linux/include/linux/sched.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_H
   3#define _LINUX_SCHED_H
   4
   5/*
   6 * Define 'struct task_struct' and provide the main scheduler
   7 * APIs (schedule(), wakeup variants, etc.)
   8 */
   9
  10#include <uapi/linux/sched.h>
  11
  12#include <asm/current.h>
  13
  14#include <linux/pid.h>
  15#include <linux/sem.h>
  16#include <linux/shm.h>
  17#include <linux/mutex.h>
  18#include <linux/plist.h>
  19#include <linux/hrtimer.h>
  20#include <linux/irqflags.h>
  21#include <linux/seccomp.h>
  22#include <linux/nodemask.h>
  23#include <linux/rcupdate.h>
  24#include <linux/refcount.h>
  25#include <linux/resource.h>
  26#include <linux/latencytop.h>
  27#include <linux/sched/prio.h>
  28#include <linux/sched/types.h>
  29#include <linux/signal_types.h>
  30#include <linux/syscall_user_dispatch.h>
  31#include <linux/mm_types_task.h>
  32#include <linux/task_io_accounting.h>
  33#include <linux/posix-timers.h>
  34#include <linux/rseq.h>
  35#include <linux/seqlock.h>
  36#include <linux/kcsan.h>
  37#include <linux/rv.h>
  38#include <asm/kmap_size.h>
  39
  40/* task_struct member predeclarations (sorted alphabetically): */
  41struct audit_context;
  42struct backing_dev_info;
  43struct bio_list;
  44struct blk_plug;
  45struct bpf_local_storage;
  46struct bpf_run_ctx;
  47struct capture_control;
  48struct cfs_rq;
  49struct fs_struct;
  50struct futex_pi_state;
  51struct io_context;
  52struct io_uring_task;
  53struct mempolicy;
  54struct nameidata;
  55struct nsproxy;
  56struct perf_event_context;
  57struct pid_namespace;
  58struct pipe_inode_info;
  59struct rcu_node;
  60struct reclaim_state;
  61struct robust_list_head;
  62struct root_domain;
  63struct rq;
  64struct sched_attr;
  65struct sched_param;
  66struct seq_file;
  67struct sighand_struct;
  68struct signal_struct;
  69struct task_delay_info;
  70struct task_group;
  71
  72/*
  73 * Task state bitmask. NOTE! These bits are also
  74 * encoded in fs/proc/array.c: get_task_state().
  75 *
  76 * We have two separate sets of flags: task->state
  77 * is about runnability, while task->exit_state are
  78 * about the task exiting. Confusing, but this way
  79 * modifying one set can't modify the other one by
  80 * mistake.
  81 */
  82
  83/* Used in tsk->state: */
  84#define TASK_RUNNING                    0x0000
  85#define TASK_INTERRUPTIBLE              0x0001
  86#define TASK_UNINTERRUPTIBLE            0x0002
  87#define __TASK_STOPPED                  0x0004
  88#define __TASK_TRACED                   0x0008
  89/* Used in tsk->exit_state: */
  90#define EXIT_DEAD                       0x0010
  91#define EXIT_ZOMBIE                     0x0020
  92#define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
  93/* Used in tsk->state again: */
  94#define TASK_PARKED                     0x0040
  95#define TASK_DEAD                       0x0080
  96#define TASK_WAKEKILL                   0x0100
  97#define TASK_WAKING                     0x0200
  98#define TASK_NOLOAD                     0x0400
  99#define TASK_NEW                        0x0800
 100/* RT specific auxilliary flag to mark RT lock waiters */
 101#define TASK_RTLOCK_WAIT                0x1000
 102#define TASK_STATE_MAX                  0x2000
 103
 104/* Convenience macros for the sake of set_current_state: */
 105#define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 106#define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
 107#define TASK_TRACED                     __TASK_TRACED
 108
 109#define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
 110
 111/* Convenience macros for the sake of wake_up(): */
 112#define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 113
 114/* get_task_state(): */
 115#define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 116                                         TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 117                                         __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
 118                                         TASK_PARKED)
 119
 120#define task_is_running(task)           (READ_ONCE((task)->__state) == TASK_RUNNING)
 121
 122#define task_is_traced(task)            ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
 123#define task_is_stopped(task)           ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
 124#define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
 125
 126/*
 127 * Special states are those that do not use the normal wait-loop pattern. See
 128 * the comment with set_special_state().
 129 */
 130#define is_special_task_state(state)                            \
 131        ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
 132
 133#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 134# define debug_normal_state_change(state_value)                         \
 135        do {                                                            \
 136                WARN_ON_ONCE(is_special_task_state(state_value));       \
 137                current->task_state_change = _THIS_IP_;                 \
 138        } while (0)
 139
 140# define debug_special_state_change(state_value)                        \
 141        do {                                                            \
 142                WARN_ON_ONCE(!is_special_task_state(state_value));      \
 143                current->task_state_change = _THIS_IP_;                 \
 144        } while (0)
 145
 146# define debug_rtlock_wait_set_state()                                  \
 147        do {                                                             \
 148                current->saved_state_change = current->task_state_change;\
 149                current->task_state_change = _THIS_IP_;                  \
 150        } while (0)
 151
 152# define debug_rtlock_wait_restore_state()                              \
 153        do {                                                             \
 154                current->task_state_change = current->saved_state_change;\
 155        } while (0)
 156
 157#else
 158# define debug_normal_state_change(cond)        do { } while (0)
 159# define debug_special_state_change(cond)       do { } while (0)
 160# define debug_rtlock_wait_set_state()          do { } while (0)
 161# define debug_rtlock_wait_restore_state()      do { } while (0)
 162#endif
 163
 164/*
 165 * set_current_state() includes a barrier so that the write of current->state
 166 * is correctly serialised wrt the caller's subsequent test of whether to
 167 * actually sleep:
 168 *
 169 *   for (;;) {
 170 *      set_current_state(TASK_UNINTERRUPTIBLE);
 171 *      if (CONDITION)
 172 *         break;
 173 *
 174 *      schedule();
 175 *   }
 176 *   __set_current_state(TASK_RUNNING);
 177 *
 178 * If the caller does not need such serialisation (because, for instance, the
 179 * CONDITION test and condition change and wakeup are under the same lock) then
 180 * use __set_current_state().
 181 *
 182 * The above is typically ordered against the wakeup, which does:
 183 *
 184 *   CONDITION = 1;
 185 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
 186 *
 187 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
 188 * accessing p->state.
 189 *
 190 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 191 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 192 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
 193 *
 194 * However, with slightly different timing the wakeup TASK_RUNNING store can
 195 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
 196 * a problem either because that will result in one extra go around the loop
 197 * and our @cond test will save the day.
 198 *
 199 * Also see the comments of try_to_wake_up().
 200 */
 201#define __set_current_state(state_value)                                \
 202        do {                                                            \
 203                debug_normal_state_change((state_value));               \
 204                WRITE_ONCE(current->__state, (state_value));            \
 205        } while (0)
 206
 207#define set_current_state(state_value)                                  \
 208        do {                                                            \
 209                debug_normal_state_change((state_value));               \
 210                smp_store_mb(current->__state, (state_value));          \
 211        } while (0)
 212
 213/*
 214 * set_special_state() should be used for those states when the blocking task
 215 * can not use the regular condition based wait-loop. In that case we must
 216 * serialize against wakeups such that any possible in-flight TASK_RUNNING
 217 * stores will not collide with our state change.
 218 */
 219#define set_special_state(state_value)                                  \
 220        do {                                                            \
 221                unsigned long flags; /* may shadow */                   \
 222                                                                        \
 223                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 224                debug_special_state_change((state_value));              \
 225                WRITE_ONCE(current->__state, (state_value));            \
 226                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 227        } while (0)
 228
 229/*
 230 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
 231 *
 232 * RT's spin/rwlock substitutions are state preserving. The state of the
 233 * task when blocking on the lock is saved in task_struct::saved_state and
 234 * restored after the lock has been acquired.  These operations are
 235 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
 236 * lock related wakeups while the task is blocked on the lock are
 237 * redirected to operate on task_struct::saved_state to ensure that these
 238 * are not dropped. On restore task_struct::saved_state is set to
 239 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
 240 *
 241 * The lock operation looks like this:
 242 *
 243 *      current_save_and_set_rtlock_wait_state();
 244 *      for (;;) {
 245 *              if (try_lock())
 246 *                      break;
 247 *              raw_spin_unlock_irq(&lock->wait_lock);
 248 *              schedule_rtlock();
 249 *              raw_spin_lock_irq(&lock->wait_lock);
 250 *              set_current_state(TASK_RTLOCK_WAIT);
 251 *      }
 252 *      current_restore_rtlock_saved_state();
 253 */
 254#define current_save_and_set_rtlock_wait_state()                        \
 255        do {                                                            \
 256                lockdep_assert_irqs_disabled();                         \
 257                raw_spin_lock(&current->pi_lock);                       \
 258                current->saved_state = current->__state;                \
 259                debug_rtlock_wait_set_state();                          \
 260                WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);         \
 261                raw_spin_unlock(&current->pi_lock);                     \
 262        } while (0);
 263
 264#define current_restore_rtlock_saved_state()                            \
 265        do {                                                            \
 266                lockdep_assert_irqs_disabled();                         \
 267                raw_spin_lock(&current->pi_lock);                       \
 268                debug_rtlock_wait_restore_state();                      \
 269                WRITE_ONCE(current->__state, current->saved_state);     \
 270                current->saved_state = TASK_RUNNING;                    \
 271                raw_spin_unlock(&current->pi_lock);                     \
 272        } while (0);
 273
 274#define get_current_state()     READ_ONCE(current->__state)
 275
 276/*
 277 * Define the task command name length as enum, then it can be visible to
 278 * BPF programs.
 279 */
 280enum {
 281        TASK_COMM_LEN = 16,
 282};
 283
 284extern void scheduler_tick(void);
 285
 286#define MAX_SCHEDULE_TIMEOUT            LONG_MAX
 287
 288extern long schedule_timeout(long timeout);
 289extern long schedule_timeout_interruptible(long timeout);
 290extern long schedule_timeout_killable(long timeout);
 291extern long schedule_timeout_uninterruptible(long timeout);
 292extern long schedule_timeout_idle(long timeout);
 293asmlinkage void schedule(void);
 294extern void schedule_preempt_disabled(void);
 295asmlinkage void preempt_schedule_irq(void);
 296#ifdef CONFIG_PREEMPT_RT
 297 extern void schedule_rtlock(void);
 298#endif
 299
 300extern int __must_check io_schedule_prepare(void);
 301extern void io_schedule_finish(int token);
 302extern long io_schedule_timeout(long timeout);
 303extern void io_schedule(void);
 304
 305/**
 306 * struct prev_cputime - snapshot of system and user cputime
 307 * @utime: time spent in user mode
 308 * @stime: time spent in system mode
 309 * @lock: protects the above two fields
 310 *
 311 * Stores previous user/system time values such that we can guarantee
 312 * monotonicity.
 313 */
 314struct prev_cputime {
 315#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 316        u64                             utime;
 317        u64                             stime;
 318        raw_spinlock_t                  lock;
 319#endif
 320};
 321
 322enum vtime_state {
 323        /* Task is sleeping or running in a CPU with VTIME inactive: */
 324        VTIME_INACTIVE = 0,
 325        /* Task is idle */
 326        VTIME_IDLE,
 327        /* Task runs in kernelspace in a CPU with VTIME active: */
 328        VTIME_SYS,
 329        /* Task runs in userspace in a CPU with VTIME active: */
 330        VTIME_USER,
 331        /* Task runs as guests in a CPU with VTIME active: */
 332        VTIME_GUEST,
 333};
 334
 335struct vtime {
 336        seqcount_t              seqcount;
 337        unsigned long long      starttime;
 338        enum vtime_state        state;
 339        unsigned int            cpu;
 340        u64                     utime;
 341        u64                     stime;
 342        u64                     gtime;
 343};
 344
 345/*
 346 * Utilization clamp constraints.
 347 * @UCLAMP_MIN: Minimum utilization
 348 * @UCLAMP_MAX: Maximum utilization
 349 * @UCLAMP_CNT: Utilization clamp constraints count
 350 */
 351enum uclamp_id {
 352        UCLAMP_MIN = 0,
 353        UCLAMP_MAX,
 354        UCLAMP_CNT
 355};
 356
 357#ifdef CONFIG_SMP
 358extern struct root_domain def_root_domain;
 359extern struct mutex sched_domains_mutex;
 360#endif
 361
 362struct sched_info {
 363#ifdef CONFIG_SCHED_INFO
 364        /* Cumulative counters: */
 365
 366        /* # of times we have run on this CPU: */
 367        unsigned long                   pcount;
 368
 369        /* Time spent waiting on a runqueue: */
 370        unsigned long long              run_delay;
 371
 372        /* Timestamps: */
 373
 374        /* When did we last run on a CPU? */
 375        unsigned long long              last_arrival;
 376
 377        /* When were we last queued to run? */
 378        unsigned long long              last_queued;
 379
 380#endif /* CONFIG_SCHED_INFO */
 381};
 382
 383/*
 384 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 385 * has a few: load, load_avg, util_avg, freq, and capacity.
 386 *
 387 * We define a basic fixed point arithmetic range, and then formalize
 388 * all these metrics based on that basic range.
 389 */
 390# define SCHED_FIXEDPOINT_SHIFT         10
 391# define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
 392
 393/* Increase resolution of cpu_capacity calculations */
 394# define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
 395# define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
 396
 397struct load_weight {
 398        unsigned long                   weight;
 399        u32                             inv_weight;
 400};
 401
 402/**
 403 * struct util_est - Estimation utilization of FAIR tasks
 404 * @enqueued: instantaneous estimated utilization of a task/cpu
 405 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 406 *            utilization of a task
 407 *
 408 * Support data structure to track an Exponential Weighted Moving Average
 409 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 410 * average each time a task completes an activation. Sample's weight is chosen
 411 * so that the EWMA will be relatively insensitive to transient changes to the
 412 * task's workload.
 413 *
 414 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 415 * - task:   the task's util_avg at last task dequeue time
 416 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 417 * Thus, the util_est.enqueued of a task represents the contribution on the
 418 * estimated utilization of the CPU where that task is currently enqueued.
 419 *
 420 * Only for tasks we track a moving average of the past instantaneous
 421 * estimated utilization. This allows to absorb sporadic drops in utilization
 422 * of an otherwise almost periodic task.
 423 *
 424 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
 425 * updates. When a task is dequeued, its util_est should not be updated if its
 426 * util_avg has not been updated in the meantime.
 427 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
 428 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
 429 * for a task) it is safe to use MSB.
 430 */
 431struct util_est {
 432        unsigned int                    enqueued;
 433        unsigned int                    ewma;
 434#define UTIL_EST_WEIGHT_SHIFT           2
 435#define UTIL_AVG_UNCHANGED              0x80000000
 436} __attribute__((__aligned__(sizeof(u64))));
 437
 438/*
 439 * The load/runnable/util_avg accumulates an infinite geometric series
 440 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
 441 *
 442 * [load_avg definition]
 443 *
 444 *   load_avg = runnable% * scale_load_down(load)
 445 *
 446 * [runnable_avg definition]
 447 *
 448 *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
 449 *
 450 * [util_avg definition]
 451 *
 452 *   util_avg = running% * SCHED_CAPACITY_SCALE
 453 *
 454 * where runnable% is the time ratio that a sched_entity is runnable and
 455 * running% the time ratio that a sched_entity is running.
 456 *
 457 * For cfs_rq, they are the aggregated values of all runnable and blocked
 458 * sched_entities.
 459 *
 460 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
 461 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
 462 * for computing those signals (see update_rq_clock_pelt())
 463 *
 464 * N.B., the above ratios (runnable% and running%) themselves are in the
 465 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 466 * to as large a range as necessary. This is for example reflected by
 467 * util_avg's SCHED_CAPACITY_SCALE.
 468 *
 469 * [Overflow issue]
 470 *
 471 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 472 * with the highest load (=88761), always runnable on a single cfs_rq,
 473 * and should not overflow as the number already hits PID_MAX_LIMIT.
 474 *
 475 * For all other cases (including 32-bit kernels), struct load_weight's
 476 * weight will overflow first before we do, because:
 477 *
 478 *    Max(load_avg) <= Max(load.weight)
 479 *
 480 * Then it is the load_weight's responsibility to consider overflow
 481 * issues.
 482 */
 483struct sched_avg {
 484        u64                             last_update_time;
 485        u64                             load_sum;
 486        u64                             runnable_sum;
 487        u32                             util_sum;
 488        u32                             period_contrib;
 489        unsigned long                   load_avg;
 490        unsigned long                   runnable_avg;
 491        unsigned long                   util_avg;
 492        struct util_est                 util_est;
 493} ____cacheline_aligned;
 494
 495struct sched_statistics {
 496#ifdef CONFIG_SCHEDSTATS
 497        u64                             wait_start;
 498        u64                             wait_max;
 499        u64                             wait_count;
 500        u64                             wait_sum;
 501        u64                             iowait_count;
 502        u64                             iowait_sum;
 503
 504        u64                             sleep_start;
 505        u64                             sleep_max;
 506        s64                             sum_sleep_runtime;
 507
 508        u64                             block_start;
 509        u64                             block_max;
 510        s64                             sum_block_runtime;
 511
 512        u64                             exec_max;
 513        u64                             slice_max;
 514
 515        u64                             nr_migrations_cold;
 516        u64                             nr_failed_migrations_affine;
 517        u64                             nr_failed_migrations_running;
 518        u64                             nr_failed_migrations_hot;
 519        u64                             nr_forced_migrations;
 520
 521        u64                             nr_wakeups;
 522        u64                             nr_wakeups_sync;
 523        u64                             nr_wakeups_migrate;
 524        u64                             nr_wakeups_local;
 525        u64                             nr_wakeups_remote;
 526        u64                             nr_wakeups_affine;
 527        u64                             nr_wakeups_affine_attempts;
 528        u64                             nr_wakeups_passive;
 529        u64                             nr_wakeups_idle;
 530
 531#ifdef CONFIG_SCHED_CORE
 532        u64                             core_forceidle_sum;
 533#endif
 534#endif /* CONFIG_SCHEDSTATS */
 535} ____cacheline_aligned;
 536
 537struct sched_entity {
 538        /* For load-balancing: */
 539        struct load_weight              load;
 540        struct rb_node                  run_node;
 541        struct list_head                group_node;
 542        unsigned int                    on_rq;
 543
 544        u64                             exec_start;
 545        u64                             sum_exec_runtime;
 546        u64                             vruntime;
 547        u64                             prev_sum_exec_runtime;
 548
 549        u64                             nr_migrations;
 550
 551#ifdef CONFIG_FAIR_GROUP_SCHED
 552        int                             depth;
 553        struct sched_entity             *parent;
 554        /* rq on which this entity is (to be) queued: */
 555        struct cfs_rq                   *cfs_rq;
 556        /* rq "owned" by this entity/group: */
 557        struct cfs_rq                   *my_q;
 558        /* cached value of my_q->h_nr_running */
 559        unsigned long                   runnable_weight;
 560#endif
 561
 562#ifdef CONFIG_SMP
 563        /*
 564         * Per entity load average tracking.
 565         *
 566         * Put into separate cache line so it does not
 567         * collide with read-mostly values above.
 568         */
 569        struct sched_avg                avg;
 570#endif
 571};
 572
 573struct sched_rt_entity {
 574        struct list_head                run_list;
 575        unsigned long                   timeout;
 576        unsigned long                   watchdog_stamp;
 577        unsigned int                    time_slice;
 578        unsigned short                  on_rq;
 579        unsigned short                  on_list;
 580
 581        struct sched_rt_entity          *back;
 582#ifdef CONFIG_RT_GROUP_SCHED
 583        struct sched_rt_entity          *parent;
 584        /* rq on which this entity is (to be) queued: */
 585        struct rt_rq                    *rt_rq;
 586        /* rq "owned" by this entity/group: */
 587        struct rt_rq                    *my_q;
 588#endif
 589} __randomize_layout;
 590
 591struct sched_dl_entity {
 592        struct rb_node                  rb_node;
 593
 594        /*
 595         * Original scheduling parameters. Copied here from sched_attr
 596         * during sched_setattr(), they will remain the same until
 597         * the next sched_setattr().
 598         */
 599        u64                             dl_runtime;     /* Maximum runtime for each instance    */
 600        u64                             dl_deadline;    /* Relative deadline of each instance   */
 601        u64                             dl_period;      /* Separation of two instances (period) */
 602        u64                             dl_bw;          /* dl_runtime / dl_period               */
 603        u64                             dl_density;     /* dl_runtime / dl_deadline             */
 604
 605        /*
 606         * Actual scheduling parameters. Initialized with the values above,
 607         * they are continuously updated during task execution. Note that
 608         * the remaining runtime could be < 0 in case we are in overrun.
 609         */
 610        s64                             runtime;        /* Remaining runtime for this instance  */
 611        u64                             deadline;       /* Absolute deadline for this instance  */
 612        unsigned int                    flags;          /* Specifying the scheduler behaviour   */
 613
 614        /*
 615         * Some bool flags:
 616         *
 617         * @dl_throttled tells if we exhausted the runtime. If so, the
 618         * task has to wait for a replenishment to be performed at the
 619         * next firing of dl_timer.
 620         *
 621         * @dl_yielded tells if task gave up the CPU before consuming
 622         * all its available runtime during the last job.
 623         *
 624         * @dl_non_contending tells if the task is inactive while still
 625         * contributing to the active utilization. In other words, it
 626         * indicates if the inactive timer has been armed and its handler
 627         * has not been executed yet. This flag is useful to avoid race
 628         * conditions between the inactive timer handler and the wakeup
 629         * code.
 630         *
 631         * @dl_overrun tells if the task asked to be informed about runtime
 632         * overruns.
 633         */
 634        unsigned int                    dl_throttled      : 1;
 635        unsigned int                    dl_yielded        : 1;
 636        unsigned int                    dl_non_contending : 1;
 637        unsigned int                    dl_overrun        : 1;
 638
 639        /*
 640         * Bandwidth enforcement timer. Each -deadline task has its
 641         * own bandwidth to be enforced, thus we need one timer per task.
 642         */
 643        struct hrtimer                  dl_timer;
 644
 645        /*
 646         * Inactive timer, responsible for decreasing the active utilization
 647         * at the "0-lag time". When a -deadline task blocks, it contributes
 648         * to GRUB's active utilization until the "0-lag time", hence a
 649         * timer is needed to decrease the active utilization at the correct
 650         * time.
 651         */
 652        struct hrtimer inactive_timer;
 653
 654#ifdef CONFIG_RT_MUTEXES
 655        /*
 656         * Priority Inheritance. When a DEADLINE scheduling entity is boosted
 657         * pi_se points to the donor, otherwise points to the dl_se it belongs
 658         * to (the original one/itself).
 659         */
 660        struct sched_dl_entity *pi_se;
 661#endif
 662};
 663
 664#ifdef CONFIG_UCLAMP_TASK
 665/* Number of utilization clamp buckets (shorter alias) */
 666#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
 667
 668/*
 669 * Utilization clamp for a scheduling entity
 670 * @value:              clamp value "assigned" to a se
 671 * @bucket_id:          bucket index corresponding to the "assigned" value
 672 * @active:             the se is currently refcounted in a rq's bucket
 673 * @user_defined:       the requested clamp value comes from user-space
 674 *
 675 * The bucket_id is the index of the clamp bucket matching the clamp value
 676 * which is pre-computed and stored to avoid expensive integer divisions from
 677 * the fast path.
 678 *
 679 * The active bit is set whenever a task has got an "effective" value assigned,
 680 * which can be different from the clamp value "requested" from user-space.
 681 * This allows to know a task is refcounted in the rq's bucket corresponding
 682 * to the "effective" bucket_id.
 683 *
 684 * The user_defined bit is set whenever a task has got a task-specific clamp
 685 * value requested from userspace, i.e. the system defaults apply to this task
 686 * just as a restriction. This allows to relax default clamps when a less
 687 * restrictive task-specific value has been requested, thus allowing to
 688 * implement a "nice" semantic. For example, a task running with a 20%
 689 * default boost can still drop its own boosting to 0%.
 690 */
 691struct uclamp_se {
 692        unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
 693        unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
 694        unsigned int active             : 1;
 695        unsigned int user_defined       : 1;
 696};
 697#endif /* CONFIG_UCLAMP_TASK */
 698
 699union rcu_special {
 700        struct {
 701                u8                      blocked;
 702                u8                      need_qs;
 703                u8                      exp_hint; /* Hint for performance. */
 704                u8                      need_mb; /* Readers need smp_mb(). */
 705        } b; /* Bits. */
 706        u32 s; /* Set of bits. */
 707};
 708
 709enum perf_event_task_context {
 710        perf_invalid_context = -1,
 711        perf_hw_context = 0,
 712        perf_sw_context,
 713        perf_nr_task_contexts,
 714};
 715
 716struct wake_q_node {
 717        struct wake_q_node *next;
 718};
 719
 720struct kmap_ctrl {
 721#ifdef CONFIG_KMAP_LOCAL
 722        int                             idx;
 723        pte_t                           pteval[KM_MAX_IDX];
 724#endif
 725};
 726
 727struct task_struct {
 728#ifdef CONFIG_THREAD_INFO_IN_TASK
 729        /*
 730         * For reasons of header soup (see current_thread_info()), this
 731         * must be the first element of task_struct.
 732         */
 733        struct thread_info              thread_info;
 734#endif
 735        unsigned int                    __state;
 736
 737#ifdef CONFIG_PREEMPT_RT
 738        /* saved state for "spinlock sleepers" */
 739        unsigned int                    saved_state;
 740#endif
 741
 742        /*
 743         * This begins the randomizable portion of task_struct. Only
 744         * scheduling-critical items should be added above here.
 745         */
 746        randomized_struct_fields_start
 747
 748        void                            *stack;
 749        refcount_t                      usage;
 750        /* Per task flags (PF_*), defined further below: */
 751        unsigned int                    flags;
 752        unsigned int                    ptrace;
 753
 754#ifdef CONFIG_SMP
 755        int                             on_cpu;
 756        struct __call_single_node       wake_entry;
 757        unsigned int                    wakee_flips;
 758        unsigned long                   wakee_flip_decay_ts;
 759        struct task_struct              *last_wakee;
 760
 761        /*
 762         * recent_used_cpu is initially set as the last CPU used by a task
 763         * that wakes affine another task. Waker/wakee relationships can
 764         * push tasks around a CPU where each wakeup moves to the next one.
 765         * Tracking a recently used CPU allows a quick search for a recently
 766         * used CPU that may be idle.
 767         */
 768        int                             recent_used_cpu;
 769        int                             wake_cpu;
 770#endif
 771        int                             on_rq;
 772
 773        int                             prio;
 774        int                             static_prio;
 775        int                             normal_prio;
 776        unsigned int                    rt_priority;
 777
 778        struct sched_entity             se;
 779        struct sched_rt_entity          rt;
 780        struct sched_dl_entity          dl;
 781        const struct sched_class        *sched_class;
 782
 783#ifdef CONFIG_SCHED_CORE
 784        struct rb_node                  core_node;
 785        unsigned long                   core_cookie;
 786        unsigned int                    core_occupation;
 787#endif
 788
 789#ifdef CONFIG_CGROUP_SCHED
 790        struct task_group               *sched_task_group;
 791#endif
 792
 793#ifdef CONFIG_UCLAMP_TASK
 794        /*
 795         * Clamp values requested for a scheduling entity.
 796         * Must be updated with task_rq_lock() held.
 797         */
 798        struct uclamp_se                uclamp_req[UCLAMP_CNT];
 799        /*
 800         * Effective clamp values used for a scheduling entity.
 801         * Must be updated with task_rq_lock() held.
 802         */
 803        struct uclamp_se                uclamp[UCLAMP_CNT];
 804#endif
 805
 806        struct sched_statistics         stats;
 807
 808#ifdef CONFIG_PREEMPT_NOTIFIERS
 809        /* List of struct preempt_notifier: */
 810        struct hlist_head               preempt_notifiers;
 811#endif
 812
 813#ifdef CONFIG_BLK_DEV_IO_TRACE
 814        unsigned int                    btrace_seq;
 815#endif
 816
 817        unsigned int                    policy;
 818        int                             nr_cpus_allowed;
 819        const cpumask_t                 *cpus_ptr;
 820        cpumask_t                       *user_cpus_ptr;
 821        cpumask_t                       cpus_mask;
 822        void                            *migration_pending;
 823#ifdef CONFIG_SMP
 824        unsigned short                  migration_disabled;
 825#endif
 826        unsigned short                  migration_flags;
 827
 828#ifdef CONFIG_PREEMPT_RCU
 829        int                             rcu_read_lock_nesting;
 830        union rcu_special               rcu_read_unlock_special;
 831        struct list_head                rcu_node_entry;
 832        struct rcu_node                 *rcu_blocked_node;
 833#endif /* #ifdef CONFIG_PREEMPT_RCU */
 834
 835#ifdef CONFIG_TASKS_RCU
 836        unsigned long                   rcu_tasks_nvcsw;
 837        u8                              rcu_tasks_holdout;
 838        u8                              rcu_tasks_idx;
 839        int                             rcu_tasks_idle_cpu;
 840        struct list_head                rcu_tasks_holdout_list;
 841#endif /* #ifdef CONFIG_TASKS_RCU */
 842
 843#ifdef CONFIG_TASKS_TRACE_RCU
 844        int                             trc_reader_nesting;
 845        int                             trc_ipi_to_cpu;
 846        union rcu_special               trc_reader_special;
 847        struct list_head                trc_holdout_list;
 848        struct list_head                trc_blkd_node;
 849        int                             trc_blkd_cpu;
 850#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
 851
 852        struct sched_info               sched_info;
 853
 854        struct list_head                tasks;
 855#ifdef CONFIG_SMP
 856        struct plist_node               pushable_tasks;
 857        struct rb_node                  pushable_dl_tasks;
 858#endif
 859
 860        struct mm_struct                *mm;
 861        struct mm_struct                *active_mm;
 862
 863        /* Per-thread vma caching: */
 864        struct vmacache                 vmacache;
 865
 866#ifdef SPLIT_RSS_COUNTING
 867        struct task_rss_stat            rss_stat;
 868#endif
 869        int                             exit_state;
 870        int                             exit_code;
 871        int                             exit_signal;
 872        /* The signal sent when the parent dies: */
 873        int                             pdeath_signal;
 874        /* JOBCTL_*, siglock protected: */
 875        unsigned long                   jobctl;
 876
 877        /* Used for emulating ABI behavior of previous Linux versions: */
 878        unsigned int                    personality;
 879
 880        /* Scheduler bits, serialized by scheduler locks: */
 881        unsigned                        sched_reset_on_fork:1;
 882        unsigned                        sched_contributes_to_load:1;
 883        unsigned                        sched_migrated:1;
 884#ifdef CONFIG_PSI
 885        unsigned                        sched_psi_wake_requeue:1;
 886#endif
 887
 888        /* Force alignment to the next boundary: */
 889        unsigned                        :0;
 890
 891        /* Unserialized, strictly 'current' */
 892
 893        /*
 894         * This field must not be in the scheduler word above due to wakelist
 895         * queueing no longer being serialized by p->on_cpu. However:
 896         *
 897         * p->XXX = X;                  ttwu()
 898         * schedule()                     if (p->on_rq && ..) // false
 899         *   smp_mb__after_spinlock();    if (smp_load_acquire(&p->on_cpu) && //true
 900         *   deactivate_task()                ttwu_queue_wakelist())
 901         *     p->on_rq = 0;                    p->sched_remote_wakeup = Y;
 902         *
 903         * guarantees all stores of 'current' are visible before
 904         * ->sched_remote_wakeup gets used, so it can be in this word.
 905         */
 906        unsigned                        sched_remote_wakeup:1;
 907
 908        /* Bit to tell LSMs we're in execve(): */
 909        unsigned                        in_execve:1;
 910        unsigned                        in_iowait:1;
 911#ifndef TIF_RESTORE_SIGMASK
 912        unsigned                        restore_sigmask:1;
 913#endif
 914#ifdef CONFIG_MEMCG
 915        unsigned                        in_user_fault:1;
 916#endif
 917#ifdef CONFIG_COMPAT_BRK
 918        unsigned                        brk_randomized:1;
 919#endif
 920#ifdef CONFIG_CGROUPS
 921        /* disallow userland-initiated cgroup migration */
 922        unsigned                        no_cgroup_migration:1;
 923        /* task is frozen/stopped (used by the cgroup freezer) */
 924        unsigned                        frozen:1;
 925#endif
 926#ifdef CONFIG_BLK_CGROUP
 927        unsigned                        use_memdelay:1;
 928#endif
 929#ifdef CONFIG_PSI
 930        /* Stalled due to lack of memory */
 931        unsigned                        in_memstall:1;
 932#endif
 933#ifdef CONFIG_PAGE_OWNER
 934        /* Used by page_owner=on to detect recursion in page tracking. */
 935        unsigned                        in_page_owner:1;
 936#endif
 937#ifdef CONFIG_EVENTFD
 938        /* Recursion prevention for eventfd_signal() */
 939        unsigned                        in_eventfd:1;
 940#endif
 941#ifdef CONFIG_IOMMU_SVA
 942        unsigned                        pasid_activated:1;
 943#endif
 944#ifdef  CONFIG_CPU_SUP_INTEL
 945        unsigned                        reported_split_lock:1;
 946#endif
 947
 948        unsigned long                   atomic_flags; /* Flags requiring atomic access. */
 949
 950        struct restart_block            restart_block;
 951
 952        pid_t                           pid;
 953        pid_t                           tgid;
 954
 955#ifdef CONFIG_STACKPROTECTOR
 956        /* Canary value for the -fstack-protector GCC feature: */
 957        unsigned long                   stack_canary;
 958#endif
 959        /*
 960         * Pointers to the (original) parent process, youngest child, younger sibling,
 961         * older sibling, respectively.  (p->father can be replaced with
 962         * p->real_parent->pid)
 963         */
 964
 965        /* Real parent process: */
 966        struct task_struct __rcu        *real_parent;
 967
 968        /* Recipient of SIGCHLD, wait4() reports: */
 969        struct task_struct __rcu        *parent;
 970
 971        /*
 972         * Children/sibling form the list of natural children:
 973         */
 974        struct list_head                children;
 975        struct list_head                sibling;
 976        struct task_struct              *group_leader;
 977
 978        /*
 979         * 'ptraced' is the list of tasks this task is using ptrace() on.
 980         *
 981         * This includes both natural children and PTRACE_ATTACH targets.
 982         * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
 983         */
 984        struct list_head                ptraced;
 985        struct list_head                ptrace_entry;
 986
 987        /* PID/PID hash table linkage. */
 988        struct pid                      *thread_pid;
 989        struct hlist_node               pid_links[PIDTYPE_MAX];
 990        struct list_head                thread_group;
 991        struct list_head                thread_node;
 992
 993        struct completion               *vfork_done;
 994
 995        /* CLONE_CHILD_SETTID: */
 996        int __user                      *set_child_tid;
 997
 998        /* CLONE_CHILD_CLEARTID: */
 999        int __user                      *clear_child_tid;
1000
1001        /* PF_KTHREAD | PF_IO_WORKER */
1002        void                            *worker_private;
1003
1004        u64                             utime;
1005        u64                             stime;
1006#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1007        u64                             utimescaled;
1008        u64                             stimescaled;
1009#endif
1010        u64                             gtime;
1011        struct prev_cputime             prev_cputime;
1012#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1013        struct vtime                    vtime;
1014#endif
1015
1016#ifdef CONFIG_NO_HZ_FULL
1017        atomic_t                        tick_dep_mask;
1018#endif
1019        /* Context switch counts: */
1020        unsigned long                   nvcsw;
1021        unsigned long                   nivcsw;
1022
1023        /* Monotonic time in nsecs: */
1024        u64                             start_time;
1025
1026        /* Boot based time in nsecs: */
1027        u64                             start_boottime;
1028
1029        /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1030        unsigned long                   min_flt;
1031        unsigned long                   maj_flt;
1032
1033        /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1034        struct posix_cputimers          posix_cputimers;
1035
1036#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1037        struct posix_cputimers_work     posix_cputimers_work;
1038#endif
1039
1040        /* Process credentials: */
1041
1042        /* Tracer's credentials at attach: */
1043        const struct cred __rcu         *ptracer_cred;
1044
1045        /* Objective and real subjective task credentials (COW): */
1046        const struct cred __rcu         *real_cred;
1047
1048        /* Effective (overridable) subjective task credentials (COW): */
1049        const struct cred __rcu         *cred;
1050
1051#ifdef CONFIG_KEYS
1052        /* Cached requested key. */
1053        struct key                      *cached_requested_key;
1054#endif
1055
1056        /*
1057         * executable name, excluding path.
1058         *
1059         * - normally initialized setup_new_exec()
1060         * - access it with [gs]et_task_comm()
1061         * - lock it with task_lock()
1062         */
1063        char                            comm[TASK_COMM_LEN];
1064
1065        struct nameidata                *nameidata;
1066
1067#ifdef CONFIG_SYSVIPC
1068        struct sysv_sem                 sysvsem;
1069        struct sysv_shm                 sysvshm;
1070#endif
1071#ifdef CONFIG_DETECT_HUNG_TASK
1072        unsigned long                   last_switch_count;
1073        unsigned long                   last_switch_time;
1074#endif
1075        /* Filesystem information: */
1076        struct fs_struct                *fs;
1077
1078        /* Open file information: */
1079        struct files_struct             *files;
1080
1081#ifdef CONFIG_IO_URING
1082        struct io_uring_task            *io_uring;
1083#endif
1084
1085        /* Namespaces: */
1086        struct nsproxy                  *nsproxy;
1087
1088        /* Signal handlers: */
1089        struct signal_struct            *signal;
1090        struct sighand_struct __rcu             *sighand;
1091        sigset_t                        blocked;
1092        sigset_t                        real_blocked;
1093        /* Restored if set_restore_sigmask() was used: */
1094        sigset_t                        saved_sigmask;
1095        struct sigpending               pending;
1096        unsigned long                   sas_ss_sp;
1097        size_t                          sas_ss_size;
1098        unsigned int                    sas_ss_flags;
1099
1100        struct callback_head            *task_works;
1101
1102#ifdef CONFIG_AUDIT
1103#ifdef CONFIG_AUDITSYSCALL
1104        struct audit_context            *audit_context;
1105#endif
1106        kuid_t                          loginuid;
1107        unsigned int                    sessionid;
1108#endif
1109        struct seccomp                  seccomp;
1110        struct syscall_user_dispatch    syscall_dispatch;
1111
1112        /* Thread group tracking: */
1113        u64                             parent_exec_id;
1114        u64                             self_exec_id;
1115
1116        /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1117        spinlock_t                      alloc_lock;
1118
1119        /* Protection of the PI data structures: */
1120        raw_spinlock_t                  pi_lock;
1121
1122        struct wake_q_node              wake_q;
1123
1124#ifdef CONFIG_RT_MUTEXES
1125        /* PI waiters blocked on a rt_mutex held by this task: */
1126        struct rb_root_cached           pi_waiters;
1127        /* Updated under owner's pi_lock and rq lock */
1128        struct task_struct              *pi_top_task;
1129        /* Deadlock detection and priority inheritance handling: */
1130        struct rt_mutex_waiter          *pi_blocked_on;
1131#endif
1132
1133#ifdef CONFIG_DEBUG_MUTEXES
1134        /* Mutex deadlock detection: */
1135        struct mutex_waiter             *blocked_on;
1136#endif
1137
1138#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1139        int                             non_block_count;
1140#endif
1141
1142#ifdef CONFIG_TRACE_IRQFLAGS
1143        struct irqtrace_events          irqtrace;
1144        unsigned int                    hardirq_threaded;
1145        u64                             hardirq_chain_key;
1146        int                             softirqs_enabled;
1147        int                             softirq_context;
1148        int                             irq_config;
1149#endif
1150#ifdef CONFIG_PREEMPT_RT
1151        int                             softirq_disable_cnt;
1152#endif
1153
1154#ifdef CONFIG_LOCKDEP
1155# define MAX_LOCK_DEPTH                 48UL
1156        u64                             curr_chain_key;
1157        int                             lockdep_depth;
1158        unsigned int                    lockdep_recursion;
1159        struct held_lock                held_locks[MAX_LOCK_DEPTH];
1160#endif
1161
1162#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1163        unsigned int                    in_ubsan;
1164#endif
1165
1166        /* Journalling filesystem info: */
1167        void                            *journal_info;
1168
1169        /* Stacked block device info: */
1170        struct bio_list                 *bio_list;
1171
1172        /* Stack plugging: */
1173        struct blk_plug                 *plug;
1174
1175        /* VM state: */
1176        struct reclaim_state            *reclaim_state;
1177
1178        struct backing_dev_info         *backing_dev_info;
1179
1180        struct io_context               *io_context;
1181
1182#ifdef CONFIG_COMPACTION
1183        struct capture_control          *capture_control;
1184#endif
1185        /* Ptrace state: */
1186        unsigned long                   ptrace_message;
1187        kernel_siginfo_t                *last_siginfo;
1188
1189        struct task_io_accounting       ioac;
1190#ifdef CONFIG_PSI
1191        /* Pressure stall state */
1192        unsigned int                    psi_flags;
1193#endif
1194#ifdef CONFIG_TASK_XACCT
1195        /* Accumulated RSS usage: */
1196        u64                             acct_rss_mem1;
1197        /* Accumulated virtual memory usage: */
1198        u64                             acct_vm_mem1;
1199        /* stime + utime since last update: */
1200        u64                             acct_timexpd;
1201#endif
1202#ifdef CONFIG_CPUSETS
1203        /* Protected by ->alloc_lock: */
1204        nodemask_t                      mems_allowed;
1205        /* Sequence number to catch updates: */
1206        seqcount_spinlock_t             mems_allowed_seq;
1207        int                             cpuset_mem_spread_rotor;
1208        int                             cpuset_slab_spread_rotor;
1209#endif
1210#ifdef CONFIG_CGROUPS
1211        /* Control Group info protected by css_set_lock: */
1212        struct css_set __rcu            *cgroups;
1213        /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1214        struct list_head                cg_list;
1215#endif
1216#ifdef CONFIG_X86_CPU_RESCTRL
1217        u32                             closid;
1218        u32                             rmid;
1219#endif
1220#ifdef CONFIG_FUTEX
1221        struct robust_list_head __user  *robust_list;
1222#ifdef CONFIG_COMPAT
1223        struct compat_robust_list_head __user *compat_robust_list;
1224#endif
1225        struct list_head                pi_state_list;
1226        struct futex_pi_state           *pi_state_cache;
1227        struct mutex                    futex_exit_mutex;
1228        unsigned int                    futex_state;
1229#endif
1230#ifdef CONFIG_PERF_EVENTS
1231        struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
1232        struct mutex                    perf_event_mutex;
1233        struct list_head                perf_event_list;
1234#endif
1235#ifdef CONFIG_DEBUG_PREEMPT
1236        unsigned long                   preempt_disable_ip;
1237#endif
1238#ifdef CONFIG_NUMA
1239        /* Protected by alloc_lock: */
1240        struct mempolicy                *mempolicy;
1241        short                           il_prev;
1242        short                           pref_node_fork;
1243#endif
1244#ifdef CONFIG_NUMA_BALANCING
1245        int                             numa_scan_seq;
1246        unsigned int                    numa_scan_period;
1247        unsigned int                    numa_scan_period_max;
1248        int                             numa_preferred_nid;
1249        unsigned long                   numa_migrate_retry;
1250        /* Migration stamp: */
1251        u64                             node_stamp;
1252        u64                             last_task_numa_placement;
1253        u64                             last_sum_exec_runtime;
1254        struct callback_head            numa_work;
1255
1256        /*
1257         * This pointer is only modified for current in syscall and
1258         * pagefault context (and for tasks being destroyed), so it can be read
1259         * from any of the following contexts:
1260         *  - RCU read-side critical section
1261         *  - current->numa_group from everywhere
1262         *  - task's runqueue locked, task not running
1263         */
1264        struct numa_group __rcu         *numa_group;
1265
1266        /*
1267         * numa_faults is an array split into four regions:
1268         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1269         * in this precise order.
1270         *
1271         * faults_memory: Exponential decaying average of faults on a per-node
1272         * basis. Scheduling placement decisions are made based on these
1273         * counts. The values remain static for the duration of a PTE scan.
1274         * faults_cpu: Track the nodes the process was running on when a NUMA
1275         * hinting fault was incurred.
1276         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1277         * during the current scan window. When the scan completes, the counts
1278         * in faults_memory and faults_cpu decay and these values are copied.
1279         */
1280        unsigned long                   *numa_faults;
1281        unsigned long                   total_numa_faults;
1282
1283        /*
1284         * numa_faults_locality tracks if faults recorded during the last
1285         * scan window were remote/local or failed to migrate. The task scan
1286         * period is adapted based on the locality of the faults with different
1287         * weights depending on whether they were shared or private faults
1288         */
1289        unsigned long                   numa_faults_locality[3];
1290
1291        unsigned long                   numa_pages_migrated;
1292#endif /* CONFIG_NUMA_BALANCING */
1293
1294#ifdef CONFIG_RSEQ
1295        struct rseq __user *rseq;
1296        u32 rseq_sig;
1297        /*
1298         * RmW on rseq_event_mask must be performed atomically
1299         * with respect to preemption.
1300         */
1301        unsigned long rseq_event_mask;
1302#endif
1303
1304        struct tlbflush_unmap_batch     tlb_ubc;
1305
1306        union {
1307                refcount_t              rcu_users;
1308                struct rcu_head         rcu;
1309        };
1310
1311        /* Cache last used pipe for splice(): */
1312        struct pipe_inode_info          *splice_pipe;
1313
1314        struct page_frag                task_frag;
1315
1316#ifdef CONFIG_TASK_DELAY_ACCT
1317        struct task_delay_info          *delays;
1318#endif
1319
1320#ifdef CONFIG_FAULT_INJECTION
1321        int                             make_it_fail;
1322        unsigned int                    fail_nth;
1323#endif
1324        /*
1325         * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1326         * balance_dirty_pages() for a dirty throttling pause:
1327         */
1328        int                             nr_dirtied;
1329        int                             nr_dirtied_pause;
1330        /* Start of a write-and-pause period: */
1331        unsigned long                   dirty_paused_when;
1332
1333#ifdef CONFIG_LATENCYTOP
1334        int                             latency_record_count;
1335        struct latency_record           latency_record[LT_SAVECOUNT];
1336#endif
1337        /*
1338         * Time slack values; these are used to round up poll() and
1339         * select() etc timeout values. These are in nanoseconds.
1340         */
1341        u64                             timer_slack_ns;
1342        u64                             default_timer_slack_ns;
1343
1344#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1345        unsigned int                    kasan_depth;
1346#endif
1347
1348#ifdef CONFIG_KCSAN
1349        struct kcsan_ctx                kcsan_ctx;
1350#ifdef CONFIG_TRACE_IRQFLAGS
1351        struct irqtrace_events          kcsan_save_irqtrace;
1352#endif
1353#ifdef CONFIG_KCSAN_WEAK_MEMORY
1354        int                             kcsan_stack_depth;
1355#endif
1356#endif
1357
1358#if IS_ENABLED(CONFIG_KUNIT)
1359        struct kunit                    *kunit_test;
1360#endif
1361
1362#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1363        /* Index of current stored address in ret_stack: */
1364        int                             curr_ret_stack;
1365        int                             curr_ret_depth;
1366
1367        /* Stack of return addresses for return function tracing: */
1368        struct ftrace_ret_stack         *ret_stack;
1369
1370        /* Timestamp for last schedule: */
1371        unsigned long long              ftrace_timestamp;
1372
1373        /*
1374         * Number of functions that haven't been traced
1375         * because of depth overrun:
1376         */
1377        atomic_t                        trace_overrun;
1378
1379        /* Pause tracing: */
1380        atomic_t                        tracing_graph_pause;
1381#endif
1382
1383#ifdef CONFIG_TRACING
1384        /* State flags for use by tracers: */
1385        unsigned long                   trace;
1386
1387        /* Bitmask and counter of trace recursion: */
1388        unsigned long                   trace_recursion;
1389#endif /* CONFIG_TRACING */
1390
1391#ifdef CONFIG_KCOV
1392        /* See kernel/kcov.c for more details. */
1393
1394        /* Coverage collection mode enabled for this task (0 if disabled): */
1395        unsigned int                    kcov_mode;
1396
1397        /* Size of the kcov_area: */
1398        unsigned int                    kcov_size;
1399
1400        /* Buffer for coverage collection: */
1401        void                            *kcov_area;
1402
1403        /* KCOV descriptor wired with this task or NULL: */
1404        struct kcov                     *kcov;
1405
1406        /* KCOV common handle for remote coverage collection: */
1407        u64                             kcov_handle;
1408
1409        /* KCOV sequence number: */
1410        int                             kcov_sequence;
1411
1412        /* Collect coverage from softirq context: */
1413        unsigned int                    kcov_softirq;
1414#endif
1415
1416#ifdef CONFIG_MEMCG
1417        struct mem_cgroup               *memcg_in_oom;
1418        gfp_t                           memcg_oom_gfp_mask;
1419        int                             memcg_oom_order;
1420
1421        /* Number of pages to reclaim on returning to userland: */
1422        unsigned int                    memcg_nr_pages_over_high;
1423
1424        /* Used by memcontrol for targeted memcg charge: */
1425        struct mem_cgroup               *active_memcg;
1426#endif
1427
1428#ifdef CONFIG_BLK_CGROUP
1429        struct request_queue            *throttle_queue;
1430#endif
1431
1432#ifdef CONFIG_UPROBES
1433        struct uprobe_task              *utask;
1434#endif
1435#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1436        unsigned int                    sequential_io;
1437        unsigned int                    sequential_io_avg;
1438#endif
1439        struct kmap_ctrl                kmap_ctrl;
1440#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1441        unsigned long                   task_state_change;
1442# ifdef CONFIG_PREEMPT_RT
1443        unsigned long                   saved_state_change;
1444# endif
1445#endif
1446        int                             pagefault_disabled;
1447#ifdef CONFIG_MMU
1448        struct task_struct              *oom_reaper_list;
1449        struct timer_list               oom_reaper_timer;
1450#endif
1451#ifdef CONFIG_VMAP_STACK
1452        struct vm_struct                *stack_vm_area;
1453#endif
1454#ifdef CONFIG_THREAD_INFO_IN_TASK
1455        /* A live task holds one reference: */
1456        refcount_t                      stack_refcount;
1457#endif
1458#ifdef CONFIG_LIVEPATCH
1459        int patch_state;
1460#endif
1461#ifdef CONFIG_SECURITY
1462        /* Used by LSM modules for access restriction: */
1463        void                            *security;
1464#endif
1465#ifdef CONFIG_BPF_SYSCALL
1466        /* Used by BPF task local storage */
1467        struct bpf_local_storage __rcu  *bpf_storage;
1468        /* Used for BPF run context */
1469        struct bpf_run_ctx              *bpf_ctx;
1470#endif
1471
1472#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1473        unsigned long                   lowest_stack;
1474        unsigned long                   prev_lowest_stack;
1475#endif
1476
1477#ifdef CONFIG_X86_MCE
1478        void __user                     *mce_vaddr;
1479        __u64                           mce_kflags;
1480        u64                             mce_addr;
1481        __u64                           mce_ripv : 1,
1482                                        mce_whole_page : 1,
1483                                        __mce_reserved : 62;
1484        struct callback_head            mce_kill_me;
1485        int                             mce_count;
1486#endif
1487
1488#ifdef CONFIG_KRETPROBES
1489        struct llist_head               kretprobe_instances;
1490#endif
1491#ifdef CONFIG_RETHOOK
1492        struct llist_head               rethooks;
1493#endif
1494
1495#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1496        /*
1497         * If L1D flush is supported on mm context switch
1498         * then we use this callback head to queue kill work
1499         * to kill tasks that are not running on SMT disabled
1500         * cores
1501         */
1502        struct callback_head            l1d_flush_kill;
1503#endif
1504
1505#ifdef CONFIG_RV
1506        /*
1507         * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1508         * If we find justification for more monitors, we can think
1509         * about adding more or developing a dynamic method. So far,
1510         * none of these are justified.
1511         */
1512        union rv_task_monitor           rv[RV_PER_TASK_MONITORS];
1513#endif
1514
1515        /*
1516         * New fields for task_struct should be added above here, so that
1517         * they are included in the randomized portion of task_struct.
1518         */
1519        randomized_struct_fields_end
1520
1521        /* CPU-specific state of this task: */
1522        struct thread_struct            thread;
1523
1524        /*
1525         * WARNING: on x86, 'thread_struct' contains a variable-sized
1526         * structure.  It *MUST* be at the end of 'task_struct'.
1527         *
1528         * Do not put anything below here!
1529         */
1530};
1531
1532static inline struct pid *task_pid(struct task_struct *task)
1533{
1534        return task->thread_pid;
1535}
1536
1537/*
1538 * the helpers to get the task's different pids as they are seen
1539 * from various namespaces
1540 *
1541 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1542 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1543 *                     current.
1544 * task_xid_nr_ns()  : id seen from the ns specified;
1545 *
1546 * see also pid_nr() etc in include/linux/pid.h
1547 */
1548pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1549
1550static inline pid_t task_pid_nr(struct task_struct *tsk)
1551{
1552        return tsk->pid;
1553}
1554
1555static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1556{
1557        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1558}
1559
1560static inline pid_t task_pid_vnr(struct task_struct *tsk)
1561{
1562        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1563}
1564
1565
1566static inline pid_t task_tgid_nr(struct task_struct *tsk)
1567{
1568        return tsk->tgid;
1569}
1570
1571/**
1572 * pid_alive - check that a task structure is not stale
1573 * @p: Task structure to be checked.
1574 *
1575 * Test if a process is not yet dead (at most zombie state)
1576 * If pid_alive fails, then pointers within the task structure
1577 * can be stale and must not be dereferenced.
1578 *
1579 * Return: 1 if the process is alive. 0 otherwise.
1580 */
1581static inline int pid_alive(const struct task_struct *p)
1582{
1583        return p->thread_pid != NULL;
1584}
1585
1586static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1587{
1588        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1589}
1590
1591static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1592{
1593        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1594}
1595
1596
1597static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1598{
1599        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1600}
1601
1602static inline pid_t task_session_vnr(struct task_struct *tsk)
1603{
1604        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1605}
1606
1607static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1608{
1609        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1610}
1611
1612static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1613{
1614        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1615}
1616
1617static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1618{
1619        pid_t pid = 0;
1620
1621        rcu_read_lock();
1622        if (pid_alive(tsk))
1623                pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1624        rcu_read_unlock();
1625
1626        return pid;
1627}
1628
1629static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1630{
1631        return task_ppid_nr_ns(tsk, &init_pid_ns);
1632}
1633
1634/* Obsolete, do not use: */
1635static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1636{
1637        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1638}
1639
1640#define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1641#define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1642
1643static inline unsigned int __task_state_index(unsigned int tsk_state,
1644                                              unsigned int tsk_exit_state)
1645{
1646        unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1647
1648        BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1649
1650        if (tsk_state == TASK_IDLE)
1651                state = TASK_REPORT_IDLE;
1652
1653        /*
1654         * We're lying here, but rather than expose a completely new task state
1655         * to userspace, we can make this appear as if the task has gone through
1656         * a regular rt_mutex_lock() call.
1657         */
1658        if (tsk_state == TASK_RTLOCK_WAIT)
1659                state = TASK_UNINTERRUPTIBLE;
1660
1661        return fls(state);
1662}
1663
1664static inline unsigned int task_state_index(struct task_struct *tsk)
1665{
1666        return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1667}
1668
1669static inline char task_index_to_char(unsigned int state)
1670{
1671        static const char state_char[] = "RSDTtXZPI";
1672
1673        BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1674
1675        return state_char[state];
1676}
1677
1678static inline char task_state_to_char(struct task_struct *tsk)
1679{
1680        return task_index_to_char(task_state_index(tsk));
1681}
1682
1683/**
1684 * is_global_init - check if a task structure is init. Since init
1685 * is free to have sub-threads we need to check tgid.
1686 * @tsk: Task structure to be checked.
1687 *
1688 * Check if a task structure is the first user space task the kernel created.
1689 *
1690 * Return: 1 if the task structure is init. 0 otherwise.
1691 */
1692static inline int is_global_init(struct task_struct *tsk)
1693{
1694        return task_tgid_nr(tsk) == 1;
1695}
1696
1697extern struct pid *cad_pid;
1698
1699/*
1700 * Per process flags
1701 */
1702#define PF_VCPU                 0x00000001      /* I'm a virtual CPU */
1703#define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1704#define PF_EXITING              0x00000004      /* Getting shut down */
1705#define PF_POSTCOREDUMP         0x00000008      /* Coredumps should ignore this task */
1706#define PF_IO_WORKER            0x00000010      /* Task is an IO worker */
1707#define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1708#define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1709#define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1710#define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1711#define PF_DUMPCORE             0x00000200      /* Dumped core */
1712#define PF_SIGNALED             0x00000400      /* Killed by a signal */
1713#define PF_MEMALLOC             0x00000800      /* Allocating memory */
1714#define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1715#define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1716#define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1717#define PF_FROZEN               0x00010000      /* Frozen for system suspend */
1718#define PF_KSWAPD               0x00020000      /* I am kswapd */
1719#define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1720#define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1721#define PF_LOCAL_THROTTLE       0x00100000      /* Throttle writes only against the bdi I write to,
1722                                                 * I am cleaning dirty pages from some other bdi. */
1723#define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1724#define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1725#define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1726#define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1727#define PF_MEMALLOC_PIN         0x10000000      /* Allocation context constrained to zones which allow long term pinning. */
1728#define PF_FREEZER_SKIP         0x40000000      /* Freezer should not count it as freezable */
1729#define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1730
1731/*
1732 * Only the _current_ task can read/write to tsk->flags, but other
1733 * tasks can access tsk->flags in readonly mode for example
1734 * with tsk_used_math (like during threaded core dumping).
1735 * There is however an exception to this rule during ptrace
1736 * or during fork: the ptracer task is allowed to write to the
1737 * child->flags of its traced child (same goes for fork, the parent
1738 * can write to the child->flags), because we're guaranteed the
1739 * child is not running and in turn not changing child->flags
1740 * at the same time the parent does it.
1741 */
1742#define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1743#define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1744#define clear_used_math()                       clear_stopped_child_used_math(current)
1745#define set_used_math()                         set_stopped_child_used_math(current)
1746
1747#define conditional_stopped_child_used_math(condition, child) \
1748        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1749
1750#define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1751
1752#define copy_to_stopped_child_used_math(child) \
1753        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1754
1755/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1756#define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1757#define used_math()                             tsk_used_math(current)
1758
1759static __always_inline bool is_percpu_thread(void)
1760{
1761#ifdef CONFIG_SMP
1762        return (current->flags & PF_NO_SETAFFINITY) &&
1763                (current->nr_cpus_allowed  == 1);
1764#else
1765        return true;
1766#endif
1767}
1768
1769/* Per-process atomic flags. */
1770#define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1771#define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1772#define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1773#define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1774#define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1775#define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1776#define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1777#define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1778
1779#define TASK_PFA_TEST(name, func)                                       \
1780        static inline bool task_##func(struct task_struct *p)           \
1781        { return test_bit(PFA_##name, &p->atomic_flags); }
1782
1783#define TASK_PFA_SET(name, func)                                        \
1784        static inline void task_set_##func(struct task_struct *p)       \
1785        { set_bit(PFA_##name, &p->atomic_flags); }
1786
1787#define TASK_PFA_CLEAR(name, func)                                      \
1788        static inline void task_clear_##func(struct task_struct *p)     \
1789        { clear_bit(PFA_##name, &p->atomic_flags); }
1790
1791TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1792TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1793
1794TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1795TASK_PFA_SET(SPREAD_PAGE, spread_page)
1796TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1797
1798TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1799TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1800TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1801
1802TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1803TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1804TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1805
1806TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1807TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1808TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1809
1810TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1811TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1812
1813TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1814TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1815TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1816
1817TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1818TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1819
1820static inline void
1821current_restore_flags(unsigned long orig_flags, unsigned long flags)
1822{
1823        current->flags &= ~flags;
1824        current->flags |= orig_flags & flags;
1825}
1826
1827extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1828extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_effective_cpus);
1829#ifdef CONFIG_SMP
1830extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1831extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1832extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1833extern void release_user_cpus_ptr(struct task_struct *p);
1834extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1835extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1836extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1837#else
1838static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1839{
1840}
1841static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1842{
1843        if (!cpumask_test_cpu(0, new_mask))
1844                return -EINVAL;
1845        return 0;
1846}
1847static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1848{
1849        if (src->user_cpus_ptr)
1850                return -EINVAL;
1851        return 0;
1852}
1853static inline void release_user_cpus_ptr(struct task_struct *p)
1854{
1855        WARN_ON(p->user_cpus_ptr);
1856}
1857
1858static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1859{
1860        return 0;
1861}
1862#endif
1863
1864extern int yield_to(struct task_struct *p, bool preempt);
1865extern void set_user_nice(struct task_struct *p, long nice);
1866extern int task_prio(const struct task_struct *p);
1867
1868/**
1869 * task_nice - return the nice value of a given task.
1870 * @p: the task in question.
1871 *
1872 * Return: The nice value [ -20 ... 0 ... 19 ].
1873 */
1874static inline int task_nice(const struct task_struct *p)
1875{
1876        return PRIO_TO_NICE((p)->static_prio);
1877}
1878
1879extern int can_nice(const struct task_struct *p, const int nice);
1880extern int task_curr(const struct task_struct *p);
1881extern int idle_cpu(int cpu);
1882extern int available_idle_cpu(int cpu);
1883extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1884extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1885extern void sched_set_fifo(struct task_struct *p);
1886extern void sched_set_fifo_low(struct task_struct *p);
1887extern void sched_set_normal(struct task_struct *p, int nice);
1888extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1889extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1890extern struct task_struct *idle_task(int cpu);
1891
1892/**
1893 * is_idle_task - is the specified task an idle task?
1894 * @p: the task in question.
1895 *
1896 * Return: 1 if @p is an idle task. 0 otherwise.
1897 */
1898static __always_inline bool is_idle_task(const struct task_struct *p)
1899{
1900        return !!(p->flags & PF_IDLE);
1901}
1902
1903extern struct task_struct *curr_task(int cpu);
1904extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1905
1906void yield(void);
1907
1908union thread_union {
1909#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1910        struct task_struct task;
1911#endif
1912#ifndef CONFIG_THREAD_INFO_IN_TASK
1913        struct thread_info thread_info;
1914#endif
1915        unsigned long stack[THREAD_SIZE/sizeof(long)];
1916};
1917
1918#ifndef CONFIG_THREAD_INFO_IN_TASK
1919extern struct thread_info init_thread_info;
1920#endif
1921
1922extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1923
1924#ifdef CONFIG_THREAD_INFO_IN_TASK
1925# define task_thread_info(task) (&(task)->thread_info)
1926#elif !defined(__HAVE_THREAD_FUNCTIONS)
1927# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1928#endif
1929
1930/*
1931 * find a task by one of its numerical ids
1932 *
1933 * find_task_by_pid_ns():
1934 *      finds a task by its pid in the specified namespace
1935 * find_task_by_vpid():
1936 *      finds a task by its virtual pid
1937 *
1938 * see also find_vpid() etc in include/linux/pid.h
1939 */
1940
1941extern struct task_struct *find_task_by_vpid(pid_t nr);
1942extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1943
1944/*
1945 * find a task by its virtual pid and get the task struct
1946 */
1947extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1948
1949extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1950extern int wake_up_process(struct task_struct *tsk);
1951extern void wake_up_new_task(struct task_struct *tsk);
1952
1953#ifdef CONFIG_SMP
1954extern void kick_process(struct task_struct *tsk);
1955#else
1956static inline void kick_process(struct task_struct *tsk) { }
1957#endif
1958
1959extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1960
1961static inline void set_task_comm(struct task_struct *tsk, const char *from)
1962{
1963        __set_task_comm(tsk, from, false);
1964}
1965
1966extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1967#define get_task_comm(buf, tsk) ({                      \
1968        BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1969        __get_task_comm(buf, sizeof(buf), tsk);         \
1970})
1971
1972#ifdef CONFIG_SMP
1973static __always_inline void scheduler_ipi(void)
1974{
1975        /*
1976         * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1977         * TIF_NEED_RESCHED remotely (for the first time) will also send
1978         * this IPI.
1979         */
1980        preempt_fold_need_resched();
1981}
1982extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1983#else
1984static inline void scheduler_ipi(void) { }
1985static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1986{
1987        return 1;
1988}
1989#endif
1990
1991/*
1992 * Set thread flags in other task's structures.
1993 * See asm/thread_info.h for TIF_xxxx flags available:
1994 */
1995static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1996{
1997        set_ti_thread_flag(task_thread_info(tsk), flag);
1998}
1999
2000static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2001{
2002        clear_ti_thread_flag(task_thread_info(tsk), flag);
2003}
2004
2005static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2006                                          bool value)
2007{
2008        update_ti_thread_flag(task_thread_info(tsk), flag, value);
2009}
2010
2011static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2012{
2013        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2014}
2015
2016static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2017{
2018        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2019}
2020
2021static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2022{
2023        return test_ti_thread_flag(task_thread_info(tsk), flag);
2024}
2025
2026static inline void set_tsk_need_resched(struct task_struct *tsk)
2027{
2028        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2029}
2030
2031static inline void clear_tsk_need_resched(struct task_struct *tsk)
2032{
2033        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2034}
2035
2036static inline int test_tsk_need_resched(struct task_struct *tsk)
2037{
2038        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2039}
2040
2041/*
2042 * cond_resched() and cond_resched_lock(): latency reduction via
2043 * explicit rescheduling in places that are safe. The return
2044 * value indicates whether a reschedule was done in fact.
2045 * cond_resched_lock() will drop the spinlock before scheduling,
2046 */
2047#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2048extern int __cond_resched(void);
2049
2050#if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2051
2052DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2053
2054static __always_inline int _cond_resched(void)
2055{
2056        return static_call_mod(cond_resched)();
2057}
2058
2059#elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2060extern int dynamic_cond_resched(void);
2061
2062static __always_inline int _cond_resched(void)
2063{
2064        return dynamic_cond_resched();
2065}
2066
2067#else
2068
2069static inline int _cond_resched(void)
2070{
2071        return __cond_resched();
2072}
2073
2074#endif /* CONFIG_PREEMPT_DYNAMIC */
2075
2076#else
2077
2078static inline int _cond_resched(void) { return 0; }
2079
2080#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2081
2082#define cond_resched() ({                       \
2083        __might_resched(__FILE__, __LINE__, 0); \
2084        _cond_resched();                        \
2085})
2086
2087extern int __cond_resched_lock(spinlock_t *lock);
2088extern int __cond_resched_rwlock_read(rwlock_t *lock);
2089extern int __cond_resched_rwlock_write(rwlock_t *lock);
2090
2091#define MIGHT_RESCHED_RCU_SHIFT         8
2092#define MIGHT_RESCHED_PREEMPT_MASK      ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2093
2094#ifndef CONFIG_PREEMPT_RT
2095/*
2096 * Non RT kernels have an elevated preempt count due to the held lock,
2097 * but are not allowed to be inside a RCU read side critical section
2098 */
2099# define PREEMPT_LOCK_RESCHED_OFFSETS   PREEMPT_LOCK_OFFSET
2100#else
2101/*
2102 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2103 * cond_resched*lock() has to take that into account because it checks for
2104 * preempt_count() and rcu_preempt_depth().
2105 */
2106# define PREEMPT_LOCK_RESCHED_OFFSETS   \
2107        (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2108#endif
2109
2110#define cond_resched_lock(lock) ({                                              \
2111        __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2112        __cond_resched_lock(lock);                                              \
2113})
2114
2115#define cond_resched_rwlock_read(lock) ({                                       \
2116        __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2117        __cond_resched_rwlock_read(lock);                                       \
2118})
2119
2120#define cond_resched_rwlock_write(lock) ({                                      \
2121        __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2122        __cond_resched_rwlock_write(lock);                                      \
2123})
2124
2125static inline void cond_resched_rcu(void)
2126{
2127#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2128        rcu_read_unlock();
2129        cond_resched();
2130        rcu_read_lock();
2131#endif
2132}
2133
2134#ifdef CONFIG_PREEMPT_DYNAMIC
2135
2136extern bool preempt_model_none(void);
2137extern bool preempt_model_voluntary(void);
2138extern bool preempt_model_full(void);
2139
2140#else
2141
2142static inline bool preempt_model_none(void)
2143{
2144        return IS_ENABLED(CONFIG_PREEMPT_NONE);
2145}
2146static inline bool preempt_model_voluntary(void)
2147{
2148        return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2149}
2150static inline bool preempt_model_full(void)
2151{
2152        return IS_ENABLED(CONFIG_PREEMPT);
2153}
2154
2155#endif
2156
2157static inline bool preempt_model_rt(void)
2158{
2159        return IS_ENABLED(CONFIG_PREEMPT_RT);
2160}
2161
2162/*
2163 * Does the preemption model allow non-cooperative preemption?
2164 *
2165 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2166 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2167 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2168 * PREEMPT_NONE model.
2169 */
2170static inline bool preempt_model_preemptible(void)
2171{
2172        return preempt_model_full() || preempt_model_rt();
2173}
2174
2175/*
2176 * Does a critical section need to be broken due to another
2177 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2178 * but a general need for low latency)
2179 */
2180static inline int spin_needbreak(spinlock_t *lock)
2181{
2182#ifdef CONFIG_PREEMPTION
2183        return spin_is_contended(lock);
2184#else
2185        return 0;
2186#endif
2187}
2188
2189/*
2190 * Check if a rwlock is contended.
2191 * Returns non-zero if there is another task waiting on the rwlock.
2192 * Returns zero if the lock is not contended or the system / underlying
2193 * rwlock implementation does not support contention detection.
2194 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2195 * for low latency.
2196 */
2197static inline int rwlock_needbreak(rwlock_t *lock)
2198{
2199#ifdef CONFIG_PREEMPTION
2200        return rwlock_is_contended(lock);
2201#else
2202        return 0;
2203#endif
2204}
2205
2206static __always_inline bool need_resched(void)
2207{
2208        return unlikely(tif_need_resched());
2209}
2210
2211/*
2212 * Wrappers for p->thread_info->cpu access. No-op on UP.
2213 */
2214#ifdef CONFIG_SMP
2215
2216static inline unsigned int task_cpu(const struct task_struct *p)
2217{
2218        return READ_ONCE(task_thread_info(p)->cpu);
2219}
2220
2221extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2222
2223#else
2224
2225static inline unsigned int task_cpu(const struct task_struct *p)
2226{
2227        return 0;
2228}
2229
2230static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2231{
2232}
2233
2234#endif /* CONFIG_SMP */
2235
2236extern bool sched_task_on_rq(struct task_struct *p);
2237extern unsigned long get_wchan(struct task_struct *p);
2238extern struct task_struct *cpu_curr_snapshot(int cpu);
2239
2240/*
2241 * In order to reduce various lock holder preemption latencies provide an
2242 * interface to see if a vCPU is currently running or not.
2243 *
2244 * This allows us to terminate optimistic spin loops and block, analogous to
2245 * the native optimistic spin heuristic of testing if the lock owner task is
2246 * running or not.
2247 */
2248#ifndef vcpu_is_preempted
2249static inline bool vcpu_is_preempted(int cpu)
2250{
2251        return false;
2252}
2253#endif
2254
2255extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2256extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2257
2258#ifndef TASK_SIZE_OF
2259#define TASK_SIZE_OF(tsk)       TASK_SIZE
2260#endif
2261
2262#ifdef CONFIG_SMP
2263static inline bool owner_on_cpu(struct task_struct *owner)
2264{
2265        /*
2266         * As lock holder preemption issue, we both skip spinning if
2267         * task is not on cpu or its cpu is preempted
2268         */
2269        return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2270}
2271
2272/* Returns effective CPU energy utilization, as seen by the scheduler */
2273unsigned long sched_cpu_util(int cpu);
2274#endif /* CONFIG_SMP */
2275
2276#ifdef CONFIG_RSEQ
2277
2278/*
2279 * Map the event mask on the user-space ABI enum rseq_cs_flags
2280 * for direct mask checks.
2281 */
2282enum rseq_event_mask_bits {
2283        RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2284        RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2285        RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2286};
2287
2288enum rseq_event_mask {
2289        RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
2290        RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
2291        RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
2292};
2293
2294static inline void rseq_set_notify_resume(struct task_struct *t)
2295{
2296        if (t->rseq)
2297                set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2298}
2299
2300void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2301
2302static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2303                                             struct pt_regs *regs)
2304{
2305        if (current->rseq)
2306                __rseq_handle_notify_resume(ksig, regs);
2307}
2308
2309static inline void rseq_signal_deliver(struct ksignal *ksig,
2310                                       struct pt_regs *regs)
2311{
2312        preempt_disable();
2313        __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2314        preempt_enable();
2315        rseq_handle_notify_resume(ksig, regs);
2316}
2317
2318/* rseq_preempt() requires preemption to be disabled. */
2319static inline void rseq_preempt(struct task_struct *t)
2320{
2321        __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2322        rseq_set_notify_resume(t);
2323}
2324
2325/* rseq_migrate() requires preemption to be disabled. */
2326static inline void rseq_migrate(struct task_struct *t)
2327{
2328        __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2329        rseq_set_notify_resume(t);
2330}
2331
2332/*
2333 * If parent process has a registered restartable sequences area, the
2334 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2335 */
2336static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2337{
2338        if (clone_flags & CLONE_VM) {
2339                t->rseq = NULL;
2340                t->rseq_sig = 0;
2341                t->rseq_event_mask = 0;
2342        } else {
2343                t->rseq = current->rseq;
2344                t->rseq_sig = current->rseq_sig;
2345                t->rseq_event_mask = current->rseq_event_mask;
2346        }
2347}
2348
2349static inline void rseq_execve(struct task_struct *t)
2350{
2351        t->rseq = NULL;
2352        t->rseq_sig = 0;
2353        t->rseq_event_mask = 0;
2354}
2355
2356#else
2357
2358static inline void rseq_set_notify_resume(struct task_struct *t)
2359{
2360}
2361static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2362                                             struct pt_regs *regs)
2363{
2364}
2365static inline void rseq_signal_deliver(struct ksignal *ksig,
2366                                       struct pt_regs *regs)
2367{
2368}
2369static inline void rseq_preempt(struct task_struct *t)
2370{
2371}
2372static inline void rseq_migrate(struct task_struct *t)
2373{
2374}
2375static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2376{
2377}
2378static inline void rseq_execve(struct task_struct *t)
2379{
2380}
2381
2382#endif
2383
2384#ifdef CONFIG_DEBUG_RSEQ
2385
2386void rseq_syscall(struct pt_regs *regs);
2387
2388#else
2389
2390static inline void rseq_syscall(struct pt_regs *regs)
2391{
2392}
2393
2394#endif
2395
2396#ifdef CONFIG_SCHED_CORE
2397extern void sched_core_free(struct task_struct *tsk);
2398extern void sched_core_fork(struct task_struct *p);
2399extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2400                                unsigned long uaddr);
2401#else
2402static inline void sched_core_free(struct task_struct *tsk) { }
2403static inline void sched_core_fork(struct task_struct *p) { }
2404#endif
2405
2406extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2407
2408#endif
2409