1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20#include <uapi/linux/btf.h>
21#include <linux/filter.h>
22#include <linux/skbuff.h>
23#include <linux/vmalloc.h>
24#include <linux/random.h>
25#include <linux/moduleloader.h>
26#include <linux/bpf.h>
27#include <linux/btf.h>
28#include <linux/objtool.h>
29#include <linux/rbtree_latch.h>
30#include <linux/kallsyms.h>
31#include <linux/rcupdate.h>
32#include <linux/perf_event.h>
33#include <linux/extable.h>
34#include <linux/log2.h>
35#include <linux/bpf_verifier.h>
36#include <linux/nodemask.h>
37
38#include <asm/barrier.h>
39#include <asm/unaligned.h>
40
41
42#define BPF_R0 regs[BPF_REG_0]
43#define BPF_R1 regs[BPF_REG_1]
44#define BPF_R2 regs[BPF_REG_2]
45#define BPF_R3 regs[BPF_REG_3]
46#define BPF_R4 regs[BPF_REG_4]
47#define BPF_R5 regs[BPF_REG_5]
48#define BPF_R6 regs[BPF_REG_6]
49#define BPF_R7 regs[BPF_REG_7]
50#define BPF_R8 regs[BPF_REG_8]
51#define BPF_R9 regs[BPF_REG_9]
52#define BPF_R10 regs[BPF_REG_10]
53
54
55#define DST regs[insn->dst_reg]
56#define SRC regs[insn->src_reg]
57#define FP regs[BPF_REG_FP]
58#define AX regs[BPF_REG_AX]
59#define ARG1 regs[BPF_REG_ARG1]
60#define CTX regs[BPF_REG_CTX]
61#define IMM insn->imm
62
63
64
65
66
67void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
68{
69 u8 *ptr = NULL;
70
71 if (k >= SKF_NET_OFF) {
72 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
73 } else if (k >= SKF_LL_OFF) {
74 if (unlikely(!skb_mac_header_was_set(skb)))
75 return NULL;
76 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
77 }
78 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
79 return ptr;
80
81 return NULL;
82}
83
84struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
85{
86 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
87 struct bpf_prog_aux *aux;
88 struct bpf_prog *fp;
89
90 size = round_up(size, PAGE_SIZE);
91 fp = __vmalloc(size, gfp_flags);
92 if (fp == NULL)
93 return NULL;
94
95 aux = kzalloc(sizeof(*aux), GFP_KERNEL_ACCOUNT | gfp_extra_flags);
96 if (aux == NULL) {
97 vfree(fp);
98 return NULL;
99 }
100 fp->active = alloc_percpu_gfp(int, GFP_KERNEL_ACCOUNT | gfp_extra_flags);
101 if (!fp->active) {
102 vfree(fp);
103 kfree(aux);
104 return NULL;
105 }
106
107 fp->pages = size / PAGE_SIZE;
108 fp->aux = aux;
109 fp->aux->prog = fp;
110 fp->jit_requested = ebpf_jit_enabled();
111 fp->blinding_requested = bpf_jit_blinding_enabled(fp);
112#ifdef CONFIG_CGROUP_BPF
113 aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
114#endif
115
116 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
117 mutex_init(&fp->aux->used_maps_mutex);
118 mutex_init(&fp->aux->dst_mutex);
119
120 return fp;
121}
122
123struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
124{
125 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
126 struct bpf_prog *prog;
127 int cpu;
128
129 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
130 if (!prog)
131 return NULL;
132
133 prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
134 if (!prog->stats) {
135 free_percpu(prog->active);
136 kfree(prog->aux);
137 vfree(prog);
138 return NULL;
139 }
140
141 for_each_possible_cpu(cpu) {
142 struct bpf_prog_stats *pstats;
143
144 pstats = per_cpu_ptr(prog->stats, cpu);
145 u64_stats_init(&pstats->syncp);
146 }
147 return prog;
148}
149EXPORT_SYMBOL_GPL(bpf_prog_alloc);
150
151int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
152{
153 if (!prog->aux->nr_linfo || !prog->jit_requested)
154 return 0;
155
156 prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
157 sizeof(*prog->aux->jited_linfo),
158 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
159 if (!prog->aux->jited_linfo)
160 return -ENOMEM;
161
162 return 0;
163}
164
165void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
166{
167 if (prog->aux->jited_linfo &&
168 (!prog->jited || !prog->aux->jited_linfo[0])) {
169 kvfree(prog->aux->jited_linfo);
170 prog->aux->jited_linfo = NULL;
171 }
172
173 kfree(prog->aux->kfunc_tab);
174 prog->aux->kfunc_tab = NULL;
175}
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
202 const u32 *insn_to_jit_off)
203{
204 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
205 const struct bpf_line_info *linfo;
206 void **jited_linfo;
207
208 if (!prog->aux->jited_linfo)
209
210 return;
211
212 linfo_idx = prog->aux->linfo_idx;
213 linfo = &prog->aux->linfo[linfo_idx];
214 insn_start = linfo[0].insn_off;
215 insn_end = insn_start + prog->len;
216
217 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
218 jited_linfo[0] = prog->bpf_func;
219
220 nr_linfo = prog->aux->nr_linfo - linfo_idx;
221
222 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
223
224
225
226 jited_linfo[i] = prog->bpf_func +
227 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
228}
229
230struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
231 gfp_t gfp_extra_flags)
232{
233 gfp_t gfp_flags = GFP_KERNEL_ACCOUNT | __GFP_ZERO | gfp_extra_flags;
234 struct bpf_prog *fp;
235 u32 pages;
236
237 size = round_up(size, PAGE_SIZE);
238 pages = size / PAGE_SIZE;
239 if (pages <= fp_old->pages)
240 return fp_old;
241
242 fp = __vmalloc(size, gfp_flags);
243 if (fp) {
244 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
245 fp->pages = pages;
246 fp->aux->prog = fp;
247
248
249
250
251 fp_old->aux = NULL;
252 fp_old->stats = NULL;
253 fp_old->active = NULL;
254 __bpf_prog_free(fp_old);
255 }
256
257 return fp;
258}
259
260void __bpf_prog_free(struct bpf_prog *fp)
261{
262 if (fp->aux) {
263 mutex_destroy(&fp->aux->used_maps_mutex);
264 mutex_destroy(&fp->aux->dst_mutex);
265 kfree(fp->aux->poke_tab);
266 kfree(fp->aux);
267 }
268 free_percpu(fp->stats);
269 free_percpu(fp->active);
270 vfree(fp);
271}
272
273int bpf_prog_calc_tag(struct bpf_prog *fp)
274{
275 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
276 u32 raw_size = bpf_prog_tag_scratch_size(fp);
277 u32 digest[SHA1_DIGEST_WORDS];
278 u32 ws[SHA1_WORKSPACE_WORDS];
279 u32 i, bsize, psize, blocks;
280 struct bpf_insn *dst;
281 bool was_ld_map;
282 u8 *raw, *todo;
283 __be32 *result;
284 __be64 *bits;
285
286 raw = vmalloc(raw_size);
287 if (!raw)
288 return -ENOMEM;
289
290 sha1_init(digest);
291 memset(ws, 0, sizeof(ws));
292
293
294
295
296 dst = (void *)raw;
297 for (i = 0, was_ld_map = false; i < fp->len; i++) {
298 dst[i] = fp->insnsi[i];
299 if (!was_ld_map &&
300 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
301 (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
302 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
303 was_ld_map = true;
304 dst[i].imm = 0;
305 } else if (was_ld_map &&
306 dst[i].code == 0 &&
307 dst[i].dst_reg == 0 &&
308 dst[i].src_reg == 0 &&
309 dst[i].off == 0) {
310 was_ld_map = false;
311 dst[i].imm = 0;
312 } else {
313 was_ld_map = false;
314 }
315 }
316
317 psize = bpf_prog_insn_size(fp);
318 memset(&raw[psize], 0, raw_size - psize);
319 raw[psize++] = 0x80;
320
321 bsize = round_up(psize, SHA1_BLOCK_SIZE);
322 blocks = bsize / SHA1_BLOCK_SIZE;
323 todo = raw;
324 if (bsize - psize >= sizeof(__be64)) {
325 bits = (__be64 *)(todo + bsize - sizeof(__be64));
326 } else {
327 bits = (__be64 *)(todo + bsize + bits_offset);
328 blocks++;
329 }
330 *bits = cpu_to_be64((psize - 1) << 3);
331
332 while (blocks--) {
333 sha1_transform(digest, todo, ws);
334 todo += SHA1_BLOCK_SIZE;
335 }
336
337 result = (__force __be32 *)digest;
338 for (i = 0; i < SHA1_DIGEST_WORDS; i++)
339 result[i] = cpu_to_be32(digest[i]);
340 memcpy(fp->tag, result, sizeof(fp->tag));
341
342 vfree(raw);
343 return 0;
344}
345
346static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
347 s32 end_new, s32 curr, const bool probe_pass)
348{
349 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
350 s32 delta = end_new - end_old;
351 s64 imm = insn->imm;
352
353 if (curr < pos && curr + imm + 1 >= end_old)
354 imm += delta;
355 else if (curr >= end_new && curr + imm + 1 < end_new)
356 imm -= delta;
357 if (imm < imm_min || imm > imm_max)
358 return -ERANGE;
359 if (!probe_pass)
360 insn->imm = imm;
361 return 0;
362}
363
364static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
365 s32 end_new, s32 curr, const bool probe_pass)
366{
367 const s32 off_min = S16_MIN, off_max = S16_MAX;
368 s32 delta = end_new - end_old;
369 s32 off = insn->off;
370
371 if (curr < pos && curr + off + 1 >= end_old)
372 off += delta;
373 else if (curr >= end_new && curr + off + 1 < end_new)
374 off -= delta;
375 if (off < off_min || off > off_max)
376 return -ERANGE;
377 if (!probe_pass)
378 insn->off = off;
379 return 0;
380}
381
382static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
383 s32 end_new, const bool probe_pass)
384{
385 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
386 struct bpf_insn *insn = prog->insnsi;
387 int ret = 0;
388
389 for (i = 0; i < insn_cnt; i++, insn++) {
390 u8 code;
391
392
393
394
395
396 if (probe_pass && i == pos) {
397 i = end_new;
398 insn = prog->insnsi + end_old;
399 }
400 if (bpf_pseudo_func(insn)) {
401 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
402 end_new, i, probe_pass);
403 if (ret)
404 return ret;
405 continue;
406 }
407 code = insn->code;
408 if ((BPF_CLASS(code) != BPF_JMP &&
409 BPF_CLASS(code) != BPF_JMP32) ||
410 BPF_OP(code) == BPF_EXIT)
411 continue;
412
413 if (BPF_OP(code) == BPF_CALL) {
414 if (insn->src_reg != BPF_PSEUDO_CALL)
415 continue;
416 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
417 end_new, i, probe_pass);
418 } else {
419 ret = bpf_adj_delta_to_off(insn, pos, end_old,
420 end_new, i, probe_pass);
421 }
422 if (ret)
423 break;
424 }
425
426 return ret;
427}
428
429static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
430{
431 struct bpf_line_info *linfo;
432 u32 i, nr_linfo;
433
434 nr_linfo = prog->aux->nr_linfo;
435 if (!nr_linfo || !delta)
436 return;
437
438 linfo = prog->aux->linfo;
439
440 for (i = 0; i < nr_linfo; i++)
441 if (off < linfo[i].insn_off)
442 break;
443
444
445 for (; i < nr_linfo; i++)
446 linfo[i].insn_off += delta;
447}
448
449struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
450 const struct bpf_insn *patch, u32 len)
451{
452 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
453 const u32 cnt_max = S16_MAX;
454 struct bpf_prog *prog_adj;
455 int err;
456
457
458 if (insn_delta == 0) {
459 memcpy(prog->insnsi + off, patch, sizeof(*patch));
460 return prog;
461 }
462
463 insn_adj_cnt = prog->len + insn_delta;
464
465
466
467
468
469
470 if (insn_adj_cnt > cnt_max &&
471 (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
472 return ERR_PTR(err);
473
474
475
476
477
478 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
479 GFP_USER);
480 if (!prog_adj)
481 return ERR_PTR(-ENOMEM);
482
483 prog_adj->len = insn_adj_cnt;
484
485
486
487
488
489
490
491
492
493 insn_rest = insn_adj_cnt - off - len;
494
495 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
496 sizeof(*patch) * insn_rest);
497 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
498
499
500
501
502
503 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
504
505 bpf_adj_linfo(prog_adj, off, insn_delta);
506
507 return prog_adj;
508}
509
510int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
511{
512
513
514
515 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
516 sizeof(struct bpf_insn) * (prog->len - off - cnt));
517 prog->len -= cnt;
518
519 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
520}
521
522static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
523{
524 int i;
525
526 for (i = 0; i < fp->aux->func_cnt; i++)
527 bpf_prog_kallsyms_del(fp->aux->func[i]);
528}
529
530void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
531{
532 bpf_prog_kallsyms_del_subprogs(fp);
533 bpf_prog_kallsyms_del(fp);
534}
535
536#ifdef CONFIG_BPF_JIT
537
538int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
539int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
540int bpf_jit_harden __read_mostly;
541long bpf_jit_limit __read_mostly;
542long bpf_jit_limit_max __read_mostly;
543
544static void
545bpf_prog_ksym_set_addr(struct bpf_prog *prog)
546{
547 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
548
549 prog->aux->ksym.start = (unsigned long) prog->bpf_func;
550 prog->aux->ksym.end = prog->aux->ksym.start + prog->jited_len;
551}
552
553static void
554bpf_prog_ksym_set_name(struct bpf_prog *prog)
555{
556 char *sym = prog->aux->ksym.name;
557 const char *end = sym + KSYM_NAME_LEN;
558 const struct btf_type *type;
559 const char *func_name;
560
561 BUILD_BUG_ON(sizeof("bpf_prog_") +
562 sizeof(prog->tag) * 2 +
563
564
565
566
567
568
569
570 sizeof(prog->aux->name) > KSYM_NAME_LEN);
571
572 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
573 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
574
575
576 if (prog->aux->func_info_cnt) {
577 type = btf_type_by_id(prog->aux->btf,
578 prog->aux->func_info[prog->aux->func_idx].type_id);
579 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
580 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
581 return;
582 }
583
584 if (prog->aux->name[0])
585 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
586 else
587 *sym = 0;
588}
589
590static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
591{
592 return container_of(n, struct bpf_ksym, tnode)->start;
593}
594
595static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
596 struct latch_tree_node *b)
597{
598 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
599}
600
601static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
602{
603 unsigned long val = (unsigned long)key;
604 const struct bpf_ksym *ksym;
605
606 ksym = container_of(n, struct bpf_ksym, tnode);
607
608 if (val < ksym->start)
609 return -1;
610 if (val >= ksym->end)
611 return 1;
612
613 return 0;
614}
615
616static const struct latch_tree_ops bpf_tree_ops = {
617 .less = bpf_tree_less,
618 .comp = bpf_tree_comp,
619};
620
621static DEFINE_SPINLOCK(bpf_lock);
622static LIST_HEAD(bpf_kallsyms);
623static struct latch_tree_root bpf_tree __cacheline_aligned;
624
625void bpf_ksym_add(struct bpf_ksym *ksym)
626{
627 spin_lock_bh(&bpf_lock);
628 WARN_ON_ONCE(!list_empty(&ksym->lnode));
629 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
630 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
631 spin_unlock_bh(&bpf_lock);
632}
633
634static void __bpf_ksym_del(struct bpf_ksym *ksym)
635{
636 if (list_empty(&ksym->lnode))
637 return;
638
639 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
640 list_del_rcu(&ksym->lnode);
641}
642
643void bpf_ksym_del(struct bpf_ksym *ksym)
644{
645 spin_lock_bh(&bpf_lock);
646 __bpf_ksym_del(ksym);
647 spin_unlock_bh(&bpf_lock);
648}
649
650static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
651{
652 return fp->jited && !bpf_prog_was_classic(fp);
653}
654
655void bpf_prog_kallsyms_add(struct bpf_prog *fp)
656{
657 if (!bpf_prog_kallsyms_candidate(fp) ||
658 !bpf_capable())
659 return;
660
661 bpf_prog_ksym_set_addr(fp);
662 bpf_prog_ksym_set_name(fp);
663 fp->aux->ksym.prog = true;
664
665 bpf_ksym_add(&fp->aux->ksym);
666}
667
668void bpf_prog_kallsyms_del(struct bpf_prog *fp)
669{
670 if (!bpf_prog_kallsyms_candidate(fp))
671 return;
672
673 bpf_ksym_del(&fp->aux->ksym);
674}
675
676static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
677{
678 struct latch_tree_node *n;
679
680 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
681 return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
682}
683
684const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
685 unsigned long *off, char *sym)
686{
687 struct bpf_ksym *ksym;
688 char *ret = NULL;
689
690 rcu_read_lock();
691 ksym = bpf_ksym_find(addr);
692 if (ksym) {
693 unsigned long symbol_start = ksym->start;
694 unsigned long symbol_end = ksym->end;
695
696 strncpy(sym, ksym->name, KSYM_NAME_LEN);
697
698 ret = sym;
699 if (size)
700 *size = symbol_end - symbol_start;
701 if (off)
702 *off = addr - symbol_start;
703 }
704 rcu_read_unlock();
705
706 return ret;
707}
708
709bool is_bpf_text_address(unsigned long addr)
710{
711 bool ret;
712
713 rcu_read_lock();
714 ret = bpf_ksym_find(addr) != NULL;
715 rcu_read_unlock();
716
717 return ret;
718}
719
720static struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
721{
722 struct bpf_ksym *ksym = bpf_ksym_find(addr);
723
724 return ksym && ksym->prog ?
725 container_of(ksym, struct bpf_prog_aux, ksym)->prog :
726 NULL;
727}
728
729const struct exception_table_entry *search_bpf_extables(unsigned long addr)
730{
731 const struct exception_table_entry *e = NULL;
732 struct bpf_prog *prog;
733
734 rcu_read_lock();
735 prog = bpf_prog_ksym_find(addr);
736 if (!prog)
737 goto out;
738 if (!prog->aux->num_exentries)
739 goto out;
740
741 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
742out:
743 rcu_read_unlock();
744 return e;
745}
746
747int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
748 char *sym)
749{
750 struct bpf_ksym *ksym;
751 unsigned int it = 0;
752 int ret = -ERANGE;
753
754 if (!bpf_jit_kallsyms_enabled())
755 return ret;
756
757 rcu_read_lock();
758 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
759 if (it++ != symnum)
760 continue;
761
762 strncpy(sym, ksym->name, KSYM_NAME_LEN);
763
764 *value = ksym->start;
765 *type = BPF_SYM_ELF_TYPE;
766
767 ret = 0;
768 break;
769 }
770 rcu_read_unlock();
771
772 return ret;
773}
774
775int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
776 struct bpf_jit_poke_descriptor *poke)
777{
778 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
779 static const u32 poke_tab_max = 1024;
780 u32 slot = prog->aux->size_poke_tab;
781 u32 size = slot + 1;
782
783 if (size > poke_tab_max)
784 return -ENOSPC;
785 if (poke->tailcall_target || poke->tailcall_target_stable ||
786 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
787 return -EINVAL;
788
789 switch (poke->reason) {
790 case BPF_POKE_REASON_TAIL_CALL:
791 if (!poke->tail_call.map)
792 return -EINVAL;
793 break;
794 default:
795 return -EINVAL;
796 }
797
798 tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
799 if (!tab)
800 return -ENOMEM;
801
802 memcpy(&tab[slot], poke, sizeof(*poke));
803 prog->aux->size_poke_tab = size;
804 prog->aux->poke_tab = tab;
805
806 return slot;
807}
808
809
810
811
812
813
814
815
816
817
818#define BPF_PROG_CHUNK_SHIFT 6
819#define BPF_PROG_CHUNK_SIZE (1 << BPF_PROG_CHUNK_SHIFT)
820#define BPF_PROG_CHUNK_MASK (~(BPF_PROG_CHUNK_SIZE - 1))
821
822struct bpf_prog_pack {
823 struct list_head list;
824 void *ptr;
825 unsigned long bitmap[];
826};
827
828void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
829{
830 memset(area, 0, size);
831}
832
833#define BPF_PROG_SIZE_TO_NBITS(size) (round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
834
835static DEFINE_MUTEX(pack_mutex);
836static LIST_HEAD(pack_list);
837
838
839
840
841#ifdef PMD_SIZE
842#define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes())
843#else
844#define BPF_PROG_PACK_SIZE PAGE_SIZE
845#endif
846
847#define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
848
849static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
850{
851 struct bpf_prog_pack *pack;
852
853 pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
854 GFP_KERNEL);
855 if (!pack)
856 return NULL;
857 pack->ptr = module_alloc(BPF_PROG_PACK_SIZE);
858 if (!pack->ptr) {
859 kfree(pack);
860 return NULL;
861 }
862 bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
863 bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
864 list_add_tail(&pack->list, &pack_list);
865
866 set_vm_flush_reset_perms(pack->ptr);
867 set_memory_ro((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
868 set_memory_x((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
869 return pack;
870}
871
872void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
873{
874 unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
875 struct bpf_prog_pack *pack;
876 unsigned long pos;
877 void *ptr = NULL;
878
879 mutex_lock(&pack_mutex);
880 if (size > BPF_PROG_PACK_SIZE) {
881 size = round_up(size, PAGE_SIZE);
882 ptr = module_alloc(size);
883 if (ptr) {
884 bpf_fill_ill_insns(ptr, size);
885 set_vm_flush_reset_perms(ptr);
886 set_memory_ro((unsigned long)ptr, size / PAGE_SIZE);
887 set_memory_x((unsigned long)ptr, size / PAGE_SIZE);
888 }
889 goto out;
890 }
891 list_for_each_entry(pack, &pack_list, list) {
892 pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
893 nbits, 0);
894 if (pos < BPF_PROG_CHUNK_COUNT)
895 goto found_free_area;
896 }
897
898 pack = alloc_new_pack(bpf_fill_ill_insns);
899 if (!pack)
900 goto out;
901
902 pos = 0;
903
904found_free_area:
905 bitmap_set(pack->bitmap, pos, nbits);
906 ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
907
908out:
909 mutex_unlock(&pack_mutex);
910 return ptr;
911}
912
913void bpf_prog_pack_free(struct bpf_binary_header *hdr)
914{
915 struct bpf_prog_pack *pack = NULL, *tmp;
916 unsigned int nbits;
917 unsigned long pos;
918
919 mutex_lock(&pack_mutex);
920 if (hdr->size > BPF_PROG_PACK_SIZE) {
921 module_memfree(hdr);
922 goto out;
923 }
924
925 list_for_each_entry(tmp, &pack_list, list) {
926 if ((void *)hdr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > (void *)hdr) {
927 pack = tmp;
928 break;
929 }
930 }
931
932 if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
933 goto out;
934
935 nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
936 pos = ((unsigned long)hdr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
937
938 WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
939 "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
940
941 bitmap_clear(pack->bitmap, pos, nbits);
942 if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
943 BPF_PROG_CHUNK_COUNT, 0) == 0) {
944 list_del(&pack->list);
945 module_memfree(pack->ptr);
946 kfree(pack);
947 }
948out:
949 mutex_unlock(&pack_mutex);
950}
951
952static atomic_long_t bpf_jit_current;
953
954
955
956
957
958u64 __weak bpf_jit_alloc_exec_limit(void)
959{
960#if defined(MODULES_VADDR)
961 return MODULES_END - MODULES_VADDR;
962#else
963 return VMALLOC_END - VMALLOC_START;
964#endif
965}
966
967static int __init bpf_jit_charge_init(void)
968{
969
970 bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
971 bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 2,
972 PAGE_SIZE), LONG_MAX);
973 return 0;
974}
975pure_initcall(bpf_jit_charge_init);
976
977int bpf_jit_charge_modmem(u32 size)
978{
979 if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
980 if (!bpf_capable()) {
981 atomic_long_sub(size, &bpf_jit_current);
982 return -EPERM;
983 }
984 }
985
986 return 0;
987}
988
989void bpf_jit_uncharge_modmem(u32 size)
990{
991 atomic_long_sub(size, &bpf_jit_current);
992}
993
994void *__weak bpf_jit_alloc_exec(unsigned long size)
995{
996 return module_alloc(size);
997}
998
999void __weak bpf_jit_free_exec(void *addr)
1000{
1001 module_memfree(addr);
1002}
1003
1004struct bpf_binary_header *
1005bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1006 unsigned int alignment,
1007 bpf_jit_fill_hole_t bpf_fill_ill_insns)
1008{
1009 struct bpf_binary_header *hdr;
1010 u32 size, hole, start;
1011
1012 WARN_ON_ONCE(!is_power_of_2(alignment) ||
1013 alignment > BPF_IMAGE_ALIGNMENT);
1014
1015
1016
1017
1018
1019 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
1020
1021 if (bpf_jit_charge_modmem(size))
1022 return NULL;
1023 hdr = bpf_jit_alloc_exec(size);
1024 if (!hdr) {
1025 bpf_jit_uncharge_modmem(size);
1026 return NULL;
1027 }
1028
1029
1030 bpf_fill_ill_insns(hdr, size);
1031
1032 hdr->size = size;
1033 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1034 PAGE_SIZE - sizeof(*hdr));
1035 start = (get_random_int() % hole) & ~(alignment - 1);
1036
1037
1038 *image_ptr = &hdr->image[start];
1039
1040 return hdr;
1041}
1042
1043void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1044{
1045 u32 size = hdr->size;
1046
1047 bpf_jit_free_exec(hdr);
1048 bpf_jit_uncharge_modmem(size);
1049}
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059struct bpf_binary_header *
1060bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1061 unsigned int alignment,
1062 struct bpf_binary_header **rw_header,
1063 u8 **rw_image,
1064 bpf_jit_fill_hole_t bpf_fill_ill_insns)
1065{
1066 struct bpf_binary_header *ro_header;
1067 u32 size, hole, start;
1068
1069 WARN_ON_ONCE(!is_power_of_2(alignment) ||
1070 alignment > BPF_IMAGE_ALIGNMENT);
1071
1072
1073 size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1074
1075 if (bpf_jit_charge_modmem(size))
1076 return NULL;
1077 ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
1078 if (!ro_header) {
1079 bpf_jit_uncharge_modmem(size);
1080 return NULL;
1081 }
1082
1083 *rw_header = kvmalloc(size, GFP_KERNEL);
1084 if (!*rw_header) {
1085 bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
1086 bpf_prog_pack_free(ro_header);
1087 bpf_jit_uncharge_modmem(size);
1088 return NULL;
1089 }
1090
1091
1092 bpf_fill_ill_insns(*rw_header, size);
1093 (*rw_header)->size = size;
1094
1095 hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1096 BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
1097 start = (get_random_int() % hole) & ~(alignment - 1);
1098
1099 *image_ptr = &ro_header->image[start];
1100 *rw_image = &(*rw_header)->image[start];
1101
1102 return ro_header;
1103}
1104
1105
1106int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1107 struct bpf_binary_header *ro_header,
1108 struct bpf_binary_header *rw_header)
1109{
1110 void *ptr;
1111
1112 ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1113
1114 kvfree(rw_header);
1115
1116 if (IS_ERR(ptr)) {
1117 bpf_prog_pack_free(ro_header);
1118 return PTR_ERR(ptr);
1119 }
1120 return 0;
1121}
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1134 struct bpf_binary_header *rw_header)
1135{
1136 u32 size = ro_header->size;
1137
1138 bpf_prog_pack_free(ro_header);
1139 kvfree(rw_header);
1140 bpf_jit_uncharge_modmem(size);
1141}
1142
1143struct bpf_binary_header *
1144bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1145{
1146 unsigned long real_start = (unsigned long)fp->bpf_func;
1147 unsigned long addr;
1148
1149 addr = real_start & BPF_PROG_CHUNK_MASK;
1150 return (void *)addr;
1151}
1152
1153static inline struct bpf_binary_header *
1154bpf_jit_binary_hdr(const struct bpf_prog *fp)
1155{
1156 unsigned long real_start = (unsigned long)fp->bpf_func;
1157 unsigned long addr;
1158
1159 addr = real_start & PAGE_MASK;
1160 return (void *)addr;
1161}
1162
1163
1164
1165
1166
1167void __weak bpf_jit_free(struct bpf_prog *fp)
1168{
1169 if (fp->jited) {
1170 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1171
1172 bpf_jit_binary_free(hdr);
1173 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1174 }
1175
1176 bpf_prog_unlock_free(fp);
1177}
1178
1179int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1180 const struct bpf_insn *insn, bool extra_pass,
1181 u64 *func_addr, bool *func_addr_fixed)
1182{
1183 s16 off = insn->off;
1184 s32 imm = insn->imm;
1185 u8 *addr;
1186
1187 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1188 if (!*func_addr_fixed) {
1189
1190
1191
1192
1193 if (!extra_pass)
1194 addr = NULL;
1195 else if (prog->aux->func &&
1196 off >= 0 && off < prog->aux->func_cnt)
1197 addr = (u8 *)prog->aux->func[off]->bpf_func;
1198 else
1199 return -EINVAL;
1200 } else {
1201
1202
1203
1204
1205
1206 addr = (u8 *)__bpf_call_base + imm;
1207 }
1208
1209 *func_addr = (unsigned long)addr;
1210 return 0;
1211}
1212
1213static int bpf_jit_blind_insn(const struct bpf_insn *from,
1214 const struct bpf_insn *aux,
1215 struct bpf_insn *to_buff,
1216 bool emit_zext)
1217{
1218 struct bpf_insn *to = to_buff;
1219 u32 imm_rnd = get_random_int();
1220 s16 off;
1221
1222 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
1223 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1243 goto out;
1244
1245 if (from->imm == 0 &&
1246 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
1247 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1248 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1249 goto out;
1250 }
1251
1252 switch (from->code) {
1253 case BPF_ALU | BPF_ADD | BPF_K:
1254 case BPF_ALU | BPF_SUB | BPF_K:
1255 case BPF_ALU | BPF_AND | BPF_K:
1256 case BPF_ALU | BPF_OR | BPF_K:
1257 case BPF_ALU | BPF_XOR | BPF_K:
1258 case BPF_ALU | BPF_MUL | BPF_K:
1259 case BPF_ALU | BPF_MOV | BPF_K:
1260 case BPF_ALU | BPF_DIV | BPF_K:
1261 case BPF_ALU | BPF_MOD | BPF_K:
1262 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1263 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1264 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
1265 break;
1266
1267 case BPF_ALU64 | BPF_ADD | BPF_K:
1268 case BPF_ALU64 | BPF_SUB | BPF_K:
1269 case BPF_ALU64 | BPF_AND | BPF_K:
1270 case BPF_ALU64 | BPF_OR | BPF_K:
1271 case BPF_ALU64 | BPF_XOR | BPF_K:
1272 case BPF_ALU64 | BPF_MUL | BPF_K:
1273 case BPF_ALU64 | BPF_MOV | BPF_K:
1274 case BPF_ALU64 | BPF_DIV | BPF_K:
1275 case BPF_ALU64 | BPF_MOD | BPF_K:
1276 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1277 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1278 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
1279 break;
1280
1281 case BPF_JMP | BPF_JEQ | BPF_K:
1282 case BPF_JMP | BPF_JNE | BPF_K:
1283 case BPF_JMP | BPF_JGT | BPF_K:
1284 case BPF_JMP | BPF_JLT | BPF_K:
1285 case BPF_JMP | BPF_JGE | BPF_K:
1286 case BPF_JMP | BPF_JLE | BPF_K:
1287 case BPF_JMP | BPF_JSGT | BPF_K:
1288 case BPF_JMP | BPF_JSLT | BPF_K:
1289 case BPF_JMP | BPF_JSGE | BPF_K:
1290 case BPF_JMP | BPF_JSLE | BPF_K:
1291 case BPF_JMP | BPF_JSET | BPF_K:
1292
1293 off = from->off;
1294 if (off < 0)
1295 off -= 2;
1296 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1297 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1298 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1299 break;
1300
1301 case BPF_JMP32 | BPF_JEQ | BPF_K:
1302 case BPF_JMP32 | BPF_JNE | BPF_K:
1303 case BPF_JMP32 | BPF_JGT | BPF_K:
1304 case BPF_JMP32 | BPF_JLT | BPF_K:
1305 case BPF_JMP32 | BPF_JGE | BPF_K:
1306 case BPF_JMP32 | BPF_JLE | BPF_K:
1307 case BPF_JMP32 | BPF_JSGT | BPF_K:
1308 case BPF_JMP32 | BPF_JSLT | BPF_K:
1309 case BPF_JMP32 | BPF_JSGE | BPF_K:
1310 case BPF_JMP32 | BPF_JSLE | BPF_K:
1311 case BPF_JMP32 | BPF_JSET | BPF_K:
1312
1313 off = from->off;
1314 if (off < 0)
1315 off -= 2;
1316 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1317 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1318 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1319 off);
1320 break;
1321
1322 case BPF_LD | BPF_IMM | BPF_DW:
1323 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1324 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1325 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1326 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1327 break;
1328 case 0:
1329 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1330 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1331 if (emit_zext)
1332 *to++ = BPF_ZEXT_REG(BPF_REG_AX);
1333 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
1334 break;
1335
1336 case BPF_ST | BPF_MEM | BPF_DW:
1337 case BPF_ST | BPF_MEM | BPF_W:
1338 case BPF_ST | BPF_MEM | BPF_H:
1339 case BPF_ST | BPF_MEM | BPF_B:
1340 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1341 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1342 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1343 break;
1344 }
1345out:
1346 return to - to_buff;
1347}
1348
1349static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1350 gfp_t gfp_extra_flags)
1351{
1352 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
1353 struct bpf_prog *fp;
1354
1355 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
1356 if (fp != NULL) {
1357
1358
1359
1360
1361 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1362 }
1363
1364 return fp;
1365}
1366
1367static void bpf_prog_clone_free(struct bpf_prog *fp)
1368{
1369
1370
1371
1372
1373
1374
1375
1376 fp->aux = NULL;
1377 fp->stats = NULL;
1378 fp->active = NULL;
1379 __bpf_prog_free(fp);
1380}
1381
1382void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1383{
1384
1385
1386
1387 fp->aux->prog = fp;
1388 bpf_prog_clone_free(fp_other);
1389}
1390
1391struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1392{
1393 struct bpf_insn insn_buff[16], aux[2];
1394 struct bpf_prog *clone, *tmp;
1395 int insn_delta, insn_cnt;
1396 struct bpf_insn *insn;
1397 int i, rewritten;
1398
1399 if (!prog->blinding_requested || prog->blinded)
1400 return prog;
1401
1402 clone = bpf_prog_clone_create(prog, GFP_USER);
1403 if (!clone)
1404 return ERR_PTR(-ENOMEM);
1405
1406 insn_cnt = clone->len;
1407 insn = clone->insnsi;
1408
1409 for (i = 0; i < insn_cnt; i++, insn++) {
1410 if (bpf_pseudo_func(insn)) {
1411
1412
1413
1414
1415 insn++;
1416 i++;
1417 continue;
1418 }
1419
1420
1421
1422
1423
1424 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1425 insn[1].code == 0)
1426 memcpy(aux, insn, sizeof(aux));
1427
1428 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1429 clone->aux->verifier_zext);
1430 if (!rewritten)
1431 continue;
1432
1433 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
1434 if (IS_ERR(tmp)) {
1435
1436
1437
1438
1439 bpf_jit_prog_release_other(prog, clone);
1440 return tmp;
1441 }
1442
1443 clone = tmp;
1444 insn_delta = rewritten - 1;
1445
1446
1447 insn = clone->insnsi + i + insn_delta;
1448 insn_cnt += insn_delta;
1449 i += insn_delta;
1450 }
1451
1452 clone->blinded = 1;
1453 return clone;
1454}
1455#endif
1456
1457
1458
1459
1460
1461
1462
1463noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1464{
1465 return 0;
1466}
1467EXPORT_SYMBOL_GPL(__bpf_call_base);
1468
1469
1470#define BPF_INSN_MAP(INSN_2, INSN_3) \
1471 \
1472 \
1473 INSN_3(ALU, ADD, X), \
1474 INSN_3(ALU, SUB, X), \
1475 INSN_3(ALU, AND, X), \
1476 INSN_3(ALU, OR, X), \
1477 INSN_3(ALU, LSH, X), \
1478 INSN_3(ALU, RSH, X), \
1479 INSN_3(ALU, XOR, X), \
1480 INSN_3(ALU, MUL, X), \
1481 INSN_3(ALU, MOV, X), \
1482 INSN_3(ALU, ARSH, X), \
1483 INSN_3(ALU, DIV, X), \
1484 INSN_3(ALU, MOD, X), \
1485 INSN_2(ALU, NEG), \
1486 INSN_3(ALU, END, TO_BE), \
1487 INSN_3(ALU, END, TO_LE), \
1488 \
1489 INSN_3(ALU, ADD, K), \
1490 INSN_3(ALU, SUB, K), \
1491 INSN_3(ALU, AND, K), \
1492 INSN_3(ALU, OR, K), \
1493 INSN_3(ALU, LSH, K), \
1494 INSN_3(ALU, RSH, K), \
1495 INSN_3(ALU, XOR, K), \
1496 INSN_3(ALU, MUL, K), \
1497 INSN_3(ALU, MOV, K), \
1498 INSN_3(ALU, ARSH, K), \
1499 INSN_3(ALU, DIV, K), \
1500 INSN_3(ALU, MOD, K), \
1501 \
1502 \
1503 INSN_3(ALU64, ADD, X), \
1504 INSN_3(ALU64, SUB, X), \
1505 INSN_3(ALU64, AND, X), \
1506 INSN_3(ALU64, OR, X), \
1507 INSN_3(ALU64, LSH, X), \
1508 INSN_3(ALU64, RSH, X), \
1509 INSN_3(ALU64, XOR, X), \
1510 INSN_3(ALU64, MUL, X), \
1511 INSN_3(ALU64, MOV, X), \
1512 INSN_3(ALU64, ARSH, X), \
1513 INSN_3(ALU64, DIV, X), \
1514 INSN_3(ALU64, MOD, X), \
1515 INSN_2(ALU64, NEG), \
1516 \
1517 INSN_3(ALU64, ADD, K), \
1518 INSN_3(ALU64, SUB, K), \
1519 INSN_3(ALU64, AND, K), \
1520 INSN_3(ALU64, OR, K), \
1521 INSN_3(ALU64, LSH, K), \
1522 INSN_3(ALU64, RSH, K), \
1523 INSN_3(ALU64, XOR, K), \
1524 INSN_3(ALU64, MUL, K), \
1525 INSN_3(ALU64, MOV, K), \
1526 INSN_3(ALU64, ARSH, K), \
1527 INSN_3(ALU64, DIV, K), \
1528 INSN_3(ALU64, MOD, K), \
1529 \
1530 INSN_2(JMP, CALL), \
1531 \
1532 INSN_2(JMP, EXIT), \
1533 \
1534 \
1535 INSN_3(JMP32, JEQ, X), \
1536 INSN_3(JMP32, JNE, X), \
1537 INSN_3(JMP32, JGT, X), \
1538 INSN_3(JMP32, JLT, X), \
1539 INSN_3(JMP32, JGE, X), \
1540 INSN_3(JMP32, JLE, X), \
1541 INSN_3(JMP32, JSGT, X), \
1542 INSN_3(JMP32, JSLT, X), \
1543 INSN_3(JMP32, JSGE, X), \
1544 INSN_3(JMP32, JSLE, X), \
1545 INSN_3(JMP32, JSET, X), \
1546 \
1547 INSN_3(JMP32, JEQ, K), \
1548 INSN_3(JMP32, JNE, K), \
1549 INSN_3(JMP32, JGT, K), \
1550 INSN_3(JMP32, JLT, K), \
1551 INSN_3(JMP32, JGE, K), \
1552 INSN_3(JMP32, JLE, K), \
1553 INSN_3(JMP32, JSGT, K), \
1554 INSN_3(JMP32, JSLT, K), \
1555 INSN_3(JMP32, JSGE, K), \
1556 INSN_3(JMP32, JSLE, K), \
1557 INSN_3(JMP32, JSET, K), \
1558 \
1559 \
1560 INSN_3(JMP, JEQ, X), \
1561 INSN_3(JMP, JNE, X), \
1562 INSN_3(JMP, JGT, X), \
1563 INSN_3(JMP, JLT, X), \
1564 INSN_3(JMP, JGE, X), \
1565 INSN_3(JMP, JLE, X), \
1566 INSN_3(JMP, JSGT, X), \
1567 INSN_3(JMP, JSLT, X), \
1568 INSN_3(JMP, JSGE, X), \
1569 INSN_3(JMP, JSLE, X), \
1570 INSN_3(JMP, JSET, X), \
1571 \
1572 INSN_3(JMP, JEQ, K), \
1573 INSN_3(JMP, JNE, K), \
1574 INSN_3(JMP, JGT, K), \
1575 INSN_3(JMP, JLT, K), \
1576 INSN_3(JMP, JGE, K), \
1577 INSN_3(JMP, JLE, K), \
1578 INSN_3(JMP, JSGT, K), \
1579 INSN_3(JMP, JSLT, K), \
1580 INSN_3(JMP, JSGE, K), \
1581 INSN_3(JMP, JSLE, K), \
1582 INSN_3(JMP, JSET, K), \
1583 INSN_2(JMP, JA), \
1584 \
1585 \
1586 INSN_3(STX, MEM, B), \
1587 INSN_3(STX, MEM, H), \
1588 INSN_3(STX, MEM, W), \
1589 INSN_3(STX, MEM, DW), \
1590 INSN_3(STX, ATOMIC, W), \
1591 INSN_3(STX, ATOMIC, DW), \
1592 \
1593 INSN_3(ST, MEM, B), \
1594 INSN_3(ST, MEM, H), \
1595 INSN_3(ST, MEM, W), \
1596 INSN_3(ST, MEM, DW), \
1597 \
1598 \
1599 INSN_3(LDX, MEM, B), \
1600 INSN_3(LDX, MEM, H), \
1601 INSN_3(LDX, MEM, W), \
1602 INSN_3(LDX, MEM, DW), \
1603 \
1604 INSN_3(LD, IMM, DW)
1605
1606bool bpf_opcode_in_insntable(u8 code)
1607{
1608#define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1609#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1610 static const bool public_insntable[256] = {
1611 [0 ... 255] = false,
1612
1613 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
1614
1615 [BPF_LD | BPF_ABS | BPF_B] = true,
1616 [BPF_LD | BPF_ABS | BPF_H] = true,
1617 [BPF_LD | BPF_ABS | BPF_W] = true,
1618 [BPF_LD | BPF_IND | BPF_B] = true,
1619 [BPF_LD | BPF_IND | BPF_H] = true,
1620 [BPF_LD | BPF_IND | BPF_W] = true,
1621 };
1622#undef BPF_INSN_3_TBL
1623#undef BPF_INSN_2_TBL
1624 return public_insntable[code];
1625}
1626
1627#ifndef CONFIG_BPF_JIT_ALWAYS_ON
1628u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
1629{
1630 memset(dst, 0, size);
1631 return -EFAULT;
1632}
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
1644{
1645#define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1646#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
1647 static const void * const jumptable[256] __annotate_jump_table = {
1648 [0 ... 255] = &&default_label,
1649
1650 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1651
1652 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
1653 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
1654 [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC,
1655 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1656 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1657 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1658 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1659 };
1660#undef BPF_INSN_3_LBL
1661#undef BPF_INSN_2_LBL
1662 u32 tail_call_cnt = 0;
1663
1664#define CONT ({ insn++; goto select_insn; })
1665#define CONT_JMP ({ insn++; goto select_insn; })
1666
1667select_insn:
1668 goto *jumptable[insn->code];
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682#define SHT(OPCODE, OP) \
1683 ALU64_##OPCODE##_X: \
1684 DST = DST OP (SRC & 63); \
1685 CONT; \
1686 ALU_##OPCODE##_X: \
1687 DST = (u32) DST OP ((u32) SRC & 31); \
1688 CONT; \
1689 ALU64_##OPCODE##_K: \
1690 DST = DST OP IMM; \
1691 CONT; \
1692 ALU_##OPCODE##_K: \
1693 DST = (u32) DST OP (u32) IMM; \
1694 CONT;
1695
1696#define ALU(OPCODE, OP) \
1697 ALU64_##OPCODE##_X: \
1698 DST = DST OP SRC; \
1699 CONT; \
1700 ALU_##OPCODE##_X: \
1701 DST = (u32) DST OP (u32) SRC; \
1702 CONT; \
1703 ALU64_##OPCODE##_K: \
1704 DST = DST OP IMM; \
1705 CONT; \
1706 ALU_##OPCODE##_K: \
1707 DST = (u32) DST OP (u32) IMM; \
1708 CONT;
1709 ALU(ADD, +)
1710 ALU(SUB, -)
1711 ALU(AND, &)
1712 ALU(OR, |)
1713 ALU(XOR, ^)
1714 ALU(MUL, *)
1715 SHT(LSH, <<)
1716 SHT(RSH, >>)
1717#undef SHT
1718#undef ALU
1719 ALU_NEG:
1720 DST = (u32) -DST;
1721 CONT;
1722 ALU64_NEG:
1723 DST = -DST;
1724 CONT;
1725 ALU_MOV_X:
1726 DST = (u32) SRC;
1727 CONT;
1728 ALU_MOV_K:
1729 DST = (u32) IMM;
1730 CONT;
1731 ALU64_MOV_X:
1732 DST = SRC;
1733 CONT;
1734 ALU64_MOV_K:
1735 DST = IMM;
1736 CONT;
1737 LD_IMM_DW:
1738 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1739 insn++;
1740 CONT;
1741 ALU_ARSH_X:
1742 DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
1743 CONT;
1744 ALU_ARSH_K:
1745 DST = (u64) (u32) (((s32) DST) >> IMM);
1746 CONT;
1747 ALU64_ARSH_X:
1748 (*(s64 *) &DST) >>= (SRC & 63);
1749 CONT;
1750 ALU64_ARSH_K:
1751 (*(s64 *) &DST) >>= IMM;
1752 CONT;
1753 ALU64_MOD_X:
1754 div64_u64_rem(DST, SRC, &AX);
1755 DST = AX;
1756 CONT;
1757 ALU_MOD_X:
1758 AX = (u32) DST;
1759 DST = do_div(AX, (u32) SRC);
1760 CONT;
1761 ALU64_MOD_K:
1762 div64_u64_rem(DST, IMM, &AX);
1763 DST = AX;
1764 CONT;
1765 ALU_MOD_K:
1766 AX = (u32) DST;
1767 DST = do_div(AX, (u32) IMM);
1768 CONT;
1769 ALU64_DIV_X:
1770 DST = div64_u64(DST, SRC);
1771 CONT;
1772 ALU_DIV_X:
1773 AX = (u32) DST;
1774 do_div(AX, (u32) SRC);
1775 DST = (u32) AX;
1776 CONT;
1777 ALU64_DIV_K:
1778 DST = div64_u64(DST, IMM);
1779 CONT;
1780 ALU_DIV_K:
1781 AX = (u32) DST;
1782 do_div(AX, (u32) IMM);
1783 DST = (u32) AX;
1784 CONT;
1785 ALU_END_TO_BE:
1786 switch (IMM) {
1787 case 16:
1788 DST = (__force u16) cpu_to_be16(DST);
1789 break;
1790 case 32:
1791 DST = (__force u32) cpu_to_be32(DST);
1792 break;
1793 case 64:
1794 DST = (__force u64) cpu_to_be64(DST);
1795 break;
1796 }
1797 CONT;
1798 ALU_END_TO_LE:
1799 switch (IMM) {
1800 case 16:
1801 DST = (__force u16) cpu_to_le16(DST);
1802 break;
1803 case 32:
1804 DST = (__force u32) cpu_to_le32(DST);
1805 break;
1806 case 64:
1807 DST = (__force u64) cpu_to_le64(DST);
1808 break;
1809 }
1810 CONT;
1811
1812
1813 JMP_CALL:
1814
1815
1816
1817
1818 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1819 BPF_R4, BPF_R5);
1820 CONT;
1821
1822 JMP_CALL_ARGS:
1823 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1824 BPF_R3, BPF_R4,
1825 BPF_R5,
1826 insn + insn->off + 1);
1827 CONT;
1828
1829 JMP_TAIL_CALL: {
1830 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1831 struct bpf_array *array = container_of(map, struct bpf_array, map);
1832 struct bpf_prog *prog;
1833 u32 index = BPF_R3;
1834
1835 if (unlikely(index >= array->map.max_entries))
1836 goto out;
1837
1838 if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
1839 goto out;
1840
1841 tail_call_cnt++;
1842
1843 prog = READ_ONCE(array->ptrs[index]);
1844 if (!prog)
1845 goto out;
1846
1847
1848
1849
1850
1851
1852 insn = prog->insnsi;
1853 goto select_insn;
1854out:
1855 CONT;
1856 }
1857 JMP_JA:
1858 insn += insn->off;
1859 CONT;
1860 JMP_EXIT:
1861 return BPF_R0;
1862
1863#define COND_JMP(SIGN, OPCODE, CMP_OP) \
1864 JMP_##OPCODE##_X: \
1865 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
1866 insn += insn->off; \
1867 CONT_JMP; \
1868 } \
1869 CONT; \
1870 JMP32_##OPCODE##_X: \
1871 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
1872 insn += insn->off; \
1873 CONT_JMP; \
1874 } \
1875 CONT; \
1876 JMP_##OPCODE##_K: \
1877 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
1878 insn += insn->off; \
1879 CONT_JMP; \
1880 } \
1881 CONT; \
1882 JMP32_##OPCODE##_K: \
1883 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
1884 insn += insn->off; \
1885 CONT_JMP; \
1886 } \
1887 CONT;
1888 COND_JMP(u, JEQ, ==)
1889 COND_JMP(u, JNE, !=)
1890 COND_JMP(u, JGT, >)
1891 COND_JMP(u, JLT, <)
1892 COND_JMP(u, JGE, >=)
1893 COND_JMP(u, JLE, <=)
1894 COND_JMP(u, JSET, &)
1895 COND_JMP(s, JSGT, >)
1896 COND_JMP(s, JSLT, <)
1897 COND_JMP(s, JSGE, >=)
1898 COND_JMP(s, JSLE, <=)
1899#undef COND_JMP
1900
1901 ST_NOSPEC:
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911#ifdef CONFIG_X86
1912 barrier_nospec();
1913#endif
1914 CONT;
1915#define LDST(SIZEOP, SIZE) \
1916 STX_MEM_##SIZEOP: \
1917 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1918 CONT; \
1919 ST_MEM_##SIZEOP: \
1920 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1921 CONT; \
1922 LDX_MEM_##SIZEOP: \
1923 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1924 CONT; \
1925 LDX_PROBE_MEM_##SIZEOP: \
1926 bpf_probe_read_kernel(&DST, sizeof(SIZE), \
1927 (const void *)(long) (SRC + insn->off)); \
1928 DST = *((SIZE *)&DST); \
1929 CONT;
1930
1931 LDST(B, u8)
1932 LDST(H, u16)
1933 LDST(W, u32)
1934 LDST(DW, u64)
1935#undef LDST
1936
1937#define ATOMIC_ALU_OP(BOP, KOP) \
1938 case BOP: \
1939 if (BPF_SIZE(insn->code) == BPF_W) \
1940 atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
1941 (DST + insn->off)); \
1942 else \
1943 atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
1944 (DST + insn->off)); \
1945 break; \
1946 case BOP | BPF_FETCH: \
1947 if (BPF_SIZE(insn->code) == BPF_W) \
1948 SRC = (u32) atomic_fetch_##KOP( \
1949 (u32) SRC, \
1950 (atomic_t *)(unsigned long) (DST + insn->off)); \
1951 else \
1952 SRC = (u64) atomic64_fetch_##KOP( \
1953 (u64) SRC, \
1954 (atomic64_t *)(unsigned long) (DST + insn->off)); \
1955 break;
1956
1957 STX_ATOMIC_DW:
1958 STX_ATOMIC_W:
1959 switch (IMM) {
1960 ATOMIC_ALU_OP(BPF_ADD, add)
1961 ATOMIC_ALU_OP(BPF_AND, and)
1962 ATOMIC_ALU_OP(BPF_OR, or)
1963 ATOMIC_ALU_OP(BPF_XOR, xor)
1964#undef ATOMIC_ALU_OP
1965
1966 case BPF_XCHG:
1967 if (BPF_SIZE(insn->code) == BPF_W)
1968 SRC = (u32) atomic_xchg(
1969 (atomic_t *)(unsigned long) (DST + insn->off),
1970 (u32) SRC);
1971 else
1972 SRC = (u64) atomic64_xchg(
1973 (atomic64_t *)(unsigned long) (DST + insn->off),
1974 (u64) SRC);
1975 break;
1976 case BPF_CMPXCHG:
1977 if (BPF_SIZE(insn->code) == BPF_W)
1978 BPF_R0 = (u32) atomic_cmpxchg(
1979 (atomic_t *)(unsigned long) (DST + insn->off),
1980 (u32) BPF_R0, (u32) SRC);
1981 else
1982 BPF_R0 = (u64) atomic64_cmpxchg(
1983 (atomic64_t *)(unsigned long) (DST + insn->off),
1984 (u64) BPF_R0, (u64) SRC);
1985 break;
1986
1987 default:
1988 goto default_label;
1989 }
1990 CONT;
1991
1992 default_label:
1993
1994
1995
1996
1997
1998
1999 pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2000 insn->code, insn->imm);
2001 BUG_ON(1);
2002 return 0;
2003}
2004
2005#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2006#define DEFINE_BPF_PROG_RUN(stack_size) \
2007static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2008{ \
2009 u64 stack[stack_size / sizeof(u64)]; \
2010 u64 regs[MAX_BPF_EXT_REG]; \
2011\
2012 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2013 ARG1 = (u64) (unsigned long) ctx; \
2014 return ___bpf_prog_run(regs, insn); \
2015}
2016
2017#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2018#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2019static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2020 const struct bpf_insn *insn) \
2021{ \
2022 u64 stack[stack_size / sizeof(u64)]; \
2023 u64 regs[MAX_BPF_EXT_REG]; \
2024\
2025 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2026 BPF_R1 = r1; \
2027 BPF_R2 = r2; \
2028 BPF_R3 = r3; \
2029 BPF_R4 = r4; \
2030 BPF_R5 = r5; \
2031 return ___bpf_prog_run(regs, insn); \
2032}
2033
2034#define EVAL1(FN, X) FN(X)
2035#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2036#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2037#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2038#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2039#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2040
2041EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2042EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2043EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2044
2045EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2046EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2047EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2048
2049#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2050
2051static unsigned int (*interpreters[])(const void *ctx,
2052 const struct bpf_insn *insn) = {
2053EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2054EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2055EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2056};
2057#undef PROG_NAME_LIST
2058#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
2059static u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2060 const struct bpf_insn *insn) = {
2061EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2062EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2063EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2064};
2065#undef PROG_NAME_LIST
2066
2067void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2068{
2069 stack_depth = max_t(u32, stack_depth, 1);
2070 insn->off = (s16) insn->imm;
2071 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2072 __bpf_call_base_args;
2073 insn->code = BPF_JMP | BPF_CALL_ARGS;
2074}
2075
2076#else
2077static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2078 const struct bpf_insn *insn)
2079{
2080
2081
2082
2083 WARN_ON_ONCE(1);
2084 return 0;
2085}
2086#endif
2087
2088bool bpf_prog_map_compatible(struct bpf_map *map,
2089 const struct bpf_prog *fp)
2090{
2091 bool ret;
2092
2093 if (fp->kprobe_override)
2094 return false;
2095
2096 spin_lock(&map->owner.lock);
2097 if (!map->owner.type) {
2098
2099
2100
2101 map->owner.type = fp->type;
2102 map->owner.jited = fp->jited;
2103 map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
2104 ret = true;
2105 } else {
2106 ret = map->owner.type == fp->type &&
2107 map->owner.jited == fp->jited &&
2108 map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
2109 }
2110 spin_unlock(&map->owner.lock);
2111
2112 return ret;
2113}
2114
2115static int bpf_check_tail_call(const struct bpf_prog *fp)
2116{
2117 struct bpf_prog_aux *aux = fp->aux;
2118 int i, ret = 0;
2119
2120 mutex_lock(&aux->used_maps_mutex);
2121 for (i = 0; i < aux->used_map_cnt; i++) {
2122 struct bpf_map *map = aux->used_maps[i];
2123
2124 if (!map_type_contains_progs(map))
2125 continue;
2126
2127 if (!bpf_prog_map_compatible(map, fp)) {
2128 ret = -EINVAL;
2129 goto out;
2130 }
2131 }
2132
2133out:
2134 mutex_unlock(&aux->used_maps_mutex);
2135 return ret;
2136}
2137
2138static void bpf_prog_select_func(struct bpf_prog *fp)
2139{
2140#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2141 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2142
2143 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2144#else
2145 fp->bpf_func = __bpf_prog_ret0_warn;
2146#endif
2147}
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
2161{
2162
2163
2164
2165 bool jit_needed = false;
2166
2167 if (fp->bpf_func)
2168 goto finalize;
2169
2170 if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2171 bpf_prog_has_kfunc_call(fp))
2172 jit_needed = true;
2173
2174 bpf_prog_select_func(fp);
2175
2176
2177
2178
2179
2180
2181
2182 if (!bpf_prog_is_dev_bound(fp->aux)) {
2183 *err = bpf_prog_alloc_jited_linfo(fp);
2184 if (*err)
2185 return fp;
2186
2187 fp = bpf_int_jit_compile(fp);
2188 bpf_prog_jit_attempt_done(fp);
2189 if (!fp->jited && jit_needed) {
2190 *err = -ENOTSUPP;
2191 return fp;
2192 }
2193 } else {
2194 *err = bpf_prog_offload_compile(fp);
2195 if (*err)
2196 return fp;
2197 }
2198
2199finalize:
2200 bpf_prog_lock_ro(fp);
2201
2202
2203
2204
2205
2206
2207 *err = bpf_check_tail_call(fp);
2208
2209 return fp;
2210}
2211EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
2212
2213static unsigned int __bpf_prog_ret1(const void *ctx,
2214 const struct bpf_insn *insn)
2215{
2216 return 1;
2217}
2218
2219static struct bpf_prog_dummy {
2220 struct bpf_prog prog;
2221} dummy_bpf_prog = {
2222 .prog = {
2223 .bpf_func = __bpf_prog_ret1,
2224 },
2225};
2226
2227struct bpf_empty_prog_array bpf_empty_prog_array = {
2228 .null_prog = NULL,
2229};
2230EXPORT_SYMBOL(bpf_empty_prog_array);
2231
2232struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
2233{
2234 if (prog_cnt)
2235 return kzalloc(sizeof(struct bpf_prog_array) +
2236 sizeof(struct bpf_prog_array_item) *
2237 (prog_cnt + 1),
2238 flags);
2239
2240 return &bpf_empty_prog_array.hdr;
2241}
2242
2243void bpf_prog_array_free(struct bpf_prog_array *progs)
2244{
2245 if (!progs || progs == &bpf_empty_prog_array.hdr)
2246 return;
2247 kfree_rcu(progs, rcu);
2248}
2249
2250static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2251{
2252 struct bpf_prog_array *progs;
2253
2254 progs = container_of(rcu, struct bpf_prog_array, rcu);
2255 kfree_rcu(progs, rcu);
2256}
2257
2258void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2259{
2260 if (!progs || progs == &bpf_empty_prog_array.hdr)
2261 return;
2262 call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2263}
2264
2265int bpf_prog_array_length(struct bpf_prog_array *array)
2266{
2267 struct bpf_prog_array_item *item;
2268 u32 cnt = 0;
2269
2270 for (item = array->items; item->prog; item++)
2271 if (item->prog != &dummy_bpf_prog.prog)
2272 cnt++;
2273 return cnt;
2274}
2275
2276bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2277{
2278 struct bpf_prog_array_item *item;
2279
2280 for (item = array->items; item->prog; item++)
2281 if (item->prog != &dummy_bpf_prog.prog)
2282 return false;
2283 return true;
2284}
2285
2286static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
2287 u32 *prog_ids,
2288 u32 request_cnt)
2289{
2290 struct bpf_prog_array_item *item;
2291 int i = 0;
2292
2293 for (item = array->items; item->prog; item++) {
2294 if (item->prog == &dummy_bpf_prog.prog)
2295 continue;
2296 prog_ids[i] = item->prog->aux->id;
2297 if (++i == request_cnt) {
2298 item++;
2299 break;
2300 }
2301 }
2302
2303 return !!(item->prog);
2304}
2305
2306int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
2307 __u32 __user *prog_ids, u32 cnt)
2308{
2309 unsigned long err = 0;
2310 bool nospc;
2311 u32 *ids;
2312
2313
2314
2315
2316
2317
2318
2319 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
2320 if (!ids)
2321 return -ENOMEM;
2322 nospc = bpf_prog_array_copy_core(array, ids, cnt);
2323 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2324 kfree(ids);
2325 if (err)
2326 return -EFAULT;
2327 if (nospc)
2328 return -ENOSPC;
2329 return 0;
2330}
2331
2332void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
2333 struct bpf_prog *old_prog)
2334{
2335 struct bpf_prog_array_item *item;
2336
2337 for (item = array->items; item->prog; item++)
2338 if (item->prog == old_prog) {
2339 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
2340 break;
2341 }
2342}
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2360{
2361 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2362}
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2380 struct bpf_prog *prog)
2381{
2382 struct bpf_prog_array_item *item;
2383
2384 if (unlikely(index < 0))
2385 return -EINVAL;
2386
2387 for (item = array->items; item->prog; item++) {
2388 if (item->prog == &dummy_bpf_prog.prog)
2389 continue;
2390 if (!index) {
2391 WRITE_ONCE(item->prog, prog);
2392 return 0;
2393 }
2394 index--;
2395 }
2396 return -ENOENT;
2397}
2398
2399int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2400 struct bpf_prog *exclude_prog,
2401 struct bpf_prog *include_prog,
2402 u64 bpf_cookie,
2403 struct bpf_prog_array **new_array)
2404{
2405 int new_prog_cnt, carry_prog_cnt = 0;
2406 struct bpf_prog_array_item *existing, *new;
2407 struct bpf_prog_array *array;
2408 bool found_exclude = false;
2409
2410
2411
2412
2413 if (old_array) {
2414 existing = old_array->items;
2415 for (; existing->prog; existing++) {
2416 if (existing->prog == exclude_prog) {
2417 found_exclude = true;
2418 continue;
2419 }
2420 if (existing->prog != &dummy_bpf_prog.prog)
2421 carry_prog_cnt++;
2422 if (existing->prog == include_prog)
2423 return -EEXIST;
2424 }
2425 }
2426
2427 if (exclude_prog && !found_exclude)
2428 return -ENOENT;
2429
2430
2431 new_prog_cnt = carry_prog_cnt;
2432 if (include_prog)
2433 new_prog_cnt += 1;
2434
2435
2436 if (!new_prog_cnt) {
2437 *new_array = NULL;
2438 return 0;
2439 }
2440
2441
2442 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2443 if (!array)
2444 return -ENOMEM;
2445 new = array->items;
2446
2447
2448 if (carry_prog_cnt) {
2449 existing = old_array->items;
2450 for (; existing->prog; existing++) {
2451 if (existing->prog == exclude_prog ||
2452 existing->prog == &dummy_bpf_prog.prog)
2453 continue;
2454
2455 new->prog = existing->prog;
2456 new->bpf_cookie = existing->bpf_cookie;
2457 new++;
2458 }
2459 }
2460 if (include_prog) {
2461 new->prog = include_prog;
2462 new->bpf_cookie = bpf_cookie;
2463 new++;
2464 }
2465 new->prog = NULL;
2466 *new_array = array;
2467 return 0;
2468}
2469
2470int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2471 u32 *prog_ids, u32 request_cnt,
2472 u32 *prog_cnt)
2473{
2474 u32 cnt = 0;
2475
2476 if (array)
2477 cnt = bpf_prog_array_length(array);
2478
2479 *prog_cnt = cnt;
2480
2481
2482 if (!request_cnt || !cnt)
2483 return 0;
2484
2485
2486 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
2487 : 0;
2488}
2489
2490void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2491 struct bpf_map **used_maps, u32 len)
2492{
2493 struct bpf_map *map;
2494 u32 i;
2495
2496 for (i = 0; i < len; i++) {
2497 map = used_maps[i];
2498 if (map->ops->map_poke_untrack)
2499 map->ops->map_poke_untrack(map, aux);
2500 bpf_map_put(map);
2501 }
2502}
2503
2504static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2505{
2506 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
2507 kfree(aux->used_maps);
2508}
2509
2510void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2511 struct btf_mod_pair *used_btfs, u32 len)
2512{
2513#ifdef CONFIG_BPF_SYSCALL
2514 struct btf_mod_pair *btf_mod;
2515 u32 i;
2516
2517 for (i = 0; i < len; i++) {
2518 btf_mod = &used_btfs[i];
2519 if (btf_mod->module)
2520 module_put(btf_mod->module);
2521 btf_put(btf_mod->btf);
2522 }
2523#endif
2524}
2525
2526static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2527{
2528 __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2529 kfree(aux->used_btfs);
2530}
2531
2532static void bpf_prog_free_deferred(struct work_struct *work)
2533{
2534 struct bpf_prog_aux *aux;
2535 int i;
2536
2537 aux = container_of(work, struct bpf_prog_aux, work);
2538#ifdef CONFIG_BPF_SYSCALL
2539 bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
2540#endif
2541#ifdef CONFIG_CGROUP_BPF
2542 if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2543 bpf_cgroup_atype_put(aux->cgroup_atype);
2544#endif
2545 bpf_free_used_maps(aux);
2546 bpf_free_used_btfs(aux);
2547 if (bpf_prog_is_dev_bound(aux))
2548 bpf_prog_offload_destroy(aux->prog);
2549#ifdef CONFIG_PERF_EVENTS
2550 if (aux->prog->has_callchain_buf)
2551 put_callchain_buffers();
2552#endif
2553 if (aux->dst_trampoline)
2554 bpf_trampoline_put(aux->dst_trampoline);
2555 for (i = 0; i < aux->func_cnt; i++) {
2556
2557
2558
2559
2560 aux->func[i]->aux->poke_tab = NULL;
2561 bpf_jit_free(aux->func[i]);
2562 }
2563 if (aux->func_cnt) {
2564 kfree(aux->func);
2565 bpf_prog_unlock_free(aux->prog);
2566 } else {
2567 bpf_jit_free(aux->prog);
2568 }
2569}
2570
2571void bpf_prog_free(struct bpf_prog *fp)
2572{
2573 struct bpf_prog_aux *aux = fp->aux;
2574
2575 if (aux->dst_prog)
2576 bpf_prog_put(aux->dst_prog);
2577 INIT_WORK(&aux->work, bpf_prog_free_deferred);
2578 schedule_work(&aux->work);
2579}
2580EXPORT_SYMBOL_GPL(bpf_prog_free);
2581
2582
2583static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2584
2585void bpf_user_rnd_init_once(void)
2586{
2587 prandom_init_once(&bpf_user_rnd_state);
2588}
2589
2590BPF_CALL_0(bpf_user_rnd_u32)
2591{
2592
2593
2594
2595
2596
2597
2598 struct rnd_state *state;
2599 u32 res;
2600
2601 state = &get_cpu_var(bpf_user_rnd_state);
2602 res = prandom_u32_state(state);
2603 put_cpu_var(bpf_user_rnd_state);
2604
2605 return res;
2606}
2607
2608BPF_CALL_0(bpf_get_raw_cpu_id)
2609{
2610 return raw_smp_processor_id();
2611}
2612
2613
2614const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2615const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2616const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
2617const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2618const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2619const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
2620const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
2621const struct bpf_func_proto bpf_spin_lock_proto __weak;
2622const struct bpf_func_proto bpf_spin_unlock_proto __weak;
2623const struct bpf_func_proto bpf_jiffies64_proto __weak;
2624
2625const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
2626const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2627const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
2628const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
2629const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
2630const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
2631
2632const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2633const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2634const struct bpf_func_proto bpf_get_current_comm_proto __weak;
2635const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
2636const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
2637const struct bpf_func_proto bpf_get_local_storage_proto __weak;
2638const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
2639const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
2640const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
2641const struct bpf_func_proto bpf_set_retval_proto __weak;
2642const struct bpf_func_proto bpf_get_retval_proto __weak;
2643
2644const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2645{
2646 return NULL;
2647}
2648
2649const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2650{
2651 return NULL;
2652}
2653
2654u64 __weak
2655bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2656 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
2657{
2658 return -ENOTSUPP;
2659}
2660EXPORT_SYMBOL_GPL(bpf_event_output);
2661
2662
2663const struct bpf_func_proto bpf_tail_call_proto = {
2664 .func = NULL,
2665 .gpl_only = false,
2666 .ret_type = RET_VOID,
2667 .arg1_type = ARG_PTR_TO_CTX,
2668 .arg2_type = ARG_CONST_MAP_PTR,
2669 .arg3_type = ARG_ANYTHING,
2670};
2671
2672
2673
2674
2675
2676struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
2677{
2678 return prog;
2679}
2680
2681
2682
2683
2684void __weak bpf_jit_compile(struct bpf_prog *prog)
2685{
2686}
2687
2688bool __weak bpf_helper_changes_pkt_data(void *func)
2689{
2690 return false;
2691}
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701bool __weak bpf_jit_needs_zext(void)
2702{
2703 return false;
2704}
2705
2706
2707bool __weak bpf_jit_supports_subprog_tailcalls(void)
2708{
2709 return false;
2710}
2711
2712bool __weak bpf_jit_supports_kfunc_call(void)
2713{
2714 return false;
2715}
2716
2717
2718
2719
2720int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2721 int len)
2722{
2723 return -EFAULT;
2724}
2725
2726int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2727 void *addr1, void *addr2)
2728{
2729 return -ENOTSUPP;
2730}
2731
2732void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2733{
2734 return ERR_PTR(-ENOTSUPP);
2735}
2736
2737int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2738{
2739 return -ENOTSUPP;
2740}
2741
2742DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2743EXPORT_SYMBOL(bpf_stats_enabled_key);
2744
2745
2746#define CREATE_TRACE_POINTS
2747#include <linux/bpf_trace.h>
2748
2749EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
2750EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);
2751