linux/arch/powerpc/lib/sstep.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Single-step support.
   4 *
   5 * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
   6 */
   7#include <linux/kernel.h>
   8#include <linux/kprobes.h>
   9#include <linux/ptrace.h>
  10#include <linux/prefetch.h>
  11#include <asm/sstep.h>
  12#include <asm/processor.h>
  13#include <linux/uaccess.h>
  14#include <asm/cpu_has_feature.h>
  15#include <asm/cputable.h>
  16#include <asm/disassemble.h>
  17
  18#ifdef CONFIG_PPC64
  19/* Bits in SRR1 that are copied from MSR */
  20#define MSR_MASK        0xffffffff87c0ffffUL
  21#else
  22#define MSR_MASK        0x87c0ffff
  23#endif
  24
  25/* Bits in XER */
  26#define XER_SO          0x80000000U
  27#define XER_OV          0x40000000U
  28#define XER_CA          0x20000000U
  29#define XER_OV32        0x00080000U
  30#define XER_CA32        0x00040000U
  31
  32#ifdef CONFIG_VSX
  33#define VSX_REGISTER_XTP(rd)   ((((rd) & 1) << 5) | ((rd) & 0xfe))
  34#endif
  35
  36#ifdef CONFIG_PPC_FPU
  37/*
  38 * Functions in ldstfp.S
  39 */
  40extern void get_fpr(int rn, double *p);
  41extern void put_fpr(int rn, const double *p);
  42extern void get_vr(int rn, __vector128 *p);
  43extern void put_vr(int rn, __vector128 *p);
  44extern void load_vsrn(int vsr, const void *p);
  45extern void store_vsrn(int vsr, void *p);
  46extern void conv_sp_to_dp(const float *sp, double *dp);
  47extern void conv_dp_to_sp(const double *dp, float *sp);
  48#endif
  49
  50#ifdef __powerpc64__
  51/*
  52 * Functions in quad.S
  53 */
  54extern int do_lq(unsigned long ea, unsigned long *regs);
  55extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
  56extern int do_lqarx(unsigned long ea, unsigned long *regs);
  57extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
  58                    unsigned int *crp);
  59#endif
  60
  61#ifdef __LITTLE_ENDIAN__
  62#define IS_LE   1
  63#define IS_BE   0
  64#else
  65#define IS_LE   0
  66#define IS_BE   1
  67#endif
  68
  69/*
  70 * Emulate the truncation of 64 bit values in 32-bit mode.
  71 */
  72static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
  73                                                        unsigned long val)
  74{
  75        if ((msr & MSR_64BIT) == 0)
  76                val &= 0xffffffffUL;
  77        return val;
  78}
  79
  80/*
  81 * Determine whether a conditional branch instruction would branch.
  82 */
  83static nokprobe_inline int branch_taken(unsigned int instr,
  84                                        const struct pt_regs *regs,
  85                                        struct instruction_op *op)
  86{
  87        unsigned int bo = (instr >> 21) & 0x1f;
  88        unsigned int bi;
  89
  90        if ((bo & 4) == 0) {
  91                /* decrement counter */
  92                op->type |= DECCTR;
  93                if (((bo >> 1) & 1) ^ (regs->ctr == 1))
  94                        return 0;
  95        }
  96        if ((bo & 0x10) == 0) {
  97                /* check bit from CR */
  98                bi = (instr >> 16) & 0x1f;
  99                if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
 100                        return 0;
 101        }
 102        return 1;
 103}
 104
 105static nokprobe_inline long address_ok(struct pt_regs *regs,
 106                                       unsigned long ea, int nb)
 107{
 108        if (!user_mode(regs))
 109                return 1;
 110        if (access_ok((void __user *)ea, nb))
 111                return 1;
 112        if (access_ok((void __user *)ea, 1))
 113                /* Access overlaps the end of the user region */
 114                regs->dar = TASK_SIZE_MAX - 1;
 115        else
 116                regs->dar = ea;
 117        return 0;
 118}
 119
 120/*
 121 * Calculate effective address for a D-form instruction
 122 */
 123static nokprobe_inline unsigned long dform_ea(unsigned int instr,
 124                                              const struct pt_regs *regs)
 125{
 126        int ra;
 127        unsigned long ea;
 128
 129        ra = (instr >> 16) & 0x1f;
 130        ea = (signed short) instr;              /* sign-extend */
 131        if (ra)
 132                ea += regs->gpr[ra];
 133
 134        return ea;
 135}
 136
 137#ifdef __powerpc64__
 138/*
 139 * Calculate effective address for a DS-form instruction
 140 */
 141static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
 142                                               const struct pt_regs *regs)
 143{
 144        int ra;
 145        unsigned long ea;
 146
 147        ra = (instr >> 16) & 0x1f;
 148        ea = (signed short) (instr & ~3);       /* sign-extend */
 149        if (ra)
 150                ea += regs->gpr[ra];
 151
 152        return ea;
 153}
 154
 155/*
 156 * Calculate effective address for a DQ-form instruction
 157 */
 158static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
 159                                               const struct pt_regs *regs)
 160{
 161        int ra;
 162        unsigned long ea;
 163
 164        ra = (instr >> 16) & 0x1f;
 165        ea = (signed short) (instr & ~0xf);     /* sign-extend */
 166        if (ra)
 167                ea += regs->gpr[ra];
 168
 169        return ea;
 170}
 171#endif /* __powerpc64 */
 172
 173/*
 174 * Calculate effective address for an X-form instruction
 175 */
 176static nokprobe_inline unsigned long xform_ea(unsigned int instr,
 177                                              const struct pt_regs *regs)
 178{
 179        int ra, rb;
 180        unsigned long ea;
 181
 182        ra = (instr >> 16) & 0x1f;
 183        rb = (instr >> 11) & 0x1f;
 184        ea = regs->gpr[rb];
 185        if (ra)
 186                ea += regs->gpr[ra];
 187
 188        return ea;
 189}
 190
 191/*
 192 * Calculate effective address for a MLS:D-form / 8LS:D-form
 193 * prefixed instruction
 194 */
 195static nokprobe_inline unsigned long mlsd_8lsd_ea(unsigned int instr,
 196                                                  unsigned int suffix,
 197                                                  const struct pt_regs *regs)
 198{
 199        int ra, prefix_r;
 200        unsigned int  dd;
 201        unsigned long ea, d0, d1, d;
 202
 203        prefix_r = GET_PREFIX_R(instr);
 204        ra = GET_PREFIX_RA(suffix);
 205
 206        d0 = instr & 0x3ffff;
 207        d1 = suffix & 0xffff;
 208        d = (d0 << 16) | d1;
 209
 210        /*
 211         * sign extend a 34 bit number
 212         */
 213        dd = (unsigned int)(d >> 2);
 214        ea = (signed int)dd;
 215        ea = (ea << 2) | (d & 0x3);
 216
 217        if (!prefix_r && ra)
 218                ea += regs->gpr[ra];
 219        else if (!prefix_r && !ra)
 220                ; /* Leave ea as is */
 221        else if (prefix_r)
 222                ea += regs->nip;
 223
 224        /*
 225         * (prefix_r && ra) is an invalid form. Should already be
 226         * checked for by caller!
 227         */
 228
 229        return ea;
 230}
 231
 232/*
 233 * Return the largest power of 2, not greater than sizeof(unsigned long),
 234 * such that x is a multiple of it.
 235 */
 236static nokprobe_inline unsigned long max_align(unsigned long x)
 237{
 238        x |= sizeof(unsigned long);
 239        return x & -x;          /* isolates rightmost bit */
 240}
 241
 242static nokprobe_inline unsigned long byterev_2(unsigned long x)
 243{
 244        return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
 245}
 246
 247static nokprobe_inline unsigned long byterev_4(unsigned long x)
 248{
 249        return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
 250                ((x & 0xff00) << 8) | ((x & 0xff) << 24);
 251}
 252
 253#ifdef __powerpc64__
 254static nokprobe_inline unsigned long byterev_8(unsigned long x)
 255{
 256        return (byterev_4(x) << 32) | byterev_4(x >> 32);
 257}
 258#endif
 259
 260static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
 261{
 262        switch (nb) {
 263        case 2:
 264                *(u16 *)ptr = byterev_2(*(u16 *)ptr);
 265                break;
 266        case 4:
 267                *(u32 *)ptr = byterev_4(*(u32 *)ptr);
 268                break;
 269#ifdef __powerpc64__
 270        case 8:
 271                *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
 272                break;
 273        case 16: {
 274                unsigned long *up = (unsigned long *)ptr;
 275                unsigned long tmp;
 276                tmp = byterev_8(up[0]);
 277                up[0] = byterev_8(up[1]);
 278                up[1] = tmp;
 279                break;
 280        }
 281        case 32: {
 282                unsigned long *up = (unsigned long *)ptr;
 283                unsigned long tmp;
 284
 285                tmp = byterev_8(up[0]);
 286                up[0] = byterev_8(up[3]);
 287                up[3] = tmp;
 288                tmp = byterev_8(up[2]);
 289                up[2] = byterev_8(up[1]);
 290                up[1] = tmp;
 291                break;
 292        }
 293
 294#endif
 295        default:
 296                WARN_ON_ONCE(1);
 297        }
 298}
 299
 300static __always_inline int
 301__read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
 302{
 303        unsigned long x = 0;
 304
 305        switch (nb) {
 306        case 1:
 307                unsafe_get_user(x, (unsigned char __user *)ea, Efault);
 308                break;
 309        case 2:
 310                unsafe_get_user(x, (unsigned short __user *)ea, Efault);
 311                break;
 312        case 4:
 313                unsafe_get_user(x, (unsigned int __user *)ea, Efault);
 314                break;
 315#ifdef __powerpc64__
 316        case 8:
 317                unsafe_get_user(x, (unsigned long __user *)ea, Efault);
 318                break;
 319#endif
 320        }
 321        *dest = x;
 322        return 0;
 323
 324Efault:
 325        regs->dar = ea;
 326        return -EFAULT;
 327}
 328
 329static nokprobe_inline int
 330read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs)
 331{
 332        int err;
 333
 334        if (is_kernel_addr(ea))
 335                return __read_mem_aligned(dest, ea, nb, regs);
 336
 337        if (user_read_access_begin((void __user *)ea, nb)) {
 338                err = __read_mem_aligned(dest, ea, nb, regs);
 339                user_read_access_end();
 340        } else {
 341                err = -EFAULT;
 342                regs->dar = ea;
 343        }
 344
 345        return err;
 346}
 347
 348/*
 349 * Copy from userspace to a buffer, using the largest possible
 350 * aligned accesses, up to sizeof(long).
 351 */
 352static __always_inline int __copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
 353{
 354        int c;
 355
 356        for (; nb > 0; nb -= c) {
 357                c = max_align(ea);
 358                if (c > nb)
 359                        c = max_align(nb);
 360                switch (c) {
 361                case 1:
 362                        unsafe_get_user(*dest, (u8 __user *)ea, Efault);
 363                        break;
 364                case 2:
 365                        unsafe_get_user(*(u16 *)dest, (u16 __user *)ea, Efault);
 366                        break;
 367                case 4:
 368                        unsafe_get_user(*(u32 *)dest, (u32 __user *)ea, Efault);
 369                        break;
 370#ifdef __powerpc64__
 371                case 8:
 372                        unsafe_get_user(*(u64 *)dest, (u64 __user *)ea, Efault);
 373                        break;
 374#endif
 375                }
 376                dest += c;
 377                ea += c;
 378        }
 379        return 0;
 380
 381Efault:
 382        regs->dar = ea;
 383        return -EFAULT;
 384}
 385
 386static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
 387{
 388        int err;
 389
 390        if (is_kernel_addr(ea))
 391                return __copy_mem_in(dest, ea, nb, regs);
 392
 393        if (user_read_access_begin((void __user *)ea, nb)) {
 394                err = __copy_mem_in(dest, ea, nb, regs);
 395                user_read_access_end();
 396        } else {
 397                err = -EFAULT;
 398                regs->dar = ea;
 399        }
 400
 401        return err;
 402}
 403
 404static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
 405                                              unsigned long ea, int nb,
 406                                              struct pt_regs *regs)
 407{
 408        union {
 409                unsigned long ul;
 410                u8 b[sizeof(unsigned long)];
 411        } u;
 412        int i;
 413        int err;
 414
 415        u.ul = 0;
 416        i = IS_BE ? sizeof(unsigned long) - nb : 0;
 417        err = copy_mem_in(&u.b[i], ea, nb, regs);
 418        if (!err)
 419                *dest = u.ul;
 420        return err;
 421}
 422
 423/*
 424 * Read memory at address ea for nb bytes, return 0 for success
 425 * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
 426 * If nb < sizeof(long), the result is right-justified on BE systems.
 427 */
 428static int read_mem(unsigned long *dest, unsigned long ea, int nb,
 429                              struct pt_regs *regs)
 430{
 431        if (!address_ok(regs, ea, nb))
 432                return -EFAULT;
 433        if ((ea & (nb - 1)) == 0)
 434                return read_mem_aligned(dest, ea, nb, regs);
 435        return read_mem_unaligned(dest, ea, nb, regs);
 436}
 437NOKPROBE_SYMBOL(read_mem);
 438
 439static __always_inline int
 440__write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
 441{
 442        switch (nb) {
 443        case 1:
 444                unsafe_put_user(val, (unsigned char __user *)ea, Efault);
 445                break;
 446        case 2:
 447                unsafe_put_user(val, (unsigned short __user *)ea, Efault);
 448                break;
 449        case 4:
 450                unsafe_put_user(val, (unsigned int __user *)ea, Efault);
 451                break;
 452#ifdef __powerpc64__
 453        case 8:
 454                unsafe_put_user(val, (unsigned long __user *)ea, Efault);
 455                break;
 456#endif
 457        }
 458        return 0;
 459
 460Efault:
 461        regs->dar = ea;
 462        return -EFAULT;
 463}
 464
 465static nokprobe_inline int
 466write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs)
 467{
 468        int err;
 469
 470        if (is_kernel_addr(ea))
 471                return __write_mem_aligned(val, ea, nb, regs);
 472
 473        if (user_write_access_begin((void __user *)ea, nb)) {
 474                err = __write_mem_aligned(val, ea, nb, regs);
 475                user_write_access_end();
 476        } else {
 477                err = -EFAULT;
 478                regs->dar = ea;
 479        }
 480
 481        return err;
 482}
 483
 484/*
 485 * Copy from a buffer to userspace, using the largest possible
 486 * aligned accesses, up to sizeof(long).
 487 */
 488static nokprobe_inline int __copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
 489{
 490        int c;
 491
 492        for (; nb > 0; nb -= c) {
 493                c = max_align(ea);
 494                if (c > nb)
 495                        c = max_align(nb);
 496                switch (c) {
 497                case 1:
 498                        unsafe_put_user(*dest, (u8 __user *)ea, Efault);
 499                        break;
 500                case 2:
 501                        unsafe_put_user(*(u16 *)dest, (u16 __user *)ea, Efault);
 502                        break;
 503                case 4:
 504                        unsafe_put_user(*(u32 *)dest, (u32 __user *)ea, Efault);
 505                        break;
 506#ifdef __powerpc64__
 507                case 8:
 508                        unsafe_put_user(*(u64 *)dest, (u64 __user *)ea, Efault);
 509                        break;
 510#endif
 511                }
 512                dest += c;
 513                ea += c;
 514        }
 515        return 0;
 516
 517Efault:
 518        regs->dar = ea;
 519        return -EFAULT;
 520}
 521
 522static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs)
 523{
 524        int err;
 525
 526        if (is_kernel_addr(ea))
 527                return __copy_mem_out(dest, ea, nb, regs);
 528
 529        if (user_write_access_begin((void __user *)ea, nb)) {
 530                err = __copy_mem_out(dest, ea, nb, regs);
 531                user_write_access_end();
 532        } else {
 533                err = -EFAULT;
 534                regs->dar = ea;
 535        }
 536
 537        return err;
 538}
 539
 540static nokprobe_inline int write_mem_unaligned(unsigned long val,
 541                                               unsigned long ea, int nb,
 542                                               struct pt_regs *regs)
 543{
 544        union {
 545                unsigned long ul;
 546                u8 b[sizeof(unsigned long)];
 547        } u;
 548        int i;
 549
 550        u.ul = val;
 551        i = IS_BE ? sizeof(unsigned long) - nb : 0;
 552        return copy_mem_out(&u.b[i], ea, nb, regs);
 553}
 554
 555/*
 556 * Write memory at address ea for nb bytes, return 0 for success
 557 * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
 558 */
 559static int write_mem(unsigned long val, unsigned long ea, int nb,
 560                               struct pt_regs *regs)
 561{
 562        if (!address_ok(regs, ea, nb))
 563                return -EFAULT;
 564        if ((ea & (nb - 1)) == 0)
 565                return write_mem_aligned(val, ea, nb, regs);
 566        return write_mem_unaligned(val, ea, nb, regs);
 567}
 568NOKPROBE_SYMBOL(write_mem);
 569
 570#ifdef CONFIG_PPC_FPU
 571/*
 572 * These access either the real FP register or the image in the
 573 * thread_struct, depending on regs->msr & MSR_FP.
 574 */
 575static int do_fp_load(struct instruction_op *op, unsigned long ea,
 576                      struct pt_regs *regs, bool cross_endian)
 577{
 578        int err, rn, nb;
 579        union {
 580                int i;
 581                unsigned int u;
 582                float f;
 583                double d[2];
 584                unsigned long l[2];
 585                u8 b[2 * sizeof(double)];
 586        } u;
 587
 588        nb = GETSIZE(op->type);
 589        if (!address_ok(regs, ea, nb))
 590                return -EFAULT;
 591        rn = op->reg;
 592        err = copy_mem_in(u.b, ea, nb, regs);
 593        if (err)
 594                return err;
 595        if (unlikely(cross_endian)) {
 596                do_byte_reverse(u.b, min(nb, 8));
 597                if (nb == 16)
 598                        do_byte_reverse(&u.b[8], 8);
 599        }
 600        preempt_disable();
 601        if (nb == 4) {
 602                if (op->type & FPCONV)
 603                        conv_sp_to_dp(&u.f, &u.d[0]);
 604                else if (op->type & SIGNEXT)
 605                        u.l[0] = u.i;
 606                else
 607                        u.l[0] = u.u;
 608        }
 609        if (regs->msr & MSR_FP)
 610                put_fpr(rn, &u.d[0]);
 611        else
 612                current->thread.TS_FPR(rn) = u.l[0];
 613        if (nb == 16) {
 614                /* lfdp */
 615                rn |= 1;
 616                if (regs->msr & MSR_FP)
 617                        put_fpr(rn, &u.d[1]);
 618                else
 619                        current->thread.TS_FPR(rn) = u.l[1];
 620        }
 621        preempt_enable();
 622        return 0;
 623}
 624NOKPROBE_SYMBOL(do_fp_load);
 625
 626static int do_fp_store(struct instruction_op *op, unsigned long ea,
 627                       struct pt_regs *regs, bool cross_endian)
 628{
 629        int rn, nb;
 630        union {
 631                unsigned int u;
 632                float f;
 633                double d[2];
 634                unsigned long l[2];
 635                u8 b[2 * sizeof(double)];
 636        } u;
 637
 638        nb = GETSIZE(op->type);
 639        if (!address_ok(regs, ea, nb))
 640                return -EFAULT;
 641        rn = op->reg;
 642        preempt_disable();
 643        if (regs->msr & MSR_FP)
 644                get_fpr(rn, &u.d[0]);
 645        else
 646                u.l[0] = current->thread.TS_FPR(rn);
 647        if (nb == 4) {
 648                if (op->type & FPCONV)
 649                        conv_dp_to_sp(&u.d[0], &u.f);
 650                else
 651                        u.u = u.l[0];
 652        }
 653        if (nb == 16) {
 654                rn |= 1;
 655                if (regs->msr & MSR_FP)
 656                        get_fpr(rn, &u.d[1]);
 657                else
 658                        u.l[1] = current->thread.TS_FPR(rn);
 659        }
 660        preempt_enable();
 661        if (unlikely(cross_endian)) {
 662                do_byte_reverse(u.b, min(nb, 8));
 663                if (nb == 16)
 664                        do_byte_reverse(&u.b[8], 8);
 665        }
 666        return copy_mem_out(u.b, ea, nb, regs);
 667}
 668NOKPROBE_SYMBOL(do_fp_store);
 669#endif
 670
 671#ifdef CONFIG_ALTIVEC
 672/* For Altivec/VMX, no need to worry about alignment */
 673static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
 674                                       int size, struct pt_regs *regs,
 675                                       bool cross_endian)
 676{
 677        int err;
 678        union {
 679                __vector128 v;
 680                u8 b[sizeof(__vector128)];
 681        } u = {};
 682
 683        if (!address_ok(regs, ea & ~0xfUL, 16))
 684                return -EFAULT;
 685        /* align to multiple of size */
 686        ea &= ~(size - 1);
 687        err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
 688        if (err)
 689                return err;
 690        if (unlikely(cross_endian))
 691                do_byte_reverse(&u.b[ea & 0xf], size);
 692        preempt_disable();
 693        if (regs->msr & MSR_VEC)
 694                put_vr(rn, &u.v);
 695        else
 696                current->thread.vr_state.vr[rn] = u.v;
 697        preempt_enable();
 698        return 0;
 699}
 700
 701static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
 702                                        int size, struct pt_regs *regs,
 703                                        bool cross_endian)
 704{
 705        union {
 706                __vector128 v;
 707                u8 b[sizeof(__vector128)];
 708        } u;
 709
 710        if (!address_ok(regs, ea & ~0xfUL, 16))
 711                return -EFAULT;
 712        /* align to multiple of size */
 713        ea &= ~(size - 1);
 714
 715        preempt_disable();
 716        if (regs->msr & MSR_VEC)
 717                get_vr(rn, &u.v);
 718        else
 719                u.v = current->thread.vr_state.vr[rn];
 720        preempt_enable();
 721        if (unlikely(cross_endian))
 722                do_byte_reverse(&u.b[ea & 0xf], size);
 723        return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
 724}
 725#endif /* CONFIG_ALTIVEC */
 726
 727#ifdef __powerpc64__
 728static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
 729                                      int reg, bool cross_endian)
 730{
 731        int err;
 732
 733        if (!address_ok(regs, ea, 16))
 734                return -EFAULT;
 735        /* if aligned, should be atomic */
 736        if ((ea & 0xf) == 0) {
 737                err = do_lq(ea, &regs->gpr[reg]);
 738        } else {
 739                err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
 740                if (!err)
 741                        err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
 742        }
 743        if (!err && unlikely(cross_endian))
 744                do_byte_reverse(&regs->gpr[reg], 16);
 745        return err;
 746}
 747
 748static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
 749                                       int reg, bool cross_endian)
 750{
 751        int err;
 752        unsigned long vals[2];
 753
 754        if (!address_ok(regs, ea, 16))
 755                return -EFAULT;
 756        vals[0] = regs->gpr[reg];
 757        vals[1] = regs->gpr[reg + 1];
 758        if (unlikely(cross_endian))
 759                do_byte_reverse(vals, 16);
 760
 761        /* if aligned, should be atomic */
 762        if ((ea & 0xf) == 0)
 763                return do_stq(ea, vals[0], vals[1]);
 764
 765        err = write_mem(vals[IS_LE], ea, 8, regs);
 766        if (!err)
 767                err = write_mem(vals[IS_BE], ea + 8, 8, regs);
 768        return err;
 769}
 770#endif /* __powerpc64 */
 771
 772#ifdef CONFIG_VSX
 773void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
 774                      const void *mem, bool rev)
 775{
 776        int size, read_size;
 777        int i, j;
 778        const unsigned int *wp;
 779        const unsigned short *hp;
 780        const unsigned char *bp;
 781
 782        size = GETSIZE(op->type);
 783        reg->d[0] = reg->d[1] = 0;
 784
 785        switch (op->element_size) {
 786        case 32:
 787                /* [p]lxvp[x] */
 788        case 16:
 789                /* whole vector; lxv[x] or lxvl[l] */
 790                if (size == 0)
 791                        break;
 792                memcpy(reg, mem, size);
 793                if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
 794                        rev = !rev;
 795                if (rev)
 796                        do_byte_reverse(reg, size);
 797                break;
 798        case 8:
 799                /* scalar loads, lxvd2x, lxvdsx */
 800                read_size = (size >= 8) ? 8 : size;
 801                i = IS_LE ? 8 : 8 - read_size;
 802                memcpy(&reg->b[i], mem, read_size);
 803                if (rev)
 804                        do_byte_reverse(&reg->b[i], 8);
 805                if (size < 8) {
 806                        if (op->type & SIGNEXT) {
 807                                /* size == 4 is the only case here */
 808                                reg->d[IS_LE] = (signed int) reg->d[IS_LE];
 809                        } else if (op->vsx_flags & VSX_FPCONV) {
 810                                preempt_disable();
 811                                conv_sp_to_dp(&reg->fp[1 + IS_LE],
 812                                              &reg->dp[IS_LE]);
 813                                preempt_enable();
 814                        }
 815                } else {
 816                        if (size == 16) {
 817                                unsigned long v = *(unsigned long *)(mem + 8);
 818                                reg->d[IS_BE] = !rev ? v : byterev_8(v);
 819                        } else if (op->vsx_flags & VSX_SPLAT)
 820                                reg->d[IS_BE] = reg->d[IS_LE];
 821                }
 822                break;
 823        case 4:
 824                /* lxvw4x, lxvwsx */
 825                wp = mem;
 826                for (j = 0; j < size / 4; ++j) {
 827                        i = IS_LE ? 3 - j : j;
 828                        reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
 829                }
 830                if (op->vsx_flags & VSX_SPLAT) {
 831                        u32 val = reg->w[IS_LE ? 3 : 0];
 832                        for (; j < 4; ++j) {
 833                                i = IS_LE ? 3 - j : j;
 834                                reg->w[i] = val;
 835                        }
 836                }
 837                break;
 838        case 2:
 839                /* lxvh8x */
 840                hp = mem;
 841                for (j = 0; j < size / 2; ++j) {
 842                        i = IS_LE ? 7 - j : j;
 843                        reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
 844                }
 845                break;
 846        case 1:
 847                /* lxvb16x */
 848                bp = mem;
 849                for (j = 0; j < size; ++j) {
 850                        i = IS_LE ? 15 - j : j;
 851                        reg->b[i] = *bp++;
 852                }
 853                break;
 854        }
 855}
 856EXPORT_SYMBOL_GPL(emulate_vsx_load);
 857NOKPROBE_SYMBOL(emulate_vsx_load);
 858
 859void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
 860                       void *mem, bool rev)
 861{
 862        int size, write_size;
 863        int i, j;
 864        union vsx_reg buf;
 865        unsigned int *wp;
 866        unsigned short *hp;
 867        unsigned char *bp;
 868
 869        size = GETSIZE(op->type);
 870
 871        switch (op->element_size) {
 872        case 32:
 873                /* [p]stxvp[x] */
 874                if (size == 0)
 875                        break;
 876                if (rev) {
 877                        /* reverse 32 bytes */
 878                        union vsx_reg buf32[2];
 879                        buf32[0].d[0] = byterev_8(reg[1].d[1]);
 880                        buf32[0].d[1] = byterev_8(reg[1].d[0]);
 881                        buf32[1].d[0] = byterev_8(reg[0].d[1]);
 882                        buf32[1].d[1] = byterev_8(reg[0].d[0]);
 883                        memcpy(mem, buf32, size);
 884                } else {
 885                        memcpy(mem, reg, size);
 886                }
 887                break;
 888        case 16:
 889                /* stxv, stxvx, stxvl, stxvll */
 890                if (size == 0)
 891                        break;
 892                if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
 893                        rev = !rev;
 894                if (rev) {
 895                        /* reverse 16 bytes */
 896                        buf.d[0] = byterev_8(reg->d[1]);
 897                        buf.d[1] = byterev_8(reg->d[0]);
 898                        reg = &buf;
 899                }
 900                memcpy(mem, reg, size);
 901                break;
 902        case 8:
 903                /* scalar stores, stxvd2x */
 904                write_size = (size >= 8) ? 8 : size;
 905                i = IS_LE ? 8 : 8 - write_size;
 906                if (size < 8 && op->vsx_flags & VSX_FPCONV) {
 907                        buf.d[0] = buf.d[1] = 0;
 908                        preempt_disable();
 909                        conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
 910                        preempt_enable();
 911                        reg = &buf;
 912                }
 913                memcpy(mem, &reg->b[i], write_size);
 914                if (size == 16)
 915                        memcpy(mem + 8, &reg->d[IS_BE], 8);
 916                if (unlikely(rev)) {
 917                        do_byte_reverse(mem, write_size);
 918                        if (size == 16)
 919                                do_byte_reverse(mem + 8, 8);
 920                }
 921                break;
 922        case 4:
 923                /* stxvw4x */
 924                wp = mem;
 925                for (j = 0; j < size / 4; ++j) {
 926                        i = IS_LE ? 3 - j : j;
 927                        *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
 928                }
 929                break;
 930        case 2:
 931                /* stxvh8x */
 932                hp = mem;
 933                for (j = 0; j < size / 2; ++j) {
 934                        i = IS_LE ? 7 - j : j;
 935                        *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
 936                }
 937                break;
 938        case 1:
 939                /* stvxb16x */
 940                bp = mem;
 941                for (j = 0; j < size; ++j) {
 942                        i = IS_LE ? 15 - j : j;
 943                        *bp++ = reg->b[i];
 944                }
 945                break;
 946        }
 947}
 948EXPORT_SYMBOL_GPL(emulate_vsx_store);
 949NOKPROBE_SYMBOL(emulate_vsx_store);
 950
 951static nokprobe_inline int do_vsx_load(struct instruction_op *op,
 952                                       unsigned long ea, struct pt_regs *regs,
 953                                       bool cross_endian)
 954{
 955        int reg = op->reg;
 956        int i, j, nr_vsx_regs;
 957        u8 mem[32];
 958        union vsx_reg buf[2];
 959        int size = GETSIZE(op->type);
 960
 961        if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
 962                return -EFAULT;
 963
 964        nr_vsx_regs = max(1ul, size / sizeof(__vector128));
 965        emulate_vsx_load(op, buf, mem, cross_endian);
 966        preempt_disable();
 967        if (reg < 32) {
 968                /* FP regs + extensions */
 969                if (regs->msr & MSR_FP) {
 970                        for (i = 0; i < nr_vsx_regs; i++) {
 971                                j = IS_LE ? nr_vsx_regs - i - 1 : i;
 972                                load_vsrn(reg + i, &buf[j].v);
 973                        }
 974                } else {
 975                        for (i = 0; i < nr_vsx_regs; i++) {
 976                                j = IS_LE ? nr_vsx_regs - i - 1 : i;
 977                                current->thread.fp_state.fpr[reg + i][0] = buf[j].d[0];
 978                                current->thread.fp_state.fpr[reg + i][1] = buf[j].d[1];
 979                        }
 980                }
 981        } else {
 982                if (regs->msr & MSR_VEC) {
 983                        for (i = 0; i < nr_vsx_regs; i++) {
 984                                j = IS_LE ? nr_vsx_regs - i - 1 : i;
 985                                load_vsrn(reg + i, &buf[j].v);
 986                        }
 987                } else {
 988                        for (i = 0; i < nr_vsx_regs; i++) {
 989                                j = IS_LE ? nr_vsx_regs - i - 1 : i;
 990                                current->thread.vr_state.vr[reg - 32 + i] = buf[j].v;
 991                        }
 992                }
 993        }
 994        preempt_enable();
 995        return 0;
 996}
 997
 998static nokprobe_inline int do_vsx_store(struct instruction_op *op,
 999                                        unsigned long ea, struct pt_regs *regs,
1000                                        bool cross_endian)
1001{
1002        int reg = op->reg;
1003        int i, j, nr_vsx_regs;
1004        u8 mem[32];
1005        union vsx_reg buf[2];
1006        int size = GETSIZE(op->type);
1007
1008        if (!address_ok(regs, ea, size))
1009                return -EFAULT;
1010
1011        nr_vsx_regs = max(1ul, size / sizeof(__vector128));
1012        preempt_disable();
1013        if (reg < 32) {
1014                /* FP regs + extensions */
1015                if (regs->msr & MSR_FP) {
1016                        for (i = 0; i < nr_vsx_regs; i++) {
1017                                j = IS_LE ? nr_vsx_regs - i - 1 : i;
1018                                store_vsrn(reg + i, &buf[j].v);
1019                        }
1020                } else {
1021                        for (i = 0; i < nr_vsx_regs; i++) {
1022                                j = IS_LE ? nr_vsx_regs - i - 1 : i;
1023                                buf[j].d[0] = current->thread.fp_state.fpr[reg + i][0];
1024                                buf[j].d[1] = current->thread.fp_state.fpr[reg + i][1];
1025                        }
1026                }
1027        } else {
1028                if (regs->msr & MSR_VEC) {
1029                        for (i = 0; i < nr_vsx_regs; i++) {
1030                                j = IS_LE ? nr_vsx_regs - i - 1 : i;
1031                                store_vsrn(reg + i, &buf[j].v);
1032                        }
1033                } else {
1034                        for (i = 0; i < nr_vsx_regs; i++) {
1035                                j = IS_LE ? nr_vsx_regs - i - 1 : i;
1036                                buf[j].v = current->thread.vr_state.vr[reg - 32 + i];
1037                        }
1038                }
1039        }
1040        preempt_enable();
1041        emulate_vsx_store(op, buf, mem, cross_endian);
1042        return  copy_mem_out(mem, ea, size, regs);
1043}
1044#endif /* CONFIG_VSX */
1045
1046static int __emulate_dcbz(unsigned long ea)
1047{
1048        unsigned long i;
1049        unsigned long size = l1_dcache_bytes();
1050
1051        for (i = 0; i < size; i += sizeof(long))
1052                unsafe_put_user(0, (unsigned long __user *)(ea + i), Efault);
1053
1054        return 0;
1055
1056Efault:
1057        return -EFAULT;
1058}
1059
1060int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
1061{
1062        int err;
1063        unsigned long size = l1_dcache_bytes();
1064
1065        ea = truncate_if_32bit(regs->msr, ea);
1066        ea &= ~(size - 1);
1067        if (!address_ok(regs, ea, size))
1068                return -EFAULT;
1069
1070        if (is_kernel_addr(ea)) {
1071                err = __emulate_dcbz(ea);
1072        } else if (user_write_access_begin((void __user *)ea, size)) {
1073                err = __emulate_dcbz(ea);
1074                user_write_access_end();
1075        } else {
1076                err = -EFAULT;
1077        }
1078
1079        if (err)
1080                regs->dar = ea;
1081
1082
1083        return err;
1084}
1085NOKPROBE_SYMBOL(emulate_dcbz);
1086
1087#define __put_user_asmx(x, addr, err, op, cr)           \
1088        __asm__ __volatile__(                           \
1089                ".machine push\n"                       \
1090                ".machine power8\n"                     \
1091                "1:     " op " %2,0,%3\n"               \
1092                ".machine pop\n"                        \
1093                "       mfcr    %1\n"                   \
1094                "2:\n"                                  \
1095                ".section .fixup,\"ax\"\n"              \
1096                "3:     li      %0,%4\n"                \
1097                "       b       2b\n"                   \
1098                ".previous\n"                           \
1099                EX_TABLE(1b, 3b)                        \
1100                : "=r" (err), "=r" (cr)                 \
1101                : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err))
1102
1103#define __get_user_asmx(x, addr, err, op)               \
1104        __asm__ __volatile__(                           \
1105                ".machine push\n"                       \
1106                ".machine power8\n"                     \
1107                "1:     "op" %1,0,%2\n"                 \
1108                ".machine pop\n"                        \
1109                "2:\n"                                  \
1110                ".section .fixup,\"ax\"\n"              \
1111                "3:     li      %0,%3\n"                \
1112                "       b       2b\n"                   \
1113                ".previous\n"                           \
1114                EX_TABLE(1b, 3b)                        \
1115                : "=r" (err), "=r" (x)                  \
1116                : "r" (addr), "i" (-EFAULT), "0" (err))
1117
1118#define __cacheop_user_asmx(addr, err, op)              \
1119        __asm__ __volatile__(                           \
1120                "1:     "op" 0,%1\n"                    \
1121                "2:\n"                                  \
1122                ".section .fixup,\"ax\"\n"              \
1123                "3:     li      %0,%3\n"                \
1124                "       b       2b\n"                   \
1125                ".previous\n"                           \
1126                EX_TABLE(1b, 3b)                        \
1127                : "=r" (err)                            \
1128                : "r" (addr), "i" (-EFAULT), "0" (err))
1129
1130static nokprobe_inline void set_cr0(const struct pt_regs *regs,
1131                                    struct instruction_op *op)
1132{
1133        long val = op->val;
1134
1135        op->type |= SETCC;
1136        op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
1137        if (!(regs->msr & MSR_64BIT))
1138                val = (int) val;
1139        if (val < 0)
1140                op->ccval |= 0x80000000;
1141        else if (val > 0)
1142                op->ccval |= 0x40000000;
1143        else
1144                op->ccval |= 0x20000000;
1145}
1146
1147static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
1148{
1149        if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1150                if (val)
1151                        op->xerval |= XER_CA32;
1152                else
1153                        op->xerval &= ~XER_CA32;
1154        }
1155}
1156
1157static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
1158                                     struct instruction_op *op, int rd,
1159                                     unsigned long val1, unsigned long val2,
1160                                     unsigned long carry_in)
1161{
1162        unsigned long val = val1 + val2;
1163
1164        if (carry_in)
1165                ++val;
1166        op->type = COMPUTE | SETREG | SETXER;
1167        op->reg = rd;
1168        op->val = val;
1169        val = truncate_if_32bit(regs->msr, val);
1170        val1 = truncate_if_32bit(regs->msr, val1);
1171        op->xerval = regs->xer;
1172        if (val < val1 || (carry_in && val == val1))
1173                op->xerval |= XER_CA;
1174        else
1175                op->xerval &= ~XER_CA;
1176
1177        set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
1178                        (carry_in && (unsigned int)val == (unsigned int)val1));
1179}
1180
1181static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1182                                          struct instruction_op *op,
1183                                          long v1, long v2, int crfld)
1184{
1185        unsigned int crval, shift;
1186
1187        op->type = COMPUTE | SETCC;
1188        crval = (regs->xer >> 31) & 1;          /* get SO bit */
1189        if (v1 < v2)
1190                crval |= 8;
1191        else if (v1 > v2)
1192                crval |= 4;
1193        else
1194                crval |= 2;
1195        shift = (7 - crfld) * 4;
1196        op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1197}
1198
1199static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1200                                            struct instruction_op *op,
1201                                            unsigned long v1,
1202                                            unsigned long v2, int crfld)
1203{
1204        unsigned int crval, shift;
1205
1206        op->type = COMPUTE | SETCC;
1207        crval = (regs->xer >> 31) & 1;          /* get SO bit */
1208        if (v1 < v2)
1209                crval |= 8;
1210        else if (v1 > v2)
1211                crval |= 4;
1212        else
1213                crval |= 2;
1214        shift = (7 - crfld) * 4;
1215        op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1216}
1217
1218static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1219                                    struct instruction_op *op,
1220                                    unsigned long v1, unsigned long v2)
1221{
1222        unsigned long long out_val, mask;
1223        int i;
1224
1225        out_val = 0;
1226        for (i = 0; i < 8; i++) {
1227                mask = 0xffUL << (i * 8);
1228                if ((v1 & mask) == (v2 & mask))
1229                        out_val |= mask;
1230        }
1231        op->val = out_val;
1232}
1233
1234/*
1235 * The size parameter is used to adjust the equivalent popcnt instruction.
1236 * popcntb = 8, popcntw = 32, popcntd = 64
1237 */
1238static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1239                                      struct instruction_op *op,
1240                                      unsigned long v1, int size)
1241{
1242        unsigned long long out = v1;
1243
1244        out -= (out >> 1) & 0x5555555555555555ULL;
1245        out = (0x3333333333333333ULL & out) +
1246              (0x3333333333333333ULL & (out >> 2));
1247        out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1248
1249        if (size == 8) {        /* popcntb */
1250                op->val = out;
1251                return;
1252        }
1253        out += out >> 8;
1254        out += out >> 16;
1255        if (size == 32) {       /* popcntw */
1256                op->val = out & 0x0000003f0000003fULL;
1257                return;
1258        }
1259
1260        out = (out + (out >> 32)) & 0x7f;
1261        op->val = out;  /* popcntd */
1262}
1263
1264#ifdef CONFIG_PPC64
1265static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1266                                      struct instruction_op *op,
1267                                      unsigned long v1, unsigned long v2)
1268{
1269        unsigned char perm, idx;
1270        unsigned int i;
1271
1272        perm = 0;
1273        for (i = 0; i < 8; i++) {
1274                idx = (v1 >> (i * 8)) & 0xff;
1275                if (idx < 64)
1276                        if (v2 & PPC_BIT(idx))
1277                                perm |= 1 << i;
1278        }
1279        op->val = perm;
1280}
1281#endif /* CONFIG_PPC64 */
1282/*
1283 * The size parameter adjusts the equivalent prty instruction.
1284 * prtyw = 32, prtyd = 64
1285 */
1286static nokprobe_inline void do_prty(const struct pt_regs *regs,
1287                                    struct instruction_op *op,
1288                                    unsigned long v, int size)
1289{
1290        unsigned long long res = v ^ (v >> 8);
1291
1292        res ^= res >> 16;
1293        if (size == 32) {               /* prtyw */
1294                op->val = res & 0x0000000100000001ULL;
1295                return;
1296        }
1297
1298        res ^= res >> 32;
1299        op->val = res & 1;      /*prtyd */
1300}
1301
1302static nokprobe_inline int trap_compare(long v1, long v2)
1303{
1304        int ret = 0;
1305
1306        if (v1 < v2)
1307                ret |= 0x10;
1308        else if (v1 > v2)
1309                ret |= 0x08;
1310        else
1311                ret |= 0x04;
1312        if ((unsigned long)v1 < (unsigned long)v2)
1313                ret |= 0x02;
1314        else if ((unsigned long)v1 > (unsigned long)v2)
1315                ret |= 0x01;
1316        return ret;
1317}
1318
1319/*
1320 * Elements of 32-bit rotate and mask instructions.
1321 */
1322#define MASK32(mb, me)  ((0xffffffffUL >> (mb)) + \
1323                         ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1324#ifdef __powerpc64__
1325#define MASK64_L(mb)    (~0UL >> (mb))
1326#define MASK64_R(me)    ((signed long)-0x8000000000000000L >> (me))
1327#define MASK64(mb, me)  (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1328#define DATA32(x)       (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1329#else
1330#define DATA32(x)       (x)
1331#endif
1332#define ROTATE(x, n)    ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1333
1334/*
1335 * Decode an instruction, and return information about it in *op
1336 * without changing *regs.
1337 * Integer arithmetic and logical instructions, branches, and barrier
1338 * instructions can be emulated just using the information in *op.
1339 *
1340 * Return value is 1 if the instruction can be emulated just by
1341 * updating *regs with the information in *op, -1 if we need the
1342 * GPRs but *regs doesn't contain the full register set, or 0
1343 * otherwise.
1344 */
1345int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1346                  ppc_inst_t instr)
1347{
1348#ifdef CONFIG_PPC64
1349        unsigned int suffixopcode, prefixtype, prefix_r;
1350#endif
1351        unsigned int opcode, ra, rb, rc, rd, spr, u;
1352        unsigned long int imm;
1353        unsigned long int val, val2;
1354        unsigned int mb, me, sh;
1355        unsigned int word, suffix;
1356        long ival;
1357
1358        word = ppc_inst_val(instr);
1359        suffix = ppc_inst_suffix(instr);
1360
1361        op->type = COMPUTE;
1362
1363        opcode = ppc_inst_primary_opcode(instr);
1364        switch (opcode) {
1365        case 16:        /* bc */
1366                op->type = BRANCH;
1367                imm = (signed short)(word & 0xfffc);
1368                if ((word & 2) == 0)
1369                        imm += regs->nip;
1370                op->val = truncate_if_32bit(regs->msr, imm);
1371                if (word & 1)
1372                        op->type |= SETLK;
1373                if (branch_taken(word, regs, op))
1374                        op->type |= BRTAKEN;
1375                return 1;
1376        case 17:        /* sc */
1377                if ((word & 0xfe2) == 2)
1378                        op->type = SYSCALL;
1379                else if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) &&
1380                                (word & 0xfe3) == 1) {  /* scv */
1381                        op->type = SYSCALL_VECTORED_0;
1382                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
1383                                goto unknown_opcode;
1384                } else
1385                        op->type = UNKNOWN;
1386                return 0;
1387        case 18:        /* b */
1388                op->type = BRANCH | BRTAKEN;
1389                imm = word & 0x03fffffc;
1390                if (imm & 0x02000000)
1391                        imm -= 0x04000000;
1392                if ((word & 2) == 0)
1393                        imm += regs->nip;
1394                op->val = truncate_if_32bit(regs->msr, imm);
1395                if (word & 1)
1396                        op->type |= SETLK;
1397                return 1;
1398        case 19:
1399                switch ((word >> 1) & 0x3ff) {
1400                case 0:         /* mcrf */
1401                        op->type = COMPUTE + SETCC;
1402                        rd = 7 - ((word >> 23) & 0x7);
1403                        ra = 7 - ((word >> 18) & 0x7);
1404                        rd *= 4;
1405                        ra *= 4;
1406                        val = (regs->ccr >> ra) & 0xf;
1407                        op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1408                        return 1;
1409
1410                case 16:        /* bclr */
1411                case 528:       /* bcctr */
1412                        op->type = BRANCH;
1413                        imm = (word & 0x400)? regs->ctr: regs->link;
1414                        op->val = truncate_if_32bit(regs->msr, imm);
1415                        if (word & 1)
1416                                op->type |= SETLK;
1417                        if (branch_taken(word, regs, op))
1418                                op->type |= BRTAKEN;
1419                        return 1;
1420
1421                case 18:        /* rfid, scary */
1422                        if (regs->msr & MSR_PR)
1423                                goto priv;
1424                        op->type = RFI;
1425                        return 0;
1426
1427                case 150:       /* isync */
1428                        op->type = BARRIER | BARRIER_ISYNC;
1429                        return 1;
1430
1431                case 33:        /* crnor */
1432                case 129:       /* crandc */
1433                case 193:       /* crxor */
1434                case 225:       /* crnand */
1435                case 257:       /* crand */
1436                case 289:       /* creqv */
1437                case 417:       /* crorc */
1438                case 449:       /* cror */
1439                        op->type = COMPUTE + SETCC;
1440                        ra = (word >> 16) & 0x1f;
1441                        rb = (word >> 11) & 0x1f;
1442                        rd = (word >> 21) & 0x1f;
1443                        ra = (regs->ccr >> (31 - ra)) & 1;
1444                        rb = (regs->ccr >> (31 - rb)) & 1;
1445                        val = (word >> (6 + ra * 2 + rb)) & 1;
1446                        op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1447                                (val << (31 - rd));
1448                        return 1;
1449                }
1450                break;
1451        case 31:
1452                switch ((word >> 1) & 0x3ff) {
1453                case 598:       /* sync */
1454                        op->type = BARRIER + BARRIER_SYNC;
1455#ifdef __powerpc64__
1456                        switch ((word >> 21) & 3) {
1457                        case 1:         /* lwsync */
1458                                op->type = BARRIER + BARRIER_LWSYNC;
1459                                break;
1460                        case 2:         /* ptesync */
1461                                op->type = BARRIER + BARRIER_PTESYNC;
1462                                break;
1463                        }
1464#endif
1465                        return 1;
1466
1467                case 854:       /* eieio */
1468                        op->type = BARRIER + BARRIER_EIEIO;
1469                        return 1;
1470                }
1471                break;
1472        }
1473
1474        rd = (word >> 21) & 0x1f;
1475        ra = (word >> 16) & 0x1f;
1476        rb = (word >> 11) & 0x1f;
1477        rc = (word >> 6) & 0x1f;
1478
1479        switch (opcode) {
1480#ifdef __powerpc64__
1481        case 1:
1482                if (!cpu_has_feature(CPU_FTR_ARCH_31))
1483                        goto unknown_opcode;
1484
1485                prefix_r = GET_PREFIX_R(word);
1486                ra = GET_PREFIX_RA(suffix);
1487                rd = (suffix >> 21) & 0x1f;
1488                op->reg = rd;
1489                op->val = regs->gpr[rd];
1490                suffixopcode = get_op(suffix);
1491                prefixtype = (word >> 24) & 0x3;
1492                switch (prefixtype) {
1493                case 2:
1494                        if (prefix_r && ra)
1495                                return 0;
1496                        switch (suffixopcode) {
1497                        case 14:        /* paddi */
1498                                op->type = COMPUTE | PREFIXED;
1499                                op->val = mlsd_8lsd_ea(word, suffix, regs);
1500                                goto compute_done;
1501                        }
1502                }
1503                break;
1504        case 2:         /* tdi */
1505                if (rd & trap_compare(regs->gpr[ra], (short) word))
1506                        goto trap;
1507                return 1;
1508#endif
1509        case 3:         /* twi */
1510                if (rd & trap_compare((int)regs->gpr[ra], (short) word))
1511                        goto trap;
1512                return 1;
1513
1514#ifdef __powerpc64__
1515        case 4:
1516                /*
1517                 * There are very many instructions with this primary opcode
1518                 * introduced in the ISA as early as v2.03. However, the ones
1519                 * we currently emulate were all introduced with ISA 3.0
1520                 */
1521                if (!cpu_has_feature(CPU_FTR_ARCH_300))
1522                        goto unknown_opcode;
1523
1524                switch (word & 0x3f) {
1525                case 48:        /* maddhd */
1526                        asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1527                                     "=r" (op->val) : "r" (regs->gpr[ra]),
1528                                     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1529                        goto compute_done;
1530
1531                case 49:        /* maddhdu */
1532                        asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1533                                     "=r" (op->val) : "r" (regs->gpr[ra]),
1534                                     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1535                        goto compute_done;
1536
1537                case 51:        /* maddld */
1538                        asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1539                                     "=r" (op->val) : "r" (regs->gpr[ra]),
1540                                     "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1541                        goto compute_done;
1542                }
1543
1544                /*
1545                 * There are other instructions from ISA 3.0 with the same
1546                 * primary opcode which do not have emulation support yet.
1547                 */
1548                goto unknown_opcode;
1549#endif
1550
1551        case 7:         /* mulli */
1552                op->val = regs->gpr[ra] * (short) word;
1553                goto compute_done;
1554
1555        case 8:         /* subfic */
1556                imm = (short) word;
1557                add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1558                return 1;
1559
1560        case 10:        /* cmpli */
1561                imm = (unsigned short) word;
1562                val = regs->gpr[ra];
1563#ifdef __powerpc64__
1564                if ((rd & 1) == 0)
1565                        val = (unsigned int) val;
1566#endif
1567                do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1568                return 1;
1569
1570        case 11:        /* cmpi */
1571                imm = (short) word;
1572                val = regs->gpr[ra];
1573#ifdef __powerpc64__
1574                if ((rd & 1) == 0)
1575                        val = (int) val;
1576#endif
1577                do_cmp_signed(regs, op, val, imm, rd >> 2);
1578                return 1;
1579
1580        case 12:        /* addic */
1581                imm = (short) word;
1582                add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1583                return 1;
1584
1585        case 13:        /* addic. */
1586                imm = (short) word;
1587                add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1588                set_cr0(regs, op);
1589                return 1;
1590
1591        case 14:        /* addi */
1592                imm = (short) word;
1593                if (ra)
1594                        imm += regs->gpr[ra];
1595                op->val = imm;
1596                goto compute_done;
1597
1598        case 15:        /* addis */
1599                imm = ((short) word) << 16;
1600                if (ra)
1601                        imm += regs->gpr[ra];
1602                op->val = imm;
1603                goto compute_done;
1604
1605        case 19:
1606                if (((word >> 1) & 0x1f) == 2) {
1607                        /* addpcis */
1608                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
1609                                goto unknown_opcode;
1610                        imm = (short) (word & 0xffc1);  /* d0 + d2 fields */
1611                        imm |= (word >> 15) & 0x3e;     /* d1 field */
1612                        op->val = regs->nip + (imm << 16) + 4;
1613                        goto compute_done;
1614                }
1615                op->type = UNKNOWN;
1616                return 0;
1617
1618        case 20:        /* rlwimi */
1619                mb = (word >> 6) & 0x1f;
1620                me = (word >> 1) & 0x1f;
1621                val = DATA32(regs->gpr[rd]);
1622                imm = MASK32(mb, me);
1623                op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1624                goto logical_done;
1625
1626        case 21:        /* rlwinm */
1627                mb = (word >> 6) & 0x1f;
1628                me = (word >> 1) & 0x1f;
1629                val = DATA32(regs->gpr[rd]);
1630                op->val = ROTATE(val, rb) & MASK32(mb, me);
1631                goto logical_done;
1632
1633        case 23:        /* rlwnm */
1634                mb = (word >> 6) & 0x1f;
1635                me = (word >> 1) & 0x1f;
1636                rb = regs->gpr[rb] & 0x1f;
1637                val = DATA32(regs->gpr[rd]);
1638                op->val = ROTATE(val, rb) & MASK32(mb, me);
1639                goto logical_done;
1640
1641        case 24:        /* ori */
1642                op->val = regs->gpr[rd] | (unsigned short) word;
1643                goto logical_done_nocc;
1644
1645        case 25:        /* oris */
1646                imm = (unsigned short) word;
1647                op->val = regs->gpr[rd] | (imm << 16);
1648                goto logical_done_nocc;
1649
1650        case 26:        /* xori */
1651                op->val = regs->gpr[rd] ^ (unsigned short) word;
1652                goto logical_done_nocc;
1653
1654        case 27:        /* xoris */
1655                imm = (unsigned short) word;
1656                op->val = regs->gpr[rd] ^ (imm << 16);
1657                goto logical_done_nocc;
1658
1659        case 28:        /* andi. */
1660                op->val = regs->gpr[rd] & (unsigned short) word;
1661                set_cr0(regs, op);
1662                goto logical_done_nocc;
1663
1664        case 29:        /* andis. */
1665                imm = (unsigned short) word;
1666                op->val = regs->gpr[rd] & (imm << 16);
1667                set_cr0(regs, op);
1668                goto logical_done_nocc;
1669
1670#ifdef __powerpc64__
1671        case 30:        /* rld* */
1672                mb = ((word >> 6) & 0x1f) | (word & 0x20);
1673                val = regs->gpr[rd];
1674                if ((word & 0x10) == 0) {
1675                        sh = rb | ((word & 2) << 4);
1676                        val = ROTATE(val, sh);
1677                        switch ((word >> 2) & 3) {
1678                        case 0:         /* rldicl */
1679                                val &= MASK64_L(mb);
1680                                break;
1681                        case 1:         /* rldicr */
1682                                val &= MASK64_R(mb);
1683                                break;
1684                        case 2:         /* rldic */
1685                                val &= MASK64(mb, 63 - sh);
1686                                break;
1687                        case 3:         /* rldimi */
1688                                imm = MASK64(mb, 63 - sh);
1689                                val = (regs->gpr[ra] & ~imm) |
1690                                        (val & imm);
1691                        }
1692                        op->val = val;
1693                        goto logical_done;
1694                } else {
1695                        sh = regs->gpr[rb] & 0x3f;
1696                        val = ROTATE(val, sh);
1697                        switch ((word >> 1) & 7) {
1698                        case 0:         /* rldcl */
1699                                op->val = val & MASK64_L(mb);
1700                                goto logical_done;
1701                        case 1:         /* rldcr */
1702                                op->val = val & MASK64_R(mb);
1703                                goto logical_done;
1704                        }
1705                }
1706#endif
1707                op->type = UNKNOWN;     /* illegal instruction */
1708                return 0;
1709
1710        case 31:
1711                /* isel occupies 32 minor opcodes */
1712                if (((word >> 1) & 0x1f) == 15) {
1713                        mb = (word >> 6) & 0x1f; /* bc field */
1714                        val = (regs->ccr >> (31 - mb)) & 1;
1715                        val2 = (ra) ? regs->gpr[ra] : 0;
1716
1717                        op->val = (val) ? val2 : regs->gpr[rb];
1718                        goto compute_done;
1719                }
1720
1721                switch ((word >> 1) & 0x3ff) {
1722                case 4:         /* tw */
1723                        if (rd == 0x1f ||
1724                            (rd & trap_compare((int)regs->gpr[ra],
1725                                               (int)regs->gpr[rb])))
1726                                goto trap;
1727                        return 1;
1728#ifdef __powerpc64__
1729                case 68:        /* td */
1730                        if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1731                                goto trap;
1732                        return 1;
1733#endif
1734                case 83:        /* mfmsr */
1735                        if (regs->msr & MSR_PR)
1736                                goto priv;
1737                        op->type = MFMSR;
1738                        op->reg = rd;
1739                        return 0;
1740                case 146:       /* mtmsr */
1741                        if (regs->msr & MSR_PR)
1742                                goto priv;
1743                        op->type = MTMSR;
1744                        op->reg = rd;
1745                        op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1746                        return 0;
1747#ifdef CONFIG_PPC64
1748                case 178:       /* mtmsrd */
1749                        if (regs->msr & MSR_PR)
1750                                goto priv;
1751                        op->type = MTMSR;
1752                        op->reg = rd;
1753                        /* only MSR_EE and MSR_RI get changed if bit 15 set */
1754                        /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1755                        imm = (word & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1756                        op->val = imm;
1757                        return 0;
1758#endif
1759
1760                case 19:        /* mfcr */
1761                        imm = 0xffffffffUL;
1762                        if ((word >> 20) & 1) {
1763                                imm = 0xf0000000UL;
1764                                for (sh = 0; sh < 8; ++sh) {
1765                                        if (word & (0x80000 >> sh))
1766                                                break;
1767                                        imm >>= 4;
1768                                }
1769                        }
1770                        op->val = regs->ccr & imm;
1771                        goto compute_done;
1772
1773                case 128:       /* setb */
1774                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
1775                                goto unknown_opcode;
1776                        /*
1777                         * 'ra' encodes the CR field number (bfa) in the top 3 bits.
1778                         * Since each CR field is 4 bits,
1779                         * we can simply mask off the bottom two bits (bfa * 4)
1780                         * to yield the first bit in the CR field.
1781                         */
1782                        ra = ra & ~0x3;
1783                        /* 'val' stores bits of the CR field (bfa) */
1784                        val = regs->ccr >> (CR0_SHIFT - ra);
1785                        /* checks if the LT bit of CR field (bfa) is set */
1786                        if (val & 8)
1787                                op->val = -1;
1788                        /* checks if the GT bit of CR field (bfa) is set */
1789                        else if (val & 4)
1790                                op->val = 1;
1791                        else
1792                                op->val = 0;
1793                        goto compute_done;
1794
1795                case 144:       /* mtcrf */
1796                        op->type = COMPUTE + SETCC;
1797                        imm = 0xf0000000UL;
1798                        val = regs->gpr[rd];
1799                        op->ccval = regs->ccr;
1800                        for (sh = 0; sh < 8; ++sh) {
1801                                if (word & (0x80000 >> sh))
1802                                        op->ccval = (op->ccval & ~imm) |
1803                                                (val & imm);
1804                                imm >>= 4;
1805                        }
1806                        return 1;
1807
1808                case 339:       /* mfspr */
1809                        spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1810                        op->type = MFSPR;
1811                        op->reg = rd;
1812                        op->spr = spr;
1813                        if (spr == SPRN_XER || spr == SPRN_LR ||
1814                            spr == SPRN_CTR)
1815                                return 1;
1816                        return 0;
1817
1818                case 467:       /* mtspr */
1819                        spr = ((word >> 16) & 0x1f) | ((word >> 6) & 0x3e0);
1820                        op->type = MTSPR;
1821                        op->val = regs->gpr[rd];
1822                        op->spr = spr;
1823                        if (spr == SPRN_XER || spr == SPRN_LR ||
1824                            spr == SPRN_CTR)
1825                                return 1;
1826                        return 0;
1827
1828/*
1829 * Compare instructions
1830 */
1831                case 0: /* cmp */
1832                        val = regs->gpr[ra];
1833                        val2 = regs->gpr[rb];
1834#ifdef __powerpc64__
1835                        if ((rd & 1) == 0) {
1836                                /* word (32-bit) compare */
1837                                val = (int) val;
1838                                val2 = (int) val2;
1839                        }
1840#endif
1841                        do_cmp_signed(regs, op, val, val2, rd >> 2);
1842                        return 1;
1843
1844                case 32:        /* cmpl */
1845                        val = regs->gpr[ra];
1846                        val2 = regs->gpr[rb];
1847#ifdef __powerpc64__
1848                        if ((rd & 1) == 0) {
1849                                /* word (32-bit) compare */
1850                                val = (unsigned int) val;
1851                                val2 = (unsigned int) val2;
1852                        }
1853#endif
1854                        do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1855                        return 1;
1856
1857                case 508: /* cmpb */
1858                        do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1859                        goto logical_done_nocc;
1860
1861/*
1862 * Arithmetic instructions
1863 */
1864                case 8: /* subfc */
1865                        add_with_carry(regs, op, rd, ~regs->gpr[ra],
1866                                       regs->gpr[rb], 1);
1867                        goto arith_done;
1868#ifdef __powerpc64__
1869                case 9: /* mulhdu */
1870                        asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1871                            "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1872                        goto arith_done;
1873#endif
1874                case 10:        /* addc */
1875                        add_with_carry(regs, op, rd, regs->gpr[ra],
1876                                       regs->gpr[rb], 0);
1877                        goto arith_done;
1878
1879                case 11:        /* mulhwu */
1880                        asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1881                            "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1882                        goto arith_done;
1883
1884                case 40:        /* subf */
1885                        op->val = regs->gpr[rb] - regs->gpr[ra];
1886                        goto arith_done;
1887#ifdef __powerpc64__
1888                case 73:        /* mulhd */
1889                        asm("mulhd %0,%1,%2" : "=r" (op->val) :
1890                            "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1891                        goto arith_done;
1892#endif
1893                case 75:        /* mulhw */
1894                        asm("mulhw %0,%1,%2" : "=r" (op->val) :
1895                            "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1896                        goto arith_done;
1897
1898                case 104:       /* neg */
1899                        op->val = -regs->gpr[ra];
1900                        goto arith_done;
1901
1902                case 136:       /* subfe */
1903                        add_with_carry(regs, op, rd, ~regs->gpr[ra],
1904                                       regs->gpr[rb], regs->xer & XER_CA);
1905                        goto arith_done;
1906
1907                case 138:       /* adde */
1908                        add_with_carry(regs, op, rd, regs->gpr[ra],
1909                                       regs->gpr[rb], regs->xer & XER_CA);
1910                        goto arith_done;
1911
1912                case 200:       /* subfze */
1913                        add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1914                                       regs->xer & XER_CA);
1915                        goto arith_done;
1916
1917                case 202:       /* addze */
1918                        add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1919                                       regs->xer & XER_CA);
1920                        goto arith_done;
1921
1922                case 232:       /* subfme */
1923                        add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1924                                       regs->xer & XER_CA);
1925                        goto arith_done;
1926#ifdef __powerpc64__
1927                case 233:       /* mulld */
1928                        op->val = regs->gpr[ra] * regs->gpr[rb];
1929                        goto arith_done;
1930#endif
1931                case 234:       /* addme */
1932                        add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1933                                       regs->xer & XER_CA);
1934                        goto arith_done;
1935
1936                case 235:       /* mullw */
1937                        op->val = (long)(int) regs->gpr[ra] *
1938                                (int) regs->gpr[rb];
1939
1940                        goto arith_done;
1941#ifdef __powerpc64__
1942                case 265:       /* modud */
1943                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
1944                                goto unknown_opcode;
1945                        op->val = regs->gpr[ra] % regs->gpr[rb];
1946                        goto compute_done;
1947#endif
1948                case 266:       /* add */
1949                        op->val = regs->gpr[ra] + regs->gpr[rb];
1950                        goto arith_done;
1951
1952                case 267:       /* moduw */
1953                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
1954                                goto unknown_opcode;
1955                        op->val = (unsigned int) regs->gpr[ra] %
1956                                (unsigned int) regs->gpr[rb];
1957                        goto compute_done;
1958#ifdef __powerpc64__
1959                case 457:       /* divdu */
1960                        op->val = regs->gpr[ra] / regs->gpr[rb];
1961                        goto arith_done;
1962#endif
1963                case 459:       /* divwu */
1964                        op->val = (unsigned int) regs->gpr[ra] /
1965                                (unsigned int) regs->gpr[rb];
1966                        goto arith_done;
1967#ifdef __powerpc64__
1968                case 489:       /* divd */
1969                        op->val = (long int) regs->gpr[ra] /
1970                                (long int) regs->gpr[rb];
1971                        goto arith_done;
1972#endif
1973                case 491:       /* divw */
1974                        op->val = (int) regs->gpr[ra] /
1975                                (int) regs->gpr[rb];
1976                        goto arith_done;
1977#ifdef __powerpc64__
1978                case 425:       /* divde[.] */
1979                        asm volatile(PPC_DIVDE(%0, %1, %2) :
1980                                "=r" (op->val) : "r" (regs->gpr[ra]),
1981                                "r" (regs->gpr[rb]));
1982                        goto arith_done;
1983                case 393:       /* divdeu[.] */
1984                        asm volatile(PPC_DIVDEU(%0, %1, %2) :
1985                                "=r" (op->val) : "r" (regs->gpr[ra]),
1986                                "r" (regs->gpr[rb]));
1987                        goto arith_done;
1988#endif
1989                case 755:       /* darn */
1990                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
1991                                goto unknown_opcode;
1992                        switch (ra & 0x3) {
1993                        case 0:
1994                                /* 32-bit conditioned */
1995                                asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1996                                goto compute_done;
1997
1998                        case 1:
1999                                /* 64-bit conditioned */
2000                                asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
2001                                goto compute_done;
2002
2003                        case 2:
2004                                /* 64-bit raw */
2005                                asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
2006                                goto compute_done;
2007                        }
2008
2009                        goto unknown_opcode;
2010#ifdef __powerpc64__
2011                case 777:       /* modsd */
2012                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2013                                goto unknown_opcode;
2014                        op->val = (long int) regs->gpr[ra] %
2015                                (long int) regs->gpr[rb];
2016                        goto compute_done;
2017#endif
2018                case 779:       /* modsw */
2019                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2020                                goto unknown_opcode;
2021                        op->val = (int) regs->gpr[ra] %
2022                                (int) regs->gpr[rb];
2023                        goto compute_done;
2024
2025
2026/*
2027 * Logical instructions
2028 */
2029                case 26:        /* cntlzw */
2030                        val = (unsigned int) regs->gpr[rd];
2031                        op->val = ( val ? __builtin_clz(val) : 32 );
2032                        goto logical_done;
2033#ifdef __powerpc64__
2034                case 58:        /* cntlzd */
2035                        val = regs->gpr[rd];
2036                        op->val = ( val ? __builtin_clzl(val) : 64 );
2037                        goto logical_done;
2038#endif
2039                case 28:        /* and */
2040                        op->val = regs->gpr[rd] & regs->gpr[rb];
2041                        goto logical_done;
2042
2043                case 60:        /* andc */
2044                        op->val = regs->gpr[rd] & ~regs->gpr[rb];
2045                        goto logical_done;
2046
2047                case 122:       /* popcntb */
2048                        do_popcnt(regs, op, regs->gpr[rd], 8);
2049                        goto logical_done_nocc;
2050
2051                case 124:       /* nor */
2052                        op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
2053                        goto logical_done;
2054
2055                case 154:       /* prtyw */
2056                        do_prty(regs, op, regs->gpr[rd], 32);
2057                        goto logical_done_nocc;
2058
2059                case 186:       /* prtyd */
2060                        do_prty(regs, op, regs->gpr[rd], 64);
2061                        goto logical_done_nocc;
2062#ifdef CONFIG_PPC64
2063                case 252:       /* bpermd */
2064                        do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
2065                        goto logical_done_nocc;
2066#endif
2067                case 284:       /* xor */
2068                        op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
2069                        goto logical_done;
2070
2071                case 316:       /* xor */
2072                        op->val = regs->gpr[rd] ^ regs->gpr[rb];
2073                        goto logical_done;
2074
2075                case 378:       /* popcntw */
2076                        do_popcnt(regs, op, regs->gpr[rd], 32);
2077                        goto logical_done_nocc;
2078
2079                case 412:       /* orc */
2080                        op->val = regs->gpr[rd] | ~regs->gpr[rb];
2081                        goto logical_done;
2082
2083                case 444:       /* or */
2084                        op->val = regs->gpr[rd] | regs->gpr[rb];
2085                        goto logical_done;
2086
2087                case 476:       /* nand */
2088                        op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
2089                        goto logical_done;
2090#ifdef CONFIG_PPC64
2091                case 506:       /* popcntd */
2092                        do_popcnt(regs, op, regs->gpr[rd], 64);
2093                        goto logical_done_nocc;
2094#endif
2095                case 538:       /* cnttzw */
2096                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2097                                goto unknown_opcode;
2098                        val = (unsigned int) regs->gpr[rd];
2099                        op->val = (val ? __builtin_ctz(val) : 32);
2100                        goto logical_done;
2101#ifdef __powerpc64__
2102                case 570:       /* cnttzd */
2103                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2104                                goto unknown_opcode;
2105                        val = regs->gpr[rd];
2106                        op->val = (val ? __builtin_ctzl(val) : 64);
2107                        goto logical_done;
2108#endif
2109                case 922:       /* extsh */
2110                        op->val = (signed short) regs->gpr[rd];
2111                        goto logical_done;
2112
2113                case 954:       /* extsb */
2114                        op->val = (signed char) regs->gpr[rd];
2115                        goto logical_done;
2116#ifdef __powerpc64__
2117                case 986:       /* extsw */
2118                        op->val = (signed int) regs->gpr[rd];
2119                        goto logical_done;
2120#endif
2121
2122/*
2123 * Shift instructions
2124 */
2125                case 24:        /* slw */
2126                        sh = regs->gpr[rb] & 0x3f;
2127                        if (sh < 32)
2128                                op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
2129                        else
2130                                op->val = 0;
2131                        goto logical_done;
2132
2133                case 536:       /* srw */
2134                        sh = regs->gpr[rb] & 0x3f;
2135                        if (sh < 32)
2136                                op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
2137                        else
2138                                op->val = 0;
2139                        goto logical_done;
2140
2141                case 792:       /* sraw */
2142                        op->type = COMPUTE + SETREG + SETXER;
2143                        sh = regs->gpr[rb] & 0x3f;
2144                        ival = (signed int) regs->gpr[rd];
2145                        op->val = ival >> (sh < 32 ? sh : 31);
2146                        op->xerval = regs->xer;
2147                        if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
2148                                op->xerval |= XER_CA;
2149                        else
2150                                op->xerval &= ~XER_CA;
2151                        set_ca32(op, op->xerval & XER_CA);
2152                        goto logical_done;
2153
2154                case 824:       /* srawi */
2155                        op->type = COMPUTE + SETREG + SETXER;
2156                        sh = rb;
2157                        ival = (signed int) regs->gpr[rd];
2158                        op->val = ival >> sh;
2159                        op->xerval = regs->xer;
2160                        if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2161                                op->xerval |= XER_CA;
2162                        else
2163                                op->xerval &= ~XER_CA;
2164                        set_ca32(op, op->xerval & XER_CA);
2165                        goto logical_done;
2166
2167#ifdef __powerpc64__
2168                case 27:        /* sld */
2169                        sh = regs->gpr[rb] & 0x7f;
2170                        if (sh < 64)
2171                                op->val = regs->gpr[rd] << sh;
2172                        else
2173                                op->val = 0;
2174                        goto logical_done;
2175
2176                case 539:       /* srd */
2177                        sh = regs->gpr[rb] & 0x7f;
2178                        if (sh < 64)
2179                                op->val = regs->gpr[rd] >> sh;
2180                        else
2181                                op->val = 0;
2182                        goto logical_done;
2183
2184                case 794:       /* srad */
2185                        op->type = COMPUTE + SETREG + SETXER;
2186                        sh = regs->gpr[rb] & 0x7f;
2187                        ival = (signed long int) regs->gpr[rd];
2188                        op->val = ival >> (sh < 64 ? sh : 63);
2189                        op->xerval = regs->xer;
2190                        if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
2191                                op->xerval |= XER_CA;
2192                        else
2193                                op->xerval &= ~XER_CA;
2194                        set_ca32(op, op->xerval & XER_CA);
2195                        goto logical_done;
2196
2197                case 826:       /* sradi with sh_5 = 0 */
2198                case 827:       /* sradi with sh_5 = 1 */
2199                        op->type = COMPUTE + SETREG + SETXER;
2200                        sh = rb | ((word & 2) << 4);
2201                        ival = (signed long int) regs->gpr[rd];
2202                        op->val = ival >> sh;
2203                        op->xerval = regs->xer;
2204                        if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
2205                                op->xerval |= XER_CA;
2206                        else
2207                                op->xerval &= ~XER_CA;
2208                        set_ca32(op, op->xerval & XER_CA);
2209                        goto logical_done;
2210
2211                case 890:       /* extswsli with sh_5 = 0 */
2212                case 891:       /* extswsli with sh_5 = 1 */
2213                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2214                                goto unknown_opcode;
2215                        op->type = COMPUTE + SETREG;
2216                        sh = rb | ((word & 2) << 4);
2217                        val = (signed int) regs->gpr[rd];
2218                        if (sh)
2219                                op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
2220                        else
2221                                op->val = val;
2222                        goto logical_done;
2223
2224#endif /* __powerpc64__ */
2225
2226/*
2227 * Cache instructions
2228 */
2229                case 54:        /* dcbst */
2230                        op->type = MKOP(CACHEOP, DCBST, 0);
2231                        op->ea = xform_ea(word, regs);
2232                        return 0;
2233
2234                case 86:        /* dcbf */
2235                        op->type = MKOP(CACHEOP, DCBF, 0);
2236                        op->ea = xform_ea(word, regs);
2237                        return 0;
2238
2239                case 246:       /* dcbtst */
2240                        op->type = MKOP(CACHEOP, DCBTST, 0);
2241                        op->ea = xform_ea(word, regs);
2242                        op->reg = rd;
2243                        return 0;
2244
2245                case 278:       /* dcbt */
2246                        op->type = MKOP(CACHEOP, DCBTST, 0);
2247                        op->ea = xform_ea(word, regs);
2248                        op->reg = rd;
2249                        return 0;
2250
2251                case 982:       /* icbi */
2252                        op->type = MKOP(CACHEOP, ICBI, 0);
2253                        op->ea = xform_ea(word, regs);
2254                        return 0;
2255
2256                case 1014:      /* dcbz */
2257                        op->type = MKOP(CACHEOP, DCBZ, 0);
2258                        op->ea = xform_ea(word, regs);
2259                        return 0;
2260                }
2261                break;
2262        }
2263
2264/*
2265 * Loads and stores.
2266 */
2267        op->type = UNKNOWN;
2268        op->update_reg = ra;
2269        op->reg = rd;
2270        op->val = regs->gpr[rd];
2271        u = (word >> 20) & UPDATE;
2272        op->vsx_flags = 0;
2273
2274        switch (opcode) {
2275        case 31:
2276                u = word & UPDATE;
2277                op->ea = xform_ea(word, regs);
2278                switch ((word >> 1) & 0x3ff) {
2279                case 20:        /* lwarx */
2280                        op->type = MKOP(LARX, 0, 4);
2281                        break;
2282
2283                case 150:       /* stwcx. */
2284                        op->type = MKOP(STCX, 0, 4);
2285                        break;
2286
2287#ifdef __powerpc64__
2288                case 84:        /* ldarx */
2289                        op->type = MKOP(LARX, 0, 8);
2290                        break;
2291
2292                case 214:       /* stdcx. */
2293                        op->type = MKOP(STCX, 0, 8);
2294                        break;
2295
2296                case 52:        /* lbarx */
2297                        op->type = MKOP(LARX, 0, 1);
2298                        break;
2299
2300                case 694:       /* stbcx. */
2301                        op->type = MKOP(STCX, 0, 1);
2302                        break;
2303
2304                case 116:       /* lharx */
2305                        op->type = MKOP(LARX, 0, 2);
2306                        break;
2307
2308                case 726:       /* sthcx. */
2309                        op->type = MKOP(STCX, 0, 2);
2310                        break;
2311
2312                case 276:       /* lqarx */
2313                        if (!((rd & 1) || rd == ra || rd == rb))
2314                                op->type = MKOP(LARX, 0, 16);
2315                        break;
2316
2317                case 182:       /* stqcx. */
2318                        if (!(rd & 1))
2319                                op->type = MKOP(STCX, 0, 16);
2320                        break;
2321#endif
2322
2323                case 23:        /* lwzx */
2324                case 55:        /* lwzux */
2325                        op->type = MKOP(LOAD, u, 4);
2326                        break;
2327
2328                case 87:        /* lbzx */
2329                case 119:       /* lbzux */
2330                        op->type = MKOP(LOAD, u, 1);
2331                        break;
2332
2333#ifdef CONFIG_ALTIVEC
2334                /*
2335                 * Note: for the load/store vector element instructions,
2336                 * bits of the EA say which field of the VMX register to use.
2337                 */
2338                case 7:         /* lvebx */
2339                        op->type = MKOP(LOAD_VMX, 0, 1);
2340                        op->element_size = 1;
2341                        break;
2342
2343                case 39:        /* lvehx */
2344                        op->type = MKOP(LOAD_VMX, 0, 2);
2345                        op->element_size = 2;
2346                        break;
2347
2348                case 71:        /* lvewx */
2349                        op->type = MKOP(LOAD_VMX, 0, 4);
2350                        op->element_size = 4;
2351                        break;
2352
2353                case 103:       /* lvx */
2354                case 359:       /* lvxl */
2355                        op->type = MKOP(LOAD_VMX, 0, 16);
2356                        op->element_size = 16;
2357                        break;
2358
2359                case 135:       /* stvebx */
2360                        op->type = MKOP(STORE_VMX, 0, 1);
2361                        op->element_size = 1;
2362                        break;
2363
2364                case 167:       /* stvehx */
2365                        op->type = MKOP(STORE_VMX, 0, 2);
2366                        op->element_size = 2;
2367                        break;
2368
2369                case 199:       /* stvewx */
2370                        op->type = MKOP(STORE_VMX, 0, 4);
2371                        op->element_size = 4;
2372                        break;
2373
2374                case 231:       /* stvx */
2375                case 487:       /* stvxl */
2376                        op->type = MKOP(STORE_VMX, 0, 16);
2377                        break;
2378#endif /* CONFIG_ALTIVEC */
2379
2380#ifdef __powerpc64__
2381                case 21:        /* ldx */
2382                case 53:        /* ldux */
2383                        op->type = MKOP(LOAD, u, 8);
2384                        break;
2385
2386                case 149:       /* stdx */
2387                case 181:       /* stdux */
2388                        op->type = MKOP(STORE, u, 8);
2389                        break;
2390#endif
2391
2392                case 151:       /* stwx */
2393                case 183:       /* stwux */
2394                        op->type = MKOP(STORE, u, 4);
2395                        break;
2396
2397                case 215:       /* stbx */
2398                case 247:       /* stbux */
2399                        op->type = MKOP(STORE, u, 1);
2400                        break;
2401
2402                case 279:       /* lhzx */
2403                case 311:       /* lhzux */
2404                        op->type = MKOP(LOAD, u, 2);
2405                        break;
2406
2407#ifdef __powerpc64__
2408                case 341:       /* lwax */
2409                case 373:       /* lwaux */
2410                        op->type = MKOP(LOAD, SIGNEXT | u, 4);
2411                        break;
2412#endif
2413
2414                case 343:       /* lhax */
2415                case 375:       /* lhaux */
2416                        op->type = MKOP(LOAD, SIGNEXT | u, 2);
2417                        break;
2418
2419                case 407:       /* sthx */
2420                case 439:       /* sthux */
2421                        op->type = MKOP(STORE, u, 2);
2422                        break;
2423
2424#ifdef __powerpc64__
2425                case 532:       /* ldbrx */
2426                        op->type = MKOP(LOAD, BYTEREV, 8);
2427                        break;
2428
2429#endif
2430                case 533:       /* lswx */
2431                        op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2432                        break;
2433
2434                case 534:       /* lwbrx */
2435                        op->type = MKOP(LOAD, BYTEREV, 4);
2436                        break;
2437
2438                case 597:       /* lswi */
2439                        if (rb == 0)
2440                                rb = 32;        /* # bytes to load */
2441                        op->type = MKOP(LOAD_MULTI, 0, rb);
2442                        op->ea = ra ? regs->gpr[ra] : 0;
2443                        break;
2444
2445#ifdef CONFIG_PPC_FPU
2446                case 535:       /* lfsx */
2447                case 567:       /* lfsux */
2448                        op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2449                        break;
2450
2451                case 599:       /* lfdx */
2452                case 631:       /* lfdux */
2453                        op->type = MKOP(LOAD_FP, u, 8);
2454                        break;
2455
2456                case 663:       /* stfsx */
2457                case 695:       /* stfsux */
2458                        op->type = MKOP(STORE_FP, u | FPCONV, 4);
2459                        break;
2460
2461                case 727:       /* stfdx */
2462                case 759:       /* stfdux */
2463                        op->type = MKOP(STORE_FP, u, 8);
2464                        break;
2465
2466#ifdef __powerpc64__
2467                case 791:       /* lfdpx */
2468                        op->type = MKOP(LOAD_FP, 0, 16);
2469                        break;
2470
2471                case 855:       /* lfiwax */
2472                        op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2473                        break;
2474
2475                case 887:       /* lfiwzx */
2476                        op->type = MKOP(LOAD_FP, 0, 4);
2477                        break;
2478
2479                case 919:       /* stfdpx */
2480                        op->type = MKOP(STORE_FP, 0, 16);
2481                        break;
2482
2483                case 983:       /* stfiwx */
2484                        op->type = MKOP(STORE_FP, 0, 4);
2485                        break;
2486#endif /* __powerpc64 */
2487#endif /* CONFIG_PPC_FPU */
2488
2489#ifdef __powerpc64__
2490                case 660:       /* stdbrx */
2491                        op->type = MKOP(STORE, BYTEREV, 8);
2492                        op->val = byterev_8(regs->gpr[rd]);
2493                        break;
2494
2495#endif
2496                case 661:       /* stswx */
2497                        op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2498                        break;
2499
2500                case 662:       /* stwbrx */
2501                        op->type = MKOP(STORE, BYTEREV, 4);
2502                        op->val = byterev_4(regs->gpr[rd]);
2503                        break;
2504
2505                case 725:       /* stswi */
2506                        if (rb == 0)
2507                                rb = 32;        /* # bytes to store */
2508                        op->type = MKOP(STORE_MULTI, 0, rb);
2509                        op->ea = ra ? regs->gpr[ra] : 0;
2510                        break;
2511
2512                case 790:       /* lhbrx */
2513                        op->type = MKOP(LOAD, BYTEREV, 2);
2514                        break;
2515
2516                case 918:       /* sthbrx */
2517                        op->type = MKOP(STORE, BYTEREV, 2);
2518                        op->val = byterev_2(regs->gpr[rd]);
2519                        break;
2520
2521#ifdef CONFIG_VSX
2522                case 12:        /* lxsiwzx */
2523                        op->reg = rd | ((word & 1) << 5);
2524                        op->type = MKOP(LOAD_VSX, 0, 4);
2525                        op->element_size = 8;
2526                        break;
2527
2528                case 76:        /* lxsiwax */
2529                        op->reg = rd | ((word & 1) << 5);
2530                        op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2531                        op->element_size = 8;
2532                        break;
2533
2534                case 140:       /* stxsiwx */
2535                        op->reg = rd | ((word & 1) << 5);
2536                        op->type = MKOP(STORE_VSX, 0, 4);
2537                        op->element_size = 8;
2538                        break;
2539
2540                case 268:       /* lxvx */
2541                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2542                                goto unknown_opcode;
2543                        op->reg = rd | ((word & 1) << 5);
2544                        op->type = MKOP(LOAD_VSX, 0, 16);
2545                        op->element_size = 16;
2546                        op->vsx_flags = VSX_CHECK_VEC;
2547                        break;
2548
2549                case 269:       /* lxvl */
2550                case 301: {     /* lxvll */
2551                        int nb;
2552                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2553                                goto unknown_opcode;
2554                        op->reg = rd | ((word & 1) << 5);
2555                        op->ea = ra ? regs->gpr[ra] : 0;
2556                        nb = regs->gpr[rb] & 0xff;
2557                        if (nb > 16)
2558                                nb = 16;
2559                        op->type = MKOP(LOAD_VSX, 0, nb);
2560                        op->element_size = 16;
2561                        op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2562                                VSX_CHECK_VEC;
2563                        break;
2564                }
2565                case 332:       /* lxvdsx */
2566                        op->reg = rd | ((word & 1) << 5);
2567                        op->type = MKOP(LOAD_VSX, 0, 8);
2568                        op->element_size = 8;
2569                        op->vsx_flags = VSX_SPLAT;
2570                        break;
2571
2572                case 333:       /* lxvpx */
2573                        if (!cpu_has_feature(CPU_FTR_ARCH_31))
2574                                goto unknown_opcode;
2575                        op->reg = VSX_REGISTER_XTP(rd);
2576                        op->type = MKOP(LOAD_VSX, 0, 32);
2577                        op->element_size = 32;
2578                        break;
2579
2580                case 364:       /* lxvwsx */
2581                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2582                                goto unknown_opcode;
2583                        op->reg = rd | ((word & 1) << 5);
2584                        op->type = MKOP(LOAD_VSX, 0, 4);
2585                        op->element_size = 4;
2586                        op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2587                        break;
2588
2589                case 396:       /* stxvx */
2590                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2591                                goto unknown_opcode;
2592                        op->reg = rd | ((word & 1) << 5);
2593                        op->type = MKOP(STORE_VSX, 0, 16);
2594                        op->element_size = 16;
2595                        op->vsx_flags = VSX_CHECK_VEC;
2596                        break;
2597
2598                case 397:       /* stxvl */
2599                case 429: {     /* stxvll */
2600                        int nb;
2601                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2602                                goto unknown_opcode;
2603                        op->reg = rd | ((word & 1) << 5);
2604                        op->ea = ra ? regs->gpr[ra] : 0;
2605                        nb = regs->gpr[rb] & 0xff;
2606                        if (nb > 16)
2607                                nb = 16;
2608                        op->type = MKOP(STORE_VSX, 0, nb);
2609                        op->element_size = 16;
2610                        op->vsx_flags = ((word & 0x20) ? VSX_LDLEFT : 0) |
2611                                VSX_CHECK_VEC;
2612                        break;
2613                }
2614                case 461:       /* stxvpx */
2615                        if (!cpu_has_feature(CPU_FTR_ARCH_31))
2616                                goto unknown_opcode;
2617                        op->reg = VSX_REGISTER_XTP(rd);
2618                        op->type = MKOP(STORE_VSX, 0, 32);
2619                        op->element_size = 32;
2620                        break;
2621                case 524:       /* lxsspx */
2622                        op->reg = rd | ((word & 1) << 5);
2623                        op->type = MKOP(LOAD_VSX, 0, 4);
2624                        op->element_size = 8;
2625                        op->vsx_flags = VSX_FPCONV;
2626                        break;
2627
2628                case 588:       /* lxsdx */
2629                        op->reg = rd | ((word & 1) << 5);
2630                        op->type = MKOP(LOAD_VSX, 0, 8);
2631                        op->element_size = 8;
2632                        break;
2633
2634                case 652:       /* stxsspx */
2635                        op->reg = rd | ((word & 1) << 5);
2636                        op->type = MKOP(STORE_VSX, 0, 4);
2637                        op->element_size = 8;
2638                        op->vsx_flags = VSX_FPCONV;
2639                        break;
2640
2641                case 716:       /* stxsdx */
2642                        op->reg = rd | ((word & 1) << 5);
2643                        op->type = MKOP(STORE_VSX, 0, 8);
2644                        op->element_size = 8;
2645                        break;
2646
2647                case 780:       /* lxvw4x */
2648                        op->reg = rd | ((word & 1) << 5);
2649                        op->type = MKOP(LOAD_VSX, 0, 16);
2650                        op->element_size = 4;
2651                        break;
2652
2653                case 781:       /* lxsibzx */
2654                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2655                                goto unknown_opcode;
2656                        op->reg = rd | ((word & 1) << 5);
2657                        op->type = MKOP(LOAD_VSX, 0, 1);
2658                        op->element_size = 8;
2659                        op->vsx_flags = VSX_CHECK_VEC;
2660                        break;
2661
2662                case 812:       /* lxvh8x */
2663                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2664                                goto unknown_opcode;
2665                        op->reg = rd | ((word & 1) << 5);
2666                        op->type = MKOP(LOAD_VSX, 0, 16);
2667                        op->element_size = 2;
2668                        op->vsx_flags = VSX_CHECK_VEC;
2669                        break;
2670
2671                case 813:       /* lxsihzx */
2672                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2673                                goto unknown_opcode;
2674                        op->reg = rd | ((word & 1) << 5);
2675                        op->type = MKOP(LOAD_VSX, 0, 2);
2676                        op->element_size = 8;
2677                        op->vsx_flags = VSX_CHECK_VEC;
2678                        break;
2679
2680                case 844:       /* lxvd2x */
2681                        op->reg = rd | ((word & 1) << 5);
2682                        op->type = MKOP(LOAD_VSX, 0, 16);
2683                        op->element_size = 8;
2684                        break;
2685
2686                case 876:       /* lxvb16x */
2687                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2688                                goto unknown_opcode;
2689                        op->reg = rd | ((word & 1) << 5);
2690                        op->type = MKOP(LOAD_VSX, 0, 16);
2691                        op->element_size = 1;
2692                        op->vsx_flags = VSX_CHECK_VEC;
2693                        break;
2694
2695                case 908:       /* stxvw4x */
2696                        op->reg = rd | ((word & 1) << 5);
2697                        op->type = MKOP(STORE_VSX, 0, 16);
2698                        op->element_size = 4;
2699                        break;
2700
2701                case 909:       /* stxsibx */
2702                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2703                                goto unknown_opcode;
2704                        op->reg = rd | ((word & 1) << 5);
2705                        op->type = MKOP(STORE_VSX, 0, 1);
2706                        op->element_size = 8;
2707                        op->vsx_flags = VSX_CHECK_VEC;
2708                        break;
2709
2710                case 940:       /* stxvh8x */
2711                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2712                                goto unknown_opcode;
2713                        op->reg = rd | ((word & 1) << 5);
2714                        op->type = MKOP(STORE_VSX, 0, 16);
2715                        op->element_size = 2;
2716                        op->vsx_flags = VSX_CHECK_VEC;
2717                        break;
2718
2719                case 941:       /* stxsihx */
2720                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2721                                goto unknown_opcode;
2722                        op->reg = rd | ((word & 1) << 5);
2723                        op->type = MKOP(STORE_VSX, 0, 2);
2724                        op->element_size = 8;
2725                        op->vsx_flags = VSX_CHECK_VEC;
2726                        break;
2727
2728                case 972:       /* stxvd2x */
2729                        op->reg = rd | ((word & 1) << 5);
2730                        op->type = MKOP(STORE_VSX, 0, 16);
2731                        op->element_size = 8;
2732                        break;
2733
2734                case 1004:      /* stxvb16x */
2735                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2736                                goto unknown_opcode;
2737                        op->reg = rd | ((word & 1) << 5);
2738                        op->type = MKOP(STORE_VSX, 0, 16);
2739                        op->element_size = 1;
2740                        op->vsx_flags = VSX_CHECK_VEC;
2741                        break;
2742
2743#endif /* CONFIG_VSX */
2744                }
2745                break;
2746
2747        case 32:        /* lwz */
2748        case 33:        /* lwzu */
2749                op->type = MKOP(LOAD, u, 4);
2750                op->ea = dform_ea(word, regs);
2751                break;
2752
2753        case 34:        /* lbz */
2754        case 35:        /* lbzu */
2755                op->type = MKOP(LOAD, u, 1);
2756                op->ea = dform_ea(word, regs);
2757                break;
2758
2759        case 36:        /* stw */
2760        case 37:        /* stwu */
2761                op->type = MKOP(STORE, u, 4);
2762                op->ea = dform_ea(word, regs);
2763                break;
2764
2765        case 38:        /* stb */
2766        case 39:        /* stbu */
2767                op->type = MKOP(STORE, u, 1);
2768                op->ea = dform_ea(word, regs);
2769                break;
2770
2771        case 40:        /* lhz */
2772        case 41:        /* lhzu */
2773                op->type = MKOP(LOAD, u, 2);
2774                op->ea = dform_ea(word, regs);
2775                break;
2776
2777        case 42:        /* lha */
2778        case 43:        /* lhau */
2779                op->type = MKOP(LOAD, SIGNEXT | u, 2);
2780                op->ea = dform_ea(word, regs);
2781                break;
2782
2783        case 44:        /* sth */
2784        case 45:        /* sthu */
2785                op->type = MKOP(STORE, u, 2);
2786                op->ea = dform_ea(word, regs);
2787                break;
2788
2789        case 46:        /* lmw */
2790                if (ra >= rd)
2791                        break;          /* invalid form, ra in range to load */
2792                op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2793                op->ea = dform_ea(word, regs);
2794                break;
2795
2796        case 47:        /* stmw */
2797                op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2798                op->ea = dform_ea(word, regs);
2799                break;
2800
2801#ifdef CONFIG_PPC_FPU
2802        case 48:        /* lfs */
2803        case 49:        /* lfsu */
2804                op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2805                op->ea = dform_ea(word, regs);
2806                break;
2807
2808        case 50:        /* lfd */
2809        case 51:        /* lfdu */
2810                op->type = MKOP(LOAD_FP, u, 8);
2811                op->ea = dform_ea(word, regs);
2812                break;
2813
2814        case 52:        /* stfs */
2815        case 53:        /* stfsu */
2816                op->type = MKOP(STORE_FP, u | FPCONV, 4);
2817                op->ea = dform_ea(word, regs);
2818                break;
2819
2820        case 54:        /* stfd */
2821        case 55:        /* stfdu */
2822                op->type = MKOP(STORE_FP, u, 8);
2823                op->ea = dform_ea(word, regs);
2824                break;
2825#endif
2826
2827#ifdef __powerpc64__
2828        case 56:        /* lq */
2829                if (!((rd & 1) || (rd == ra)))
2830                        op->type = MKOP(LOAD, 0, 16);
2831                op->ea = dqform_ea(word, regs);
2832                break;
2833#endif
2834
2835#ifdef CONFIG_VSX
2836        case 57:        /* lfdp, lxsd, lxssp */
2837                op->ea = dsform_ea(word, regs);
2838                switch (word & 3) {
2839                case 0:         /* lfdp */
2840                        if (rd & 1)
2841                                break;          /* reg must be even */
2842                        op->type = MKOP(LOAD_FP, 0, 16);
2843                        break;
2844                case 2:         /* lxsd */
2845                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2846                                goto unknown_opcode;
2847                        op->reg = rd + 32;
2848                        op->type = MKOP(LOAD_VSX, 0, 8);
2849                        op->element_size = 8;
2850                        op->vsx_flags = VSX_CHECK_VEC;
2851                        break;
2852                case 3:         /* lxssp */
2853                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2854                                goto unknown_opcode;
2855                        op->reg = rd + 32;
2856                        op->type = MKOP(LOAD_VSX, 0, 4);
2857                        op->element_size = 8;
2858                        op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2859                        break;
2860                }
2861                break;
2862#endif /* CONFIG_VSX */
2863
2864#ifdef __powerpc64__
2865        case 58:        /* ld[u], lwa */
2866                op->ea = dsform_ea(word, regs);
2867                switch (word & 3) {
2868                case 0:         /* ld */
2869                        op->type = MKOP(LOAD, 0, 8);
2870                        break;
2871                case 1:         /* ldu */
2872                        op->type = MKOP(LOAD, UPDATE, 8);
2873                        break;
2874                case 2:         /* lwa */
2875                        op->type = MKOP(LOAD, SIGNEXT, 4);
2876                        break;
2877                }
2878                break;
2879#endif
2880
2881#ifdef CONFIG_VSX
2882        case 6:
2883                if (!cpu_has_feature(CPU_FTR_ARCH_31))
2884                        goto unknown_opcode;
2885                op->ea = dqform_ea(word, regs);
2886                op->reg = VSX_REGISTER_XTP(rd);
2887                op->element_size = 32;
2888                switch (word & 0xf) {
2889                case 0:         /* lxvp */
2890                        op->type = MKOP(LOAD_VSX, 0, 32);
2891                        break;
2892                case 1:         /* stxvp */
2893                        op->type = MKOP(STORE_VSX, 0, 32);
2894                        break;
2895                }
2896                break;
2897
2898        case 61:        /* stfdp, lxv, stxsd, stxssp, stxv */
2899                switch (word & 7) {
2900                case 0:         /* stfdp with LSB of DS field = 0 */
2901                case 4:         /* stfdp with LSB of DS field = 1 */
2902                        op->ea = dsform_ea(word, regs);
2903                        op->type = MKOP(STORE_FP, 0, 16);
2904                        break;
2905
2906                case 1:         /* lxv */
2907                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2908                                goto unknown_opcode;
2909                        op->ea = dqform_ea(word, regs);
2910                        if (word & 8)
2911                                op->reg = rd + 32;
2912                        op->type = MKOP(LOAD_VSX, 0, 16);
2913                        op->element_size = 16;
2914                        op->vsx_flags = VSX_CHECK_VEC;
2915                        break;
2916
2917                case 2:         /* stxsd with LSB of DS field = 0 */
2918                case 6:         /* stxsd with LSB of DS field = 1 */
2919                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2920                                goto unknown_opcode;
2921                        op->ea = dsform_ea(word, regs);
2922                        op->reg = rd + 32;
2923                        op->type = MKOP(STORE_VSX, 0, 8);
2924                        op->element_size = 8;
2925                        op->vsx_flags = VSX_CHECK_VEC;
2926                        break;
2927
2928                case 3:         /* stxssp with LSB of DS field = 0 */
2929                case 7:         /* stxssp with LSB of DS field = 1 */
2930                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2931                                goto unknown_opcode;
2932                        op->ea = dsform_ea(word, regs);
2933                        op->reg = rd + 32;
2934                        op->type = MKOP(STORE_VSX, 0, 4);
2935                        op->element_size = 8;
2936                        op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2937                        break;
2938
2939                case 5:         /* stxv */
2940                        if (!cpu_has_feature(CPU_FTR_ARCH_300))
2941                                goto unknown_opcode;
2942                        op->ea = dqform_ea(word, regs);
2943                        if (word & 8)
2944                                op->reg = rd + 32;
2945                        op->type = MKOP(STORE_VSX, 0, 16);
2946                        op->element_size = 16;
2947                        op->vsx_flags = VSX_CHECK_VEC;
2948                        break;
2949                }
2950                break;
2951#endif /* CONFIG_VSX */
2952
2953#ifdef __powerpc64__
2954        case 62:        /* std[u] */
2955                op->ea = dsform_ea(word, regs);
2956                switch (word & 3) {
2957                case 0:         /* std */
2958                        op->type = MKOP(STORE, 0, 8);
2959                        break;
2960                case 1:         /* stdu */
2961                        op->type = MKOP(STORE, UPDATE, 8);
2962                        break;
2963                case 2:         /* stq */
2964                        if (!(rd & 1))
2965                                op->type = MKOP(STORE, 0, 16);
2966                        break;
2967                }
2968                break;
2969        case 1: /* Prefixed instructions */
2970                if (!cpu_has_feature(CPU_FTR_ARCH_31))
2971                        goto unknown_opcode;
2972
2973                prefix_r = GET_PREFIX_R(word);
2974                ra = GET_PREFIX_RA(suffix);
2975                op->update_reg = ra;
2976                rd = (suffix >> 21) & 0x1f;
2977                op->reg = rd;
2978                op->val = regs->gpr[rd];
2979
2980                suffixopcode = get_op(suffix);
2981                prefixtype = (word >> 24) & 0x3;
2982                switch (prefixtype) {
2983                case 0: /* Type 00  Eight-Byte Load/Store */
2984                        if (prefix_r && ra)
2985                                break;
2986                        op->ea = mlsd_8lsd_ea(word, suffix, regs);
2987                        switch (suffixopcode) {
2988                        case 41:        /* plwa */
2989                                op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 4);
2990                                break;
2991#ifdef CONFIG_VSX
2992                        case 42:        /* plxsd */
2993                                op->reg = rd + 32;
2994                                op->type = MKOP(LOAD_VSX, PREFIXED, 8);
2995                                op->element_size = 8;
2996                                op->vsx_flags = VSX_CHECK_VEC;
2997                                break;
2998                        case 43:        /* plxssp */
2999                                op->reg = rd + 32;
3000                                op->type = MKOP(LOAD_VSX, PREFIXED, 4);
3001                                op->element_size = 8;
3002                                op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3003                                break;
3004                        case 46:        /* pstxsd */
3005                                op->reg = rd + 32;
3006                                op->type = MKOP(STORE_VSX, PREFIXED, 8);
3007                                op->element_size = 8;
3008                                op->vsx_flags = VSX_CHECK_VEC;
3009                                break;
3010                        case 47:        /* pstxssp */
3011                                op->reg = rd + 32;
3012                                op->type = MKOP(STORE_VSX, PREFIXED, 4);
3013                                op->element_size = 8;
3014                                op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
3015                                break;
3016                        case 51:        /* plxv1 */
3017                                op->reg += 32;
3018                                fallthrough;
3019                        case 50:        /* plxv0 */
3020                                op->type = MKOP(LOAD_VSX, PREFIXED, 16);
3021                                op->element_size = 16;
3022                                op->vsx_flags = VSX_CHECK_VEC;
3023                                break;
3024                        case 55:        /* pstxv1 */
3025                                op->reg = rd + 32;
3026                                fallthrough;
3027                        case 54:        /* pstxv0 */
3028                                op->type = MKOP(STORE_VSX, PREFIXED, 16);
3029                                op->element_size = 16;
3030                                op->vsx_flags = VSX_CHECK_VEC;
3031                                break;
3032#endif /* CONFIG_VSX */
3033                        case 56:        /* plq */
3034                                op->type = MKOP(LOAD, PREFIXED, 16);
3035                                break;
3036                        case 57:        /* pld */
3037                                op->type = MKOP(LOAD, PREFIXED, 8);
3038                                break;
3039#ifdef CONFIG_VSX
3040                        case 58:        /* plxvp */
3041                                op->reg = VSX_REGISTER_XTP(rd);
3042                                op->type = MKOP(LOAD_VSX, PREFIXED, 32);
3043                                op->element_size = 32;
3044                                break;
3045#endif /* CONFIG_VSX */
3046                        case 60:        /* pstq */
3047                                op->type = MKOP(STORE, PREFIXED, 16);
3048                                break;
3049                        case 61:        /* pstd */
3050                                op->type = MKOP(STORE, PREFIXED, 8);
3051                                break;
3052#ifdef CONFIG_VSX
3053                        case 62:        /* pstxvp */
3054                                op->reg = VSX_REGISTER_XTP(rd);
3055                                op->type = MKOP(STORE_VSX, PREFIXED, 32);
3056                                op->element_size = 32;
3057                                break;
3058#endif /* CONFIG_VSX */
3059                        }
3060                        break;
3061                case 1: /* Type 01 Eight-Byte Register-to-Register */
3062                        break;
3063                case 2: /* Type 10 Modified Load/Store */
3064                        if (prefix_r && ra)
3065                                break;
3066                        op->ea = mlsd_8lsd_ea(word, suffix, regs);
3067                        switch (suffixopcode) {
3068                        case 32:        /* plwz */
3069                                op->type = MKOP(LOAD, PREFIXED, 4);
3070                                break;
3071                        case 34:        /* plbz */
3072                                op->type = MKOP(LOAD, PREFIXED, 1);
3073                                break;
3074                        case 36:        /* pstw */
3075                                op->type = MKOP(STORE, PREFIXED, 4);
3076                                break;
3077                        case 38:        /* pstb */
3078                                op->type = MKOP(STORE, PREFIXED, 1);
3079                                break;
3080                        case 40:        /* plhz */
3081                                op->type = MKOP(LOAD, PREFIXED, 2);
3082                                break;
3083                        case 42:        /* plha */
3084                                op->type = MKOP(LOAD, PREFIXED | SIGNEXT, 2);
3085                                break;
3086                        case 44:        /* psth */
3087                                op->type = MKOP(STORE, PREFIXED, 2);
3088                                break;
3089                        case 48:        /* plfs */
3090                                op->type = MKOP(LOAD_FP, PREFIXED | FPCONV, 4);
3091                                break;
3092                        case 50:        /* plfd */
3093                                op->type = MKOP(LOAD_FP, PREFIXED, 8);
3094                                break;
3095                        case 52:        /* pstfs */
3096                                op->type = MKOP(STORE_FP, PREFIXED | FPCONV, 4);
3097                                break;
3098                        case 54:        /* pstfd */
3099                                op->type = MKOP(STORE_FP, PREFIXED, 8);
3100                                break;
3101                        }
3102                        break;
3103                case 3: /* Type 11 Modified Register-to-Register */
3104                        break;
3105                }
3106#endif /* __powerpc64__ */
3107
3108        }
3109
3110        if (OP_IS_LOAD_STORE(op->type) && (op->type & UPDATE)) {
3111                switch (GETTYPE(op->type)) {
3112                case LOAD:
3113                        if (ra == rd)
3114                                goto unknown_opcode;
3115                        fallthrough;
3116                case STORE:
3117                case LOAD_FP:
3118                case STORE_FP:
3119                        if (ra == 0)
3120                                goto unknown_opcode;
3121                }
3122        }
3123
3124#ifdef CONFIG_VSX
3125        if ((GETTYPE(op->type) == LOAD_VSX ||
3126             GETTYPE(op->type) == STORE_VSX) &&
3127            !cpu_has_feature(CPU_FTR_VSX)) {
3128                return -1;
3129        }
3130#endif /* CONFIG_VSX */
3131
3132        return 0;
3133
3134 unknown_opcode:
3135        op->type = UNKNOWN;
3136        return 0;
3137
3138 logical_done:
3139        if (word & 1)
3140                set_cr0(regs, op);
3141 logical_done_nocc:
3142        op->reg = ra;
3143        op->type |= SETREG;
3144        return 1;
3145
3146 arith_done:
3147        if (word & 1)
3148                set_cr0(regs, op);
3149 compute_done:
3150        op->reg = rd;
3151        op->type |= SETREG;
3152        return 1;
3153
3154 priv:
3155        op->type = INTERRUPT | 0x700;
3156        op->val = SRR1_PROGPRIV;
3157        return 0;
3158
3159 trap:
3160        op->type = INTERRUPT | 0x700;
3161        op->val = SRR1_PROGTRAP;
3162        return 0;
3163}
3164EXPORT_SYMBOL_GPL(analyse_instr);
3165NOKPROBE_SYMBOL(analyse_instr);
3166
3167/*
3168 * For PPC32 we always use stwu with r1 to change the stack pointer.
3169 * So this emulated store may corrupt the exception frame, now we
3170 * have to provide the exception frame trampoline, which is pushed
3171 * below the kprobed function stack. So we only update gpr[1] but
3172 * don't emulate the real store operation. We will do real store
3173 * operation safely in exception return code by checking this flag.
3174 */
3175static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
3176{
3177        /*
3178         * Check if we already set since that means we'll
3179         * lose the previous value.
3180         */
3181        WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
3182        set_thread_flag(TIF_EMULATE_STACK_STORE);
3183        return 0;
3184}
3185
3186static nokprobe_inline void do_signext(unsigned long *valp, int size)
3187{
3188        switch (size) {
3189        case 2:
3190                *valp = (signed short) *valp;
3191                break;
3192        case 4:
3193                *valp = (signed int) *valp;
3194                break;
3195        }
3196}
3197
3198static nokprobe_inline void do_byterev(unsigned long *valp, int size)
3199{
3200        switch (size) {
3201        case 2:
3202                *valp = byterev_2(*valp);
3203                break;
3204        case 4:
3205                *valp = byterev_4(*valp);
3206                break;
3207#ifdef __powerpc64__
3208        case 8:
3209                *valp = byterev_8(*valp);
3210                break;
3211#endif
3212        }
3213}
3214
3215/*
3216 * Emulate an instruction that can be executed just by updating
3217 * fields in *regs.
3218 */
3219void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
3220{
3221        unsigned long next_pc;
3222
3223        next_pc = truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op->type));
3224        switch (GETTYPE(op->type)) {
3225        case COMPUTE:
3226                if (op->type & SETREG)
3227                        regs->gpr[op->reg] = op->val;
3228                if (op->type & SETCC)
3229                        regs->ccr = op->ccval;
3230                if (op->type & SETXER)
3231                        regs->xer = op->xerval;
3232                break;
3233
3234        case BRANCH:
3235                if (op->type & SETLK)
3236                        regs->link = next_pc;
3237                if (op->type & BRTAKEN)
3238                        next_pc = op->val;
3239                if (op->type & DECCTR)
3240                        --regs->ctr;
3241                break;
3242
3243        case BARRIER:
3244                switch (op->type & BARRIER_MASK) {
3245                case BARRIER_SYNC:
3246                        mb();
3247                        break;
3248                case BARRIER_ISYNC:
3249                        isync();
3250                        break;
3251                case BARRIER_EIEIO:
3252                        eieio();
3253                        break;
3254#ifdef CONFIG_PPC64
3255                case BARRIER_LWSYNC:
3256                        asm volatile("lwsync" : : : "memory");
3257                        break;
3258                case BARRIER_PTESYNC:
3259                        asm volatile("ptesync" : : : "memory");
3260                        break;
3261#endif
3262                }
3263                break;
3264
3265        case MFSPR:
3266                switch (op->spr) {
3267                case SPRN_XER:
3268                        regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
3269                        break;
3270                case SPRN_LR:
3271                        regs->gpr[op->reg] = regs->link;
3272                        break;
3273                case SPRN_CTR:
3274                        regs->gpr[op->reg] = regs->ctr;
3275                        break;
3276                default:
3277                        WARN_ON_ONCE(1);
3278                }
3279                break;
3280
3281        case MTSPR:
3282                switch (op->spr) {
3283                case SPRN_XER:
3284                        regs->xer = op->val & 0xffffffffUL;
3285                        break;
3286                case SPRN_LR:
3287                        regs->link = op->val;
3288                        break;
3289                case SPRN_CTR:
3290                        regs->ctr = op->val;
3291                        break;
3292                default:
3293                        WARN_ON_ONCE(1);
3294                }
3295                break;
3296
3297        default:
3298                WARN_ON_ONCE(1);
3299        }
3300        regs_set_return_ip(regs, next_pc);
3301}
3302NOKPROBE_SYMBOL(emulate_update_regs);
3303
3304/*
3305 * Emulate a previously-analysed load or store instruction.
3306 * Return values are:
3307 * 0 = instruction emulated successfully
3308 * -EFAULT = address out of range or access faulted (regs->dar
3309 *           contains the faulting address)
3310 * -EACCES = misaligned access, instruction requires alignment
3311 * -EINVAL = unknown operation in *op
3312 */
3313int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
3314{
3315        int err, size, type;
3316        int i, rd, nb;
3317        unsigned int cr;
3318        unsigned long val;
3319        unsigned long ea;
3320        bool cross_endian;
3321
3322        err = 0;
3323        size = GETSIZE(op->type);
3324        type = GETTYPE(op->type);
3325        cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
3326        ea = truncate_if_32bit(regs->msr, op->ea);
3327
3328        switch (type) {
3329        case LARX:
3330                if (ea & (size - 1))
3331                        return -EACCES;         /* can't handle misaligned */
3332                if (!address_ok(regs, ea, size))
3333                        return -EFAULT;
3334                err = 0;
3335                val = 0;
3336                switch (size) {
3337#ifdef __powerpc64__
3338                case 1:
3339                        __get_user_asmx(val, ea, err, "lbarx");
3340                        break;
3341                case 2:
3342                        __get_user_asmx(val, ea, err, "lharx");
3343                        break;
3344#endif
3345                case 4:
3346                        __get_user_asmx(val, ea, err, "lwarx");
3347                        break;
3348#ifdef __powerpc64__
3349                case 8:
3350                        __get_user_asmx(val, ea, err, "ldarx");
3351                        break;
3352                case 16:
3353                        err = do_lqarx(ea, &regs->gpr[op->reg]);
3354                        break;
3355#endif
3356                default:
3357                        return -EINVAL;
3358                }
3359                if (err) {
3360                        regs->dar = ea;
3361                        break;
3362                }
3363                if (size < 16)
3364                        regs->gpr[op->reg] = val;
3365                break;
3366
3367        case STCX:
3368                if (ea & (size - 1))
3369                        return -EACCES;         /* can't handle misaligned */
3370                if (!address_ok(regs, ea, size))
3371                        return -EFAULT;
3372                err = 0;
3373                switch (size) {
3374#ifdef __powerpc64__
3375                case 1:
3376                        __put_user_asmx(op->val, ea, err, "stbcx.", cr);
3377                        break;
3378                case 2:
3379                        __put_user_asmx(op->val, ea, err, "sthcx.", cr);
3380                        break;
3381#endif
3382                case 4:
3383                        __put_user_asmx(op->val, ea, err, "stwcx.", cr);
3384                        break;
3385#ifdef __powerpc64__
3386                case 8:
3387                        __put_user_asmx(op->val, ea, err, "stdcx.", cr);
3388                        break;
3389                case 16:
3390                        err = do_stqcx(ea, regs->gpr[op->reg],
3391                                       regs->gpr[op->reg + 1], &cr);
3392                        break;
3393#endif
3394                default:
3395                        return -EINVAL;
3396                }
3397                if (!err)
3398                        regs->ccr = (regs->ccr & 0x0fffffff) |
3399                                (cr & 0xe0000000) |
3400                                ((regs->xer >> 3) & 0x10000000);
3401                else
3402                        regs->dar = ea;
3403                break;
3404
3405        case LOAD:
3406#ifdef __powerpc64__
3407                if (size == 16) {
3408                        err = emulate_lq(regs, ea, op->reg, cross_endian);
3409                        break;
3410                }
3411#endif
3412                err = read_mem(&regs->gpr[op->reg], ea, size, regs);
3413                if (!err) {
3414                        if (op->type & SIGNEXT)
3415                                do_signext(&regs->gpr[op->reg], size);
3416                        if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
3417                                do_byterev(&regs->gpr[op->reg], size);
3418                }
3419                break;
3420
3421#ifdef CONFIG_PPC_FPU
3422        case LOAD_FP:
3423                /*
3424                 * If the instruction is in userspace, we can emulate it even
3425                 * if the VMX state is not live, because we have the state
3426                 * stored in the thread_struct.  If the instruction is in
3427                 * the kernel, we must not touch the state in the thread_struct.
3428                 */
3429                if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3430                        return 0;
3431                err = do_fp_load(op, ea, regs, cross_endian);
3432                break;
3433#endif
3434#ifdef CONFIG_ALTIVEC
3435        case LOAD_VMX:
3436                if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3437                        return 0;
3438                err = do_vec_load(op->reg, ea, size, regs, cross_endian);
3439                break;
3440#endif
3441#ifdef CONFIG_VSX
3442        case LOAD_VSX: {
3443                unsigned long msrbit = MSR_VSX;
3444
3445                /*
3446                 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3447                 * when the target of the instruction is a vector register.
3448                 */
3449                if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3450                        msrbit = MSR_VEC;
3451                if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3452                        return 0;
3453                err = do_vsx_load(op, ea, regs, cross_endian);
3454                break;
3455        }
3456#endif
3457        case LOAD_MULTI:
3458                if (!address_ok(regs, ea, size))
3459                        return -EFAULT;
3460                rd = op->reg;
3461                for (i = 0; i < size; i += 4) {
3462                        unsigned int v32 = 0;
3463
3464                        nb = size - i;
3465                        if (nb > 4)
3466                                nb = 4;
3467                        err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3468                        if (err)
3469                                break;
3470                        if (unlikely(cross_endian))
3471                                v32 = byterev_4(v32);
3472                        regs->gpr[rd] = v32;
3473                        ea += 4;
3474                        /* reg number wraps from 31 to 0 for lsw[ix] */
3475                        rd = (rd + 1) & 0x1f;
3476                }
3477                break;
3478
3479        case STORE:
3480#ifdef __powerpc64__
3481                if (size == 16) {
3482                        err = emulate_stq(regs, ea, op->reg, cross_endian);
3483                        break;
3484                }
3485#endif
3486                if ((op->type & UPDATE) && size == sizeof(long) &&
3487                    op->reg == 1 && op->update_reg == 1 &&
3488                    !(regs->msr & MSR_PR) &&
3489                    ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3490                        err = handle_stack_update(ea, regs);
3491                        break;
3492                }
3493                if (unlikely(cross_endian))
3494                        do_byterev(&op->val, size);
3495                err = write_mem(op->val, ea, size, regs);
3496                break;
3497
3498#ifdef CONFIG_PPC_FPU
3499        case STORE_FP:
3500                if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3501                        return 0;
3502                err = do_fp_store(op, ea, regs, cross_endian);
3503                break;
3504#endif
3505#ifdef CONFIG_ALTIVEC
3506        case STORE_VMX:
3507                if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3508                        return 0;
3509                err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3510                break;
3511#endif
3512#ifdef CONFIG_VSX
3513        case STORE_VSX: {
3514                unsigned long msrbit = MSR_VSX;
3515
3516                /*
3517                 * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3518                 * when the target of the instruction is a vector register.
3519                 */
3520                if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3521                        msrbit = MSR_VEC;
3522                if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3523                        return 0;
3524                err = do_vsx_store(op, ea, regs, cross_endian);
3525                break;
3526        }
3527#endif
3528        case STORE_MULTI:
3529                if (!address_ok(regs, ea, size))
3530                        return -EFAULT;
3531                rd = op->reg;
3532                for (i = 0; i < size; i += 4) {
3533                        unsigned int v32 = regs->gpr[rd];
3534
3535                        nb = size - i;
3536                        if (nb > 4)
3537                                nb = 4;
3538                        if (unlikely(cross_endian))
3539                                v32 = byterev_4(v32);
3540                        err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3541                        if (err)
3542                                break;
3543                        ea += 4;
3544                        /* reg number wraps from 31 to 0 for stsw[ix] */
3545                        rd = (rd + 1) & 0x1f;
3546                }
3547                break;
3548
3549        default:
3550                return -EINVAL;
3551        }
3552
3553        if (err)
3554                return err;
3555
3556        if (op->type & UPDATE)
3557                regs->gpr[op->update_reg] = op->ea;
3558
3559        return 0;
3560}
3561NOKPROBE_SYMBOL(emulate_loadstore);
3562
3563/*
3564 * Emulate instructions that cause a transfer of control,
3565 * loads and stores, and a few other instructions.
3566 * Returns 1 if the step was emulated, 0 if not,
3567 * or -1 if the instruction is one that should not be stepped,
3568 * such as an rfid, or a mtmsrd that would clear MSR_RI.
3569 */
3570int emulate_step(struct pt_regs *regs, ppc_inst_t instr)
3571{
3572        struct instruction_op op;
3573        int r, err, type;
3574        unsigned long val;
3575        unsigned long ea;
3576
3577        r = analyse_instr(&op, regs, instr);
3578        if (r < 0)
3579                return r;
3580        if (r > 0) {
3581                emulate_update_regs(regs, &op);
3582                return 1;
3583        }
3584
3585        err = 0;
3586        type = GETTYPE(op.type);
3587
3588        if (OP_IS_LOAD_STORE(type)) {
3589                err = emulate_loadstore(regs, &op);
3590                if (err)
3591                        return 0;
3592                goto instr_done;
3593        }
3594
3595        switch (type) {
3596        case CACHEOP:
3597                ea = truncate_if_32bit(regs->msr, op.ea);
3598                if (!address_ok(regs, ea, 8))
3599                        return 0;
3600                switch (op.type & CACHEOP_MASK) {
3601                case DCBST:
3602                        __cacheop_user_asmx(ea, err, "dcbst");
3603                        break;
3604                case DCBF:
3605                        __cacheop_user_asmx(ea, err, "dcbf");
3606                        break;
3607                case DCBTST:
3608                        if (op.reg == 0)
3609                                prefetchw((void *) ea);
3610                        break;
3611                case DCBT:
3612                        if (op.reg == 0)
3613                                prefetch((void *) ea);
3614                        break;
3615                case ICBI:
3616                        __cacheop_user_asmx(ea, err, "icbi");
3617                        break;
3618                case DCBZ:
3619                        err = emulate_dcbz(ea, regs);
3620                        break;
3621                }
3622                if (err) {
3623                        regs->dar = ea;
3624                        return 0;
3625                }
3626                goto instr_done;
3627
3628        case MFMSR:
3629                regs->gpr[op.reg] = regs->msr & MSR_MASK;
3630                goto instr_done;
3631
3632        case MTMSR:
3633                val = regs->gpr[op.reg];
3634                if ((val & MSR_RI) == 0)
3635                        /* can't step mtmsr[d] that would clear MSR_RI */
3636                        return -1;
3637                /* here op.val is the mask of bits to change */
3638                regs_set_return_msr(regs, (regs->msr & ~op.val) | (val & op.val));
3639                goto instr_done;
3640
3641        case SYSCALL:   /* sc */
3642                /*
3643                 * Per ISA v3.1, section 7.5.15 'Trace Interrupt', we can't
3644                 * single step a system call instruction:
3645                 *
3646                 *   Successful completion for an instruction means that the
3647                 *   instruction caused no other interrupt. Thus a Trace
3648                 *   interrupt never occurs for a System Call or System Call
3649                 *   Vectored instruction, or for a Trap instruction that
3650                 *   traps.
3651                 */
3652                return -1;
3653        case SYSCALL_VECTORED_0:        /* scv 0 */
3654                return -1;
3655        case RFI:
3656                return -1;
3657        }
3658        return 0;
3659
3660 instr_done:
3661        regs_set_return_ip(regs,
3662                truncate_if_32bit(regs->msr, regs->nip + GETLENGTH(op.type)));
3663        return 1;
3664}
3665NOKPROBE_SYMBOL(emulate_step);
3666