linux/arch/arm/include/asm/bitops.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Copyright 1995, Russell King.
   4 * Various bits and pieces copyrights include:
   5 *  Linus Torvalds (test_bit).
   6 * Big endian support: Copyright 2001, Nicolas Pitre
   7 *  reworked by rmk.
   8 *
   9 * bit 0 is the LSB of an "unsigned long" quantity.
  10 *
  11 * Please note that the code in this file should never be included
  12 * from user space.  Many of these are not implemented in assembler
  13 * since they would be too costly.  Also, they require privileged
  14 * instructions (which are not available from user mode) to ensure
  15 * that they are atomic.
  16 */
  17
  18#ifndef __ASM_ARM_BITOPS_H
  19#define __ASM_ARM_BITOPS_H
  20
  21#ifdef __KERNEL__
  22
  23#ifndef _LINUX_BITOPS_H
  24#error only <linux/bitops.h> can be included directly
  25#endif
  26
  27#include <linux/compiler.h>
  28#include <linux/irqflags.h>
  29#include <asm/barrier.h>
  30
  31/*
  32 * These functions are the basis of our bit ops.
  33 *
  34 * First, the atomic bitops. These use native endian.
  35 */
  36static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
  37{
  38        unsigned long flags;
  39        unsigned long mask = BIT_MASK(bit);
  40
  41        p += BIT_WORD(bit);
  42
  43        raw_local_irq_save(flags);
  44        *p |= mask;
  45        raw_local_irq_restore(flags);
  46}
  47
  48static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
  49{
  50        unsigned long flags;
  51        unsigned long mask = BIT_MASK(bit);
  52
  53        p += BIT_WORD(bit);
  54
  55        raw_local_irq_save(flags);
  56        *p &= ~mask;
  57        raw_local_irq_restore(flags);
  58}
  59
  60static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
  61{
  62        unsigned long flags;
  63        unsigned long mask = BIT_MASK(bit);
  64
  65        p += BIT_WORD(bit);
  66
  67        raw_local_irq_save(flags);
  68        *p ^= mask;
  69        raw_local_irq_restore(flags);
  70}
  71
  72static inline int
  73____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
  74{
  75        unsigned long flags;
  76        unsigned int res;
  77        unsigned long mask = BIT_MASK(bit);
  78
  79        p += BIT_WORD(bit);
  80
  81        raw_local_irq_save(flags);
  82        res = *p;
  83        *p = res | mask;
  84        raw_local_irq_restore(flags);
  85
  86        return (res & mask) != 0;
  87}
  88
  89static inline int
  90____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
  91{
  92        unsigned long flags;
  93        unsigned int res;
  94        unsigned long mask = BIT_MASK(bit);
  95
  96        p += BIT_WORD(bit);
  97
  98        raw_local_irq_save(flags);
  99        res = *p;
 100        *p = res & ~mask;
 101        raw_local_irq_restore(flags);
 102
 103        return (res & mask) != 0;
 104}
 105
 106static inline int
 107____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
 108{
 109        unsigned long flags;
 110        unsigned int res;
 111        unsigned long mask = BIT_MASK(bit);
 112
 113        p += BIT_WORD(bit);
 114
 115        raw_local_irq_save(flags);
 116        res = *p;
 117        *p = res ^ mask;
 118        raw_local_irq_restore(flags);
 119
 120        return (res & mask) != 0;
 121}
 122
 123#include <asm-generic/bitops/non-atomic.h>
 124
 125/*
 126 *  A note about Endian-ness.
 127 *  -------------------------
 128 *
 129 * When the ARM is put into big endian mode via CR15, the processor
 130 * merely swaps the order of bytes within words, thus:
 131 *
 132 *          ------------ physical data bus bits -----------
 133 *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
 134 * little     byte 3       byte 2       byte 1      byte 0
 135 * big        byte 0       byte 1       byte 2      byte 3
 136 *
 137 * This means that reading a 32-bit word at address 0 returns the same
 138 * value irrespective of the endian mode bit.
 139 *
 140 * Peripheral devices should be connected with the data bus reversed in
 141 * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
 142 * available from http://www.arm.com/.
 143 *
 144 * The following assumes that the data bus connectivity for big endian
 145 * mode has been followed.
 146 *
 147 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
 148 */
 149
 150/*
 151 * Native endian assembly bitops.  nr = 0 -> word 0 bit 0.
 152 */
 153extern void _set_bit(int nr, volatile unsigned long * p);
 154extern void _clear_bit(int nr, volatile unsigned long * p);
 155extern void _change_bit(int nr, volatile unsigned long * p);
 156extern int _test_and_set_bit(int nr, volatile unsigned long * p);
 157extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
 158extern int _test_and_change_bit(int nr, volatile unsigned long * p);
 159
 160/*
 161 * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
 162 */
 163unsigned long _find_first_zero_bit_le(const unsigned long *p, unsigned long size);
 164unsigned long _find_next_zero_bit_le(const unsigned long *p,
 165                                     unsigned long size, unsigned long offset);
 166unsigned long _find_first_bit_le(const unsigned long *p, unsigned long size);
 167unsigned long _find_next_bit_le(const unsigned long *p, unsigned long size, unsigned long offset);
 168
 169/*
 170 * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
 171 */
 172unsigned long _find_first_zero_bit_be(const unsigned long *p, unsigned long size);
 173unsigned long _find_next_zero_bit_be(const unsigned long *p,
 174                                     unsigned long size, unsigned long offset);
 175unsigned long _find_first_bit_be(const unsigned long *p, unsigned long size);
 176unsigned long _find_next_bit_be(const unsigned long *p, unsigned long size, unsigned long offset);
 177
 178#ifndef CONFIG_SMP
 179/*
 180 * The __* form of bitops are non-atomic and may be reordered.
 181 */
 182#define ATOMIC_BITOP(name,nr,p)                 \
 183        (__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
 184#else
 185#define ATOMIC_BITOP(name,nr,p)         _##name(nr,p)
 186#endif
 187
 188/*
 189 * Native endian atomic definitions.
 190 */
 191#define set_bit(nr,p)                   ATOMIC_BITOP(set_bit,nr,p)
 192#define clear_bit(nr,p)                 ATOMIC_BITOP(clear_bit,nr,p)
 193#define change_bit(nr,p)                ATOMIC_BITOP(change_bit,nr,p)
 194#define test_and_set_bit(nr,p)          ATOMIC_BITOP(test_and_set_bit,nr,p)
 195#define test_and_clear_bit(nr,p)        ATOMIC_BITOP(test_and_clear_bit,nr,p)
 196#define test_and_change_bit(nr,p)       ATOMIC_BITOP(test_and_change_bit,nr,p)
 197
 198#ifndef __ARMEB__
 199/*
 200 * These are the little endian, atomic definitions.
 201 */
 202#define find_first_zero_bit(p,sz)       _find_first_zero_bit_le(p,sz)
 203#define find_next_zero_bit(p,sz,off)    _find_next_zero_bit_le(p,sz,off)
 204#define find_first_bit(p,sz)            _find_first_bit_le(p,sz)
 205#define find_next_bit(p,sz,off)         _find_next_bit_le(p,sz,off)
 206
 207#else
 208/*
 209 * These are the big endian, atomic definitions.
 210 */
 211#define find_first_zero_bit(p,sz)       _find_first_zero_bit_be(p,sz)
 212#define find_next_zero_bit(p,sz,off)    _find_next_zero_bit_be(p,sz,off)
 213#define find_first_bit(p,sz)            _find_first_bit_be(p,sz)
 214#define find_next_bit(p,sz,off)         _find_next_bit_be(p,sz,off)
 215
 216#endif
 217
 218#if __LINUX_ARM_ARCH__ < 5
 219
 220#include <asm-generic/bitops/__fls.h>
 221#include <asm-generic/bitops/__ffs.h>
 222#include <asm-generic/bitops/fls.h>
 223#include <asm-generic/bitops/ffs.h>
 224
 225#else
 226
 227/*
 228 * On ARMv5 and above, the gcc built-ins may rely on the clz instruction
 229 * and produce optimal inlined code in all cases. On ARMv7 it is even
 230 * better by also using the rbit instruction.
 231 */
 232#include <asm-generic/bitops/builtin-__fls.h>
 233#include <asm-generic/bitops/builtin-__ffs.h>
 234#include <asm-generic/bitops/builtin-fls.h>
 235#include <asm-generic/bitops/builtin-ffs.h>
 236
 237#endif
 238
 239#include <asm-generic/bitops/ffz.h>
 240
 241#include <asm-generic/bitops/fls64.h>
 242
 243#include <asm-generic/bitops/sched.h>
 244#include <asm-generic/bitops/hweight.h>
 245#include <asm-generic/bitops/lock.h>
 246
 247#ifdef __ARMEB__
 248
 249static inline int find_first_zero_bit_le(const void *p, unsigned size)
 250{
 251        return _find_first_zero_bit_le(p, size);
 252}
 253#define find_first_zero_bit_le find_first_zero_bit_le
 254
 255static inline int find_next_zero_bit_le(const void *p, int size, int offset)
 256{
 257        return _find_next_zero_bit_le(p, size, offset);
 258}
 259#define find_next_zero_bit_le find_next_zero_bit_le
 260
 261static inline int find_next_bit_le(const void *p, int size, int offset)
 262{
 263        return _find_next_bit_le(p, size, offset);
 264}
 265#define find_next_bit_le find_next_bit_le
 266
 267#endif
 268
 269#include <asm-generic/bitops/le.h>
 270
 271/*
 272 * Ext2 is defined to use little-endian byte ordering.
 273 */
 274#include <asm-generic/bitops/ext2-atomic-setbit.h>
 275
 276#endif /* __KERNEL__ */
 277
 278#endif /* _ARM_BITOPS_H */
 279