xdpf);
 239                        if (err < 0) {
 240                                xdp_return_frame(xdpf);
 241                                stats->drop++;
 242                        } else {
 243                                frames[nframes++] = xdpf;
 244                                stats->pass++;
 245                        }
 246                        break;
 247                case XDP_REDIRECT:
 248                        err = xdp_do_redirect(xdpf->dev_rx, &xdp,
 249                                              rcpu->prog);
 250                        if (unlikely(err)) {
 251                                xdp_return_frame(xdpf);
 252                                stats->drop++;
 253                        } else {
 254                                stats->redirect++;
 255                        }
 256                        break;
 257                default:
 258                        bpf_warn_invalid_xdp_action(NULL, rcpu->prog, act);
 259                        fallthrough;
 260                case XDP_DROP:
 261                        xdp_return_frame(xdpf);
 262                        stats->drop++;
 263                        break;
 264                }
 265        }
 266
 267        xdp_clear_return_frame_no_direct();
 268
 269        return nframes;
 270}
 271
 272#define CPUMAP_BATCH 8
 273
 274static int cpu_map_bpf_prog_run(struct bpf_cpu_map_entry *rcpu, void **frames,
 275                                int xdp_n, struct xdp_cpumap_stats *stats,
 276                                struct list_head *list)
 277{
 278        int nframes;
 279
 280        if (!rcpu->prog)
 281                return xdp_n;
 282
 283        rcu_read_lock_bh();
 284
 285        nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, xdp_n, stats);
 286
 287        if (stats->redirect)
 288                xdp_do_flush();
 289
 290        if (unlikely(!list_empty(list)))
 291                cpu_map_bpf_prog_run_skb(rcpu, list, stats);
 292
 293        rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
 294
 295        return nframes;
 296}
 297
 298
 299static int cpu_map_kthread_run(void *data)
 300{
 301        struct bpf_cpu_map_entry *rcpu = data;
 302
 303        set_current_state(TASK_INTERRUPTIBLE);
 304
 305        /* When kthread gives stop order, then rcpu have been disconnected
 306         * from map, thus no new packets can enter. Remaining in-flight
 307         * per CPU stored packets are flushed to this queue.  Wait honoring
 308         * kthread_stop signal until queue is empty.
 309         */
 310        while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
 311                struct xdp_cpumap_stats stats = {}; /* zero stats */
 312                unsigned int kmem_alloc_drops = 0, sched = 0;
 313                gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
 314                int i, n, m, nframes, xdp_n;
 315                void *frames[CPUMAP_BATCH];
 316                void *skbs[CPUMAP_BATCH];
 317                LIST_HEAD(list);
 318
 319                /* Release CPU reschedule checks */
 320                if (__ptr_ring_empty(rcpu->queue)) {
 321                        set_current_state(TASK_INTERRUPTIBLE);
 322                        /* Recheck to avoid lost wake-up */
 323                        if (__ptr_ring_empty(rcpu->queue)) {
 324                                schedule();
 325                                sched = 1;
 326                        } else {
 327                                __set_current_state(TASK_RUNNING);
 328                        }
 329                } else {
 330                        sched = cond_resched();
 331                }
 332
 333                /*
 334                 * The bpf_cpu_map_entry is single consumer, with this
 335                 * kthread CPU pinned. Lockless access to ptr_ring
 336                 * consume side valid as no-resize allowed of queue.
 337                 */
 338                n = __ptr_ring_consume_batched(rcpu->queue, frames,
 339                                               CPUMAP_BATCH);
 340                for (i = 0, xdp_n = 0; i < n; i++) {
 341                        void *f = frames[i];
 342                        struct page *page;
 343
 344                        if (unlikely(__ptr_test_bit(0, &f))) {
 345                                struct sk_buff *skb = f;
 346
 347                                __ptr_clear_bit(0, &skb);
 348                                list_add_tail(&skb->list, &list);
 349                                continue;
 350                        }
 351
 352                        frames[xdp_n++] = f;
 353                        page = virt_to_page(f);
 354
 355                        /* Bring struct page memory area to curr CPU. Read by
 356                         * build_skb_around via page_is_pfmemalloc(), and when
 357                         * freed written by page_frag_free call.
 358                         */
 359                        prefetchw(page);
 360                }
 361
 362                /* Support running another XDP prog on this CPU */
 363                nframes = cpu_map_bpf_prog_run(rcpu, frames, xdp_n, &stats, &list);
 364                if (nframes) {
 365                        m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
 366                        if (unlikely(m == 0)) {
 367                                for (i = 0; i < nframes; i++)
 368                                        skbs[i] = NULL; /* effect: xdp_return_frame */
 369                                kmem_alloc_drops += nframes;
 370                        }
 371                }
 372
 373                local_bh_disable();
 374                for (i = 0; i < nframes; i++) {
 375                        struct xdp_frame *xdpf = frames[i];
 376                        struct sk_buff *skb = skbs[i];
 377
 378                        skb = __xdp_build_skb_from_frame(xdpf, skb,
 379                                                         xdpf->dev_rx);
 380                        if (!skb) {
 381                                xdp_return_frame(xdpf);
 382                                continue;
 383                        }
 384
 385                        list_add_tail(&skb->list, &list);
 386                }
 387                netif_receive_skb_list(&list);
 388
 389                /* Feedback loop via tracepoint */
 390                trace_xdp_cpumap_kthread(rcpu->map_id, n, kmem_alloc_drops,
 391                                         sched, &stats);
 392
 393                local_bh_enable(); /* resched point, may call do_softirq() */
 394        }
 395        __set_current_state(TASK_RUNNING);
 396
 397        put_cpu_map_entry(rcpu);
 398        return 0;
 399}
 400
 401static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu,
 402                                      struct bpf_map *map, int fd)
 403{
 404        struct bpf_prog *prog;
 405
 406        prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
 407        if (IS_ERR(prog))
 408                return PTR_ERR(prog);
 409
 410        if (prog->expected_attach_type != BPF_XDP_CPUMAP ||
 411            !bpf_prog_map_compatible(map, prog)) {
 412                bpf_prog_put(prog);
 413                return -EINVAL;
 414        }
 415
 416        rcpu->value.bpf_prog.id = prog->aux->id;
 417        rcpu->prog = prog;
 418
 419        return 0;
 420}
 421
 422static struct bpf_cpu_map_entry *
 423__cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
 424                      u32 cpu)
 425{
 426        int numa, err, i, fd = value->bpf_prog.fd;
 427        gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
 428        struct bpf_cpu_map_entry *rcpu;
 429        struct xdp_bulk_queue *bq;
 430
 431        /* Have map->numa_node, but choose node of redirect target CPU */
 432        numa = cpu_to_node(cpu);
 433
 434        rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
 435        if (!rcpu)
 436                return NULL;
 437
 438        /* Alloc percpu bulkq */
 439        rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
 440                                           sizeof(void *), gfp);
 441        if (!rcpu->bulkq)
 442                goto free_rcu;
 443
 444        for_each_possible_cpu(i) {
 445                bq = per_cpu_ptr(rcpu->bulkq, i);
 446                bq->obj = rcpu;
 447        }
 448
 449        /* Alloc queue */
 450        rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
 451                                           numa);
 452        if (!rcpu->queue)
 453                goto free_bulkq;
 454
 455        err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
 456        if (err)
 457                goto free_queue;
 458
 459        rcpu->cpu    = cpu;
 460        rcpu->map_id = map->id;
 461        rcpu->value.qsize  = value->qsize;
 462
 463        if (fd > 0 && __cpu_map_load_bpf_program(rcpu, map, fd))
 464                goto free_ptr_ring;
 465
 466        /* Setup kthread */
 467        rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
 468                                               "cpumap/%d/map:%d", cpu,
 469                                               map->id);
 470        if (IS_ERR(rcpu->kthread))
 471                goto free_prog;
 472
 473        get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
 474        get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
 475
 476        /* Make sure kthread runs on a single CPU */
 477        kthread_bind(rcpu->kthread, cpu);
 478        wake_up_process(rcpu->kthread);
 479
 480        return rcpu;
 481
 482free_prog:
 483        if (rcpu->prog)
 484                bpf_prog_put(rcpu->prog);
 485free_ptr_ring:
 486        ptr_ring_cleanup(rcpu->queue, NULL);
 487free_queue:
 488        kfree(rcpu->queue);
 489free_bulkq:
 490        free_percpu(rcpu->bulkq);
 491free_rcu:
 492        kfree(rcpu);
 493        return NULL;
 494}
 495
 496static void __cpu_map_entry_free(struct rcu_head *rcu)
 497{
 498        struct bpf_cpu_map_entry *rcpu;
 499
 500        /* This cpu_map_entry have been disconnected from map and one
 501         * RCU grace-period have elapsed.  Thus, XDP cannot queue any
 502         * new packets and cannot change/set flush_needed that can
 503         * find this entry.
 504         */
 505        rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
 506
 507        free_percpu(rcpu->bulkq);
 508        /* Cannot kthread_stop() here, last put free rcpu resources */
 509        put_cpu_map_entry(rcpu);
 510}
 511
 512/* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
 513 * ensure any driver rcu critical sections have completed, but this
 514 * does not guarantee a flush has happened yet. Because driver side
 515 * rcu_read_lock/unlock only protects the running XDP program.  The
 516 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
 517 * pending flush op doesn't fail.
 518 *
 519 * The bpf_cpu_map_entry is still used by the kthread, and there can
 520 * still be pending packets (in queue and percpu bulkq).  A refcnt
 521 * makes sure to last user (kthread_stop vs. call_rcu) free memory
 522 * resources.
 523 *
 524 * The rcu callback __cpu_map_entry_free flush remaining packets in
 525 * percpu bulkq to queue.  Due to caller map_delete_elem() disable
 526 * preemption, cannot call kthread_stop() to make sure queue is empty.
 527 * Instead a work_queue is started for stopping kthread,
 528 * cpu_map_kthread_stop, which waits for an RCU grace period before
 529 * stopping kthread, emptying the queue.
 530 */
 531static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
 532                                    u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
 533{
 534        struct bpf_cpu_map_entry *old_rcpu;
 535
 536        old_rcpu = unrcu_pointer(xchg(&cmap->cpu_map[key_cpu], RCU_INITIALIZER(rcpu)));
 537        if (old_rcpu) {
 538                call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
 539                INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
 540                schedule_work(&old_rcpu->kthread_stop_wq);
 541        }
 542}
 543
 544static int cpu_map_delete_elem(struct bpf_map *map, void *key)
 545{
 546        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 547        u32 key_cpu = *(u32 *)key;
 548
 549        if (key_cpu >= map->max_entries)
 550                return -EINVAL;
 551
 552        /* notice caller map_delete_elem() use preempt_disable() */
 553        __cpu_map_entry_replace(cmap, key_cpu, NULL);
 554        return 0;
 555}
 556
 557static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
 558                               u64 map_flags)
 559{
 560        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 561        struct bpf_cpumap_val cpumap_value = {};
 562        struct bpf_cpu_map_entry *rcpu;
 563        /* Array index key correspond to CPU number */
 564        u32 key_cpu = *(u32 *)key;
 565
 566        memcpy(&cpumap_value, value, map->value_size);
 567
 568        if (unlikely(map_flags > BPF_EXIST))
 569                return -EINVAL;
 570        if (unlikely(key_cpu >= cmap->map.max_entries))
 571                return -E2BIG;
 572        if (unlikely(map_flags == BPF_NOEXIST))
 573                return -EEXIST;
 574        if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
 575                return -EOVERFLOW;
 576
 577        /* Make sure CPU is a valid possible cpu */
 578        if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
 579                return -ENODEV;
 580
 581        if (cpumap_value.qsize == 0) {
 582                rcpu = NULL; /* Same as deleting */
 583        } else {
 584                /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
 585                rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
 586                if (!rcpu)
 587                        return -ENOMEM;
 588                rcpu->cmap = cmap;
 589        }
 590        rcu_read_lock();
 591        __cpu_map_entry_replace(cmap, key_cpu, rcpu);
 592        rcu_read_unlock();
 593        return 0;
 594}
 595
 596static void cpu_map_free(struct bpf_map *map)
 597{
 598        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 599        u32 i;
 600
 601        /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
 602         * so the bpf programs (can be more than one that used this map) were
 603         * disconnected from events. Wait for outstanding critical sections in
 604         * these programs to complete. The rcu critical section only guarantees
 605         * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
 606         * It does __not__ ensure pending flush operations (if any) are
 607         * complete.
 608         */
 609
 610        synchronize_rcu();
 611
 612        /* For cpu_map the remote CPUs can still be using the entries
 613         * (struct bpf_cpu_map_entry).
 614         */
 615        for (i = 0; i < cmap->map.max_entries; i++) {
 616                struct bpf_cpu_map_entry *rcpu;
 617
 618                rcpu = rcu_dereference_raw(cmap->cpu_map[i]);
 619                if (!rcpu)
 620                        continue;
 621
 622                /* bq flush and cleanup happens after RCU grace-period */
 623                __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
 624        }
 625        bpf_map_area_free(cmap->cpu_map);
 626        kfree(cmap);
 627}
 628
 629/* Elements are kept alive by RCU; either by rcu_read_lock() (from syscall) or
 630 * by local_bh_disable() (from XDP calls inside NAPI). The
 631 * rcu_read_lock_bh_held() below makes lockdep accept both.
 632 */
 633static void *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
 634{
 635        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 636        struct bpf_cpu_map_entry *rcpu;
 637
 638        if (key >= map->max_entries)
 639                return NULL;
 640
 641        rcpu = rcu_dereference_check(cmap->cpu_map[key],
 642                                     rcu_read_lock_bh_held());
 643        return rcpu;
 644}
 645
 646static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
 647{
 648        struct bpf_cpu_map_entry *rcpu =
 649                __cpu_map_lookup_elem(map, *(u32 *)key);
 650
 651        return rcpu ? &rcpu->value : NULL;
 652}
 653
 654static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
 655{
 656        struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
 657        u32 index = key ? *(u32 *)key : U32_MAX;
 658        u32 *next = next_key;
 659
 660        if (index >= cmap->map.max_entries) {
 661                *next = 0;
 662                return 0;
 663        }
 664
 665        if (index == cmap->map.max_entries - 1)
 666                return -ENOENT;
 667        *next = index + 1;
 668        return 0;
 669}
 670
 671static int cpu_map_redirect(struct bpf_map *map, u32 ifindex, u64 flags)
 672{
 673        return __bpf_xdp_redirect_map(map, ifindex, flags, 0,
 674                                      __cpu_map_lookup_elem);
 675}
 676
 677BTF_ID_LIST_SINGLE(cpu_map_btf_ids, struct, bpf_cpu_map)
 678const struct bpf_map_ops cpu_map_ops = {
 679        .map_meta_equal         = bpf_map_meta_equal,
 680        .map_alloc              = cpu_map_alloc,
 681        .map_free               = cpu_map_free,
 682        .map_delete_elem        = cpu_map_delete_elem,
 683        .map_update_elem        = cpu_map_update_elem,
 684        .map_lookup_elem        = cpu_map_lookup_elem,
 685        .map_get_next_key       = cpu_map_get_next_key,
 686        .map_check_btf          = map_check_no_btf,
 687        .map_btf_id             = &cpu_map_btf_ids[0],
 688        .map_redirect           = cpu_map_redirect,
 689};
 690
 691static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
 692{
 693        struct bpf_cpu_map_entry *rcpu = bq->obj;
 694        unsigned int processed = 0, drops = 0;
 695        const int to_cpu = rcpu->cpu;
 696        struct ptr_ring *q;
 697        int i;
 698
 699        if (unlikely(!bq->count))
 700                return;
 701
 702        q = rcpu->queue;
 703        spin_lock(&q->producer_lock);
 704
 705        for (i = 0; i < bq->count; i++) {
 706                struct xdp_frame *xdpf = bq->q[i];
 707                int err;
 708
 709                err = __ptr_ring_produce(q, xdpf);
 710                if (err) {
 711                        drops++;
 712                        xdp_return_frame_rx_napi(xdpf);
 713                }
 714                processed++;
 715        }
 716        bq->count = 0;
 717        spin_unlock(&q->producer_lock);
 718
 719        __list_del_clearprev(&bq->flush_node);
 720
 721        /* Feedback loop via tracepoints */
 722        trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
 723}
 724
 725/* Runs under RCU-read-side, plus in softirq under NAPI protection.
 726 * Thus, safe percpu variable access.
 727 */
 728static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
 729{
 730        struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
 731        struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
 732
 733        if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
 734                bq_flush_to_queue(bq);
 735
 736        /* Notice, xdp_buff/page MUST be queued here, long enough for
 737         * driver to code invoking us to finished, due to driver
 738         * (e.g. ixgbe) recycle tricks based on page-refcnt.
 739         *
 740         * Thus, incoming xdp_frame is always queued here (else we race
 741         * with another CPU on page-refcnt and remaining driver code).
 742         * Queue time is very short, as driver will invoke flush
 743         * operation, when completing napi->poll call.
 744         */
 745        bq->q[bq->count++] = xdpf;
 746
 747        if (!bq->flush_node.prev)
 748                list_add(&bq->flush_node, flush_list);
 749}
 750
 751int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
 752                    struct net_device *dev_rx)
 753{
 754        /* Info needed when constructing SKB on remote CPU */
 755        xdpf->dev_rx = dev_rx;
 756
 757        bq_enqueue(rcpu, xdpf);
 758        return 0;
 759}
 760
 761int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
 762                             struct sk_buff *skb)
 763{
 764        int ret;
 765
 766        __skb_pull(skb, skb->mac_len);
 767        skb_set_redirected(skb, false);
 768        __ptr_set_bit(0, &skb);
 769
 770        ret = ptr_ring_produce(rcpu->queue, skb);
 771        if (ret < 0)
 772                goto trace;
 773
 774        wake_up_process(rcpu->kthread);
 775trace:
 776        trace_xdp_cpumap_enqueue(rcpu->map_id, !ret, !!ret, rcpu->cpu);
 777        return ret;
 778}
 779
 780void __cpu_map_flush(void)
 781{
 782        struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
 783        struct xdp_bulk_queue *bq, *tmp;
 784
 785        list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
 786                bq_flush_to_queue(bq);
 787
 788                /* If already running, costs spin_lock_irqsave + smb_mb */
 789                wake_up_process(bq->obj->kthread);
 790        }
 791}
 792
 793static int __init cpu_map_init(void)
 794{
 795        int cpu;
 796
 797        for_each_possible_cpu(cpu)
 798                INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
 799        return 0;
 800}
 801
 802subsys_initcall(cpu_map_init);
 803