linux/kernel/cgroup/cgroup.c
<<
>>
Prefs
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Notifications support
   8 *  Copyright (C) 2009 Nokia Corporation
   9 *  Author: Kirill A. Shutemov
  10 *
  11 *  Copyright notices from the original cpuset code:
  12 *  --------------------------------------------------
  13 *  Copyright (C) 2003 BULL SA.
  14 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  15 *
  16 *  Portions derived from Patrick Mochel's sysfs code.
  17 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  18 *
  19 *  2003-10-10 Written by Simon Derr.
  20 *  2003-10-22 Updates by Stephen Hemminger.
  21 *  2004 May-July Rework by Paul Jackson.
  22 *  ---------------------------------------------------
  23 *
  24 *  This file is subject to the terms and conditions of the GNU General Public
  25 *  License.  See the file COPYING in the main directory of the Linux
  26 *  distribution for more details.
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include "cgroup-internal.h"
  32
  33#include <linux/bpf-cgroup.h>
  34#include <linux/cred.h>
  35#include <linux/errno.h>
  36#include <linux/init_task.h>
  37#include <linux/kernel.h>
  38#include <linux/magic.h>
  39#include <linux/mutex.h>
  40#include <linux/mount.h>
  41#include <linux/pagemap.h>
  42#include <linux/proc_fs.h>
  43#include <linux/rcupdate.h>
  44#include <linux/sched.h>
  45#include <linux/sched/task.h>
  46#include <linux/slab.h>
  47#include <linux/spinlock.h>
  48#include <linux/percpu-rwsem.h>
  49#include <linux/string.h>
  50#include <linux/hashtable.h>
  51#include <linux/idr.h>
  52#include <linux/kthread.h>
  53#include <linux/atomic.h>
  54#include <linux/cpuset.h>
  55#include <linux/proc_ns.h>
  56#include <linux/nsproxy.h>
  57#include <linux/file.h>
  58#include <linux/fs_parser.h>
  59#include <linux/sched/cputime.h>
  60#include <linux/psi.h>
  61#include <net/sock.h>
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/cgroup.h>
  65
  66#define CGROUP_FILE_NAME_MAX            (MAX_CGROUP_TYPE_NAMELEN +      \
  67                                         MAX_CFTYPE_NAME + 2)
  68/* let's not notify more than 100 times per second */
  69#define CGROUP_FILE_NOTIFY_MIN_INTV     DIV_ROUND_UP(HZ, 100)
  70
  71/*
  72 * To avoid confusing the compiler (and generating warnings) with code
  73 * that attempts to access what would be a 0-element array (i.e. sized
  74 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
  75 * constant expression can be added.
  76 */
  77#define CGROUP_HAS_SUBSYS_CONFIG        (CGROUP_SUBSYS_COUNT > 0)
  78
  79/*
  80 * cgroup_mutex is the master lock.  Any modification to cgroup or its
  81 * hierarchy must be performed while holding it.
  82 *
  83 * css_set_lock protects task->cgroups pointer, the list of css_set
  84 * objects, and the chain of tasks off each css_set.
  85 *
  86 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
  87 * cgroup.h can use them for lockdep annotations.
  88 */
  89DEFINE_MUTEX(cgroup_mutex);
  90DEFINE_SPINLOCK(css_set_lock);
  91
  92#ifdef CONFIG_PROVE_RCU
  93EXPORT_SYMBOL_GPL(cgroup_mutex);
  94EXPORT_SYMBOL_GPL(css_set_lock);
  95#endif
  96
  97DEFINE_SPINLOCK(trace_cgroup_path_lock);
  98char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
  99static bool cgroup_debug __read_mostly;
 100
 101/*
 102 * Protects cgroup_idr and css_idr so that IDs can be released without
 103 * grabbing cgroup_mutex.
 104 */
 105static DEFINE_SPINLOCK(cgroup_idr_lock);
 106
 107/*
 108 * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
 109 * against file removal/re-creation across css hiding.
 110 */
 111static DEFINE_SPINLOCK(cgroup_file_kn_lock);
 112
 113DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
 114
 115#define cgroup_assert_mutex_or_rcu_locked()                             \
 116        RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
 117                           !lockdep_is_held(&cgroup_mutex),             \
 118                           "cgroup_mutex or RCU read lock required");
 119
 120/*
 121 * cgroup destruction makes heavy use of work items and there can be a lot
 122 * of concurrent destructions.  Use a separate workqueue so that cgroup
 123 * destruction work items don't end up filling up max_active of system_wq
 124 * which may lead to deadlock.
 125 */
 126static struct workqueue_struct *cgroup_destroy_wq;
 127
 128/* generate an array of cgroup subsystem pointers */
 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
 130struct cgroup_subsys *cgroup_subsys[] = {
 131#include <linux/cgroup_subsys.h>
 132};
 133#undef SUBSYS
 134
 135/* array of cgroup subsystem names */
 136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
 137static const char *cgroup_subsys_name[] = {
 138#include <linux/cgroup_subsys.h>
 139};
 140#undef SUBSYS
 141
 142/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
 143#define SUBSYS(_x)                                                              \
 144        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);                 \
 145        DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);                  \
 146        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);                      \
 147        EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
 148#include <linux/cgroup_subsys.h>
 149#undef SUBSYS
 150
 151#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
 152static struct static_key_true *cgroup_subsys_enabled_key[] = {
 153#include <linux/cgroup_subsys.h>
 154};
 155#undef SUBSYS
 156
 157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
 158static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
 159#include <linux/cgroup_subsys.h>
 160};
 161#undef SUBSYS
 162
 163static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
 164
 165/* the default hierarchy */
 166struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
 167EXPORT_SYMBOL_GPL(cgrp_dfl_root);
 168
 169/*
 170 * The default hierarchy always exists but is hidden until mounted for the
 171 * first time.  This is for backward compatibility.
 172 */
 173static bool cgrp_dfl_visible;
 174
 175/* some controllers are not supported in the default hierarchy */
 176static u16 cgrp_dfl_inhibit_ss_mask;
 177
 178/* some controllers are implicitly enabled on the default hierarchy */
 179static u16 cgrp_dfl_implicit_ss_mask;
 180
 181/* some controllers can be threaded on the default hierarchy */
 182static u16 cgrp_dfl_threaded_ss_mask;
 183
 184/* The list of hierarchy roots */
 185LIST_HEAD(cgroup_roots);
 186static int cgroup_root_count;
 187
 188/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
 189static DEFINE_IDR(cgroup_hierarchy_idr);
 190
 191/*
 192 * Assign a monotonically increasing serial number to csses.  It guarantees
 193 * cgroups with bigger numbers are newer than those with smaller numbers.
 194 * Also, as csses are always appended to the parent's ->children list, it
 195 * guarantees that sibling csses are always sorted in the ascending serial
 196 * number order on the list.  Protected by cgroup_mutex.
 197 */
 198static u64 css_serial_nr_next = 1;
 199
 200/*
 201 * These bitmasks identify subsystems with specific features to avoid
 202 * having to do iterative checks repeatedly.
 203 */
 204static u16 have_fork_callback __read_mostly;
 205static u16 have_exit_callback __read_mostly;
 206static u16 have_release_callback __read_mostly;
 207static u16 have_canfork_callback __read_mostly;
 208
 209/* cgroup namespace for init task */
 210struct cgroup_namespace init_cgroup_ns = {
 211        .ns.count       = REFCOUNT_INIT(2),
 212        .user_ns        = &init_user_ns,
 213        .ns.ops         = &cgroupns_operations,
 214        .ns.inum        = PROC_CGROUP_INIT_INO,
 215        .root_cset      = &init_css_set,
 216};
 217
 218static struct file_system_type cgroup2_fs_type;
 219static struct cftype cgroup_base_files[];
 220
 221/* cgroup optional features */
 222enum cgroup_opt_features {
 223#ifdef CONFIG_PSI
 224        OPT_FEATURE_PRESSURE,
 225#endif
 226        OPT_FEATURE_COUNT
 227};
 228
 229static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
 230#ifdef CONFIG_PSI
 231        "pressure",
 232#endif
 233};
 234
 235static u16 cgroup_feature_disable_mask __read_mostly;
 236
 237static int cgroup_apply_control(struct cgroup *cgrp);
 238static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
 239static void css_task_iter_skip(struct css_task_iter *it,
 240                               struct task_struct *task);
 241static int cgroup_destroy_locked(struct cgroup *cgrp);
 242static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
 243                                              struct cgroup_subsys *ss);
 244static void css_release(struct percpu_ref *ref);
 245static void kill_css(struct cgroup_subsys_state *css);
 246static int cgroup_addrm_files(struct cgroup_subsys_state *css,
 247                              struct cgroup *cgrp, struct cftype cfts[],
 248                              bool is_add);
 249
 250/**
 251 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
 252 * @ssid: subsys ID of interest
 253 *
 254 * cgroup_subsys_enabled() can only be used with literal subsys names which
 255 * is fine for individual subsystems but unsuitable for cgroup core.  This
 256 * is slower static_key_enabled() based test indexed by @ssid.
 257 */
 258bool cgroup_ssid_enabled(int ssid)
 259{
 260        if (!CGROUP_HAS_SUBSYS_CONFIG)
 261                return false;
 262
 263        return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
 264}
 265
 266/**
 267 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
 268 * @cgrp: the cgroup of interest
 269 *
 270 * The default hierarchy is the v2 interface of cgroup and this function
 271 * can be used to test whether a cgroup is on the default hierarchy for
 272 * cases where a subsystem should behave differently depending on the
 273 * interface version.
 274 *
 275 * List of changed behaviors:
 276 *
 277 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
 278 *   and "name" are disallowed.
 279 *
 280 * - When mounting an existing superblock, mount options should match.
 281 *
 282 * - rename(2) is disallowed.
 283 *
 284 * - "tasks" is removed.  Everything should be at process granularity.  Use
 285 *   "cgroup.procs" instead.
 286 *
 287 * - "cgroup.procs" is not sorted.  pids will be unique unless they got
 288 *   recycled in-between reads.
 289 *
 290 * - "release_agent" and "notify_on_release" are removed.  Replacement
 291 *   notification mechanism will be implemented.
 292 *
 293 * - "cgroup.clone_children" is removed.
 294 *
 295 * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
 296 *   and its descendants contain no task; otherwise, 1.  The file also
 297 *   generates kernfs notification which can be monitored through poll and
 298 *   [di]notify when the value of the file changes.
 299 *
 300 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
 301 *   take masks of ancestors with non-empty cpus/mems, instead of being
 302 *   moved to an ancestor.
 303 *
 304 * - cpuset: a task can be moved into an empty cpuset, and again it takes
 305 *   masks of ancestors.
 306 *
 307 * - blkcg: blk-throttle becomes properly hierarchical.
 308 *
 309 * - debug: disallowed on the default hierarchy.
 310 */
 311bool cgroup_on_dfl(const struct cgroup *cgrp)
 312{
 313        return cgrp->root == &cgrp_dfl_root;
 314}
 315
 316/* IDR wrappers which synchronize using cgroup_idr_lock */
 317static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
 318                            gfp_t gfp_mask)
 319{
 320        int ret;
 321
 322        idr_preload(gfp_mask);
 323        spin_lock_bh(&cgroup_idr_lock);
 324        ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
 325        spin_unlock_bh(&cgroup_idr_lock);
 326        idr_preload_end();
 327        return ret;
 328}
 329
 330static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
 331{
 332        void *ret;
 333
 334        spin_lock_bh(&cgroup_idr_lock);
 335        ret = idr_replace(idr, ptr, id);
 336        spin_unlock_bh(&cgroup_idr_lock);
 337        return ret;
 338}
 339
 340static void cgroup_idr_remove(struct idr *idr, int id)
 341{
 342        spin_lock_bh(&cgroup_idr_lock);
 343        idr_remove(idr, id);
 344        spin_unlock_bh(&cgroup_idr_lock);
 345}
 346
 347static bool cgroup_has_tasks(struct cgroup *cgrp)
 348{
 349        return cgrp->nr_populated_csets;
 350}
 351
 352bool cgroup_is_threaded(struct cgroup *cgrp)
 353{
 354        return cgrp->dom_cgrp != cgrp;
 355}
 356
 357/* can @cgrp host both domain and threaded children? */
 358static bool cgroup_is_mixable(struct cgroup *cgrp)
 359{
 360        /*
 361         * Root isn't under domain level resource control exempting it from
 362         * the no-internal-process constraint, so it can serve as a thread
 363         * root and a parent of resource domains at the same time.
 364         */
 365        return !cgroup_parent(cgrp);
 366}
 367
 368/* can @cgrp become a thread root? Should always be true for a thread root */
 369static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
 370{
 371        /* mixables don't care */
 372        if (cgroup_is_mixable(cgrp))
 373                return true;
 374
 375        /* domain roots can't be nested under threaded */
 376        if (cgroup_is_threaded(cgrp))
 377                return false;
 378
 379        /* can only have either domain or threaded children */
 380        if (cgrp->nr_populated_domain_children)
 381                return false;
 382
 383        /* and no domain controllers can be enabled */
 384        if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
 385                return false;
 386
 387        return true;
 388}
 389
 390/* is @cgrp root of a threaded subtree? */
 391bool cgroup_is_thread_root(struct cgroup *cgrp)
 392{
 393        /* thread root should be a domain */
 394        if (cgroup_is_threaded(cgrp))
 395                return false;
 396
 397        /* a domain w/ threaded children is a thread root */
 398        if (cgrp->nr_threaded_children)
 399                return true;
 400
 401        /*
 402         * A domain which has tasks and explicit threaded controllers
 403         * enabled is a thread root.
 404         */
 405        if (cgroup_has_tasks(cgrp) &&
 406            (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
 407                return true;
 408
 409        return false;
 410}
 411
 412/* a domain which isn't connected to the root w/o brekage can't be used */
 413static bool cgroup_is_valid_domain(struct cgroup *cgrp)
 414{
 415        /* the cgroup itself can be a thread root */
 416        if (cgroup_is_threaded(cgrp))
 417                return false;
 418
 419        /* but the ancestors can't be unless mixable */
 420        while ((cgrp = cgroup_parent(cgrp))) {
 421                if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
 422                        return false;
 423                if (cgroup_is_threaded(cgrp))
 424                        return false;
 425        }
 426
 427        return true;
 428}
 429
 430/* subsystems visibly enabled on a cgroup */
 431static u16 cgroup_control(struct cgroup *cgrp)
 432{
 433        struct cgroup *parent = cgroup_parent(cgrp);
 434        u16 root_ss_mask = cgrp->root->subsys_mask;
 435
 436        if (parent) {
 437                u16 ss_mask = parent->subtree_control;
 438
 439                /* threaded cgroups can only have threaded controllers */
 440                if (cgroup_is_threaded(cgrp))
 441                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 442                return ss_mask;
 443        }
 444
 445        if (cgroup_on_dfl(cgrp))
 446                root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
 447                                  cgrp_dfl_implicit_ss_mask);
 448        return root_ss_mask;
 449}
 450
 451/* subsystems enabled on a cgroup */
 452static u16 cgroup_ss_mask(struct cgroup *cgrp)
 453{
 454        struct cgroup *parent = cgroup_parent(cgrp);
 455
 456        if (parent) {
 457                u16 ss_mask = parent->subtree_ss_mask;
 458
 459                /* threaded cgroups can only have threaded controllers */
 460                if (cgroup_is_threaded(cgrp))
 461                        ss_mask &= cgrp_dfl_threaded_ss_mask;
 462                return ss_mask;
 463        }
 464
 465        return cgrp->root->subsys_mask;
 466}
 467
 468/**
 469 * cgroup_css - obtain a cgroup's css for the specified subsystem
 470 * @cgrp: the cgroup of interest
 471 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 472 *
 473 * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
 474 * function must be called either under cgroup_mutex or rcu_read_lock() and
 475 * the caller is responsible for pinning the returned css if it wants to
 476 * keep accessing it outside the said locks.  This function may return
 477 * %NULL if @cgrp doesn't have @subsys_id enabled.
 478 */
 479static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
 480                                              struct cgroup_subsys *ss)
 481{
 482        if (CGROUP_HAS_SUBSYS_CONFIG && ss)
 483                return rcu_dereference_check(cgrp->subsys[ss->id],
 484                                        lockdep_is_held(&cgroup_mutex));
 485        else
 486                return &cgrp->self;
 487}
 488
 489/**
 490 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
 491 * @cgrp: the cgroup of interest
 492 * @ss: the subsystem of interest
 493 *
 494 * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
 495 * or is offline, %NULL is returned.
 496 */
 497static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
 498                                                     struct cgroup_subsys *ss)
 499{
 500        struct cgroup_subsys_state *css;
 501
 502        rcu_read_lock();
 503        css = cgroup_css(cgrp, ss);
 504        if (css && !css_tryget_online(css))
 505                css = NULL;
 506        rcu_read_unlock();
 507
 508        return css;
 509}
 510
 511/**
 512 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
 513 * @cgrp: the cgroup of interest
 514 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
 515 *
 516 * Similar to cgroup_css() but returns the effective css, which is defined
 517 * as the matching css of the nearest ancestor including self which has @ss
 518 * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
 519 * function is guaranteed to return non-NULL css.
 520 */
 521static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
 522                                                        struct cgroup_subsys *ss)
 523{
 524        lockdep_assert_held(&cgroup_mutex);
 525
 526        if (!ss)
 527                return &cgrp->self;
 528
 529        /*
 530         * This function is used while updating css associations and thus
 531         * can't test the csses directly.  Test ss_mask.
 532         */
 533        while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
 534                cgrp = cgroup_parent(cgrp);
 535                if (!cgrp)
 536                        return NULL;
 537        }
 538
 539        return cgroup_css(cgrp, ss);
 540}
 541
 542/**
 543 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
 544 * @cgrp: the cgroup of interest
 545 * @ss: the subsystem of interest
 546 *
 547 * Find and get the effective css of @cgrp for @ss.  The effective css is
 548 * defined as the matching css of the nearest ancestor including self which
 549 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 550 * the root css is returned, so this function always returns a valid css.
 551 *
 552 * The returned css is not guaranteed to be online, and therefore it is the
 553 * callers responsibility to try get a reference for it.
 554 */
 555struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
 556                                         struct cgroup_subsys *ss)
 557{
 558        struct cgroup_subsys_state *css;
 559
 560        if (!CGROUP_HAS_SUBSYS_CONFIG)
 561                return NULL;
 562
 563        do {
 564                css = cgroup_css(cgrp, ss);
 565
 566                if (css)
 567                        return css;
 568                cgrp = cgroup_parent(cgrp);
 569        } while (cgrp);
 570
 571        return init_css_set.subsys[ss->id];
 572}
 573
 574/**
 575 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
 576 * @cgrp: the cgroup of interest
 577 * @ss: the subsystem of interest
 578 *
 579 * Find and get the effective css of @cgrp for @ss.  The effective css is
 580 * defined as the matching css of the nearest ancestor including self which
 581 * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
 582 * the root css is returned, so this function always returns a valid css.
 583 * The returned css must be put using css_put().
 584 */
 585struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
 586                                             struct cgroup_subsys *ss)
 587{
 588        struct cgroup_subsys_state *css;
 589
 590        if (!CGROUP_HAS_SUBSYS_CONFIG)
 591                return NULL;
 592
 593        rcu_read_lock();
 594
 595        do {
 596                css = cgroup_css(cgrp, ss);
 597
 598                if (css && css_tryget_online(css))
 599                        goto out_unlock;
 600                cgrp = cgroup_parent(cgrp);
 601        } while (cgrp);
 602
 603        css = init_css_set.subsys[ss->id];
 604        css_get(css);
 605out_unlock:
 606        rcu_read_unlock();
 607        return css;
 608}
 609EXPORT_SYMBOL_GPL(cgroup_get_e_css);
 610
 611static void cgroup_get_live(struct cgroup *cgrp)
 612{
 613        WARN_ON_ONCE(cgroup_is_dead(cgrp));
 614        css_get(&cgrp->self);
 615}
 616
 617/**
 618 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
 619 * is responsible for taking the css_set_lock.
 620 * @cgrp: the cgroup in question
 621 */
 622int __cgroup_task_count(const struct cgroup *cgrp)
 623{
 624        int count = 0;
 625        struct cgrp_cset_link *link;
 626
 627        lockdep_assert_held(&css_set_lock);
 628
 629        list_for_each_entry(link, &cgrp->cset_links, cset_link)
 630                count += link->cset->nr_tasks;
 631
 632        return count;
 633}
 634
 635/**
 636 * cgroup_task_count - count the number of tasks in a cgroup.
 637 * @cgrp: the cgroup in question
 638 */
 639int cgroup_task_count(const struct cgroup *cgrp)
 640{
 641        int count;
 642
 643        spin_lock_irq(&css_set_lock);
 644        count = __cgroup_task_count(cgrp);
 645        spin_unlock_irq(&css_set_lock);
 646
 647        return count;
 648}
 649
 650struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
 651{
 652        struct cgroup *cgrp = of->kn->parent->priv;
 653        struct cftype *cft = of_cft(of);
 654
 655        /*
 656         * This is open and unprotected implementation of cgroup_css().
 657         * seq_css() is only called from a kernfs file operation which has
 658         * an active reference on the file.  Because all the subsystem
 659         * files are drained before a css is disassociated with a cgroup,
 660         * the matching css from the cgroup's subsys table is guaranteed to
 661         * be and stay valid until the enclosing operation is complete.
 662         */
 663        if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
 664                return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
 665        else
 666                return &cgrp->self;
 667}
 668EXPORT_SYMBOL_GPL(of_css);
 669
 670/**
 671 * for_each_css - iterate all css's of a cgroup
 672 * @css: the iteration cursor
 673 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 674 * @cgrp: the target cgroup to iterate css's of
 675 *
 676 * Should be called under cgroup_[tree_]mutex.
 677 */
 678#define for_each_css(css, ssid, cgrp)                                   \
 679        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)        \
 680                if (!((css) = rcu_dereference_check(                    \
 681                                (cgrp)->subsys[(ssid)],                 \
 682                                lockdep_is_held(&cgroup_mutex)))) { }   \
 683                else
 684
 685/**
 686 * for_each_e_css - iterate all effective css's of a cgroup
 687 * @css: the iteration cursor
 688 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
 689 * @cgrp: the target cgroup to iterate css's of
 690 *
 691 * Should be called under cgroup_[tree_]mutex.
 692 */
 693#define for_each_e_css(css, ssid, cgrp)                                     \
 694        for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)            \
 695                if (!((css) = cgroup_e_css_by_mask(cgrp,                    \
 696                                                   cgroup_subsys[(ssid)]))) \
 697                        ;                                                   \
 698                else
 699
 700/**
 701 * do_each_subsys_mask - filter for_each_subsys with a bitmask
 702 * @ss: the iteration cursor
 703 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
 704 * @ss_mask: the bitmask
 705 *
 706 * The block will only run for cases where the ssid-th bit (1 << ssid) of
 707 * @ss_mask is set.
 708 */
 709#define do_each_subsys_mask(ss, ssid, ss_mask) do {                     \
 710        unsigned long __ss_mask = (ss_mask);                            \
 711        if (!CGROUP_HAS_SUBSYS_CONFIG) {                                \
 712                (ssid) = 0;                                             \
 713                break;                                                  \
 714        }                                                               \
 715        for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {       \
 716                (ss) = cgroup_subsys[ssid];                             \
 717                {
 718
 719#define while_each_subsys_mask()                                        \
 720                }                                                       \
 721        }                                                               \
 722} while (false)
 723
 724/* iterate over child cgrps, lock should be held throughout iteration */
 725#define cgroup_for_each_live_child(child, cgrp)                         \
 726        list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
 727                if (({ lockdep_assert_held(&cgroup_mutex);              \
 728                       cgroup_is_dead(child); }))                       \
 729                        ;                                               \
 730                else
 731
 732/* walk live descendants in pre order */
 733#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)          \
 734        css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))  \
 735                if (({ lockdep_assert_held(&cgroup_mutex);              \
 736                       (dsct) = (d_css)->cgroup;                        \
 737                       cgroup_is_dead(dsct); }))                        \
 738                        ;                                               \
 739                else
 740
 741/* walk live descendants in postorder */
 742#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)         \
 743        css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
 744                if (({ lockdep_assert_held(&cgroup_mutex);              \
 745                       (dsct) = (d_css)->cgroup;                        \
 746                       cgroup_is_dead(dsct); }))                        \
 747                        ;                                               \
 748                else
 749
 750/*
 751 * The default css_set - used by init and its children prior to any
 752 * hierarchies being mounted. It contains a pointer to the root state
 753 * for each subsystem. Also used to anchor the list of css_sets. Not
 754 * reference-counted, to improve performance when child cgroups
 755 * haven't been created.
 756 */
 757struct css_set init_css_set = {
 758        .refcount               = REFCOUNT_INIT(1),
 759        .dom_cset               = &init_css_set,
 760        .tasks                  = LIST_HEAD_INIT(init_css_set.tasks),
 761        .mg_tasks               = LIST_HEAD_INIT(init_css_set.mg_tasks),
 762        .dying_tasks            = LIST_HEAD_INIT(init_css_set.dying_tasks),
 763        .task_iters             = LIST_HEAD_INIT(init_css_set.task_iters),
 764        .threaded_csets         = LIST_HEAD_INIT(init_css_set.threaded_csets),
 765        .cgrp_links             = LIST_HEAD_INIT(init_css_set.cgrp_links),
 766        .mg_src_preload_node    = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
 767        .mg_dst_preload_node    = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
 768        .mg_node                = LIST_HEAD_INIT(init_css_set.mg_node),
 769
 770        /*
 771         * The following field is re-initialized when this cset gets linked
 772         * in cgroup_init().  However, let's initialize the field
 773         * statically too so that the default cgroup can be accessed safely
 774         * early during boot.
 775         */
 776        .dfl_cgrp               = &cgrp_dfl_root.cgrp,
 777};
 778
 779static int css_set_count        = 1;    /* 1 for init_css_set */
 780
 781static bool css_set_threaded(struct css_set *cset)
 782{
 783        return cset->dom_cset != cset;
 784}
 785
 786/**
 787 * css_set_populated - does a css_set contain any tasks?
 788 * @cset: target css_set
 789 *
 790 * css_set_populated() should be the same as !!cset->nr_tasks at steady
 791 * state. However, css_set_populated() can be called while a task is being
 792 * added to or removed from the linked list before the nr_tasks is
 793 * properly updated. Hence, we can't just look at ->nr_tasks here.
 794 */
 795static bool css_set_populated(struct css_set *cset)
 796{
 797        lockdep_assert_held(&css_set_lock);
 798
 799        return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
 800}
 801
 802/**
 803 * cgroup_update_populated - update the populated count of a cgroup
 804 * @cgrp: the target cgroup
 805 * @populated: inc or dec populated count
 806 *
 807 * One of the css_sets associated with @cgrp is either getting its first
 808 * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
 809 * count is propagated towards root so that a given cgroup's
 810 * nr_populated_children is zero iff none of its descendants contain any
 811 * tasks.
 812 *
 813 * @cgrp's interface file "cgroup.populated" is zero if both
 814 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
 815 * 1 otherwise.  When the sum changes from or to zero, userland is notified
 816 * that the content of the interface file has changed.  This can be used to
 817 * detect when @cgrp and its descendants become populated or empty.
 818 */
 819static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
 820{
 821        struct cgroup *child = NULL;
 822        int adj = populated ? 1 : -1;
 823
 824        lockdep_assert_held(&css_set_lock);
 825
 826        do {
 827                bool was_populated = cgroup_is_populated(cgrp);
 828
 829                if (!child) {
 830                        cgrp->nr_populated_csets += adj;
 831                } else {
 832                        if (cgroup_is_threaded(child))
 833                                cgrp->nr_populated_threaded_children += adj;
 834                        else
 835                                cgrp->nr_populated_domain_children += adj;
 836                }
 837
 838                if (was_populated == cgroup_is_populated(cgrp))
 839                        break;
 840
 841                cgroup1_check_for_release(cgrp);
 842                TRACE_CGROUP_PATH(notify_populated, cgrp,
 843                                  cgroup_is_populated(cgrp));
 844                cgroup_file_notify(&cgrp->events_file);
 845
 846                child = cgrp;
 847                cgrp = cgroup_parent(cgrp);
 848        } while (cgrp);
 849}
 850
 851/**
 852 * css_set_update_populated - update populated state of a css_set
 853 * @cset: target css_set
 854 * @populated: whether @cset is populated or depopulated
 855 *
 856 * @cset is either getting the first task or losing the last.  Update the
 857 * populated counters of all associated cgroups accordingly.
 858 */
 859static void css_set_update_populated(struct css_set *cset, bool populated)
 860{
 861        struct cgrp_cset_link *link;
 862
 863        lockdep_assert_held(&css_set_lock);
 864
 865        list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
 866                cgroup_update_populated(link->cgrp, populated);
 867}
 868
 869/*
 870 * @task is leaving, advance task iterators which are pointing to it so
 871 * that they can resume at the next position.  Advancing an iterator might
 872 * remove it from the list, use safe walk.  See css_task_iter_skip() for
 873 * details.
 874 */
 875static void css_set_skip_task_iters(struct css_set *cset,
 876                                    struct task_struct *task)
 877{
 878        struct css_task_iter *it, *pos;
 879
 880        list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
 881                css_task_iter_skip(it, task);
 882}
 883
 884/**
 885 * css_set_move_task - move a task from one css_set to another
 886 * @task: task being moved
 887 * @from_cset: css_set @task currently belongs to (may be NULL)
 888 * @to_cset: new css_set @task is being moved to (may be NULL)
 889 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
 890 *
 891 * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
 892 * css_set, @from_cset can be NULL.  If @task is being disassociated
 893 * instead of moved, @to_cset can be NULL.
 894 *
 895 * This function automatically handles populated counter updates and
 896 * css_task_iter adjustments but the caller is responsible for managing
 897 * @from_cset and @to_cset's reference counts.
 898 */
 899static void css_set_move_task(struct task_struct *task,
 900                              struct css_set *from_cset, struct css_set *to_cset,
 901                              bool use_mg_tasks)
 902{
 903        lockdep_assert_held(&css_set_lock);
 904
 905        if (to_cset && !css_set_populated(to_cset))
 906                css_set_update_populated(to_cset, true);
 907
 908        if (from_cset) {
 909                WARN_ON_ONCE(list_empty(&task->cg_list));
 910
 911                css_set_skip_task_iters(from_cset, task);
 912                list_del_init(&task->cg_list);
 913                if (!css_set_populated(from_cset))
 914                        css_set_update_populated(from_cset, false);
 915        } else {
 916                WARN_ON_ONCE(!list_empty(&task->cg_list));
 917        }
 918
 919        if (to_cset) {
 920                /*
 921                 * We are synchronized through cgroup_threadgroup_rwsem
 922                 * against PF_EXITING setting such that we can't race
 923                 * against cgroup_exit()/cgroup_free() dropping the css_set.
 924                 */
 925                WARN_ON_ONCE(task->flags & PF_EXITING);
 926
 927                cgroup_move_task(task, to_cset);
 928                list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
 929                                                             &to_cset->tasks);
 930        }
 931}
 932
 933/*
 934 * hash table for cgroup groups. This improves the performance to find
 935 * an existing css_set. This hash doesn't (currently) take into
 936 * account cgroups in empty hierarchies.
 937 */
 938#define CSS_SET_HASH_BITS       7
 939static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
 940
 941static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
 942{
 943        unsigned long key = 0UL;
 944        struct cgroup_subsys *ss;
 945        int i;
 946
 947        for_each_subsys(ss, i)
 948                key += (unsigned long)css[i];
 949        key = (key >> 16) ^ key;
 950
 951        return key;
 952}
 953
 954void put_css_set_locked(struct css_set *cset)
 955{
 956        struct cgrp_cset_link *link, *tmp_link;
 957        struct cgroup_subsys *ss;
 958        int ssid;
 959
 960        lockdep_assert_held(&css_set_lock);
 961
 962        if (!refcount_dec_and_test(&cset->refcount))
 963                return;
 964
 965        WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
 966
 967        /* This css_set is dead. Unlink it and release cgroup and css refs */
 968        for_each_subsys(ss, ssid) {
 969                list_del(&cset->e_cset_node[ssid]);
 970                css_put(cset->subsys[ssid]);
 971        }
 972        hash_del(&cset->hlist);
 973        css_set_count--;
 974
 975        list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
 976                list_del(&link->cset_link);
 977                list_del(&link->cgrp_link);
 978                if (cgroup_parent(link->cgrp))
 979                        cgroup_put(link->cgrp);
 980                kfree(link);
 981        }
 982
 983        if (css_set_threaded(cset)) {
 984                list_del(&cset->threaded_csets_node);
 985                put_css_set_locked(cset->dom_cset);
 986        }
 987
 988        kfree_rcu(cset, rcu_head);
 989}
 990
 991/**
 992 * compare_css_sets - helper function for find_existing_css_set().
 993 * @cset: candidate css_set being tested
 994 * @old_cset: existing css_set for a task
 995 * @new_cgrp: cgroup that's being entered by the task
 996 * @template: desired set of css pointers in css_set (pre-calculated)
 997 *
 998 * Returns true if "cset" matches "old_cset" except for the hierarchy
 999 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1000 */
1001static bool compare_css_sets(struct css_set *cset,
1002                             struct css_set *old_cset,
1003                             struct cgroup *new_cgrp,
1004                             struct cgroup_subsys_state *template[])
1005{
1006        struct cgroup *new_dfl_cgrp;
1007        struct list_head *l1, *l2;
1008
1009        /*
1010         * On the default hierarchy, there can be csets which are
1011         * associated with the same set of cgroups but different csses.
1012         * Let's first ensure that csses match.
1013         */
1014        if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1015                return false;
1016
1017
1018        /* @cset's domain should match the default cgroup's */
1019        if (cgroup_on_dfl(new_cgrp))
1020                new_dfl_cgrp = new_cgrp;
1021        else
1022                new_dfl_cgrp = old_cset->dfl_cgrp;
1023
1024        if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1025                return false;
1026
1027        /*
1028         * Compare cgroup pointers in order to distinguish between
1029         * different cgroups in hierarchies.  As different cgroups may
1030         * share the same effective css, this comparison is always
1031         * necessary.
1032         */
1033        l1 = &cset->cgrp_links;
1034        l2 = &old_cset->cgrp_links;
1035        while (1) {
1036                struct cgrp_cset_link *link1, *link2;
1037                struct cgroup *cgrp1, *cgrp2;
1038
1039                l1 = l1->next;
1040                l2 = l2->next;
1041                /* See if we reached the end - both lists are equal length. */
1042                if (l1 == &cset->cgrp_links) {
1043                        BUG_ON(l2 != &old_cset->cgrp_links);
1044                        break;
1045                } else {
1046                        BUG_ON(l2 == &old_cset->cgrp_links);
1047                }
1048                /* Locate the cgroups associated with these links. */
1049                link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1050                link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1051                cgrp1 = link1->cgrp;
1052                cgrp2 = link2->cgrp;
1053                /* Hierarchies should be linked in the same order. */
1054                BUG_ON(cgrp1->root != cgrp2->root);
1055
1056                /*
1057                 * If this hierarchy is the hierarchy of the cgroup
1058                 * that's changing, then we need to check that this
1059                 * css_set points to the new cgroup; if it's any other
1060                 * hierarchy, then this css_set should point to the
1061                 * same cgroup as the old css_set.
1062                 */
1063                if (cgrp1->root == new_cgrp->root) {
1064                        if (cgrp1 != new_cgrp)
1065                                return false;
1066                } else {
1067                        if (cgrp1 != cgrp2)
1068                                return false;
1069                }
1070        }
1071        return true;
1072}
1073
1074/**
1075 * find_existing_css_set - init css array and find the matching css_set
1076 * @old_cset: the css_set that we're using before the cgroup transition
1077 * @cgrp: the cgroup that we're moving into
1078 * @template: out param for the new set of csses, should be clear on entry
1079 */
1080static struct css_set *find_existing_css_set(struct css_set *old_cset,
1081                                        struct cgroup *cgrp,
1082                                        struct cgroup_subsys_state *template[])
1083{
1084        struct cgroup_root *root = cgrp->root;
1085        struct cgroup_subsys *ss;
1086        struct css_set *cset;
1087        unsigned long key;
1088        int i;
1089
1090        /*
1091         * Build the set of subsystem state objects that we want to see in the
1092         * new css_set. While subsystems can change globally, the entries here
1093         * won't change, so no need for locking.
1094         */
1095        for_each_subsys(ss, i) {
1096                if (root->subsys_mask & (1UL << i)) {
1097                        /*
1098                         * @ss is in this hierarchy, so we want the
1099                         * effective css from @cgrp.
1100                         */
1101                        template[i] = cgroup_e_css_by_mask(cgrp, ss);
1102                } else {
1103                        /*
1104                         * @ss is not in this hierarchy, so we don't want
1105                         * to change the css.
1106                         */
1107                        template[i] = old_cset->subsys[i];
1108                }
1109        }
1110
1111        key = css_set_hash(template);
1112        hash_for_each_possible(css_set_table, cset, hlist, key) {
1113                if (!compare_css_sets(cset, old_cset, cgrp, template))
1114                        continue;
1115
1116                /* This css_set matches what we need */
1117                return cset;
1118        }
1119
1120        /* No existing cgroup group matched */
1121        return NULL;
1122}
1123
1124static void free_cgrp_cset_links(struct list_head *links_to_free)
1125{
1126        struct cgrp_cset_link *link, *tmp_link;
1127
1128        list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1129                list_del(&link->cset_link);
1130                kfree(link);
1131        }
1132}
1133
1134/**
1135 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1136 * @count: the number of links to allocate
1137 * @tmp_links: list_head the allocated links are put on
1138 *
1139 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1140 * through ->cset_link.  Returns 0 on success or -errno.
1141 */
1142static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1143{
1144        struct cgrp_cset_link *link;
1145        int i;
1146
1147        INIT_LIST_HEAD(tmp_links);
1148
1149        for (i = 0; i < count; i++) {
1150                link = kzalloc(sizeof(*link), GFP_KERNEL);
1151                if (!link) {
1152                        free_cgrp_cset_links(tmp_links);
1153                        return -ENOMEM;
1154                }
1155                list_add(&link->cset_link, tmp_links);
1156        }
1157        return 0;
1158}
1159
1160/**
1161 * link_css_set - a helper function to link a css_set to a cgroup
1162 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1163 * @cset: the css_set to be linked
1164 * @cgrp: the destination cgroup
1165 */
1166static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1167                         struct cgroup *cgrp)
1168{
1169        struct cgrp_cset_link *link;
1170
1171        BUG_ON(list_empty(tmp_links));
1172
1173        if (cgroup_on_dfl(cgrp))
1174                cset->dfl_cgrp = cgrp;
1175
1176        link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1177        link->cset = cset;
1178        link->cgrp = cgrp;
1179
1180        /*
1181         * Always add links to the tail of the lists so that the lists are
1182         * in chronological order.
1183         */
1184        list_move_tail(&link->cset_link, &cgrp->cset_links);
1185        list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1186
1187        if (cgroup_parent(cgrp))
1188                cgroup_get_live(cgrp);
1189}
1190
1191/**
1192 * find_css_set - return a new css_set with one cgroup updated
1193 * @old_cset: the baseline css_set
1194 * @cgrp: the cgroup to be updated
1195 *
1196 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1197 * substituted into the appropriate hierarchy.
1198 */
1199static struct css_set *find_css_set(struct css_set *old_cset,
1200                                    struct cgroup *cgrp)
1201{
1202        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1203        struct css_set *cset;
1204        struct list_head tmp_links;
1205        struct cgrp_cset_link *link;
1206        struct cgroup_subsys *ss;
1207        unsigned long key;
1208        int ssid;
1209
1210        lockdep_assert_held(&cgroup_mutex);
1211
1212        /* First see if we already have a cgroup group that matches
1213         * the desired set */
1214        spin_lock_irq(&css_set_lock);
1215        cset = find_existing_css_set(old_cset, cgrp, template);
1216        if (cset)
1217                get_css_set(cset);
1218        spin_unlock_irq(&css_set_lock);
1219
1220        if (cset)
1221                return cset;
1222
1223        cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1224        if (!cset)
1225                return NULL;
1226
1227        /* Allocate all the cgrp_cset_link objects that we'll need */
1228        if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1229                kfree(cset);
1230                return NULL;
1231        }
1232
1233        refcount_set(&cset->refcount, 1);
1234        cset->dom_cset = cset;
1235        INIT_LIST_HEAD(&cset->tasks);
1236        INIT_LIST_HEAD(&cset->mg_tasks);
1237        INIT_LIST_HEAD(&cset->dying_tasks);
1238        INIT_LIST_HEAD(&cset->task_iters);
1239        INIT_LIST_HEAD(&cset->threaded_csets);
1240        INIT_HLIST_NODE(&cset->hlist);
1241        INIT_LIST_HEAD(&cset->cgrp_links);
1242        INIT_LIST_HEAD(&cset->mg_src_preload_node);
1243        INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1244        INIT_LIST_HEAD(&cset->mg_node);
1245
1246        /* Copy the set of subsystem state objects generated in
1247         * find_existing_css_set() */
1248        memcpy(cset->subsys, template, sizeof(cset->subsys));
1249
1250        spin_lock_irq(&css_set_lock);
1251        /* Add reference counts and links from the new css_set. */
1252        list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1253                struct cgroup *c = link->cgrp;
1254
1255                if (c->root == cgrp->root)
1256                        c = cgrp;
1257                link_css_set(&tmp_links, cset, c);
1258        }
1259
1260        BUG_ON(!list_empty(&tmp_links));
1261
1262        css_set_count++;
1263
1264        /* Add @cset to the hash table */
1265        key = css_set_hash(cset->subsys);
1266        hash_add(css_set_table, &cset->hlist, key);
1267
1268        for_each_subsys(ss, ssid) {
1269                struct cgroup_subsys_state *css = cset->subsys[ssid];
1270
1271                list_add_tail(&cset->e_cset_node[ssid],
1272                              &css->cgroup->e_csets[ssid]);
1273                css_get(css);
1274        }
1275
1276        spin_unlock_irq(&css_set_lock);
1277
1278        /*
1279         * If @cset should be threaded, look up the matching dom_cset and
1280         * link them up.  We first fully initialize @cset then look for the
1281         * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1282         * to stay empty until we return.
1283         */
1284        if (cgroup_is_threaded(cset->dfl_cgrp)) {
1285                struct css_set *dcset;
1286
1287                dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1288                if (!dcset) {
1289                        put_css_set(cset);
1290                        return NULL;
1291                }
1292
1293                spin_lock_irq(&css_set_lock);
1294                cset->dom_cset = dcset;
1295                list_add_tail(&cset->threaded_csets_node,
1296                              &dcset->threaded_csets);
1297                spin_unlock_irq(&css_set_lock);
1298        }
1299
1300        return cset;
1301}
1302
1303struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1304{
1305        struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1306
1307        return root_cgrp->root;
1308}
1309
1310void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1311{
1312        bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1313
1314        /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1315        if (favor && !favoring) {
1316                rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1317                root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1318        } else if (!favor && favoring) {
1319                rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1320                root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1321        }
1322}
1323
1324static int cgroup_init_root_id(struct cgroup_root *root)
1325{
1326        int id;
1327
1328        lockdep_assert_held(&cgroup_mutex);
1329
1330        id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1331        if (id < 0)
1332                return id;
1333
1334        root->hierarchy_id = id;
1335        return 0;
1336}
1337
1338static void cgroup_exit_root_id(struct cgroup_root *root)
1339{
1340        lockdep_assert_held(&cgroup_mutex);
1341
1342        idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1343}
1344
1345void cgroup_free_root(struct cgroup_root *root)
1346{
1347        kfree(root);
1348}
1349
1350static void cgroup_destroy_root(struct cgroup_root *root)
1351{
1352        struct cgroup *cgrp = &root->cgrp;
1353        struct cgrp_cset_link *link, *tmp_link;
1354
1355        trace_cgroup_destroy_root(root);
1356
1357        cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1358
1359        BUG_ON(atomic_read(&root->nr_cgrps));
1360        BUG_ON(!list_empty(&cgrp->self.children));
1361
1362        /* Rebind all subsystems back to the default hierarchy */
1363        WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1364
1365        /*
1366         * Release all the links from cset_links to this hierarchy's
1367         * root cgroup
1368         */
1369        spin_lock_irq(&css_set_lock);
1370
1371        list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1372                list_del(&link->cset_link);
1373                list_del(&link->cgrp_link);
1374                kfree(link);
1375        }
1376
1377        spin_unlock_irq(&css_set_lock);
1378
1379        if (!list_empty(&root->root_list)) {
1380                list_del(&root->root_list);
1381                cgroup_root_count--;
1382        }
1383
1384        cgroup_favor_dynmods(root, false);
1385        cgroup_exit_root_id(root);
1386
1387        mutex_unlock(&cgroup_mutex);
1388
1389        cgroup_rstat_exit(cgrp);
1390        kernfs_destroy_root(root->kf_root);
1391        cgroup_free_root(root);
1392}
1393
1394static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1395                                            struct cgroup_root *root)
1396{
1397        struct cgroup *res_cgroup = NULL;
1398
1399        if (cset == &init_css_set) {
1400                res_cgroup = &root->cgrp;
1401        } else if (root == &cgrp_dfl_root) {
1402                res_cgroup = cset->dfl_cgrp;
1403        } else {
1404                struct cgrp_cset_link *link;
1405
1406                list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1407                        struct cgroup *c = link->cgrp;
1408
1409                        if (c->root == root) {
1410                                res_cgroup = c;
1411                                break;
1412                        }
1413                }
1414        }
1415
1416        return res_cgroup;
1417}
1418
1419/*
1420 * look up cgroup associated with current task's cgroup namespace on the
1421 * specified hierarchy
1422 */
1423static struct cgroup *
1424current_cgns_cgroup_from_root(struct cgroup_root *root)
1425{
1426        struct cgroup *res = NULL;
1427        struct css_set *cset;
1428
1429        lockdep_assert_held(&css_set_lock);
1430
1431        rcu_read_lock();
1432
1433        cset = current->nsproxy->cgroup_ns->root_cset;
1434        res = __cset_cgroup_from_root(cset, root);
1435
1436        rcu_read_unlock();
1437
1438        BUG_ON(!res);
1439        return res;
1440}
1441
1442/* look up cgroup associated with given css_set on the specified hierarchy */
1443static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1444                                            struct cgroup_root *root)
1445{
1446        struct cgroup *res = NULL;
1447
1448        lockdep_assert_held(&cgroup_mutex);
1449        lockdep_assert_held(&css_set_lock);
1450
1451        res = __cset_cgroup_from_root(cset, root);
1452
1453        BUG_ON(!res);
1454        return res;
1455}
1456
1457/*
1458 * Return the cgroup for "task" from the given hierarchy. Must be
1459 * called with cgroup_mutex and css_set_lock held.
1460 */
1461struct cgroup *task_cgroup_from_root(struct task_struct *task,
1462                                     struct cgroup_root *root)
1463{
1464        /*
1465         * No need to lock the task - since we hold css_set_lock the
1466         * task can't change groups.
1467         */
1468        return cset_cgroup_from_root(task_css_set(task), root);
1469}
1470
1471/*
1472 * A task must hold cgroup_mutex to modify cgroups.
1473 *
1474 * Any task can increment and decrement the count field without lock.
1475 * So in general, code holding cgroup_mutex can't rely on the count
1476 * field not changing.  However, if the count goes to zero, then only
1477 * cgroup_attach_task() can increment it again.  Because a count of zero
1478 * means that no tasks are currently attached, therefore there is no
1479 * way a task attached to that cgroup can fork (the other way to
1480 * increment the count).  So code holding cgroup_mutex can safely
1481 * assume that if the count is zero, it will stay zero. Similarly, if
1482 * a task holds cgroup_mutex on a cgroup with zero count, it
1483 * knows that the cgroup won't be removed, as cgroup_rmdir()
1484 * needs that mutex.
1485 *
1486 * A cgroup can only be deleted if both its 'count' of using tasks
1487 * is zero, and its list of 'children' cgroups is empty.  Since all
1488 * tasks in the system use _some_ cgroup, and since there is always at
1489 * least one task in the system (init, pid == 1), therefore, root cgroup
1490 * always has either children cgroups and/or using tasks.  So we don't
1491 * need a special hack to ensure that root cgroup cannot be deleted.
1492 *
1493 * P.S.  One more locking exception.  RCU is used to guard the
1494 * update of a tasks cgroup pointer by cgroup_attach_task()
1495 */
1496
1497static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1498
1499static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1500                              char *buf)
1501{
1502        struct cgroup_subsys *ss = cft->ss;
1503
1504        if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1505            !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1506                const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1507
1508                snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1509                         dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1510                         cft->name);
1511        } else {
1512                strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1513        }
1514        return buf;
1515}
1516
1517/**
1518 * cgroup_file_mode - deduce file mode of a control file
1519 * @cft: the control file in question
1520 *
1521 * S_IRUGO for read, S_IWUSR for write.
1522 */
1523static umode_t cgroup_file_mode(const struct cftype *cft)
1524{
1525        umode_t mode = 0;
1526
1527        if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1528                mode |= S_IRUGO;
1529
1530        if (cft->write_u64 || cft->write_s64 || cft->write) {
1531                if (cft->flags & CFTYPE_WORLD_WRITABLE)
1532                        mode |= S_IWUGO;
1533                else
1534                        mode |= S_IWUSR;
1535        }
1536
1537        return mode;
1538}
1539
1540/**
1541 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1542 * @subtree_control: the new subtree_control mask to consider
1543 * @this_ss_mask: available subsystems
1544 *
1545 * On the default hierarchy, a subsystem may request other subsystems to be
1546 * enabled together through its ->depends_on mask.  In such cases, more
1547 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1548 *
1549 * This function calculates which subsystems need to be enabled if
1550 * @subtree_control is to be applied while restricted to @this_ss_mask.
1551 */
1552static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1553{
1554        u16 cur_ss_mask = subtree_control;
1555        struct cgroup_subsys *ss;
1556        int ssid;
1557
1558        lockdep_assert_held(&cgroup_mutex);
1559
1560        cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1561
1562        while (true) {
1563                u16 new_ss_mask = cur_ss_mask;
1564
1565                do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1566                        new_ss_mask |= ss->depends_on;
1567                } while_each_subsys_mask();
1568
1569                /*
1570                 * Mask out subsystems which aren't available.  This can
1571                 * happen only if some depended-upon subsystems were bound
1572                 * to non-default hierarchies.
1573                 */
1574                new_ss_mask &= this_ss_mask;
1575
1576                if (new_ss_mask == cur_ss_mask)
1577                        break;
1578                cur_ss_mask = new_ss_mask;
1579        }
1580
1581        return cur_ss_mask;
1582}
1583
1584/**
1585 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1586 * @kn: the kernfs_node being serviced
1587 *
1588 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1589 * the method finishes if locking succeeded.  Note that once this function
1590 * returns the cgroup returned by cgroup_kn_lock_live() may become
1591 * inaccessible any time.  If the caller intends to continue to access the
1592 * cgroup, it should pin it before invoking this function.
1593 */
1594void cgroup_kn_unlock(struct kernfs_node *kn)
1595{
1596        struct cgroup *cgrp;
1597
1598        if (kernfs_type(kn) == KERNFS_DIR)
1599                cgrp = kn->priv;
1600        else
1601                cgrp = kn->parent->priv;
1602
1603        mutex_unlock(&cgroup_mutex);
1604
1605        kernfs_unbreak_active_protection(kn);
1606        cgroup_put(cgrp);
1607}
1608
1609/**
1610 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1611 * @kn: the kernfs_node being serviced
1612 * @drain_offline: perform offline draining on the cgroup
1613 *
1614 * This helper is to be used by a cgroup kernfs method currently servicing
1615 * @kn.  It breaks the active protection, performs cgroup locking and
1616 * verifies that the associated cgroup is alive.  Returns the cgroup if
1617 * alive; otherwise, %NULL.  A successful return should be undone by a
1618 * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1619 * cgroup is drained of offlining csses before return.
1620 *
1621 * Any cgroup kernfs method implementation which requires locking the
1622 * associated cgroup should use this helper.  It avoids nesting cgroup
1623 * locking under kernfs active protection and allows all kernfs operations
1624 * including self-removal.
1625 */
1626struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1627{
1628        struct cgroup *cgrp;
1629
1630        if (kernfs_type(kn) == KERNFS_DIR)
1631                cgrp = kn->priv;
1632        else
1633                cgrp = kn->parent->priv;
1634
1635        /*
1636         * We're gonna grab cgroup_mutex which nests outside kernfs
1637         * active_ref.  cgroup liveliness check alone provides enough
1638         * protection against removal.  Ensure @cgrp stays accessible and
1639         * break the active_ref protection.
1640         */
1641        if (!cgroup_tryget(cgrp))
1642                return NULL;
1643        kernfs_break_active_protection(kn);
1644
1645        if (drain_offline)
1646                cgroup_lock_and_drain_offline(cgrp);
1647        else
1648                mutex_lock(&cgroup_mutex);
1649
1650        if (!cgroup_is_dead(cgrp))
1651                return cgrp;
1652
1653        cgroup_kn_unlock(kn);
1654        return NULL;
1655}
1656
1657static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1658{
1659        char name[CGROUP_FILE_NAME_MAX];
1660
1661        lockdep_assert_held(&cgroup_mutex);
1662
1663        if (cft->file_offset) {
1664                struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1665                struct cgroup_file *cfile = (void *)css + cft->file_offset;
1666
1667                spin_lock_irq(&cgroup_file_kn_lock);
1668                cfile->kn = NULL;
1669                spin_unlock_irq(&cgroup_file_kn_lock);
1670
1671                del_timer_sync(&cfile->notify_timer);
1672        }
1673
1674        kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1675}
1676
1677/**
1678 * css_clear_dir - remove subsys files in a cgroup directory
1679 * @css: target css
1680 */
1681static void css_clear_dir(struct cgroup_subsys_state *css)
1682{
1683        struct cgroup *cgrp = css->cgroup;
1684        struct cftype *cfts;
1685
1686        if (!(css->flags & CSS_VISIBLE))
1687                return;
1688
1689        css->flags &= ~CSS_VISIBLE;
1690
1691        if (!css->ss) {
1692                if (cgroup_on_dfl(cgrp))
1693                        cfts = cgroup_base_files;
1694                else
1695                        cfts = cgroup1_base_files;
1696
1697                cgroup_addrm_files(css, cgrp, cfts, false);
1698        } else {
1699                list_for_each_entry(cfts, &css->ss->cfts, node)
1700                        cgroup_addrm_files(css, cgrp, cfts, false);
1701        }
1702}
1703
1704/**
1705 * css_populate_dir - create subsys files in a cgroup directory
1706 * @css: target css
1707 *
1708 * On failure, no file is added.
1709 */
1710static int css_populate_dir(struct cgroup_subsys_state *css)
1711{
1712        struct cgroup *cgrp = css->cgroup;
1713        struct cftype *cfts, *failed_cfts;
1714        int ret;
1715
1716        if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1717                return 0;
1718
1719        if (!css->ss) {
1720                if (cgroup_on_dfl(cgrp))
1721                        cfts = cgroup_base_files;
1722                else
1723                        cfts = cgroup1_base_files;
1724
1725                ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1726                if (ret < 0)
1727                        return ret;
1728        } else {
1729                list_for_each_entry(cfts, &css->ss->cfts, node) {
1730                        ret = cgroup_addrm_files(css, cgrp, cfts, true);
1731                        if (ret < 0) {
1732                                failed_cfts = cfts;
1733                                goto err;
1734                        }
1735                }
1736        }
1737
1738        css->flags |= CSS_VISIBLE;
1739
1740        return 0;
1741err:
1742        list_for_each_entry(cfts, &css->ss->cfts, node) {
1743                if (cfts == failed_cfts)
1744                        break;
1745                cgroup_addrm_files(css, cgrp, cfts, false);
1746        }
1747        return ret;
1748}
1749
1750int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1751{
1752        struct cgroup *dcgrp = &dst_root->cgrp;
1753        struct cgroup_subsys *ss;
1754        int ssid, i, ret;
1755        u16 dfl_disable_ss_mask = 0;
1756
1757        lockdep_assert_held(&cgroup_mutex);
1758
1759        do_each_subsys_mask(ss, ssid, ss_mask) {
1760                /*
1761                 * If @ss has non-root csses attached to it, can't move.
1762                 * If @ss is an implicit controller, it is exempt from this
1763                 * rule and can be stolen.
1764                 */
1765                if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1766                    !ss->implicit_on_dfl)
1767                        return -EBUSY;
1768
1769                /* can't move between two non-dummy roots either */
1770                if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1771                        return -EBUSY;
1772
1773                /*
1774                 * Collect ssid's that need to be disabled from default
1775                 * hierarchy.
1776                 */
1777                if (ss->root == &cgrp_dfl_root)
1778                        dfl_disable_ss_mask |= 1 << ssid;
1779
1780        } while_each_subsys_mask();
1781
1782        if (dfl_disable_ss_mask) {
1783                struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1784
1785                /*
1786                 * Controllers from default hierarchy that need to be rebound
1787                 * are all disabled together in one go.
1788                 */
1789                cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1790                WARN_ON(cgroup_apply_control(scgrp));
1791                cgroup_finalize_control(scgrp, 0);
1792        }
1793
1794        do_each_subsys_mask(ss, ssid, ss_mask) {
1795                struct cgroup_root *src_root = ss->root;
1796                struct cgroup *scgrp = &src_root->cgrp;
1797                struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1798                struct css_set *cset;
1799
1800                WARN_ON(!css || cgroup_css(dcgrp, ss));
1801
1802                if (src_root != &cgrp_dfl_root) {
1803                        /* disable from the source */
1804                        src_root->subsys_mask &= ~(1 << ssid);
1805                        WARN_ON(cgroup_apply_control(scgrp));
1806                        cgroup_finalize_control(scgrp, 0);
1807                }
1808
1809                /* rebind */
1810                RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1811                rcu_assign_pointer(dcgrp->subsys[ssid], css);
1812                ss->root = dst_root;
1813                css->cgroup = dcgrp;
1814
1815                spin_lock_irq(&css_set_lock);
1816                hash_for_each(css_set_table, i, cset, hlist)
1817                        list_move_tail(&cset->e_cset_node[ss->id],
1818                                       &dcgrp->e_csets[ss->id]);
1819                spin_unlock_irq(&css_set_lock);
1820
1821                if (ss->css_rstat_flush) {
1822                        list_del_rcu(&css->rstat_css_node);
1823                        synchronize_rcu();
1824                        list_add_rcu(&css->rstat_css_node,
1825                                     &dcgrp->rstat_css_list);
1826                }
1827
1828                /* default hierarchy doesn't enable controllers by default */
1829                dst_root->subsys_mask |= 1 << ssid;
1830                if (dst_root == &cgrp_dfl_root) {
1831                        static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1832                } else {
1833                        dcgrp->subtree_control |= 1 << ssid;
1834                        static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1835                }
1836
1837                ret = cgroup_apply_control(dcgrp);
1838                if (ret)
1839                        pr_warn("partial failure to rebind %s controller (err=%d)\n",
1840                                ss->name, ret);
1841
1842                if (ss->bind)
1843                        ss->bind(css);
1844        } while_each_subsys_mask();
1845
1846        kernfs_activate(dcgrp->kn);
1847        return 0;
1848}
1849
1850int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1851                     struct kernfs_root *kf_root)
1852{
1853        int len = 0;
1854        char *buf = NULL;
1855        struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1856        struct cgroup *ns_cgroup;
1857
1858        buf = kmalloc(PATH_MAX, GFP_KERNEL);
1859        if (!buf)
1860                return -ENOMEM;
1861
1862        spin_lock_irq(&css_set_lock);
1863        ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1864        len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1865        spin_unlock_irq(&css_set_lock);
1866
1867        if (len >= PATH_MAX)
1868                len = -ERANGE;
1869        else if (len > 0) {
1870                seq_escape(sf, buf, " \t\n\\");
1871                len = 0;
1872        }
1873        kfree(buf);
1874        return len;
1875}
1876
1877enum cgroup2_param {
1878        Opt_nsdelegate,
1879        Opt_favordynmods,
1880        Opt_memory_localevents,
1881        Opt_memory_recursiveprot,
1882        nr__cgroup2_params
1883};
1884
1885static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1886        fsparam_flag("nsdelegate",              Opt_nsdelegate),
1887        fsparam_flag("favordynmods",            Opt_favordynmods),
1888        fsparam_flag("memory_localevents",      Opt_memory_localevents),
1889        fsparam_flag("memory_recursiveprot",    Opt_memory_recursiveprot),
1890        {}
1891};
1892
1893static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1894{
1895        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1896        struct fs_parse_result result;
1897        int opt;
1898
1899        opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1900        if (opt < 0)
1901                return opt;
1902
1903        switch (opt) {
1904        case Opt_nsdelegate:
1905                ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1906                return 0;
1907        case Opt_favordynmods:
1908                ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1909                return 0;
1910        case Opt_memory_localevents:
1911                ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1912                return 0;
1913        case Opt_memory_recursiveprot:
1914                ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1915                return 0;
1916        }
1917        return -EINVAL;
1918}
1919
1920static void apply_cgroup_root_flags(unsigned int root_flags)
1921{
1922        if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1923                if (root_flags & CGRP_ROOT_NS_DELEGATE)
1924                        cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1925                else
1926                        cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1927
1928                cgroup_favor_dynmods(&cgrp_dfl_root,
1929                                     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1930
1931                if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1932                        cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1933                else
1934                        cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1935
1936                if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1937                        cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1938                else
1939                        cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1940        }
1941}
1942
1943static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1944{
1945        if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1946                seq_puts(seq, ",nsdelegate");
1947        if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
1948                seq_puts(seq, ",favordynmods");
1949        if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1950                seq_puts(seq, ",memory_localevents");
1951        if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1952                seq_puts(seq, ",memory_recursiveprot");
1953        return 0;
1954}
1955
1956static int cgroup_reconfigure(struct fs_context *fc)
1957{
1958        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1959
1960        apply_cgroup_root_flags(ctx->flags);
1961        return 0;
1962}
1963
1964static void init_cgroup_housekeeping(struct cgroup *cgrp)
1965{
1966        struct cgroup_subsys *ss;
1967        int ssid;
1968
1969        INIT_LIST_HEAD(&cgrp->self.sibling);
1970        INIT_LIST_HEAD(&cgrp->self.children);
1971        INIT_LIST_HEAD(&cgrp->cset_links);
1972        INIT_LIST_HEAD(&cgrp->pidlists);
1973        mutex_init(&cgrp->pidlist_mutex);
1974        cgrp->self.cgroup = cgrp;
1975        cgrp->self.flags |= CSS_ONLINE;
1976        cgrp->dom_cgrp = cgrp;
1977        cgrp->max_descendants = INT_MAX;
1978        cgrp->max_depth = INT_MAX;
1979        INIT_LIST_HEAD(&cgrp->rstat_css_list);
1980        prev_cputime_init(&cgrp->prev_cputime);
1981
1982        for_each_subsys(ss, ssid)
1983                INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1984
1985        init_waitqueue_head(&cgrp->offline_waitq);
1986        INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1987}
1988
1989void init_cgroup_root(struct cgroup_fs_context *ctx)
1990{
1991        struct cgroup_root *root = ctx->root;
1992        struct cgroup *cgrp = &root->cgrp;
1993
1994        INIT_LIST_HEAD(&root->root_list);
1995        atomic_set(&root->nr_cgrps, 1);
1996        cgrp->root = root;
1997        init_cgroup_housekeeping(cgrp);
1998
1999        /* DYNMODS must be modified through cgroup_favor_dynmods() */
2000        root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2001        if (ctx->release_agent)
2002                strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2003        if (ctx->name)
2004                strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2005        if (ctx->cpuset_clone_children)
2006                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2007}
2008
2009int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2010{
2011        LIST_HEAD(tmp_links);
2012        struct cgroup *root_cgrp = &root->cgrp;
2013        struct kernfs_syscall_ops *kf_sops;
2014        struct css_set *cset;
2015        int i, ret;
2016
2017        lockdep_assert_held(&cgroup_mutex);
2018
2019        ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2020                              0, GFP_KERNEL);
2021        if (ret)
2022                goto out;
2023
2024        /*
2025         * We're accessing css_set_count without locking css_set_lock here,
2026         * but that's OK - it can only be increased by someone holding
2027         * cgroup_lock, and that's us.  Later rebinding may disable
2028         * controllers on the default hierarchy and thus create new csets,
2029         * which can't be more than the existing ones.  Allocate 2x.
2030         */
2031        ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2032        if (ret)
2033                goto cancel_ref;
2034
2035        ret = cgroup_init_root_id(root);
2036        if (ret)
2037                goto cancel_ref;
2038
2039        kf_sops = root == &cgrp_dfl_root ?
2040                &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2041
2042        root->kf_root = kernfs_create_root(kf_sops,
2043                                           KERNFS_ROOT_CREATE_DEACTIVATED |
2044                                           KERNFS_ROOT_SUPPORT_EXPORTOP |
2045                                           KERNFS_ROOT_SUPPORT_USER_XATTR,
2046                                           root_cgrp);
2047        if (IS_ERR(root->kf_root)) {
2048                ret = PTR_ERR(root->kf_root);
2049                goto exit_root_id;
2050        }
2051        root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2052        WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2053        root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2054
2055        ret = css_populate_dir(&root_cgrp->self);
2056        if (ret)
2057                goto destroy_root;
2058
2059        ret = cgroup_rstat_init(root_cgrp);
2060        if (ret)
2061                goto destroy_root;
2062
2063        ret = rebind_subsystems(root, ss_mask);
2064        if (ret)
2065                goto exit_stats;
2066
2067        ret = cgroup_bpf_inherit(root_cgrp);
2068        WARN_ON_ONCE(ret);
2069
2070        trace_cgroup_setup_root(root);
2071
2072        /*
2073         * There must be no failure case after here, since rebinding takes
2074         * care of subsystems' refcounts, which are explicitly dropped in
2075         * the failure exit path.
2076         */
2077        list_add(&root->root_list, &cgroup_roots);
2078        cgroup_root_count++;
2079
2080        /*
2081         * Link the root cgroup in this hierarchy into all the css_set
2082         * objects.
2083         */
2084        spin_lock_irq(&css_set_lock);
2085        hash_for_each(css_set_table, i, cset, hlist) {
2086                link_css_set(&tmp_links, cset, root_cgrp);
2087                if (css_set_populated(cset))
2088                        cgroup_update_populated(root_cgrp, true);
2089        }
2090        spin_unlock_irq(&css_set_lock);
2091
2092        BUG_ON(!list_empty(&root_cgrp->self.children));
2093        BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2094
2095        ret = 0;
2096        goto out;
2097
2098exit_stats:
2099        cgroup_rstat_exit(root_cgrp);
2100destroy_root:
2101        kernfs_destroy_root(root->kf_root);
2102        root->kf_root = NULL;
2103exit_root_id:
2104        cgroup_exit_root_id(root);
2105cancel_ref:
2106        percpu_ref_exit(&root_cgrp->self.refcnt);
2107out:
2108        free_cgrp_cset_links(&tmp_links);
2109        return ret;
2110}
2111
2112int cgroup_do_get_tree(struct fs_context *fc)
2113{
2114        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2115        int ret;
2116
2117        ctx->kfc.root = ctx->root->kf_root;
2118        if (fc->fs_type == &cgroup2_fs_type)
2119                ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2120        else
2121                ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2122        ret = kernfs_get_tree(fc);
2123
2124        /*
2125         * In non-init cgroup namespace, instead of root cgroup's dentry,
2126         * we return the dentry corresponding to the cgroupns->root_cgrp.
2127         */
2128        if (!ret && ctx->ns != &init_cgroup_ns) {
2129                struct dentry *nsdentry;
2130                struct super_block *sb = fc->root->d_sb;
2131                struct cgroup *cgrp;
2132
2133                mutex_lock(&cgroup_mutex);
2134                spin_lock_irq(&css_set_lock);
2135
2136                cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2137
2138                spin_unlock_irq(&css_set_lock);
2139                mutex_unlock(&cgroup_mutex);
2140
2141                nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2142                dput(fc->root);
2143                if (IS_ERR(nsdentry)) {
2144                        deactivate_locked_super(sb);
2145                        ret = PTR_ERR(nsdentry);
2146                        nsdentry = NULL;
2147                }
2148                fc->root = nsdentry;
2149        }
2150
2151        if (!ctx->kfc.new_sb_created)
2152                cgroup_put(&ctx->root->cgrp);
2153
2154        return ret;
2155}
2156
2157/*
2158 * Destroy a cgroup filesystem context.
2159 */
2160static void cgroup_fs_context_free(struct fs_context *fc)
2161{
2162        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2163
2164        kfree(ctx->name);
2165        kfree(ctx->release_agent);
2166        put_cgroup_ns(ctx->ns);
2167        kernfs_free_fs_context(fc);
2168        kfree(ctx);
2169}
2170
2171static int cgroup_get_tree(struct fs_context *fc)
2172{
2173        struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2174        int ret;
2175
2176        cgrp_dfl_visible = true;
2177        cgroup_get_live(&cgrp_dfl_root.cgrp);
2178        ctx->root = &cgrp_dfl_root;
2179
2180        ret = cgroup_do_get_tree(fc);
2181        if (!ret)
2182                apply_cgroup_root_flags(ctx->flags);
2183        return ret;
2184}
2185
2186static const struct fs_context_operations cgroup_fs_context_ops = {
2187        .free           = cgroup_fs_context_free,
2188        .parse_param    = cgroup2_parse_param,
2189        .get_tree       = cgroup_get_tree,
2190        .reconfigure    = cgroup_reconfigure,
2191};
2192
2193static const struct fs_context_operations cgroup1_fs_context_ops = {
2194        .free           = cgroup_fs_context_free,
2195        .parse_param    = cgroup1_parse_param,
2196        .get_tree       = cgroup1_get_tree,
2197        .reconfigure    = cgroup1_reconfigure,
2198};
2199
2200/*
2201 * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2202 * we select the namespace we're going to use.
2203 */
2204static int cgroup_init_fs_context(struct fs_context *fc)
2205{
2206        struct cgroup_fs_context *ctx;
2207
2208        ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2209        if (!ctx)
2210                return -ENOMEM;
2211
2212        ctx->ns = current->nsproxy->cgroup_ns;
2213        get_cgroup_ns(ctx->ns);
2214        fc->fs_private = &ctx->kfc;
2215        if (fc->fs_type == &cgroup2_fs_type)
2216                fc->ops = &cgroup_fs_context_ops;
2217        else
2218                fc->ops = &cgroup1_fs_context_ops;
2219        put_user_ns(fc->user_ns);
2220        fc->user_ns = get_user_ns(ctx->ns->user_ns);
2221        fc->global = true;
2222
2223#ifdef CONFIG_CGROUP_FAVOR_DYNMODS
2224        ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2225#endif
2226        return 0;
2227}
2228
2229static void cgroup_kill_sb(struct super_block *sb)
2230{
2231        struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2232        struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2233
2234        /*
2235         * If @root doesn't have any children, start killing it.
2236         * This prevents new mounts by disabling percpu_ref_tryget_live().
2237         *
2238         * And don't kill the default root.
2239         */
2240        if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2241            !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2242                cgroup_bpf_offline(&root->cgrp);
2243                percpu_ref_kill(&root->cgrp.self.refcnt);
2244        }
2245        cgroup_put(&root->cgrp);
2246        kernfs_kill_sb(sb);
2247}
2248
2249struct file_system_type cgroup_fs_type = {
2250        .name                   = "cgroup",
2251        .init_fs_context        = cgroup_init_fs_context,
2252        .parameters             = cgroup1_fs_parameters,
2253        .kill_sb                = cgroup_kill_sb,
2254        .fs_flags               = FS_USERNS_MOUNT,
2255};
2256
2257static struct file_system_type cgroup2_fs_type = {
2258        .name                   = "cgroup2",
2259        .init_fs_context        = cgroup_init_fs_context,
2260        .parameters             = cgroup2_fs_parameters,
2261        .kill_sb                = cgroup_kill_sb,
2262        .fs_flags               = FS_USERNS_MOUNT,
2263};
2264
2265#ifdef CONFIG_CPUSETS
2266static const struct fs_context_operations cpuset_fs_context_ops = {
2267        .get_tree       = cgroup1_get_tree,
2268        .free           = cgroup_fs_context_free,
2269};
2270
2271/*
2272 * This is ugly, but preserves the userspace API for existing cpuset
2273 * users. If someone tries to mount the "cpuset" filesystem, we
2274 * silently switch it to mount "cgroup" instead
2275 */
2276static int cpuset_init_fs_context(struct fs_context *fc)
2277{
2278        char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2279        struct cgroup_fs_context *ctx;
2280        int err;
2281
2282        err = cgroup_init_fs_context(fc);
2283        if (err) {
2284                kfree(agent);
2285                return err;
2286        }
2287
2288        fc->ops = &cpuset_fs_context_ops;
2289
2290        ctx = cgroup_fc2context(fc);
2291        ctx->subsys_mask = 1 << cpuset_cgrp_id;
2292        ctx->flags |= CGRP_ROOT_NOPREFIX;
2293        ctx->release_agent = agent;
2294
2295        get_filesystem(&cgroup_fs_type);
2296        put_filesystem(fc->fs_type);
2297        fc->fs_type = &cgroup_fs_type;
2298
2299        return 0;
2300}
2301
2302static struct file_system_type cpuset_fs_type = {
2303        .name                   = "cpuset",
2304        .init_fs_context        = cpuset_init_fs_context,
2305        .fs_flags               = FS_USERNS_MOUNT,
2306};
2307#endif
2308
2309int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2310                          struct cgroup_namespace *ns)
2311{
2312        struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2313
2314        return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2315}
2316
2317int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2318                   struct cgroup_namespace *ns)
2319{
2320        int ret;
2321
2322        mutex_lock(&cgroup_mutex);
2323        spin_lock_irq(&css_set_lock);
2324
2325        ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2326
2327        spin_unlock_irq(&css_set_lock);
2328        mutex_unlock(&cgroup_mutex);
2329
2330        return ret;
2331}
2332EXPORT_SYMBOL_GPL(cgroup_path_ns);
2333
2334/**
2335 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2336 * @task: target task
2337 * @buf: the buffer to write the path into
2338 * @buflen: the length of the buffer
2339 *
2340 * Determine @task's cgroup on the first (the one with the lowest non-zero
2341 * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2342 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2343 * cgroup controller callbacks.
2344 *
2345 * Return value is the same as kernfs_path().
2346 */
2347int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2348{
2349        struct cgroup_root *root;
2350        struct cgroup *cgrp;
2351        int hierarchy_id = 1;
2352        int ret;
2353
2354        mutex_lock(&cgroup_mutex);
2355        spin_lock_irq(&css_set_lock);
2356
2357        root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2358
2359        if (root) {
2360                cgrp = task_cgroup_from_root(task, root);
2361                ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2362        } else {
2363                /* if no hierarchy exists, everyone is in "/" */
2364                ret = strlcpy(buf, "/", buflen);
2365        }
2366
2367        spin_unlock_irq(&css_set_lock);
2368        mutex_unlock(&cgroup_mutex);
2369        return ret;
2370}
2371EXPORT_SYMBOL_GPL(task_cgroup_path);
2372
2373/**
2374 * cgroup_attach_lock - Lock for ->attach()
2375 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2376 *
2377 * cgroup migration sometimes needs to stabilize threadgroups against forks and
2378 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2379 * implementations (e.g. cpuset), also need to disable CPU hotplug.
2380 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2381 * lead to deadlocks.
2382 *
2383 * Bringing up a CPU may involve creating and destroying tasks which requires
2384 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2385 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2386 * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2387 * waiting for an on-going CPU hotplug operation which in turn is waiting for
2388 * the threadgroup_rwsem to be released to create new tasks. For more details:
2389 *
2390 *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2391 *
2392 * Resolve the situation by always acquiring cpus_read_lock() before optionally
2393 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2394 * CPU hotplug is disabled on entry.
2395 */
2396static void cgroup_attach_lock(bool lock_threadgroup)
2397{
2398        cpus_read_lock();
2399        if (lock_threadgroup)
2400                percpu_down_write(&cgroup_threadgroup_rwsem);
2401}
2402
2403/**
2404 * cgroup_attach_unlock - Undo cgroup_attach_lock()
2405 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2406 */
2407static void cgroup_attach_unlock(bool lock_threadgroup)
2408{
2409        if (lock_threadgroup)
2410                percpu_up_write(&cgroup_threadgroup_rwsem);
2411        cpus_read_unlock();
2412}
2413
2414/**
2415 * cgroup_migrate_add_task - add a migration target task to a migration context
2416 * @task: target task
2417 * @mgctx: target migration context
2418 *
2419 * Add @task, which is a migration target, to @mgctx->tset.  This function
2420 * becomes noop if @task doesn't need to be migrated.  @task's css_set
2421 * should have been added as a migration source and @task->cg_list will be
2422 * moved from the css_set's tasks list to mg_tasks one.
2423 */
2424static void cgroup_migrate_add_task(struct task_struct *task,
2425                                    struct cgroup_mgctx *mgctx)
2426{
2427        struct css_set *cset;
2428
2429        lockdep_assert_held(&css_set_lock);
2430
2431        /* @task either already exited or can't exit until the end */
2432        if (task->flags & PF_EXITING)
2433                return;
2434
2435        /* cgroup_threadgroup_rwsem protects racing against forks */
2436        WARN_ON_ONCE(list_empty(&task->cg_list));
2437
2438        cset = task_css_set(task);
2439        if (!cset->mg_src_cgrp)
2440                return;
2441
2442        mgctx->tset.nr_tasks++;
2443
2444        list_move_tail(&task->cg_list, &cset->mg_tasks);
2445        if (list_empty(&cset->mg_node))
2446                list_add_tail(&cset->mg_node,
2447                              &mgctx->tset.src_csets);
2448        if (list_empty(&cset->mg_dst_cset->mg_node))
2449                list_add_tail(&cset->mg_dst_cset->mg_node,
2450                              &mgctx->tset.dst_csets);
2451}
2452
2453/**
2454 * cgroup_taskset_first - reset taskset and return the first task
2455 * @tset: taskset of interest
2456 * @dst_cssp: output variable for the destination css
2457 *
2458 * @tset iteration is initialized and the first task is returned.
2459 */
2460struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2461                                         struct cgroup_subsys_state **dst_cssp)
2462{
2463        tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2464        tset->cur_task = NULL;
2465
2466        return cgroup_taskset_next(tset, dst_cssp);
2467}
2468
2469/**
2470 * cgroup_taskset_next - iterate to the next task in taskset
2471 * @tset: taskset of interest
2472 * @dst_cssp: output variable for the destination css
2473 *
2474 * Return the next task in @tset.  Iteration must have been initialized
2475 * with cgroup_taskset_first().
2476 */
2477struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2478                                        struct cgroup_subsys_state **dst_cssp)
2479{
2480        struct css_set *cset = tset->cur_cset;
2481        struct task_struct *task = tset->cur_task;
2482
2483        while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2484                if (!task)
2485                        task = list_first_entry(&cset->mg_tasks,
2486                                                struct task_struct, cg_list);
2487                else
2488                        task = list_next_entry(task, cg_list);
2489
2490                if (&task->cg_list != &cset->mg_tasks) {
2491                        tset->cur_cset = cset;
2492                        tset->cur_task = task;
2493
2494                        /*
2495                         * This function may be called both before and
2496                         * after cgroup_taskset_migrate().  The two cases
2497                         * can be distinguished by looking at whether @cset
2498                         * has its ->mg_dst_cset set.
2499                         */
2500                        if (cset->mg_dst_cset)
2501                                *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2502                        else
2503                                *dst_cssp = cset->subsys[tset->ssid];
2504
2505                        return task;
2506                }
2507
2508                cset = list_next_entry(cset, mg_node);
2509                task = NULL;
2510        }
2511
2512        return NULL;
2513}
2514
2515/**
2516 * cgroup_migrate_execute - migrate a taskset
2517 * @mgctx: migration context
2518 *
2519 * Migrate tasks in @mgctx as setup by migration preparation functions.
2520 * This function fails iff one of the ->can_attach callbacks fails and
2521 * guarantees that either all or none of the tasks in @mgctx are migrated.
2522 * @mgctx is consumed regardless of success.
2523 */
2524static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2525{
2526        struct cgroup_taskset *tset = &mgctx->tset;
2527        struct cgroup_subsys *ss;
2528        struct task_struct *task, *tmp_task;
2529        struct css_set *cset, *tmp_cset;
2530        int ssid, failed_ssid, ret;
2531
2532        /* check that we can legitimately attach to the cgroup */
2533        if (tset->nr_tasks) {
2534                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2535                        if (ss->can_attach) {
2536                                tset->ssid = ssid;
2537                                ret = ss->can_attach(tset);
2538                                if (ret) {
2539                                        failed_ssid = ssid;
2540                                        goto out_cancel_attach;
2541                                }
2542                        }
2543                } while_each_subsys_mask();
2544        }
2545
2546        /*
2547         * Now that we're guaranteed success, proceed to move all tasks to
2548         * the new cgroup.  There are no failure cases after here, so this
2549         * is the commit point.
2550         */
2551        spin_lock_irq(&css_set_lock);
2552        list_for_each_entry(cset, &tset->src_csets, mg_node) {
2553                list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2554                        struct css_set *from_cset = task_css_set(task);
2555                        struct css_set *to_cset = cset->mg_dst_cset;
2556
2557                        get_css_set(to_cset);
2558                        to_cset->nr_tasks++;
2559                        css_set_move_task(task, from_cset, to_cset, true);
2560                        from_cset->nr_tasks--;
2561                        /*
2562                         * If the source or destination cgroup is frozen,
2563                         * the task might require to change its state.
2564                         */
2565                        cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2566                                                    to_cset->dfl_cgrp);
2567                        put_css_set_locked(from_cset);
2568
2569                }
2570        }
2571        spin_unlock_irq(&css_set_lock);
2572
2573        /*
2574         * Migration is committed, all target tasks are now on dst_csets.
2575         * Nothing is sensitive to fork() after this point.  Notify
2576         * controllers that migration is complete.
2577         */
2578        tset->csets = &tset->dst_csets;
2579
2580        if (tset->nr_tasks) {
2581                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2582                        if (ss->attach) {
2583                                tset->ssid = ssid;
2584                                ss->attach(tset);
2585                        }
2586                } while_each_subsys_mask();
2587        }
2588
2589        ret = 0;
2590        goto out_release_tset;
2591
2592out_cancel_attach:
2593        if (tset->nr_tasks) {
2594                do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2595                        if (ssid == failed_ssid)
2596                                break;
2597                        if (ss->cancel_attach) {
2598                                tset->ssid = ssid;
2599                                ss->cancel_attach(tset);
2600                        }
2601                } while_each_subsys_mask();
2602        }
2603out_release_tset:
2604        spin_lock_irq(&css_set_lock);
2605        list_splice_init(&tset->dst_csets, &tset->src_csets);
2606        list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2607                list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2608                list_del_init(&cset->mg_node);
2609        }
2610        spin_unlock_irq(&css_set_lock);
2611
2612        /*
2613         * Re-initialize the cgroup_taskset structure in case it is reused
2614         * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2615         * iteration.
2616         */
2617        tset->nr_tasks = 0;
2618        tset->csets    = &tset->src_csets;
2619        return ret;
2620}
2621
2622/**
2623 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2624 * @dst_cgrp: destination cgroup to test
2625 *
2626 * On the default hierarchy, except for the mixable, (possible) thread root
2627 * and threaded cgroups, subtree_control must be zero for migration
2628 * destination cgroups with tasks so that child cgroups don't compete
2629 * against tasks.
2630 */
2631int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2632{
2633        /* v1 doesn't have any restriction */
2634        if (!cgroup_on_dfl(dst_cgrp))
2635                return 0;
2636
2637        /* verify @dst_cgrp can host resources */
2638        if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2639                return -EOPNOTSUPP;
2640
2641        /*
2642         * If @dst_cgrp is already or can become a thread root or is
2643         * threaded, it doesn't matter.
2644         */
2645        if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2646                return 0;
2647
2648        /* apply no-internal-process constraint */
2649        if (dst_cgrp->subtree_control)
2650                return -EBUSY;
2651
2652        return 0;
2653}
2654
2655/**
2656 * cgroup_migrate_finish - cleanup after attach
2657 * @mgctx: migration context
2658 *
2659 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2660 * those functions for details.
2661 */
2662void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2663{
2664        struct css_set *cset, *tmp_cset;
2665
2666        lockdep_assert_held(&cgroup_mutex);
2667
2668        spin_lock_irq(&css_set_lock);
2669
2670        list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2671                                 mg_src_preload_node) {
2672                cset->mg_src_cgrp = NULL;
2673                cset->mg_dst_cgrp = NULL;
2674                cset->mg_dst_cset = NULL;
2675                list_del_init(&cset->mg_src_preload_node);
2676                put_css_set_locked(cset);
2677        }
2678
2679        list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2680                                 mg_dst_preload_node) {
2681                cset->mg_src_cgrp = NULL;
2682                cset->mg_dst_cgrp = NULL;
2683                cset->mg_dst_cset = NULL;
2684                list_del_init(&cset->mg_dst_preload_node);
2685                put_css_set_locked(cset);
2686        }
2687
2688        spin_unlock_irq(&css_set_lock);
2689}
2690
2691/**
2692 * cgroup_migrate_add_src - add a migration source css_set
2693 * @src_cset: the source css_set to add
2694 * @dst_cgrp: the destination cgroup
2695 * @mgctx: migration context
2696 *
2697 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2698 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2699 * up by cgroup_migrate_finish().
2700 *
2701 * This function may be called without holding cgroup_threadgroup_rwsem
2702 * even if the target is a process.  Threads may be created and destroyed
2703 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2704 * into play and the preloaded css_sets are guaranteed to cover all
2705 * migrations.
2706 */
2707void cgroup_migrate_add_src(struct css_set *src_cset,
2708                            struct cgroup *dst_cgrp,
2709                            struct cgroup_mgctx *mgctx)
2710{
2711        struct cgroup *src_cgrp;
2712
2713        lockdep_assert_held(&cgroup_mutex);
2714        lockdep_assert_held(&css_set_lock);
2715
2716        /*
2717         * If ->dead, @src_set is associated with one or more dead cgroups
2718         * and doesn't contain any migratable tasks.  Ignore it early so
2719         * that the rest of migration path doesn't get confused by it.
2720         */
2721        if (src_cset->dead)
2722                return;
2723
2724        if (!list_empty(&src_cset->mg_src_preload_node))
2725                return;
2726
2727        src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2728
2729        WARN_ON(src_cset->mg_src_cgrp);
2730        WARN_ON(src_cset->mg_dst_cgrp);
2731        WARN_ON(!list_empty(&src_cset->mg_tasks));
2732        WARN_ON(!list_empty(&src_cset->mg_node));
2733
2734        src_cset->mg_src_cgrp = src_cgrp;
2735        src_cset->mg_dst_cgrp = dst_cgrp;
2736        get_css_set(src_cset);
2737        list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2738}
2739
2740/**
2741 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2742 * @mgctx: migration context
2743 *
2744 * Tasks are about to be moved and all the source css_sets have been
2745 * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2746 * pins all destination css_sets, links each to its source, and append them
2747 * to @mgctx->preloaded_dst_csets.
2748 *
2749 * This function must be called after cgroup_migrate_add_src() has been
2750 * called on each migration source css_set.  After migration is performed
2751 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2752 * @mgctx.
2753 */
2754int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2755{
2756        struct css_set *src_cset, *tmp_cset;
2757
2758        lockdep_assert_held(&cgroup_mutex);
2759
2760        /* look up the dst cset for each src cset and link it to src */
2761        list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2762                                 mg_src_preload_node) {
2763                struct css_set *dst_cset;
2764                struct cgroup_subsys *ss;
2765                int ssid;
2766
2767                dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2768                if (!dst_cset)
2769                        return -ENOMEM;
2770
2771                WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2772
2773                /*
2774                 * If src cset equals dst, it's noop.  Drop the src.
2775                 * cgroup_migrate() will skip the cset too.  Note that we
2776                 * can't handle src == dst as some nodes are used by both.
2777                 */
2778                if (src_cset == dst_cset) {
2779                        src_cset->mg_src_cgrp = NULL;
2780                        src_cset->mg_dst_cgrp = NULL;
2781                        list_del_init(&src_cset->mg_src_preload_node);
2782                        put_css_set(src_cset);
2783                        put_css_set(dst_cset);
2784                        continue;
2785                }
2786
2787                src_cset->mg_dst_cset = dst_cset;
2788
2789                if (list_empty(&dst_cset->mg_dst_preload_node))
2790                        list_add_tail(&dst_cset->mg_dst_preload_node,
2791                                      &mgctx->preloaded_dst_csets);
2792                else
2793                        put_css_set(dst_cset);
2794
2795                for_each_subsys(ss, ssid)
2796                        if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2797                                mgctx->ss_mask |= 1 << ssid;
2798        }
2799
2800        return 0;
2801}
2802
2803/**
2804 * cgroup_migrate - migrate a process or task to a cgroup
2805 * @leader: the leader of the process or the task to migrate
2806 * @threadgroup: whether @leader points to the whole process or a single task
2807 * @mgctx: migration context
2808 *
2809 * Migrate a process or task denoted by @leader.  If migrating a process,
2810 * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2811 * responsible for invoking cgroup_migrate_add_src() and
2812 * cgroup_migrate_prepare_dst() on the targets before invoking this
2813 * function and following up with cgroup_migrate_finish().
2814 *
2815 * As long as a controller's ->can_attach() doesn't fail, this function is
2816 * guaranteed to succeed.  This means that, excluding ->can_attach()
2817 * failure, when migrating multiple targets, the success or failure can be
2818 * decided for all targets by invoking group_migrate_prepare_dst() before
2819 * actually starting migrating.
2820 */
2821int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2822                   struct cgroup_mgctx *mgctx)
2823{
2824        struct task_struct *task;
2825
2826        /*
2827         * Prevent freeing of tasks while we take a snapshot. Tasks that are
2828         * already PF_EXITING could be freed from underneath us unless we
2829         * take an rcu_read_lock.
2830         */
2831        spin_lock_irq(&css_set_lock);
2832        rcu_read_lock();
2833        task = leader;
2834        do {
2835                cgroup_migrate_add_task(task, mgctx);
2836                if (!threadgroup)
2837                        break;
2838        } while_each_thread(leader, task);
2839        rcu_read_unlock();
2840        spin_unlock_irq(&css_set_lock);
2841
2842        return cgroup_migrate_execute(mgctx);
2843}
2844
2845/**
2846 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2847 * @dst_cgrp: the cgroup to attach to
2848 * @leader: the task or the leader of the threadgroup to be attached
2849 * @threadgroup: attach the whole threadgroup?
2850 *
2851 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2852 */
2853int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2854                       bool threadgroup)
2855{
2856        DEFINE_CGROUP_MGCTX(mgctx);
2857        struct task_struct *task;
2858        int ret = 0;
2859
2860        /* look up all src csets */
2861        spin_lock_irq(&css_set_lock);
2862        rcu_read_lock();
2863        task = leader;
2864        do {
2865                cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2866                if (!threadgroup)
2867                        break;
2868        } while_each_thread(leader, task);
2869        rcu_read_unlock();
2870        spin_unlock_irq(&css_set_lock);
2871
2872        /* prepare dst csets and commit */
2873        ret = cgroup_migrate_prepare_dst(&mgctx);
2874        if (!ret)
2875                ret = cgroup_migrate(leader, threadgroup, &mgctx);
2876
2877        cgroup_migrate_finish(&mgctx);
2878
2879        if (!ret)
2880                TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2881
2882        return ret;
2883}
2884
2885struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2886                                             bool *threadgroup_locked)
2887{
2888        struct task_struct *tsk;
2889        pid_t pid;
2890
2891        if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2892                return ERR_PTR(-EINVAL);
2893
2894        /*
2895         * If we migrate a single thread, we don't care about threadgroup
2896         * stability. If the thread is `current`, it won't exit(2) under our
2897         * hands or change PID through exec(2). We exclude
2898         * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2899         * callers by cgroup_mutex.
2900         * Therefore, we can skip the global lock.
2901         */
2902        lockdep_assert_held(&cgroup_mutex);
2903        *threadgroup_locked = pid || threadgroup;
2904        cgroup_attach_lock(*threadgroup_locked);
2905
2906        rcu_read_lock();
2907        if (pid) {
2908                tsk = find_task_by_vpid(pid);
2909                if (!tsk) {
2910                        tsk = ERR_PTR(-ESRCH);
2911                        goto out_unlock_threadgroup;
2912                }
2913        } else {
2914                tsk = current;
2915        }
2916
2917        if (threadgroup)
2918                tsk = tsk->group_leader;
2919
2920        /*
2921         * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2922         * If userland migrates such a kthread to a non-root cgroup, it can
2923         * become trapped in a cpuset, or RT kthread may be born in a
2924         * cgroup with no rt_runtime allocated.  Just say no.
2925         */
2926        if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2927                tsk = ERR_PTR(-EINVAL);
2928                goto out_unlock_threadgroup;
2929        }
2930
2931        get_task_struct(tsk);
2932        goto out_unlock_rcu;
2933
2934out_unlock_threadgroup:
2935        cgroup_attach_unlock(*threadgroup_locked);
2936        *threadgroup_locked = false;
2937out_unlock_rcu:
2938        rcu_read_unlock();
2939        return tsk;
2940}
2941
2942void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2943{
2944        struct cgroup_subsys *ss;
2945        int ssid;
2946
2947        /* release reference from cgroup_procs_write_start() */
2948        put_task_struct(task);
2949
2950        cgroup_attach_unlock(threadgroup_locked);
2951
2952        for_each_subsys(ss, ssid)
2953                if (ss->post_attach)
2954                        ss->post_attach();
2955}
2956
2957static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2958{
2959        struct cgroup_subsys *ss;
2960        bool printed = false;
2961        int ssid;
2962
2963        do_each_subsys_mask(ss, ssid, ss_mask) {
2964                if (printed)
2965                        seq_putc(seq, ' ');
2966                seq_puts(seq, ss->name);
2967                printed = true;
2968        } while_each_subsys_mask();
2969        if (printed)
2970                seq_putc(seq, '\n');
2971}
2972
2973/* show controllers which are enabled from the parent */
2974static int cgroup_controllers_show(struct seq_file *seq, void *v)
2975{
2976        struct cgroup *cgrp = seq_css(seq)->cgroup;
2977
2978        cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2979        return 0;
2980}
2981
2982/* show controllers which are enabled for a given cgroup's children */
2983static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2984{
2985        struct cgroup *cgrp = seq_css(seq)->cgroup;
2986
2987        cgroup_print_ss_mask(seq, cgrp->subtree_control);
2988        return 0;
2989}
2990
2991/**
2992 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2993 * @cgrp: root of the subtree to update csses for
2994 *
2995 * @cgrp's control masks have changed and its subtree's css associations
2996 * need to be updated accordingly.  This function looks up all css_sets
2997 * which are attached to the subtree, creates the matching updated css_sets
2998 * and migrates the tasks to the new ones.
2999 */
3000static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3001{
3002        DEFINE_CGROUP_MGCTX(mgctx);
3003        struct cgroup_subsys_state *d_css;
3004        struct cgroup *dsct;
3005        struct css_set *src_cset;
3006        bool has_tasks;
3007        int ret;
3008
3009        lockdep_assert_held(&cgroup_mutex);
3010
3011        /* look up all csses currently attached to @cgrp's subtree */
3012        spin_lock_irq(&css_set_lock);
3013        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3014                struct cgrp_cset_link *link;
3015
3016                /*
3017                 * As cgroup_update_dfl_csses() is only called by
3018                 * cgroup_apply_control(). The csses associated with the
3019                 * given cgrp will not be affected by changes made to
3020                 * its subtree_control file. We can skip them.
3021                 */
3022                if (dsct == cgrp)
3023                        continue;
3024
3025                list_for_each_entry(link, &dsct->cset_links, cset_link)
3026                        cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3027        }
3028        spin_unlock_irq(&css_set_lock);
3029
3030        /*
3031         * We need to write-lock threadgroup_rwsem while migrating tasks.
3032         * However, if there are no source csets for @cgrp, changing its
3033         * controllers isn't gonna produce any task migrations and the
3034         * write-locking can be skipped safely.
3035         */
3036        has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3037        cgroup_attach_lock(has_tasks);
3038
3039        /* NULL dst indicates self on default hierarchy */
3040        ret = cgroup_migrate_prepare_dst(&mgctx);
3041        if (ret)
3042                goto out_finish;
3043
3044        spin_lock_irq(&css_set_lock);
3045        list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3046                            mg_src_preload_node) {
3047                struct task_struct *task, *ntask;
3048
3049                /* all tasks in src_csets need to be migrated */
3050                list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3051                        cgroup_migrate_add_task(task, &mgctx);
3052        }
3053        spin_unlock_irq(&css_set_lock);
3054
3055        ret = cgroup_migrate_execute(&mgctx);
3056out_finish:
3057        cgroup_migrate_finish(&mgctx);
3058        cgroup_attach_unlock(has_tasks);
3059        return ret;
3060}
3061
3062/**
3063 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3064 * @cgrp: root of the target subtree
3065 *
3066 * Because css offlining is asynchronous, userland may try to re-enable a
3067 * controller while the previous css is still around.  This function grabs
3068 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3069 */
3070void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3071        __acquires(&cgroup_mutex)
3072{
3073        struct cgroup *dsct;
3074        struct cgroup_subsys_state *d_css;
3075        struct cgroup_subsys *ss;
3076        int ssid;
3077
3078restart:
3079        mutex_lock(&cgroup_mutex);
3080
3081        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3082                for_each_subsys(ss, ssid) {
3083                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3084                        DEFINE_WAIT(wait);
3085
3086                        if (!css || !percpu_ref_is_dying(&css->refcnt))
3087                                continue;
3088
3089                        cgroup_get_live(dsct);
3090                        prepare_to_wait(&dsct->offline_waitq, &wait,
3091                                        TASK_UNINTERRUPTIBLE);
3092
3093                        mutex_unlock(&cgroup_mutex);
3094                        schedule();
3095                        finish_wait(&dsct->offline_waitq, &wait);
3096
3097                        cgroup_put(dsct);
3098                        goto restart;
3099                }
3100        }
3101}
3102
3103/**
3104 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3105 * @cgrp: root of the target subtree
3106 *
3107 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3108 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3109 * itself.
3110 */
3111static void cgroup_save_control(struct cgroup *cgrp)
3112{
3113        struct cgroup *dsct;
3114        struct cgroup_subsys_state *d_css;
3115
3116        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3117                dsct->old_subtree_control = dsct->subtree_control;
3118                dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3119                dsct->old_dom_cgrp = dsct->dom_cgrp;
3120        }
3121}
3122
3123/**
3124 * cgroup_propagate_control - refresh control masks of a subtree
3125 * @cgrp: root of the target subtree
3126 *
3127 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3128 * ->subtree_control and propagate controller availability through the
3129 * subtree so that descendants don't have unavailable controllers enabled.
3130 */
3131static void cgroup_propagate_control(struct cgroup *cgrp)
3132{
3133        struct cgroup *dsct;
3134        struct cgroup_subsys_state *d_css;
3135
3136        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3137                dsct->subtree_control &= cgroup_control(dsct);
3138                dsct->subtree_ss_mask =
3139                        cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3140                                                    cgroup_ss_mask(dsct));
3141        }
3142}
3143
3144/**
3145 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3146 * @cgrp: root of the target subtree
3147 *
3148 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3149 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3150 * itself.
3151 */
3152static void cgroup_restore_control(struct cgroup *cgrp)
3153{
3154        struct cgroup *dsct;
3155        struct cgroup_subsys_state *d_css;
3156
3157        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3158                dsct->subtree_control = dsct->old_subtree_control;
3159                dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3160                dsct->dom_cgrp = dsct->old_dom_cgrp;
3161        }
3162}
3163
3164static bool css_visible(struct cgroup_subsys_state *css)
3165{
3166        struct cgroup_subsys *ss = css->ss;
3167        struct cgroup *cgrp = css->cgroup;
3168
3169        if (cgroup_control(cgrp) & (1 << ss->id))
3170                return true;
3171        if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3172                return false;
3173        return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3174}
3175
3176/**
3177 * cgroup_apply_control_enable - enable or show csses according to control
3178 * @cgrp: root of the target subtree
3179 *
3180 * Walk @cgrp's subtree and create new csses or make the existing ones
3181 * visible.  A css is created invisible if it's being implicitly enabled
3182 * through dependency.  An invisible css is made visible when the userland
3183 * explicitly enables it.
3184 *
3185 * Returns 0 on success, -errno on failure.  On failure, csses which have
3186 * been processed already aren't cleaned up.  The caller is responsible for
3187 * cleaning up with cgroup_apply_control_disable().
3188 */
3189static int cgroup_apply_control_enable(struct cgroup *cgrp)
3190{
3191        struct cgroup *dsct;
3192        struct cgroup_subsys_state *d_css;
3193        struct cgroup_subsys *ss;
3194        int ssid, ret;
3195
3196        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3197                for_each_subsys(ss, ssid) {
3198                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3199
3200                        if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3201                                continue;
3202
3203                        if (!css) {
3204                                css = css_create(dsct, ss);
3205                                if (IS_ERR(css))
3206                                        return PTR_ERR(css);
3207                        }
3208
3209                        WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3210
3211                        if (css_visible(css)) {
3212                                ret = css_populate_dir(css);
3213                                if (ret)
3214                                        return ret;
3215                        }
3216                }
3217        }
3218
3219        return 0;
3220}
3221
3222/**
3223 * cgroup_apply_control_disable - kill or hide csses according to control
3224 * @cgrp: root of the target subtree
3225 *
3226 * Walk @cgrp's subtree and kill and hide csses so that they match
3227 * cgroup_ss_mask() and cgroup_visible_mask().
3228 *
3229 * A css is hidden when the userland requests it to be disabled while other
3230 * subsystems are still depending on it.  The css must not actively control
3231 * resources and be in the vanilla state if it's made visible again later.
3232 * Controllers which may be depended upon should provide ->css_reset() for
3233 * this purpose.
3234 */
3235static void cgroup_apply_control_disable(struct cgroup *cgrp)
3236{
3237        struct cgroup *dsct;
3238        struct cgroup_subsys_state *d_css;
3239        struct cgroup_subsys *ss;
3240        int ssid;
3241
3242        cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3243                for_each_subsys(ss, ssid) {
3244                        struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3245
3246                        if (!css)
3247                                continue;
3248
3249                        WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3250
3251                        if (css->parent &&
3252                            !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3253                                kill_css(css);
3254                        } else if (!css_visible(css)) {
3255                                css_clear_dir(css);
3256                                if (ss->css_reset)
3257                                        ss->css_reset(css);
3258                        }
3259                }
3260        }
3261}
3262
3263/**
3264 * cgroup_apply_control - apply control mask updates to the subtree
3265 * @cgrp: root of the target subtree
3266 *
3267 * subsystems can be enabled and disabled in a subtree using the following
3268 * steps.
3269 *
3270 * 1. Call cgroup_save_control() to stash the current state.
3271 * 2. Update ->subtree_control masks in the subtree as desired.
3272 * 3. Call cgroup_apply_control() to apply the changes.
3273 * 4. Optionally perform other related operations.
3274 * 5. Call cgroup_finalize_control() to finish up.
3275 *
3276 * This function implements step 3 and propagates the mask changes
3277 * throughout @cgrp's subtree, updates csses accordingly and perform
3278 * process migrations.
3279 */
3280static int cgroup_apply_control(struct cgroup *cgrp)
3281{
3282        int ret;
3283
3284        cgroup_propagate_control(cgrp);
3285
3286        ret = cgroup_apply_control_enable(cgrp);
3287        if (ret)
3288                return ret;
3289
3290        /*
3291         * At this point, cgroup_e_css_by_mask() results reflect the new csses
3292         * making the following cgroup_update_dfl_csses() properly update
3293         * css associations of all tasks in the subtree.
3294         */
3295        ret = cgroup_update_dfl_csses(cgrp);
3296        if (ret)
3297                return ret;
3298
3299        return 0;
3300}
3301
3302/**
3303 * cgroup_finalize_control - finalize control mask update
3304 * @cgrp: root of the target subtree
3305 * @ret: the result of the update
3306 *
3307 * Finalize control mask update.  See cgroup_apply_control() for more info.
3308 */
3309static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3310{
3311        if (ret) {
3312                cgroup_restore_control(cgrp);
3313                cgroup_propagate_control(cgrp);
3314        }
3315
3316        cgroup_apply_control_disable(cgrp);
3317}
3318
3319static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3320{
3321        u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3322
3323        /* if nothing is getting enabled, nothing to worry about */
3324        if (!enable)
3325                return 0;
3326
3327        /* can @cgrp host any resources? */
3328        if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3329                return -EOPNOTSUPP;
3330
3331        /* mixables don't care */
3332        if (cgroup_is_mixable(cgrp))
3333                return 0;
3334
3335        if (domain_enable) {
3336                /* can't enable domain controllers inside a thread subtree */
3337                if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3338                        return -EOPNOTSUPP;
3339        } else {
3340                /*
3341                 * Threaded controllers can handle internal competitions
3342                 * and are always allowed inside a (prospective) thread
3343                 * subtree.
3344                 */
3345                if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3346                        return 0;
3347        }
3348
3349        /*
3350         * Controllers can't be enabled for a cgroup with tasks to avoid
3351         * child cgroups competing against tasks.
3352         */
3353        if (cgroup_has_tasks(cgrp))
3354                return -EBUSY;
3355
3356        return 0;
3357}
3358
3359/* change the enabled child controllers for a cgroup in the default hierarchy */
3360static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3361                                            char *buf, size_t nbytes,
3362                                            loff_t off)
3363{
3364        u16 enable = 0, disable = 0;
3365        struct cgroup *cgrp, *child;
3366        struct cgroup_subsys *ss;
3367        char *tok;
3368        int ssid, ret;
3369
3370        /*
3371         * Parse input - space separated list of subsystem names prefixed
3372         * with either + or -.
3373         */
3374        buf = strstrip(buf);
3375        while ((tok = strsep(&buf, " "))) {
3376                if (tok[0] == '\0')
3377                        continue;
3378                do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3379                        if (!cgroup_ssid_enabled(ssid) ||
3380                            strcmp(tok + 1, ss->name))
3381                                continue;
3382
3383                        if (*tok == '+') {
3384                                enable |= 1 << ssid;
3385                                disable &= ~(1 << ssid);
3386                        } else if (*tok == '-') {
3387                                disable |= 1 << ssid;
3388                                enable &= ~(1 << ssid);
3389                        } else {
3390                                return -EINVAL;
3391                        }
3392                        break;
3393                } while_each_subsys_mask();
3394                if (ssid == CGROUP_SUBSYS_COUNT)
3395                        return -EINVAL;
3396        }
3397
3398        cgrp = cgroup_kn_lock_live(of->kn, true);
3399        if (!cgrp)
3400                return -ENODEV;
3401
3402        for_each_subsys(ss, ssid) {
3403                if (enable & (1 << ssid)) {
3404                        if (cgrp->subtree_control & (1 << ssid)) {
3405                                enable &= ~(1 << ssid);
3406                                continue;
3407                        }
3408
3409                        if (!(cgroup_control(cgrp) & (1 << ssid))) {
3410                                ret = -ENOENT;
3411                                goto out_unlock;
3412                        }
3413                } else if (disable & (1 << ssid)) {
3414                        if (!(cgrp->subtree_control & (1 << ssid))) {
3415                                disable &= ~(1 << ssid);
3416                                continue;
3417                        }
3418
3419                        /* a child has it enabled? */
3420                        cgroup_for_each_live_child(child, cgrp) {
3421                                if (child->subtree_control & (1 << ssid)) {
3422                                        ret = -EBUSY;
3423                                        goto out_unlock;
3424                                }
3425                        }
3426                }
3427        }
3428
3429        if (!enable && !disable) {
3430                ret = 0;
3431                goto out_unlock;
3432        }
3433
3434        ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3435        if (ret)
3436                goto out_unlock;
3437
3438        /* save and update control masks and prepare csses */
3439        cgroup_save_control(cgrp);
3440
3441        cgrp->subtree_control |= enable;
3442        cgrp->subtree_control &= ~disable;
3443
3444        ret = cgroup_apply_control(cgrp);
3445        cgroup_finalize_control(cgrp, ret);
3446        if (ret)
3447                goto out_unlock;
3448
3449        kernfs_activate(cgrp->kn);
3450out_unlock:
3451        cgroup_kn_unlock(of->kn);
3452        return ret ?: nbytes;
3453}
3454
3455/**
3456 * cgroup_enable_threaded - make @cgrp threaded
3457 * @cgrp: the target cgroup
3458 *
3459 * Called when "threaded" is written to the cgroup.type interface file and
3460 * tries to make @cgrp threaded and join the parent's resource domain.
3461 * This function is never called on the root cgroup as cgroup.type doesn't
3462 * exist on it.
3463 */
3464static int cgroup_enable_threaded(struct cgroup *cgrp)
3465{
3466        struct cgroup *parent = cgroup_parent(cgrp);
3467        struct cgroup *dom_cgrp = parent->dom_cgrp;
3468        struct cgroup *dsct;
3469        struct cgroup_subsys_state *d_css;
3470        int ret;
3471
3472        lockdep_assert_held(&cgroup_mutex);
3473
3474        /* noop if already threaded */
3475        if (cgroup_is_threaded(cgrp))
3476                return 0;
3477
3478        /*
3479         * If @cgroup is populated or has domain controllers enabled, it
3480         * can't be switched.  While the below cgroup_can_be_thread_root()
3481         * test can catch the same conditions, that's only when @parent is
3482         * not mixable, so let's check it explicitly.
3483         */
3484        if (cgroup_is_populated(cgrp) ||
3485            cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3486                return -EOPNOTSUPP;
3487
3488        /* we're joining the parent's domain, ensure its validity */
3489        if (!cgroup_is_valid_domain(dom_cgrp) ||
3490            !cgroup_can_be_thread_root(dom_cgrp))
3491                return -EOPNOTSUPP;
3492
3493        /*
3494         * The following shouldn't cause actual migrations and should
3495         * always succeed.
3496         */
3497        cgroup_save_control(cgrp);
3498
3499        cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3500                if (dsct == cgrp || cgroup_is_threaded(dsct))
3501                        dsct->dom_cgrp = dom_cgrp;
3502
3503        ret = cgroup_apply_control(cgrp);
3504        if (!ret)
3505                parent->nr_threaded_children++;
3506
3507        cgroup_finalize_control(cgrp, ret);
3508        return ret;
3509}
3510
3511static int cgroup_type_show(struct seq_file *seq, void *v)
3512{
3513        struct cgroup *cgrp = seq_css(seq)->cgroup;
3514
3515        if (cgroup_is_threaded(cgrp))
3516                seq_puts(seq, "threaded\n");
3517        else if (!cgroup_is_valid_domain(cgrp))
3518                seq_puts(seq, "domain invalid\n");
3519        else if (cgroup_is_thread_root(cgrp))
3520                seq_puts(seq, "domain threaded\n");
3521        else
3522                seq_puts(seq, "domain\n");
3523
3524        return 0;
3525}
3526
3527static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3528                                 size_t nbytes, loff_t off)
3529{
3530        struct cgroup *cgrp;
3531        int ret;
3532
3533        /* only switching to threaded mode is supported */
3534        if (strcmp(strstrip(buf), "threaded"))
3535                return -EINVAL;
3536
3537        /* drain dying csses before we re-apply (threaded) subtree control */
3538        cgrp = cgroup_kn_lock_live(of->kn, true);
3539        if (!cgrp)
3540                return -ENOENT;
3541
3542        /* threaded can only be enabled */
3543        ret = cgroup_enable_threaded(cgrp);
3544
3545        cgroup_kn_unlock(of->kn);
3546        return ret ?: nbytes;
3547}
3548
3549static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3550{
3551        struct cgroup *cgrp = seq_css(seq)->cgroup;
3552        int descendants = READ_ONCE(cgrp->max_descendants);
3553
3554        if (descendants == INT_MAX)
3555                seq_puts(seq, "max\n");
3556        else
3557                seq_printf(seq, "%d\n", descendants);
3558
3559        return 0;
3560}
3561
3562static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3563                                           char *buf, size_t nbytes, loff_t off)
3564{
3565        struct cgroup *cgrp;
3566        int descendants;
3567        ssize_t ret;
3568
3569        buf = strstrip(buf);
3570        if (!strcmp(buf, "max")) {
3571                descendants = INT_MAX;
3572        } else {
3573                ret = kstrtoint(buf, 0, &descendants);
3574                if (ret)
3575                        return ret;
3576        }
3577
3578        if (descendants < 0)
3579                return -ERANGE;
3580
3581        cgrp = cgroup_kn_lock_live(of->kn, false);
3582        if (!cgrp)
3583                return -ENOENT;
3584
3585        cgrp->max_descendants = descendants;
3586
3587        cgroup_kn_unlock(of->kn);
3588
3589        return nbytes;
3590}
3591
3592static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3593{
3594        struct cgroup *cgrp = seq_css(seq)->cgroup;
3595        int depth = READ_ONCE(cgrp->max_depth);
3596
3597        if (depth == INT_MAX)
3598                seq_puts(seq, "max\n");
3599        else
3600                seq_printf(seq, "%d\n", depth);
3601
3602        return 0;
3603}
3604
3605static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3606                                      char *buf, size_t nbytes, loff_t off)
3607{
3608        struct cgroup *cgrp;
3609        ssize_t ret;
3610        int depth;
3611
3612        buf = strstrip(buf);
3613        if (!strcmp(buf, "max")) {
3614                depth = INT_MAX;
3615        } else {
3616                ret = kstrtoint(buf, 0, &depth);
3617                if (ret)
3618                        return ret;
3619        }
3620
3621        if (depth < 0)
3622                return -ERANGE;
3623
3624        cgrp = cgroup_kn_lock_live(of->kn, false);
3625        if (!cgrp)
3626                return -ENOENT;
3627
3628        cgrp->max_depth = depth;
3629
3630        cgroup_kn_unlock(of->kn);
3631
3632        return nbytes;
3633}
3634
3635static int cgroup_events_show(struct seq_file *seq, void *v)
3636{
3637        struct cgroup *cgrp = seq_css(seq)->cgroup;
3638
3639        seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3640        seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3641
3642        return 0;
3643}
3644
3645static int cgroup_stat_show(struct seq_file *seq, void *v)
3646{
3647        struct cgroup *cgroup = seq_css(seq)->cgroup;
3648
3649        seq_printf(seq, "nr_descendants %d\n",
3650                   cgroup->nr_descendants);
3651        seq_printf(seq, "nr_dying_descendants %d\n",
3652                   cgroup->nr_dying_descendants);
3653
3654        return 0;
3655}
3656
3657static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3658                                                 struct cgroup *cgrp, int ssid)
3659{
3660        struct cgroup_subsys *ss = cgroup_subsys[ssid];
3661        struct cgroup_subsys_state *css;
3662        int ret;
3663
3664        if (!ss->css_extra_stat_show)
3665                return 0;
3666
3667        css = cgroup_tryget_css(cgrp, ss);
3668        if (!css)
3669                return 0;
3670
3671        ret = ss->css_extra_stat_show(seq, css);
3672        css_put(css);
3673        return ret;
3674}
3675
3676static int cpu_stat_show(struct seq_file *seq, void *v)
3677{
3678        struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3679        int ret = 0;
3680
3681        cgroup_base_stat_cputime_show(seq);
3682#ifdef CONFIG_CGROUP_SCHED
3683        ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3684#endif
3685        return ret;
3686}
3687
3688#ifdef CONFIG_PSI
3689static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3690{
3691        struct cgroup *cgrp = seq_css(seq)->cgroup;
3692        struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3693
3694        return psi_show(seq, psi, PSI_IO);
3695}
3696static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3697{
3698        struct cgroup *cgrp = seq_css(seq)->cgroup;
3699        struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3700
3701        return psi_show(seq, psi, PSI_MEM);
3702}
3703static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3704{
3705        struct cgroup *cgrp = seq_css(seq)->cgroup;
3706        struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3707
3708        return psi_show(seq, psi, PSI_CPU);
3709}
3710
3711static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3712                                          size_t nbytes, enum psi_res res)
3713{
3714        struct cgroup_file_ctx *ctx = of->priv;
3715        struct psi_trigger *new;
3716        struct cgroup *cgrp;
3717        struct psi_group *psi;
3718
3719        cgrp = cgroup_kn_lock_live(of->kn, false);
3720        if (!cgrp)
3721                return -ENODEV;
3722
3723        cgroup_get(cgrp);
3724        cgroup_kn_unlock(of->kn);
3725
3726        /* Allow only one trigger per file descriptor */
3727        if (ctx->psi.trigger) {
3728                cgroup_put(cgrp);
3729                return -EBUSY;
3730        }
3731
3732        psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3733        new = psi_trigger_create(psi, buf, res);
3734        if (IS_ERR(new)) {
3735                cgroup_put(cgrp);
3736                return PTR_ERR(new);
3737        }
3738
3739        smp_store_release(&ctx->psi.trigger, new);
3740        cgroup_put(cgrp);
3741
3742        return nbytes;
3743}
3744
3745static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3746                                          char *buf, size_t nbytes,
3747                                          loff_t off)
3748{
3749        return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3750}
3751
3752static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3753                                          char *buf, size_t nbytes,
3754                                          loff_t off)
3755{
3756        return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3757}
3758
3759static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3760                                          char *buf, size_t nbytes,
3761                                          loff_t off)
3762{
3763        return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3764}
3765
3766static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3767                                          poll_table *pt)
3768{
3769        struct cgroup_file_ctx *ctx = of->priv;
3770
3771        return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3772}
3773
3774static void cgroup_pressure_release(struct kernfs_open_file *of)
3775{
3776        struct cgroup_file_ctx *ctx = of->priv;
3777
3778        psi_trigger_destroy(ctx->psi.trigger);
3779}
3780
3781bool cgroup_psi_enabled(void)
3782{
3783        return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3784}
3785
3786#else /* CONFIG_PSI */
3787bool cgroup_psi_enabled(void)
3788{
3789        return false;
3790}
3791
3792#endif /* CONFIG_PSI */
3793
3794static int cgroup_freeze_show(struct seq_file *seq, void *v)
3795{
3796        struct cgroup *cgrp = seq_css(seq)->cgroup;
3797
3798        seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3799
3800        return 0;
3801}
3802
3803static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3804                                   char *buf, size_t nbytes, loff_t off)
3805{
3806        struct cgroup *cgrp;
3807        ssize_t ret;
3808        int freeze;
3809
3810        ret = kstrtoint(strstrip(buf), 0, &freeze);
3811        if (ret)
3812                return ret;
3813
3814        if (freeze < 0 || freeze > 1)
3815                return -ERANGE;
3816
3817        cgrp = cgroup_kn_lock_live(of->kn, false);
3818        if (!cgrp)
3819                return -ENOENT;
3820
3821        cgroup_freeze(cgrp, freeze);
3822
3823        cgroup_kn_unlock(of->kn);
3824
3825        return nbytes;
3826}
3827
3828static void __cgroup_kill(struct cgroup *cgrp)
3829{
3830        struct css_task_iter it;
3831        struct task_struct *task;
3832
3833        lockdep_assert_held(&cgroup_mutex);
3834
3835        spin_lock_irq(&css_set_lock);
3836        set_bit(CGRP_KILL, &cgrp->flags);
3837        spin_unlock_irq(&css_set_lock);
3838
3839        css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3840        while ((task = css_task_iter_next(&it))) {
3841                /* Ignore kernel threads here. */
3842                if (task->flags & PF_KTHREAD)
3843                        continue;
3844
3845                /* Skip tasks that are already dying. */
3846                if (__fatal_signal_pending(task))
3847                        continue;
3848
3849                send_sig(SIGKILL, task, 0);
3850        }
3851        css_task_iter_end(&it);
3852
3853        spin_lock_irq(&css_set_lock);
3854        clear_bit(CGRP_KILL, &cgrp->flags);
3855        spin_unlock_irq(&css_set_lock);
3856}
3857
3858static void cgroup_kill(struct cgroup *cgrp)
3859{
3860        struct cgroup_subsys_state *css;
3861        struct cgroup *dsct;
3862
3863        lockdep_assert_held(&cgroup_mutex);
3864
3865        cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3866                __cgroup_kill(dsct);
3867}
3868
3869static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3870                                 size_t nbytes, loff_t off)
3871{
3872        ssize_t ret = 0;
3873        int kill;
3874        struct cgroup *cgrp;
3875
3876        ret = kstrtoint(strstrip(buf), 0, &kill);
3877        if (ret)
3878                return ret;
3879
3880        if (kill != 1)
3881                return -ERANGE;
3882
3883        cgrp = cgroup_kn_lock_live(of->kn, false);
3884        if (!cgrp)
3885                return -ENOENT;
3886
3887        /*
3888         * Killing is a process directed operation, i.e. the whole thread-group
3889         * is taken down so act like we do for cgroup.procs and only make this
3890         * writable in non-threaded cgroups.
3891         */
3892        if (cgroup_is_threaded(cgrp))
3893                ret = -EOPNOTSUPP;
3894        else
3895                cgroup_kill(cgrp);
3896
3897        cgroup_kn_unlock(of->kn);
3898
3899        return ret ?: nbytes;
3900}
3901
3902static int cgroup_file_open(struct kernfs_open_file *of)
3903{
3904        struct cftype *cft = of_cft(of);
3905        struct cgroup_file_ctx *ctx;
3906        int ret;
3907
3908        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3909        if (!ctx)
3910                return -ENOMEM;
3911
3912        ctx->ns = current->nsproxy->cgroup_ns;
3913        get_cgroup_ns(ctx->ns);
3914        of->priv = ctx;
3915
3916        if (!cft->open)
3917                return 0;
3918
3919        ret = cft->open(of);
3920        if (ret) {
3921                put_cgroup_ns(ctx->ns);
3922                kfree(ctx);
3923        }
3924        return ret;
3925}
3926
3927static void cgroup_file_release(struct kernfs_open_file *of)
3928{
3929        struct cftype *cft = of_cft(of);
3930        struct cgroup_file_ctx *ctx = of->priv;
3931
3932        if (cft->release)
3933                cft->release(of);
3934        put_cgroup_ns(ctx->ns);
3935        kfree(ctx);
3936}
3937
3938static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3939                                 size_t nbytes, loff_t off)
3940{
3941        struct cgroup_file_ctx *ctx = of->priv;
3942        struct cgroup *cgrp = of->kn->parent->priv;
3943        struct cftype *cft = of_cft(of);
3944        struct cgroup_subsys_state *css;
3945        int ret;
3946
3947        if (!nbytes)
3948                return 0;
3949
3950        /*
3951         * If namespaces are delegation boundaries, disallow writes to
3952         * files in an non-init namespace root from inside the namespace
3953         * except for the files explicitly marked delegatable -
3954         * cgroup.procs and cgroup.subtree_control.
3955         */
3956        if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3957            !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3958            ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3959                return -EPERM;
3960
3961        if (cft->write)
3962                return cft->write(of, buf, nbytes, off);
3963
3964        /*
3965         * kernfs guarantees that a file isn't deleted with operations in
3966         * flight, which means that the matching css is and stays alive and
3967         * doesn't need to be pinned.  The RCU locking is not necessary
3968         * either.  It's just for the convenience of using cgroup_css().
3969         */
3970        rcu_read_lock();
3971        css = cgroup_css(cgrp, cft->ss);
3972        rcu_read_unlock();
3973
3974        if (cft->write_u64) {
3975                unsigned long long v;
3976                ret = kstrtoull(buf, 0, &v);
3977                if (!ret)
3978                        ret = cft->write_u64(css, cft, v);
3979        } else if (cft->write_s64) {
3980                long long v;
3981                ret = kstrtoll(buf, 0, &v);
3982                if (!ret)
3983                        ret = cft->write_s64(css, cft, v);
3984        } else {
3985                ret = -EINVAL;
3986        }
3987
3988        return ret ?: nbytes;
3989}
3990
3991static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3992{
3993        struct cftype *cft = of_cft(of);
3994
3995        if (cft->poll)
3996                return cft->poll(of, pt);
3997
3998        return kernfs_generic_poll(of, pt);
3999}
4000
4001static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4002{
4003        return seq_cft(seq)->seq_start(seq, ppos);
4004}
4005
4006static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4007{
4008        return seq_cft(seq)->seq_next(seq, v, ppos);
4009}
4010
4011static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4012{
4013        if (seq_cft(seq)->seq_stop)
4014                seq_cft(seq)->seq_stop(seq, v);
4015}
4016
4017static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4018{
4019        struct cftype *cft = seq_cft(m);
4020        struct cgroup_subsys_state *css = seq_css(m);
4021
4022        if (cft->seq_show)
4023                return cft->seq_show(m, arg);
4024
4025        if (cft->read_u64)
4026                seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4027        else if (cft->read_s64)
4028                seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4029        else
4030                return -EINVAL;
4031        return 0;
4032}
4033
4034static struct kernfs_ops cgroup_kf_single_ops = {
4035        .atomic_write_len       = PAGE_SIZE,
4036        .open                   = cgroup_file_open,
4037        .release                = cgroup_file_release,
4038        .write                  = cgroup_file_write,
4039        .poll                   = cgroup_file_poll,
4040        .seq_show               = cgroup_seqfile_show,
4041};
4042
4043static struct kernfs_ops cgroup_kf_ops = {
4044        .atomic_write_len       = PAGE_SIZE,
4045        .open                   = cgroup_file_open,
4046        .release                = cgroup_file_release,
4047        .write                  = cgroup_file_write,
4048        .poll                   = cgroup_file_poll,
4049        .seq_start              = cgroup_seqfile_start,
4050        .seq_next               = cgroup_seqfile_next,
4051        .seq_stop               = cgroup_seqfile_stop,
4052        .seq_show               = cgroup_seqfile_show,
4053};
4054
4055/* set uid and gid of cgroup dirs and files to that of the creator */
4056static int cgroup_kn_set_ugid(struct kernfs_node *kn)
4057{
4058        struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
4059                               .ia_uid = current_fsuid(),
4060                               .ia_gid = current_fsgid(), };
4061
4062        if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
4063            gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
4064                return 0;
4065
4066        return kernfs_setattr(kn, &iattr);
4067}
4068
4069static void cgroup_file_notify_timer(struct timer_list *timer)
4070{
4071        cgroup_file_notify(container_of(timer, struct cgroup_file,
4072                                        notify_timer));
4073}
4074
4075static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4076                           struct cftype *cft)
4077{
4078        char name[CGROUP_FILE_NAME_MAX];
4079        struct kernfs_node *kn;
4080        struct lock_class_key *key = NULL;
4081        int ret;
4082
4083#ifdef CONFIG_DEBUG_LOCK_ALLOC
4084        key = &cft->lockdep_key;
4085#endif
4086        kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4087                                  cgroup_file_mode(cft),
4088                                  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4089                                  0, cft->kf_ops, cft,
4090                                  NULL, key);
4091        if (IS_ERR(kn))
4092                return PTR_ERR(kn);
4093
4094        ret = cgroup_kn_set_ugid(kn);
4095        if (ret) {
4096                kernfs_remove(kn);
4097                return ret;
4098        }
4099
4100        if (cft->file_offset) {
4101                struct cgroup_file *cfile = (void *)css + cft->file_offset;
4102
4103                timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4104
4105                spin_lock_irq(&cgroup_file_kn_lock);
4106                cfile->kn = kn;
4107                spin_unlock_irq(&cgroup_file_kn_lock);
4108        }
4109
4110        return 0;
4111}
4112
4113/**
4114 * cgroup_addrm_files - add or remove files to a cgroup directory
4115 * @css: the target css
4116 * @cgrp: the target cgroup (usually css->cgroup)
4117 * @cfts: array of cftypes to be added
4118 * @is_add: whether to add or remove
4119 *
4120 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4121 * For removals, this function never fails.
4122 */
4123static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4124                              struct cgroup *cgrp, struct cftype cfts[],
4125                              bool is_add)
4126{
4127        struct cftype *cft, *cft_end = NULL;
4128        int ret = 0;
4129
4130        lockdep_assert_held(&cgroup_mutex);
4131
4132restart:
4133        for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4134                /* does cft->flags tell us to skip this file on @cgrp? */
4135                if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4136                        continue;
4137                if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4138                        continue;
4139                if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4140                        continue;
4141                if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4142                        continue;
4143                if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4144                        continue;
4145                if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4146                        continue;
4147                if (is_add) {
4148                        ret = cgroup_add_file(css, cgrp, cft);
4149                        if (ret) {
4150                                pr_warn("%s: failed to add %s, err=%d\n",
4151                                        __func__, cft->name, ret);
4152                                cft_end = cft;
4153                                is_add = false;
4154                                goto restart;
4155                        }
4156                } else {
4157                        cgroup_rm_file(cgrp, cft);
4158                }
4159        }
4160        return ret;
4161}
4162
4163static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4164{
4165        struct cgroup_subsys *ss = cfts[0].ss;
4166        struct cgroup *root = &ss->root->cgrp;
4167        struct cgroup_subsys_state *css;
4168        int ret = 0;
4169
4170        lockdep_assert_held(&cgroup_mutex);
4171
4172        /* add/rm files for all cgroups created before */
4173        css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4174                struct cgroup *cgrp = css->cgroup;
4175
4176                if (!(css->flags & CSS_VISIBLE))
4177                        continue;
4178
4179                ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4180                if (ret)
4181                        break;
4182        }
4183
4184        if (is_add && !ret)
4185                kernfs_activate(root->kn);
4186        return ret;
4187}
4188
4189static void cgroup_exit_cftypes(struct cftype *cfts)
4190{
4191        struct cftype *cft;
4192
4193        for (cft = cfts; cft->name[0] != '\0'; cft++) {
4194                /* free copy for custom atomic_write_len, see init_cftypes() */
4195                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4196                        kfree(cft->kf_ops);
4197                cft->kf_ops = NULL;
4198                cft->ss = NULL;
4199
4200                /* revert flags set by cgroup core while adding @cfts */
4201                cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4202        }
4203}
4204
4205static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4206{
4207        struct cftype *cft;
4208
4209        for (cft = cfts; cft->name[0] != '\0'; cft++) {
4210                struct kernfs_ops *kf_ops;
4211
4212                WARN_ON(cft->ss || cft->kf_ops);
4213
4214                if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4215                        continue;
4216
4217                if (cft->seq_start)
4218                        kf_ops = &cgroup_kf_ops;
4219                else
4220                        kf_ops = &cgroup_kf_single_ops;
4221
4222                /*
4223                 * Ugh... if @cft wants a custom max_write_len, we need to
4224                 * make a copy of kf_ops to set its atomic_write_len.
4225                 */
4226                if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4227                        kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4228                        if (!kf_ops) {
4229                                cgroup_exit_cftypes(cfts);
4230                                return -ENOMEM;
4231                        }
4232                        kf_ops->atomic_write_len = cft->max_write_len;
4233                }
4234
4235                cft->kf_ops = kf_ops;
4236                cft->ss = ss;
4237        }
4238
4239        return 0;
4240}
4241
4242static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4243{
4244        lockdep_assert_held(&cgroup_mutex);
4245
4246        if (!cfts || !cfts[0].ss)
4247                return -ENOENT;
4248
4249        list_del(&cfts->node);
4250        cgroup_apply_cftypes(cfts, false);
4251        cgroup_exit_cftypes(cfts);
4252        return 0;
4253}
4254
4255/**
4256 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4257 * @cfts: zero-length name terminated array of cftypes
4258 *
4259 * Unregister @cfts.  Files described by @cfts are removed from all
4260 * existing cgroups and all future cgroups won't have them either.  This
4261 * function can be called anytime whether @cfts' subsys is attached or not.
4262 *
4263 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4264 * registered.
4265 */
4266int cgroup_rm_cftypes(struct cftype *cfts)
4267{
4268        int ret;
4269
4270        mutex_lock(&cgroup_mutex);
4271        ret = cgroup_rm_cftypes_locked(cfts);
4272        mutex_unlock(&cgroup_mutex);
4273        return ret;
4274}
4275
4276/**
4277 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4278 * @ss: target cgroup subsystem
4279 * @cfts: zero-length name terminated array of cftypes
4280 *
4281 * Register @cfts to @ss.  Files described by @cfts are created for all
4282 * existing cgroups to which @ss is attached and all future cgroups will
4283 * have them too.  This function can be called anytime whether @ss is
4284 * attached or not.
4285 *
4286 * Returns 0 on successful registration, -errno on failure.  Note that this
4287 * function currently returns 0 as long as @cfts registration is successful
4288 * even if some file creation attempts on existing cgroups fail.
4289 */
4290static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4291{
4292        int ret;
4293
4294        if (!cgroup_ssid_enabled(ss->id))
4295                return 0;
4296
4297        if (!cfts || cfts[0].name[0] == '\0')
4298                return 0;
4299
4300        ret = cgroup_init_cftypes(ss, cfts);
4301        if (ret)
4302                return ret;
4303
4304        mutex_lock(&cgroup_mutex);
4305
4306        list_add_tail(&cfts->node, &ss->cfts);
4307        ret = cgroup_apply_cftypes(cfts, true);
4308        if (ret)
4309                cgroup_rm_cftypes_locked(cfts);
4310
4311        mutex_unlock(&cgroup_mutex);
4312        return ret;
4313}
4314
4315/**
4316 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4317 * @ss: target cgroup subsystem
4318 * @cfts: zero-length name terminated array of cftypes
4319 *
4320 * Similar to cgroup_add_cftypes() but the added files are only used for
4321 * the default hierarchy.
4322 */
4323int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4324{
4325        struct cftype *cft;
4326
4327        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4328                cft->flags |= __CFTYPE_ONLY_ON_DFL;
4329        return cgroup_add_cftypes(ss, cfts);
4330}
4331
4332/**
4333 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4334 * @ss: target cgroup subsystem
4335 * @cfts: zero-length name terminated array of cftypes
4336 *
4337 * Similar to cgroup_add_cftypes() but the added files are only used for
4338 * the legacy hierarchies.
4339 */
4340int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4341{
4342        struct cftype *cft;
4343
4344        for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4345                cft->flags |= __CFTYPE_NOT_ON_DFL;
4346        return cgroup_add_cftypes(ss, cfts);
4347}
4348
4349/**
4350 * cgroup_file_notify - generate a file modified event for a cgroup_file
4351 * @cfile: target cgroup_file
4352 *
4353 * @cfile must have been obtained by setting cftype->file_offset.
4354 */
4355void cgroup_file_notify(struct cgroup_file *cfile)
4356{
4357        unsigned long flags;
4358
4359        spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4360        if (cfile->kn) {
4361                unsigned long last = cfile->notified_at;
4362                unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4363
4364                if (time_in_range(jiffies, last, next)) {
4365                        timer_reduce(&cfile->notify_timer, next);
4366                } else {
4367                        kernfs_notify(cfile->kn);
4368                        cfile->notified_at = jiffies;
4369                }
4370        }
4371        spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4372}
4373
4374/**
4375 * css_next_child - find the next child of a given css
4376 * @pos: the current position (%NULL to initiate traversal)
4377 * @parent: css whose children to walk
4378 *
4379 * This function returns the next child of @parent and should be called
4380 * under either cgroup_mutex or RCU read lock.  The only requirement is
4381 * that @parent and @pos are accessible.  The next sibling is guaranteed to
4382 * be returned regardless of their states.
4383 *
4384 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4385 * css which finished ->css_online() is guaranteed to be visible in the
4386 * future iterations and will stay visible until the last reference is put.
4387 * A css which hasn't finished ->css_online() or already finished
4388 * ->css_offline() may show up during traversal.  It's each subsystem's
4389 * responsibility to synchronize against on/offlining.
4390 */
4391struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4392                                           struct cgroup_subsys_state *parent)
4393{
4394        struct cgroup_subsys_state *next;
4395
4396        cgroup_assert_mutex_or_rcu_locked();
4397
4398        /*
4399         * @pos could already have been unlinked from the sibling list.
4400         * Once a cgroup is removed, its ->sibling.next is no longer
4401         * updated when its next sibling changes.  CSS_RELEASED is set when
4402         * @pos is taken off list, at which time its next pointer is valid,
4403         * and, as releases are serialized, the one pointed to by the next
4404         * pointer is guaranteed to not have started release yet.  This
4405         * implies that if we observe !CSS_RELEASED on @pos in this RCU
4406         * critical section, the one pointed to by its next pointer is
4407         * guaranteed to not have finished its RCU grace period even if we
4408         * have dropped rcu_read_lock() in-between iterations.
4409         *
4410         * If @pos has CSS_RELEASED set, its next pointer can't be
4411         * dereferenced; however, as each css is given a monotonically
4412         * increasing unique serial number and always appended to the
4413         * sibling list, the next one can be found by walking the parent's
4414         * children until the first css with higher serial number than
4415         * @pos's.  While this path can be slower, it happens iff iteration
4416         * races against release and the race window is very small.
4417         */
4418        if (!pos) {
4419                next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4420        } else if (likely(!(pos->flags & CSS_RELEASED))) {
4421                next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4422        } else {
4423                list_for_each_entry_rcu(next, &parent->children, sibling,
4424                                        lockdep_is_held(&cgroup_mutex))
4425                        if (next->serial_nr > pos->serial_nr)
4426                                break;
4427        }
4428
4429        /*
4430         * @next, if not pointing to the head, can be dereferenced and is
4431         * the next sibling.
4432         */
4433        if (&next->sibling != &parent->children)
4434                return next;
4435        return NULL;
4436}
4437
4438/**
4439 * css_next_descendant_pre - find the next descendant for pre-order walk
4440 * @pos: the current position (%NULL to initiate traversal)
4441 * @root: css whose descendants to walk
4442 *
4443 * To be used by css_for_each_descendant_pre().  Find the next descendant
4444 * to visit for pre-order traversal of @root's descendants.  @root is
4445 * included in the iteration and the first node to be visited.
4446 *
4447 * While this function requires cgroup_mutex or RCU read locking, it
4448 * doesn't require the whole traversal to be contained in a single critical
4449 * section.  This function will return the correct next descendant as long
4450 * as both @pos and @root are accessible and @pos is a descendant of @root.
4451 *
4452 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4453 * css which finished ->css_online() is guaranteed to be visible in the
4454 * future iterations and will stay visible until the last reference is put.
4455 * A css which hasn't finished ->css_online() or already finished
4456 * ->css_offline() may show up during traversal.  It's each subsystem's
4457 * responsibility to synchronize against on/offlining.
4458 */
4459struct cgroup_subsys_state *
4460css_next_descendant_pre(struct cgroup_subsys_state *pos,
4461                        struct cgroup_subsys_state *root)
4462{
4463        struct cgroup_subsys_state *next;
4464
4465        cgroup_assert_mutex_or_rcu_locked();
4466
4467        /* if first iteration, visit @root */
4468        if (!pos)
4469                return root;
4470
4471        /* visit the first child if exists */
4472        next = css_next_child(NULL, pos);
4473        if (next)
4474                return next;
4475
4476        /* no child, visit my or the closest ancestor's next sibling */
4477        while (pos != root) {
4478                next = css_next_child(pos, pos->parent);
4479                if (next)
4480                        return next;
4481                pos = pos->parent;
4482        }
4483
4484        return NULL;
4485}
4486EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4487
4488/**
4489 * css_rightmost_descendant - return the rightmost descendant of a css
4490 * @pos: css of interest
4491 *
4492 * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4493 * is returned.  This can be used during pre-order traversal to skip
4494 * subtree of @pos.
4495 *
4496 * While this function requires cgroup_mutex or RCU read locking, it
4497 * doesn't require the whole traversal to be contained in a single critical
4498 * section.  This function will return the correct rightmost descendant as
4499 * long as @pos is accessible.
4500 */
4501struct cgroup_subsys_state *
4502css_rightmost_descendant(struct cgroup_subsys_state *pos)
4503{
4504        struct cgroup_subsys_state *last, *tmp;
4505
4506        cgroup_assert_mutex_or_rcu_locked();
4507
4508        do {
4509                last = pos;
4510                /* ->prev isn't RCU safe, walk ->next till the end */
4511                pos = NULL;
4512                css_for_each_child(tmp, last)
4513                        pos = tmp;
4514        } while (pos);
4515
4516        return last;
4517}
4518
4519static struct cgroup_subsys_state *
4520css_leftmost_descendant(struct cgroup_subsys_state *pos)
4521{
4522        struct cgroup_subsys_state *last;
4523
4524        do {
4525                last = pos;
4526                pos = css_next_child(NULL, pos);
4527        } while (pos);
4528
4529        return last;
4530}
4531
4532/**
4533 * css_next_descendant_post - find the next descendant for post-order walk
4534 * @pos: the current position (%NULL to initiate traversal)
4535 * @root: css whose descendants to walk
4536 *
4537 * To be used by css_for_each_descendant_post().  Find the next descendant
4538 * to visit for post-order traversal of @root's descendants.  @root is
4539 * included in the iteration and the last node to be visited.
4540 *
4541 * While this function requires cgroup_mutex or RCU read locking, it
4542 * doesn't require the whole traversal to be contained in a single critical
4543 * section.  This function will return the correct next descendant as long
4544 * as both @pos and @cgroup are accessible and @pos is a descendant of
4545 * @cgroup.
4546 *
4547 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4548 * css which finished ->css_online() is guaranteed to be visible in the
4549 * future iterations and will stay visible until the last reference is put.
4550 * A css which hasn't finished ->css_online() or already finished
4551 * ->css_offline() may show up during traversal.  It's each subsystem's
4552 * responsibility to synchronize against on/offlining.
4553 */
4554struct cgroup_subsys_state *
4555css_next_descendant_post(struct cgroup_subsys_state *pos,
4556                         struct cgroup_subsys_state *root)
4557{
4558        struct cgroup_subsys_state *next;
4559
4560        cgroup_assert_mutex_or_rcu_locked();
4561
4562        /* if first iteration, visit leftmost descendant which may be @root */
4563        if (!pos)
4564                return css_leftmost_descendant(root);
4565
4566        /* if we visited @root, we're done */
4567        if (pos == root)
4568                return NULL;
4569
4570        /* if there's an unvisited sibling, visit its leftmost descendant */
4571        next = css_next_child(pos, pos->parent);
4572        if (next)
4573                return css_leftmost_descendant(next);
4574
4575        /* no sibling left, visit parent */
4576        return pos->parent;
4577}
4578
4579/**
4580 * css_has_online_children - does a css have online children
4581 * @css: the target css
4582 *
4583 * Returns %true if @css has any online children; otherwise, %false.  This
4584 * function can be called from any context but the caller is responsible
4585 * for synchronizing against on/offlining as necessary.
4586 */
4587bool css_has_online_children(struct cgroup_subsys_state *css)
4588{
4589        struct cgroup_subsys_state *child;
4590        bool ret = false;
4591
4592        rcu_read_lock();
4593        css_for_each_child(child, css) {
4594                if (child->flags & CSS_ONLINE) {
4595                        ret = true;
4596                        break;
4597                }
4598        }
4599        rcu_read_unlock();
4600        return ret;
4601}
4602
4603static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4604{
4605        struct list_head *l;
4606        struct cgrp_cset_link *link;
4607        struct css_set *cset;
4608
4609        lockdep_assert_held(&css_set_lock);
4610
4611        /* find the next threaded cset */
4612        if (it->tcset_pos) {
4613                l = it->tcset_pos->next;
4614
4615                if (l != it->tcset_head) {
4616                        it->tcset_pos = l;
4617                        return container_of(l, struct css_set,
4618                                            threaded_csets_node);
4619                }
4620
4621                it->tcset_pos = NULL;
4622        }
4623
4624        /* find the next cset */
4625        l = it->cset_pos;
4626        l = l->next;
4627        if (l == it->cset_head) {
4628                it->cset_pos = NULL;
4629                return NULL;
4630        }
4631
4632        if (it->ss) {
4633                cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4634        } else {
4635                link = list_entry(l, struct cgrp_cset_link, cset_link);
4636                cset = link->cset;
4637        }
4638
4639        it->cset_pos = l;
4640
4641        /* initialize threaded css_set walking */
4642        if (it->flags & CSS_TASK_ITER_THREADED) {
4643                if (it->cur_dcset)
4644                        put_css_set_locked(it->cur_dcset);
4645                it->cur_dcset = cset;
4646                get_css_set(cset);
4647
4648                it->tcset_head = &cset->threaded_csets;
4649                it->tcset_pos = &cset->threaded_csets;
4650        }
4651
4652        return cset;
4653}
4654
4655/**
4656 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4657 * @it: the iterator to advance
4658 *
4659 * Advance @it to the next css_set to walk.
4660 */
4661static void css_task_iter_advance_css_set(struct css_task_iter *it)
4662{
4663        struct css_set *cset;
4664
4665        lockdep_assert_held(&css_set_lock);
4666
4667        /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4668        while ((cset = css_task_iter_next_css_set(it))) {
4669                if (!list_empty(&cset->tasks)) {
4670                        it->cur_tasks_head = &cset->tasks;
4671                        break;
4672                } else if (!list_empty(&cset->mg_tasks)) {
4673                        it->cur_tasks_head = &cset->mg_tasks;
4674                        break;
4675                } else if (!list_empty(&cset->dying_tasks)) {
4676                        it->cur_tasks_head = &cset->dying_tasks;
4677                        break;
4678                }
4679        }
4680        if (!cset) {
4681                it->task_pos = NULL;
4682                return;
4683        }
4684        it->task_pos = it->cur_tasks_head->next;
4685
4686        /*
4687         * We don't keep css_sets locked across iteration steps and thus
4688         * need to take steps to ensure that iteration can be resumed after
4689         * the lock is re-acquired.  Iteration is performed at two levels -
4690         * css_sets and tasks in them.
4691         *
4692         * Once created, a css_set never leaves its cgroup lists, so a
4693         * pinned css_set is guaranteed to stay put and we can resume
4694         * iteration afterwards.
4695         *
4696         * Tasks may leave @cset across iteration steps.  This is resolved
4697         * by registering each iterator with the css_set currently being
4698         * walked and making css_set_move_task() advance iterators whose
4699         * next task is leaving.
4700         */
4701        if (it->cur_cset) {
4702                list_del(&it->iters_node);
4703                put_css_set_locked(it->cur_cset);
4704        }
4705        get_css_set(cset);
4706        it->cur_cset = cset;
4707        list_add(&it->iters_node, &cset->task_iters);
4708}
4709
4710static void css_task_iter_skip(struct css_task_iter *it,
4711                               struct task_struct *task)
4712{
4713        lockdep_assert_held(&css_set_lock);
4714
4715        if (it->task_pos == &task->cg_list) {
4716                it->task_pos = it->task_pos->next;
4717                it->flags |= CSS_TASK_ITER_SKIPPED;
4718        }
4719}
4720
4721static void css_task_iter_advance(struct css_task_iter *it)
4722{
4723        struct task_struct *task;
4724
4725        lockdep_assert_held(&css_set_lock);
4726repeat:
4727        if (it->task_pos) {
4728                /*
4729                 * Advance iterator to find next entry. We go through cset
4730                 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4731                 * the next cset.
4732                 */
4733                if (it->flags & CSS_TASK_ITER_SKIPPED)
4734                        it->flags &= ~CSS_TASK_ITER_SKIPPED;
4735                else
4736                        it->task_pos = it->task_pos->next;
4737
4738                if (it->task_pos == &it->cur_cset->tasks) {
4739                        it->cur_tasks_head = &it->cur_cset->mg_tasks;
4740                        it->task_pos = it->cur_tasks_head->next;
4741                }
4742                if (it->task_pos == &it->cur_cset->mg_tasks) {
4743                        it->cur_tasks_head = &it->cur_cset->dying_tasks;
4744                        it->task_pos = it->cur_tasks_head->next;
4745                }
4746                if (it->task_pos == &it->cur_cset->dying_tasks)
4747                        css_task_iter_advance_css_set(it);
4748        } else {
4749                /* called from start, proceed to the first cset */
4750                css_task_iter_advance_css_set(it);
4751        }
4752
4753        if (!it->task_pos)
4754                return;
4755
4756        task = list_entry(it->task_pos, struct task_struct, cg_list);
4757
4758        if (it->flags & CSS_TASK_ITER_PROCS) {
4759                /* if PROCS, skip over tasks which aren't group leaders */
4760                if (!thread_group_leader(task))
4761                        goto repeat;
4762
4763                /* and dying leaders w/o live member threads */
4764                if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4765                    !atomic_read(&task->signal->live))
4766                        goto repeat;
4767        } else {
4768                /* skip all dying ones */
4769                if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4770                        goto repeat;
4771        }
4772}
4773
4774/**
4775 * css_task_iter_start - initiate task iteration
4776 * @css: the css to walk tasks of
4777 * @flags: CSS_TASK_ITER_* flags
4778 * @it: the task iterator to use
4779 *
4780 * Initiate iteration through the tasks of @css.  The caller can call
4781 * css_task_iter_next() to walk through the tasks until the function
4782 * returns NULL.  On completion of iteration, css_task_iter_end() must be
4783 * called.
4784 */
4785void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4786                         struct css_task_iter *it)
4787{
4788        memset(it, 0, sizeof(*it));
4789
4790        spin_lock_irq(&css_set_lock);
4791
4792        it->ss = css->ss;
4793        it->flags = flags;
4794
4795        if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4796                it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4797        else
4798                it->cset_pos = &css->cgroup->cset_links;
4799
4800        it->cset_head = it->cset_pos;
4801
4802        css_task_iter_advance(it);
4803
4804        spin_unlock_irq(&css_set_lock);
4805}
4806
4807/**
4808 * css_task_iter_next - return the next task for the iterator
4809 * @it: the task iterator being iterated
4810 *
4811 * The "next" function for task iteration.  @it should have been
4812 * initialized via css_task_iter_start().  Returns NULL when the iteration
4813 * reaches the end.
4814 */
4815struct task_struct *css_task_iter_next(struct css_task_iter *it)
4816{
4817        if (it->cur_task) {
4818                put_task_struct(it->cur_task);
4819                it->cur_task = NULL;
4820        }
4821
4822        spin_lock_irq(&css_set_lock);
4823
4824        /* @it may be half-advanced by skips, finish advancing */
4825        if (it->flags & CSS_TASK_ITER_SKIPPED)
4826                css_task_iter_advance(it);
4827
4828        if (it->task_pos) {
4829                it->cur_task = list_entry(it->task_pos, struct task_struct,
4830                                          cg_list);
4831                get_task_struct(it->cur_task);
4832                css_task_iter_advance(it);
4833        }
4834
4835        spin_unlock_irq(&css_set_lock);
4836
4837        return it->cur_task;
4838}
4839
4840/**
4841 * css_task_iter_end - finish task iteration
4842 * @it: the task iterator to finish
4843 *
4844 * Finish task iteration started by css_task_iter_start().
4845 */
4846void css_task_iter_end(struct css_task_iter *it)
4847{
4848        if (it->cur_cset) {
4849                spin_lock_irq(&css_set_lock);
4850                list_del(&it->iters_node);
4851                put_css_set_locked(it->cur_cset);
4852                spin_unlock_irq(&css_set_lock);
4853        }
4854
4855        if (it->cur_dcset)
4856                put_css_set(it->cur_dcset);
4857
4858        if (it->cur_task)
4859                put_task_struct(it->cur_task);
4860}
4861
4862static void cgroup_procs_release(struct kernfs_open_file *of)
4863{
4864        struct cgroup_file_ctx *ctx = of->priv;
4865
4866        if (ctx->procs.started)
4867                css_task_iter_end(&ctx->procs.iter);
4868}
4869
4870static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4871{
4872        struct kernfs_open_file *of = s->private;
4873        struct cgroup_file_ctx *ctx = of->priv;
4874
4875        if (pos)
4876                (*pos)++;
4877
4878        return css_task_iter_next(&ctx->procs.iter);
4879}
4880
4881static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4882                                  unsigned int iter_flags)
4883{
4884        struct kernfs_open_file *of = s->private;
4885        struct cgroup *cgrp = seq_css(s)->cgroup;
4886        struct cgroup_file_ctx *ctx = of->priv;
4887        struct css_task_iter *it = &ctx->procs.iter;
4888
4889        /*
4890         * When a seq_file is seeked, it's always traversed sequentially
4891         * from position 0, so we can simply keep iterating on !0 *pos.
4892         */
4893        if (!ctx->procs.started) {
4894                if (WARN_ON_ONCE((*pos)))
4895                        return ERR_PTR(-EINVAL);
4896                css_task_iter_start(&cgrp->self, iter_flags, it);
4897                ctx->procs.started = true;
4898        } else if (!(*pos)) {
4899                css_task_iter_end(it);
4900                css_task_iter_start(&cgrp->self, iter_flags, it);
4901        } else
4902                return it->cur_task;
4903
4904        return cgroup_procs_next(s, NULL, NULL);
4905}
4906
4907static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4908{
4909        struct cgroup *cgrp = seq_css(s)->cgroup;
4910
4911        /*
4912         * All processes of a threaded subtree belong to the domain cgroup
4913         * of the subtree.  Only threads can be distributed across the
4914         * subtree.  Reject reads on cgroup.procs in the subtree proper.
4915         * They're always empty anyway.
4916         */
4917        if (cgroup_is_threaded(cgrp))
4918                return ERR_PTR(-EOPNOTSUPP);
4919
4920        return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4921                                            CSS_TASK_ITER_THREADED);
4922}
4923
4924static int cgroup_procs_show(struct seq_file *s, void *v)
4925{
4926        seq_printf(s, "%d\n", task_pid_vnr(v));
4927        return 0;
4928}
4929
4930static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4931{
4932        int ret;
4933        struct inode *inode;
4934
4935        lockdep_assert_held(&cgroup_mutex);
4936
4937        inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4938        if (!inode)
4939                return -ENOMEM;
4940
4941        ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4942        iput(inode);
4943        return ret;
4944}
4945
4946static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4947                                         struct cgroup *dst_cgrp,
4948                                         struct super_block *sb,
4949                                         struct cgroup_namespace *ns)
4950{
4951        struct cgroup *com_cgrp = src_cgrp;
4952        int ret;
4953
4954        lockdep_assert_held(&cgroup_mutex);
4955
4956        /* find the common ancestor */
4957        while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4958                com_cgrp = cgroup_parent(com_cgrp);
4959
4960        /* %current should be authorized to migrate to the common ancestor */
4961        ret = cgroup_may_write(com_cgrp, sb);
4962        if (ret)
4963                return ret;
4964
4965        /*
4966         * If namespaces are delegation boundaries, %current must be able
4967         * to see both source and destination cgroups from its namespace.
4968         */
4969        if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4970            (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4971             !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4972                return -ENOENT;
4973
4974        return 0;
4975}
4976
4977static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4978                                     struct cgroup *dst_cgrp,
4979                                     struct super_block *sb, bool threadgroup,
4980                                     struct cgroup_namespace *ns)
4981{
4982        int ret = 0;
4983
4984        ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
4985        if (ret)
4986                return ret;
4987
4988        ret = cgroup_migrate_vet_dst(dst_cgrp);
4989        if (ret)
4990                return ret;
4991
4992        if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4993                ret = -EOPNOTSUPP;
4994
4995        return ret;
4996}
4997
4998static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4999                                    bool threadgroup)
5000{
5001        struct cgroup_file_ctx *ctx = of->priv;
5002        struct cgroup *src_cgrp, *dst_cgrp;
5003        struct task_struct *task;
5004        const struct cred *saved_cred;
5005        ssize_t ret;
5006        bool threadgroup_locked;
5007
5008        dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5009        if (!dst_cgrp)
5010                return -ENODEV;
5011
5012        task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5013        ret = PTR_ERR_OR_ZERO(task);
5014        if (ret)
5015                goto out_unlock;
5016
5017        /* find the source cgroup */
5018        spin_lock_irq(&css_set_lock);
5019        src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5020        spin_unlock_irq(&css_set_lock);
5021
5022        /*
5023         * Process and thread migrations follow same delegation rule. Check
5024         * permissions using the credentials from file open to protect against
5025         * inherited fd attacks.
5026         */
5027        saved_cred = override_creds(of->file->f_cred);
5028        ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5029                                        of->file->f_path.dentry->d_sb,
5030                                        threadgroup, ctx->ns);
5031        revert_creds(saved_cred);
5032        if (ret)
5033                goto out_finish;
5034
5035        ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5036
5037out_finish:
5038        cgroup_procs_write_finish(task, threadgroup_locked);
5039out_unlock:
5040        cgroup_kn_unlock(of->kn);
5041
5042        return ret;
5043}
5044
5045static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5046                                  char *buf, size_t nbytes, loff_t off)
5047{
5048        return __cgroup_procs_write(of, buf, true) ?: nbytes;
5049}
5050
5051static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5052{
5053        return __cgroup_procs_start(s, pos, 0);
5054}
5055
5056static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5057                                    char *buf, size_t nbytes, loff_t off)
5058{
5059        return __cgroup_procs_write(of, buf, false) ?: nbytes;
5060}
5061
5062/* cgroup core interface files for the default hierarchy */
5063static struct cftype cgroup_base_files[] = {
5064        {
5065                .name = "cgroup.type",
5066                .flags = CFTYPE_NOT_ON_ROOT,
5067                .seq_show = cgroup_type_show,
5068                .write = cgroup_type_write,
5069        },
5070        {
5071                .name = "cgroup.procs",
5072                .flags = CFTYPE_NS_DELEGATABLE,
5073                .file_offset = offsetof(struct cgroup, procs_file),
5074                .release = cgroup_procs_release,
5075                .seq_start = cgroup_procs_start,
5076                .seq_next = cgroup_procs_next,
5077                .seq_show = cgroup_procs_show,
5078                .write = cgroup_procs_write,
5079        },
5080        {
5081                .name = "cgroup.threads",
5082                .flags = CFTYPE_NS_DELEGATABLE,
5083                .release = cgroup_procs_release,
5084                .seq_start = cgroup_threads_start,
5085                .seq_next = cgroup_procs_next,
5086                .seq_show = cgroup_procs_show,
5087                .write = cgroup_threads_write,
5088        },
5089        {
5090                .name = "cgroup.controllers",
5091                .seq_show = cgroup_controllers_show,
5092        },
5093        {
5094                .name = "cgroup.subtree_control",
5095                .flags = CFTYPE_NS_DELEGATABLE,
5096                .seq_show = cgroup_subtree_control_show,
5097                .write = cgroup_subtree_control_write,
5098        },
5099        {
5100                .name = "cgroup.events",
5101                .flags = CFTYPE_NOT_ON_ROOT,
5102                .file_offset = offsetof(struct cgroup, events_file),
5103                .seq_show = cgroup_events_show,
5104        },
5105        {
5106                .name = "cgroup.max.descendants",
5107                .seq_show = cgroup_max_descendants_show,
5108                .write = cgroup_max_descendants_write,
5109        },
5110        {
5111                .name = "cgroup.max.depth",
5112                .seq_show = cgroup_max_depth_show,
5113                .write = cgroup_max_depth_write,
5114        },
5115        {
5116                .name = "cgroup.stat",
5117                .seq_show = cgroup_stat_show,
5118        },
5119        {
5120                .name = "cgroup.freeze",
5121                .flags = CFTYPE_NOT_ON_ROOT,
5122                .seq_show = cgroup_freeze_show,
5123                .write = cgroup_freeze_write,
5124        },
5125        {
5126                .name = "cgroup.kill",
5127                .flags = CFTYPE_NOT_ON_ROOT,
5128                .write = cgroup_kill_write,
5129        },
5130        {
5131                .name = "cpu.stat",
5132                .seq_show = cpu_stat_show,
5133        },
5134#ifdef CONFIG_PSI
5135        {
5136                .name = "io.pressure",
5137                .flags = CFTYPE_PRESSURE,
5138                .seq_show = cgroup_io_pressure_show,
5139                .write = cgroup_io_pressure_write,
5140                .poll = cgroup_pressure_poll,
5141                .release = cgroup_pressure_release,
5142        },
5143        {
5144                .name = "memory.pressure",
5145                .flags = CFTYPE_PRESSURE,
5146                .seq_show = cgroup_memory_pressure_show,
5147                .write = cgroup_memory_pressure_write,
5148                .poll = cgroup_pressure_poll,
5149                .release = cgroup_pressure_release,
5150        },
5151        {
5152                .name = "cpu.pressure",
5153                .flags = CFTYPE_PRESSURE,
5154                .seq_show = cgroup_cpu_pressure_show,
5155                .write = cgroup_cpu_pressure_write,
5156                .poll = cgroup_pressure_poll,
5157                .release = cgroup_pressure_release,
5158        },
5159#endif /* CONFIG_PSI */
5160        { }     /* terminate */
5161};
5162
5163/*
5164 * css destruction is four-stage process.
5165 *
5166 * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5167 *    Implemented in kill_css().
5168 *
5169 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5170 *    and thus css_tryget_online() is guaranteed to fail, the css can be
5171 *    offlined by invoking offline_css().  After offlining, the base ref is
5172 *    put.  Implemented in css_killed_work_fn().
5173 *
5174 * 3. When the percpu_ref reaches zero, the only possible remaining
5175 *    accessors are inside RCU read sections.  css_release() schedules the
5176 *    RCU callback.
5177 *
5178 * 4. After the grace period, the css can be freed.  Implemented in
5179 *    css_free_work_fn().
5180 *
5181 * It is actually hairier because both step 2 and 4 require process context
5182 * and thus involve punting to css->destroy_work adding two additional
5183 * steps to the already complex sequence.
5184 */
5185static void css_free_rwork_fn(struct work_struct *work)
5186{
5187        struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5188                                struct cgroup_subsys_state, destroy_rwork);
5189        struct cgroup_subsys *ss = css->ss;
5190        struct cgroup *cgrp = css->cgroup;
5191
5192        percpu_ref_exit(&css->refcnt);
5193
5194        if (ss) {
5195                /* css free path */
5196                struct cgroup_subsys_state *parent = css->parent;
5197                int id = css->id;
5198
5199                ss->css_free(css);
5200                cgroup_idr_remove(&ss->css_idr, id);
5201                cgroup_put(cgrp);
5202
5203                if (parent)
5204                        css_put(parent);
5205        } else {
5206                /* cgroup free path */
5207                atomic_dec(&cgrp->root->nr_cgrps);
5208                cgroup1_pidlist_destroy_all(cgrp);
5209                cancel_work_sync(&cgrp->release_agent_work);
5210
5211                if (cgroup_parent(cgrp)) {
5212                        /*
5213                         * We get a ref to the parent, and put the ref when
5214                         * this cgroup is being freed, so it's guaranteed
5215                         * that the parent won't be destroyed before its
5216                         * children.
5217                         */
5218                        cgroup_put(cgroup_parent(cgrp));
5219                        kernfs_put(cgrp->kn);
5220                        psi_cgroup_free(cgrp);
5221                        cgroup_rstat_exit(cgrp);
5222                        kfree(cgrp);
5223                } else {
5224                        /*
5225                         * This is root cgroup's refcnt reaching zero,
5226                         * which indicates that the root should be
5227                         * released.
5228                         */
5229                        cgroup_destroy_root(cgrp->root);
5230                }
5231        }
5232}
5233
5234static void css_release_work_fn(struct work_struct *work)
5235{
5236        struct cgroup_subsys_state *css =
5237                container_of(work, struct cgroup_subsys_state, destroy_work);
5238        struct cgroup_subsys *ss = css->ss;
5239        struct cgroup *cgrp = css->cgroup;
5240
5241        mutex_lock(&cgroup_mutex);
5242
5243        css->flags |= CSS_RELEASED;
5244        list_del_rcu(&css->sibling);
5245
5246        if (ss) {
5247                /* css release path */
5248                if (!list_empty(&css->rstat_css_node)) {
5249                        cgroup_rstat_flush(cgrp);
5250                        list_del_rcu(&css->rstat_css_node);
5251                }
5252
5253                cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5254                if (ss->css_released)
5255                        ss->css_released(css);
5256        } else {
5257                struct cgroup *tcgrp;
5258
5259                /* cgroup release path */
5260                TRACE_CGROUP_PATH(release, cgrp);
5261
5262                cgroup_rstat_flush(cgrp);
5263
5264                spin_lock_irq(&css_set_lock);
5265                for (tcgrp = cgroup_parent(cgrp); tcgrp;
5266                     tcgrp = cgroup_parent(tcgrp))
5267                        tcgrp->nr_dying_descendants--;
5268                spin_unlock_irq(&css_set_lock);
5269
5270                /*
5271                 * There are two control paths which try to determine
5272                 * cgroup from dentry without going through kernfs -
5273                 * cgroupstats_build() and css_tryget_online_from_dir().
5274                 * Those are supported by RCU protecting clearing of
5275                 * cgrp->kn->priv backpointer.
5276                 */
5277                if (cgrp->kn)
5278                        RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5279                                         NULL);
5280        }
5281
5282        mutex_unlock(&cgroup_mutex);
5283
5284        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5285        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5286}
5287
5288static void css_release(struct percpu_ref *ref)
5289{
5290        struct cgroup_subsys_state *css =
5291                container_of(ref, struct cgroup_subsys_state, refcnt);
5292
5293        INIT_WORK(&css->destroy_work, css_release_work_fn);
5294        queue_work(cgroup_destroy_wq, &css->destroy_work);
5295}
5296
5297static void init_and_link_css(struct cgroup_subsys_state *css,
5298                              struct cgroup_subsys *ss, struct cgroup *cgrp)
5299{
5300        lockdep_assert_held(&cgroup_mutex);
5301
5302        cgroup_get_live(cgrp);
5303
5304        memset(css, 0, sizeof(*css));
5305        css->cgroup = cgrp;
5306        css->ss = ss;
5307        css->id = -1;
5308        INIT_LIST_HEAD(&css->sibling);
5309        INIT_LIST_HEAD(&css->children);
5310        INIT_LIST_HEAD(&css->rstat_css_node);
5311        css->serial_nr = css_serial_nr_next++;
5312        atomic_set(&css->online_cnt, 0);
5313
5314        if (cgroup_parent(cgrp)) {
5315                css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5316                css_get(css->parent);
5317        }
5318
5319        if (ss->css_rstat_flush)
5320                list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5321
5322        BUG_ON(cgroup_css(cgrp, ss));
5323}
5324
5325/* invoke ->css_online() on a new CSS and mark it online if successful */
5326static int online_css(struct cgroup_subsys_state *css)
5327{
5328        struct cgroup_subsys *ss = css->ss;
5329        int ret = 0;
5330
5331        lockdep_assert_held(&cgroup_mutex);
5332
5333        if (ss->css_online)
5334                ret = ss->css_online(css);
5335        if (!ret) {
5336                css->flags |= CSS_ONLINE;
5337                rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5338
5339                atomic_inc(&css->online_cnt);
5340                if (css->parent)
5341                        atomic_inc(&css->parent->online_cnt);
5342        }
5343        return ret;
5344}
5345
5346/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5347static void offline_css(struct cgroup_subsys_state *css)
5348{
5349        struct cgroup_subsys *ss = css->ss;
5350
5351        lockdep_assert_held(&cgroup_mutex);
5352
5353        if (!(css->flags & CSS_ONLINE))
5354                return;
5355
5356        if (ss->css_offline)
5357                ss->css_offline(css);
5358
5359        css->flags &= ~CSS_ONLINE;
5360        RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5361
5362        wake_up_all(&css->cgroup->offline_waitq);
5363}
5364
5365/**
5366 * css_create - create a cgroup_subsys_state
5367 * @cgrp: the cgroup new css will be associated with
5368 * @ss: the subsys of new css
5369 *
5370 * Create a new css associated with @cgrp - @ss pair.  On success, the new
5371 * css is online and installed in @cgrp.  This function doesn't create the
5372 * interface files.  Returns 0 on success, -errno on failure.
5373 */
5374static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5375                                              struct cgroup_subsys *ss)
5376{
5377        struct cgroup *parent = cgroup_parent(cgrp);
5378        struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5379        struct cgroup_subsys_state *css;
5380        int err;
5381
5382        lockdep_assert_held(&cgroup_mutex);
5383
5384        css = ss->css_alloc(parent_css);
5385        if (!css)
5386                css = ERR_PTR(-ENOMEM);
5387        if (IS_ERR(css))
5388                return css;
5389
5390        init_and_link_css(css, ss, cgrp);
5391
5392        err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5393        if (err)
5394                goto err_free_css;
5395
5396        err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5397        if (err < 0)
5398                goto err_free_css;
5399        css->id = err;
5400
5401        /* @css is ready to be brought online now, make it visible */
5402        list_add_tail_rcu(&css->sibling, &parent_css->children);
5403        cgroup_idr_replace(&ss->css_idr, css, css->id);
5404
5405        err = online_css(css);
5406        if (err)
5407                goto err_list_del;
5408
5409        return css;
5410
5411err_list_del:
5412        list_del_rcu(&css->sibling);
5413err_free_css:
5414        list_del_rcu(&css->rstat_css_node);
5415        INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5416        queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5417        return ERR_PTR(err);
5418}
5419
5420/*
5421 * The returned cgroup is fully initialized including its control mask, but
5422 * it isn't associated with its kernfs_node and doesn't have the control
5423 * mask applied.
5424 */
5425static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5426                                    umode_t mode)
5427{
5428        struct cgroup_root *root = parent->root;
5429        struct cgroup *cgrp, *tcgrp;
5430        struct kernfs_node *kn;
5431        int level = parent->level + 1;
5432        int ret;
5433
5434        /* allocate the cgroup and its ID, 0 is reserved for the root */
5435        cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5436                       GFP_KERNEL);
5437        if (!cgrp)
5438                return ERR_PTR(-ENOMEM);
5439
5440        ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5441        if (ret)
5442                goto out_free_cgrp;
5443
5444        ret = cgroup_rstat_init(cgrp);
5445        if (ret)
5446                goto out_cancel_ref;
5447
5448        /* create the directory */
5449        kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5450        if (IS_ERR(kn)) {
5451                ret = PTR_ERR(kn);
5452                goto out_stat_exit;
5453        }
5454        cgrp->kn = kn;
5455
5456        init_cgroup_housekeeping(cgrp);
5457
5458        cgrp->self.parent = &parent->self;
5459        cgrp->root = root;
5460        cgrp->level = level;
5461
5462        ret = psi_cgroup_alloc(cgrp);
5463        if (ret)
5464                goto out_kernfs_remove;
5465
5466        ret = cgroup_bpf_inherit(cgrp);
5467        if (ret)
5468                goto out_psi_free;
5469
5470        /*
5471         * New cgroup inherits effective freeze counter, and
5472         * if the parent has to be frozen, the child has too.
5473         */
5474        cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5475        if (cgrp->freezer.e_freeze) {
5476                /*
5477                 * Set the CGRP_FREEZE flag, so when a process will be
5478                 * attached to the child cgroup, it will become frozen.
5479                 * At this point the new cgroup is unpopulated, so we can
5480                 * consider it frozen immediately.
5481                 */
5482                set_bit(CGRP_FREEZE, &cgrp->flags);
5483                set_bit(CGRP_FROZEN, &cgrp->flags);
5484        }
5485
5486        spin_lock_irq(&css_set_lock);
5487        for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5488                cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5489
5490                if (tcgrp != cgrp) {
5491                        tcgrp->nr_descendants++;
5492
5493                        /*
5494                         * If the new cgroup is frozen, all ancestor cgroups
5495                         * get a new frozen descendant, but their state can't
5496                         * change because of this.
5497                         */
5498                        if (cgrp->freezer.e_freeze)
5499                                tcgrp->freezer.nr_frozen_descendants++;
5500                }
5501        }
5502        spin_unlock_irq(&css_set_lock);
5503
5504        if (notify_on_release(parent))
5505                set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5506
5507        if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5508                set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5509
5510        cgrp->self.serial_nr = css_serial_nr_next++;
5511
5512        /* allocation complete, commit to creation */
5513        list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5514        atomic_inc(&root->nr_cgrps);
5515        cgroup_get_live(parent);
5516
5517        /*
5518         * On the default hierarchy, a child doesn't automatically inherit
5519         * subtree_control from the parent.  Each is configured manually.
5520         */
5521        if (!cgroup_on_dfl(cgrp))
5522                cgrp->subtree_control = cgroup_control(cgrp);
5523
5524        cgroup_propagate_control(cgrp);
5525
5526        return cgrp;
5527
5528out_psi_free:
5529        psi_cgroup_free(cgrp);
5530out_kernfs_remove:
5531        kernfs_remove(cgrp->kn);
5532out_stat_exit:
5533        cgroup_rstat_exit(cgrp);
5534out_cancel_ref:
5535        percpu_ref_exit(&cgrp->self.refcnt);
5536out_free_cgrp:
5537        kfree(cgrp);
5538        return ERR_PTR(ret);
5539}
5540
5541static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5542{
5543        struct cgroup *cgroup;
5544        int ret = false;
5545        int level = 1;
5546
5547        lockdep_assert_held(&cgroup_mutex);
5548
5549        for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5550                if (cgroup->nr_descendants >= cgroup->max_descendants)
5551                        goto fail;
5552
5553                if (level > cgroup->max_depth)
5554                        goto fail;
5555
5556                level++;
5557        }
5558
5559        ret = true;
5560fail:
5561        return ret;
5562}
5563
5564int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5565{
5566        struct cgroup *parent, *cgrp;
5567        int ret;
5568
5569        /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5570        if (strchr(name, '\n'))
5571                return -EINVAL;
5572
5573        parent = cgroup_kn_lock_live(parent_kn, false);
5574        if (!parent)
5575                return -ENODEV;
5576
5577        if (!cgroup_check_hierarchy_limits(parent)) {
5578                ret = -EAGAIN;
5579                goto out_unlock;
5580        }
5581
5582        cgrp = cgroup_create(parent, name, mode);
5583        if (IS_ERR(cgrp)) {
5584                ret = PTR_ERR(cgrp);
5585                goto out_unlock;
5586        }
5587
5588        /*
5589         * This extra ref will be put in cgroup_free_fn() and guarantees
5590         * that @cgrp->kn is always accessible.
5591         */
5592        kernfs_get(cgrp->kn);
5593
5594        ret = cgroup_kn_set_ugid(cgrp->kn);
5595        if (ret)
5596                goto out_destroy;
5597
5598        ret = css_populate_dir(&cgrp->self);
5599        if (ret)
5600                goto out_destroy;
5601
5602        ret = cgroup_apply_control_enable(cgrp);
5603        if (ret)
5604                goto out_destroy;
5605
5606        TRACE_CGROUP_PATH(mkdir, cgrp);
5607
5608        /* let's create and online css's */
5609        kernfs_activate(cgrp->kn);
5610
5611        ret = 0;
5612        goto out_unlock;
5613
5614out_destroy:
5615        cgroup_destroy_locked(cgrp);
5616out_unlock:
5617        cgroup_kn_unlock(parent_kn);
5618        return ret;
5619}
5620
5621/*
5622 * This is called when the refcnt of a css is confirmed to be killed.
5623 * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5624 * initiate destruction and put the css ref from kill_css().
5625 */
5626static void css_killed_work_fn(struct work_struct *work)
5627{
5628        struct cgroup_subsys_state *css =
5629                container_of(work, struct cgroup_subsys_state, destroy_work);
5630
5631        mutex_lock(&cgroup_mutex);
5632
5633        do {
5634                offline_css(css);
5635                css_put(css);
5636                /* @css can't go away while we're holding cgroup_mutex */
5637                css = css->parent;
5638        } while (css && atomic_dec_and_test(&css->online_cnt));
5639
5640        mutex_unlock(&cgroup_mutex);
5641}
5642
5643/* css kill confirmation processing requires process context, bounce */
5644static void css_killed_ref_fn(struct percpu_ref *ref)
5645{
5646        struct cgroup_subsys_state *css =
5647                container_of(ref, struct cgroup_subsys_state, refcnt);
5648
5649        if (atomic_dec_and_test(&css->online_cnt)) {
5650                INIT_WORK(&css->destroy_work, css_killed_work_fn);
5651                queue_work(cgroup_destroy_wq, &css->destroy_work);
5652        }
5653}
5654
5655/**
5656 * kill_css - destroy a css
5657 * @css: css to destroy
5658 *
5659 * This function initiates destruction of @css by removing cgroup interface
5660 * files and putting its base reference.  ->css_offline() will be invoked
5661 * asynchronously once css_tryget_online() is guaranteed to fail and when
5662 * the reference count reaches zero, @css will be released.
5663 */
5664static void kill_css(struct cgroup_subsys_state *css)
5665{
5666        lockdep_assert_held(&cgroup_mutex);
5667
5668        if (css->flags & CSS_DYING)
5669                return;
5670
5671        css->flags |= CSS_DYING;
5672
5673        /*
5674         * This must happen before css is disassociated with its cgroup.
5675         * See seq_css() for details.
5676         */
5677        css_clear_dir(css);
5678
5679        /*
5680         * Killing would put the base ref, but we need to keep it alive
5681         * until after ->css_offline().
5682         */
5683        css_get(css);
5684
5685        /*
5686         * cgroup core guarantees that, by the time ->css_offline() is
5687         * invoked, no new css reference will be given out via
5688         * css_tryget_online().  We can't simply call percpu_ref_kill() and
5689         * proceed to offlining css's because percpu_ref_kill() doesn't
5690         * guarantee that the ref is seen as killed on all CPUs on return.
5691         *
5692         * Use percpu_ref_kill_and_confirm() to get notifications as each
5693         * css is confirmed to be seen as killed on all CPUs.
5694         */
5695        percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5696}
5697
5698/**
5699 * cgroup_destroy_locked - the first stage of cgroup destruction
5700 * @cgrp: cgroup to be destroyed
5701 *
5702 * css's make use of percpu refcnts whose killing latency shouldn't be
5703 * exposed to userland and are RCU protected.  Also, cgroup core needs to
5704 * guarantee that css_tryget_online() won't succeed by the time
5705 * ->css_offline() is invoked.  To satisfy all the requirements,
5706 * destruction is implemented in the following two steps.
5707 *
5708 * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5709 *     userland visible parts and start killing the percpu refcnts of
5710 *     css's.  Set up so that the next stage will be kicked off once all
5711 *     the percpu refcnts are confirmed to be killed.
5712 *
5713 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5714 *     rest of destruction.  Once all cgroup references are gone, the
5715 *     cgroup is RCU-freed.
5716 *
5717 * This function implements s1.  After this step, @cgrp is gone as far as
5718 * the userland is concerned and a new cgroup with the same name may be
5719 * created.  As cgroup doesn't care about the names internally, this
5720 * doesn't cause any problem.
5721 */
5722static int cgroup_destroy_locked(struct cgroup *cgrp)
5723        __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5724{
5725        struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5726        struct cgroup_subsys_state *css;
5727        struct cgrp_cset_link *link;
5728        int ssid;
5729
5730        lockdep_assert_held(&cgroup_mutex);
5731
5732        /*
5733         * Only migration can raise populated from zero and we're already
5734         * holding cgroup_mutex.
5735         */
5736        if (cgroup_is_populated(cgrp))
5737                return -EBUSY;
5738
5739        /*
5740         * Make sure there's no live children.  We can't test emptiness of
5741         * ->self.children as dead children linger on it while being
5742         * drained; otherwise, "rmdir parent/child parent" may fail.
5743         */
5744        if (css_has_online_children(&cgrp->self))
5745                return -EBUSY;
5746
5747        /*
5748         * Mark @cgrp and the associated csets dead.  The former prevents
5749         * further task migration and child creation by disabling
5750         * cgroup_lock_live_group().  The latter makes the csets ignored by
5751         * the migration path.
5752         */
5753        cgrp->self.flags &= ~CSS_ONLINE;
5754
5755        spin_lock_irq(&css_set_lock);
5756        list_for_each_entry(link, &cgrp->cset_links, cset_link)
5757                link->cset->dead = true;
5758        spin_unlock_irq(&css_set_lock);
5759
5760        /* initiate massacre of all css's */
5761        for_each_css(css, ssid, cgrp)
5762                kill_css(css);
5763
5764        /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5765        css_clear_dir(&cgrp->self);
5766        kernfs_remove(cgrp->kn);
5767
5768        if (cgroup_is_threaded(cgrp))
5769                parent->nr_threaded_children--;
5770
5771        spin_lock_irq(&css_set_lock);
5772        for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5773                tcgrp->nr_descendants--;
5774                tcgrp->nr_dying_descendants++;
5775                /*
5776                 * If the dying cgroup is frozen, decrease frozen descendants
5777                 * counters of ancestor cgroups.
5778                 */
5779                if (test_bit(CGRP_FROZEN, &cgrp->flags))
5780                        tcgrp->freezer.nr_frozen_descendants--;
5781        }
5782        spin_unlock_irq(&css_set_lock);
5783
5784        cgroup1_check_for_release(parent);
5785
5786        cgroup_bpf_offline(cgrp);
5787
5788        /* put the base reference */
5789        percpu_ref_kill(&cgrp->self.refcnt);
5790
5791        return 0;
5792};
5793
5794int cgroup_rmdir(struct kernfs_node *kn)
5795{
5796        struct cgroup *cgrp;
5797        int ret = 0;
5798
5799        cgrp = cgroup_kn_lock_live(kn, false);
5800        if (!cgrp)
5801                return 0;
5802
5803        ret = cgroup_destroy_locked(cgrp);
5804        if (!ret)
5805                TRACE_CGROUP_PATH(rmdir, cgrp);
5806
5807        cgroup_kn_unlock(kn);
5808        return ret;
5809}
5810
5811static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5812        .show_options           = cgroup_show_options,
5813        .mkdir                  = cgroup_mkdir,
5814        .rmdir                  = cgroup_rmdir,
5815        .show_path              = cgroup_show_path,
5816};
5817
5818static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5819{
5820        struct cgroup_subsys_state *css;
5821
5822        pr_debug("Initializing cgroup subsys %s\n", ss->name);
5823
5824        mutex_lock(&cgroup_mutex);
5825
5826        idr_init(&ss->css_idr);
5827        INIT_LIST_HEAD(&ss->cfts);
5828
5829        /* Create the root cgroup state for this subsystem */
5830        ss->root = &cgrp_dfl_root;
5831        css = ss->css_alloc(NULL);
5832        /* We don't handle early failures gracefully */
5833        BUG_ON(IS_ERR(css));
5834        init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5835
5836        /*
5837         * Root csses are never destroyed and we can't initialize
5838         * percpu_ref during early init.  Disable refcnting.
5839         */
5840        css->flags |= CSS_NO_REF;
5841
5842        if (early) {
5843                /* allocation can't be done safely during early init */
5844                css->id = 1;
5845        } else {
5846                css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5847                BUG_ON(css->id < 0);
5848        }
5849
5850        /* Update the init_css_set to contain a subsys
5851         * pointer to this state - since the subsystem is
5852         * newly registered, all tasks and hence the
5853         * init_css_set is in the subsystem's root cgroup. */
5854        init_css_set.subsys[ss->id] = css;
5855
5856        have_fork_callback |= (bool)ss->fork << ss->id;
5857        have_exit_callback |= (bool)ss->exit << ss->id;
5858        have_release_callback |= (bool)ss->release << ss->id;
5859        have_canfork_callback |= (bool)ss->can_fork << ss->id;
5860
5861        /* At system boot, before all subsystems have been
5862         * registered, no tasks have been forked, so we don't
5863         * need to invoke fork callbacks here. */
5864        BUG_ON(!list_empty(&init_task.tasks));
5865
5866        BUG_ON(online_css(css));
5867
5868        mutex_unlock(&cgroup_mutex);
5869}
5870
5871/**
5872 * cgroup_init_early - cgroup initialization at system boot
5873 *
5874 * Initialize cgroups at system boot, and initialize any
5875 * subsystems that request early init.
5876 */
5877int __init cgroup_init_early(void)
5878{
5879        static struct cgroup_fs_context __initdata ctx;
5880        struct cgroup_subsys *ss;
5881        int i;
5882
5883        ctx.root = &cgrp_dfl_root;
5884        init_cgroup_root(&ctx);
5885        cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5886
5887        RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5888
5889        for_each_subsys(ss, i) {
5890                WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5891                     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5892                     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5893                     ss->id, ss->name);
5894                WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5895                     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5896
5897                ss->id = i;
5898                ss->name = cgroup_subsys_name[i];
5899                if (!ss->legacy_name)
5900                        ss->legacy_name = cgroup_subsys_name[i];
5901
5902                if (ss->early_init)
5903                        cgroup_init_subsys(ss, true);
5904        }
5905        return 0;
5906}
5907
5908/**
5909 * cgroup_init - cgroup initialization
5910 *
5911 * Register cgroup filesystem and /proc file, and initialize
5912 * any subsystems that didn't request early init.
5913 */
5914int __init cgroup_init(void)
5915{
5916        struct cgroup_subsys *ss;
5917        int ssid;
5918
5919        BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5920        BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5921        BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5922
5923        cgroup_rstat_boot();
5924
5925        get_user_ns(init_cgroup_ns.user_ns);
5926
5927        mutex_lock(&cgroup_mutex);
5928
5929        /*
5930         * Add init_css_set to the hash table so that dfl_root can link to
5931         * it during init.
5932         */
5933        hash_add(css_set_table, &init_css_set.hlist,
5934                 css_set_hash(init_css_set.subsys));
5935
5936        BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5937
5938        mutex_unlock(&cgroup_mutex);
5939
5940        for_each_subsys(ss, ssid) {
5941                if (ss->early_init) {
5942                        struct cgroup_subsys_state *css =
5943                                init_css_set.subsys[ss->id];
5944
5945                        css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5946                                                   GFP_KERNEL);
5947                        BUG_ON(css->id < 0);
5948                } else {
5949                        cgroup_init_subsys(ss, false);
5950                }
5951
5952                list_add_tail(&init_css_set.e_cset_node[ssid],
5953                              &cgrp_dfl_root.cgrp.e_csets[ssid]);
5954
5955                /*
5956                 * Setting dfl_root subsys_mask needs to consider the
5957                 * disabled flag and cftype registration needs kmalloc,
5958                 * both of which aren't available during early_init.
5959                 */
5960                if (!cgroup_ssid_enabled(ssid))
5961                        continue;
5962
5963                if (cgroup1_ssid_disabled(ssid))
5964                        printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5965                               ss->name);
5966
5967                cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5968
5969                /* implicit controllers must be threaded too */
5970                WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5971
5972                if (ss->implicit_on_dfl)
5973                        cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5974                else if (!ss->dfl_cftypes)
5975                        cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5976
5977                if (ss->threaded)
5978                        cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5979
5980                if (ss->dfl_cftypes == ss->legacy_cftypes) {
5981                        WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5982                } else {
5983                        WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5984                        WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5985                }
5986
5987                if (ss->bind)
5988                        ss->bind(init_css_set.subsys[ssid]);
5989
5990                mutex_lock(&cgroup_mutex);
5991                css_populate_dir(init_css_set.subsys[ssid]);
5992                mutex_unlock(&cgroup_mutex);
5993        }
5994
5995        /* init_css_set.subsys[] has been updated, re-hash */
5996        hash_del(&init_css_set.hlist);
5997        hash_add(css_set_table, &init_css_set.hlist,
5998                 css_set_hash(init_css_set.subsys));
5999
6000        WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6001        WARN_ON(register_filesystem(&cgroup_fs_type));
6002        WARN_ON(register_filesystem(&cgroup2_fs_type));
6003        WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6004#ifdef CONFIG_CPUSETS
6005        WARN_ON(register_filesystem(&cpuset_fs_type));
6006#endif
6007
6008        return 0;
6009}
6010
6011static int __init cgroup_wq_init(void)
6012{
6013        /*
6014         * There isn't much point in executing destruction path in
6015         * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6016         * Use 1 for @max_active.
6017         *
6018         * We would prefer to do this in cgroup_init() above, but that
6019         * is called before init_workqueues(): so leave this until after.
6020         */
6021        cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6022        BUG_ON(!cgroup_destroy_wq);
6023        return 0;
6024}
6025core_initcall(cgroup_wq_init);
6026
6027void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6028{
6029        struct kernfs_node *kn;
6030
6031        kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6032        if (!kn)
6033                return;
6034        kernfs_path(kn, buf, buflen);
6035        kernfs_put(kn);
6036}
6037
6038/*
6039 * cgroup_get_from_id : get the cgroup associated with cgroup id
6040 * @id: cgroup id
6041 * On success return the cgrp, on failure return NULL
6042 */
6043struct cgroup *cgroup_get_from_id(u64 id)
6044{
6045        struct kernfs_node *kn;
6046        struct cgroup *cgrp = NULL;
6047
6048        kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6049        if (!kn)
6050                goto out;
6051
6052        if (kernfs_type(kn) != KERNFS_DIR)
6053                goto put;
6054
6055        rcu_read_lock();
6056
6057        cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6058        if (cgrp && !cgroup_tryget(cgrp))
6059                cgrp = NULL;
6060
6061        rcu_read_unlock();
6062put:
6063        kernfs_put(kn);
6064out:
6065        return cgrp;
6066}
6067EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6068
6069/*
6070 * proc_cgroup_show()
6071 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6072 *  - Used for /proc/<pid>/cgroup.
6073 */
6074int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6075                     struct pid *pid, struct task_struct *tsk)
6076{
6077        char *buf;
6078        int retval;
6079        struct cgroup_root *root;
6080
6081        retval = -ENOMEM;
6082        buf = kmalloc(PATH_MAX, GFP_KERNEL);
6083        if (!buf)
6084                goto out;
6085
6086        mutex_lock(&cgroup_mutex);
6087        spin_lock_irq(&css_set_lock);
6088
6089        for_each_root(root) {
6090                struct cgroup_subsys *ss;
6091                struct cgroup *cgrp;
6092                int ssid, count = 0;
6093
6094                if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
6095                        continue;
6096
6097                seq_printf(m, "%d:", root->hierarchy_id);
6098                if (root != &cgrp_dfl_root)
6099                        for_each_subsys(ss, ssid)
6100                                if (root->subsys_mask & (1 << ssid))
6101                                        seq_printf(m, "%s%s", count++ ? "," : "",
6102                                                   ss->legacy_name);
6103                if (strlen(root->name))
6104                        seq_printf(m, "%sname=%s", count ? "," : "",
6105                                   root->name);
6106                seq_putc(m, ':');
6107
6108                cgrp = task_cgroup_from_root(tsk, root);
6109
6110                /*
6111                 * On traditional hierarchies, all zombie tasks show up as
6112                 * belonging to the root cgroup.  On the default hierarchy,
6113                 * while a zombie doesn't show up in "cgroup.procs" and
6114                 * thus can't be migrated, its /proc/PID/cgroup keeps
6115                 * reporting the cgroup it belonged to before exiting.  If
6116                 * the cgroup is removed before the zombie is reaped,
6117                 * " (deleted)" is appended to the cgroup path.
6118                 */
6119                if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6120                        retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6121                                                current->nsproxy->cgroup_ns);
6122                        if (retval >= PATH_MAX)
6123                                retval = -ENAMETOOLONG;
6124                        if (retval < 0)
6125                                goto out_unlock;
6126
6127                        seq_puts(m, buf);
6128                } else {
6129                        seq_puts(m, "/");
6130                }
6131
6132                if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6133                        seq_puts(m, " (deleted)\n");
6134                else
6135                        seq_putc(m, '\n');
6136        }
6137
6138        retval = 0;
6139out_unlock:
6140        spin_unlock_irq(&css_set_lock);
6141        mutex_unlock(&cgroup_mutex);
6142        kfree(buf);
6143out:
6144        return retval;
6145}
6146
6147/**
6148 * cgroup_fork - initialize cgroup related fields during copy_process()
6149 * @child: pointer to task_struct of forking parent process.
6150 *
6151 * A task is associated with the init_css_set until cgroup_post_fork()
6152 * attaches it to the target css_set.
6153 */
6154void cgroup_fork(struct task_struct *child)
6155{
6156        RCU_INIT_POINTER(child->cgroups, &init_css_set);
6157        INIT_LIST_HEAD(&child->cg_list);
6158}
6159
6160static struct cgroup *cgroup_get_from_file(struct file *f)
6161{
6162        struct cgroup_subsys_state *css;
6163        struct cgroup *cgrp;
6164
6165        css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6166        if (IS_ERR(css))
6167                return ERR_CAST(css);
6168
6169        cgrp = css->cgroup;
6170        if (!cgroup_on_dfl(cgrp)) {
6171                cgroup_put(cgrp);
6172                return ERR_PTR(-EBADF);
6173        }
6174
6175        return cgrp;
6176}
6177
6178/**
6179 * cgroup_css_set_fork - find or create a css_set for a child process
6180 * @kargs: the arguments passed to create the child process
6181 *
6182 * This functions finds or creates a new css_set which the child
6183 * process will be attached to in cgroup_post_fork(). By default,
6184 * the child process will be given the same css_set as its parent.
6185 *
6186 * If CLONE_INTO_CGROUP is specified this function will try to find an
6187 * existing css_set which includes the requested cgroup and if not create
6188 * a new css_set that the child will be attached to later. If this function
6189 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6190 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6191 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6192 * to the target cgroup.
6193 */
6194static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6195        __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6196{
6197        int ret;
6198        struct cgroup *dst_cgrp = NULL;
6199        struct css_set *cset;
6200        struct super_block *sb;
6201        struct file *f;
6202
6203        if (kargs->flags & CLONE_INTO_CGROUP)
6204                mutex_lock(&cgroup_mutex);
6205
6206        cgroup_threadgroup_change_begin(current);
6207
6208        spin_lock_irq(&css_set_lock);
6209        cset = task_css_set(current);
6210        get_css_set(cset);
6211        spin_unlock_irq(&css_set_lock);
6212
6213        if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6214                kargs->cset = cset;
6215                return 0;
6216        }
6217
6218        f = fget_raw(kargs->cgroup);
6219        if (!f) {
6220                ret = -EBADF;
6221                goto err;
6222        }
6223        sb = f->f_path.dentry->d_sb;
6224
6225        dst_cgrp = cgroup_get_from_file(f);
6226        if (IS_ERR(dst_cgrp)) {
6227                ret = PTR_ERR(dst_cgrp);
6228                dst_cgrp = NULL;
6229                goto err;
6230        }
6231
6232        if (cgroup_is_dead(dst_cgrp)) {
6233                ret = -ENODEV;
6234                goto err;
6235        }
6236
6237        /*
6238         * Verify that we the target cgroup is writable for us. This is
6239         * usually done by the vfs layer but since we're not going through
6240         * the vfs layer here we need to do it "manually".
6241         */
6242        ret = cgroup_may_write(dst_cgrp, sb);
6243        if (ret)
6244                goto err;
6245
6246        /*
6247         * Spawning a task directly into a cgroup works by passing a file
6248         * descriptor to the target cgroup directory. This can even be an O_PATH
6249         * file descriptor. But it can never be a cgroup.procs file descriptor.
6250         * This was done on purpose so spawning into a cgroup could be
6251         * conceptualized as an atomic
6252         *
6253         *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6254         *   write(fd, <child-pid>, ...);
6255         *
6256         * sequence, i.e. it's a shorthand for the caller opening and writing
6257         * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6258         * to always use the caller's credentials.
6259         */
6260        ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6261                                        !(kargs->flags & CLONE_THREAD),
6262                                        current->nsproxy->cgroup_ns);
6263        if (ret)
6264                goto err;
6265
6266        kargs->cset = find_css_set(cset, dst_cgrp);
6267        if (!kargs->cset) {
6268                ret = -ENOMEM;
6269                goto err;
6270        }
6271
6272        put_css_set(cset);
6273        fput(f);
6274        kargs->cgrp = dst_cgrp;
6275        return ret;
6276
6277err:
6278        cgroup_threadgroup_change_end(current);
6279        mutex_unlock(&cgroup_mutex);
6280        if (f)
6281                fput(f);
6282        if (dst_cgrp)
6283                cgroup_put(dst_cgrp);
6284        put_css_set(cset);
6285        if (kargs->cset)
6286                put_css_set(kargs->cset);
6287        return ret;
6288}
6289
6290/**
6291 * cgroup_css_set_put_fork - drop references we took during fork
6292 * @kargs: the arguments passed to create the child process
6293 *
6294 * Drop references to the prepared css_set and target cgroup if
6295 * CLONE_INTO_CGROUP was requested.
6296 */
6297static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6298        __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6299{
6300        cgroup_threadgroup_change_end(current);
6301
6302        if (kargs->flags & CLONE_INTO_CGROUP) {
6303                struct cgroup *cgrp = kargs->cgrp;
6304                struct css_set *cset = kargs->cset;
6305
6306                mutex_unlock(&cgroup_mutex);
6307
6308                if (cset) {
6309                        put_css_set(cset);
6310                        kargs->cset = NULL;
6311                }
6312
6313                if (cgrp) {
6314                        cgroup_put(cgrp);
6315                        kargs->cgrp = NULL;
6316                }
6317        }
6318}
6319
6320/**
6321 * cgroup_can_fork - called on a new task before the process is exposed
6322 * @child: the child process
6323 * @kargs: the arguments passed to create the child process
6324 *
6325 * This prepares a new css_set for the child process which the child will
6326 * be attached to in cgroup_post_fork().
6327 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6328 * callback returns an error, the fork aborts with that error code. This
6329 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6330 */
6331int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6332{
6333        struct cgroup_subsys *ss;
6334        int i, j, ret;
6335
6336        ret = cgroup_css_set_fork(kargs);
6337        if (ret)
6338                return ret;
6339
6340        do_each_subsys_mask(ss, i, have_canfork_callback) {
6341                ret = ss->can_fork(child, kargs->cset);
6342                if (ret)
6343                        goto out_revert;
6344        } while_each_subsys_mask();
6345
6346        return 0;
6347
6348out_revert:
6349        for_each_subsys(ss, j) {
6350                if (j >= i)
6351                        break;
6352                if (ss->cancel_fork)
6353                        ss->cancel_fork(child, kargs->cset);
6354        }
6355
6356        cgroup_css_set_put_fork(kargs);
6357
6358        return ret;
6359}
6360
6361/**
6362 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6363 * @child: the child process
6364 * @kargs: the arguments passed to create the child process
6365 *
6366 * This calls the cancel_fork() callbacks if a fork failed *after*
6367 * cgroup_can_fork() succeeded and cleans up references we took to
6368 * prepare a new css_set for the child process in cgroup_can_fork().
6369 */
6370void cgroup_cancel_fork(struct task_struct *child,
6371                        struct kernel_clone_args *kargs)
6372{
6373        struct cgroup_subsys *ss;
6374        int i;
6375
6376        for_each_subsys(ss, i)
6377                if (ss->cancel_fork)
6378                        ss->cancel_fork(child, kargs->cset);
6379
6380        cgroup_css_set_put_fork(kargs);
6381}
6382
6383/**
6384 * cgroup_post_fork - finalize cgroup setup for the child process
6385 * @child: the child process
6386 * @kargs: the arguments passed to create the child process
6387 *
6388 * Attach the child process to its css_set calling the subsystem fork()
6389 * callbacks.
6390 */
6391void cgroup_post_fork(struct task_struct *child,
6392                      struct kernel_clone_args *kargs)
6393        __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6394{
6395        unsigned long cgrp_flags = 0;
6396        bool kill = false;
6397        struct cgroup_subsys *ss;
6398        struct css_set *cset;
6399        int i;
6400
6401        cset = kargs->cset;
6402        kargs->cset = NULL;
6403
6404        spin_lock_irq(&css_set_lock);
6405
6406        /* init tasks are special, only link regular threads */
6407        if (likely(child->pid)) {
6408                if (kargs->cgrp)
6409                        cgrp_flags = kargs->cgrp->flags;
6410                else
6411                        cgrp_flags = cset->dfl_cgrp->flags;
6412
6413                WARN_ON_ONCE(!list_empty(&child->cg_list));
6414                cset->nr_tasks++;
6415                css_set_move_task(child, NULL, cset, false);
6416        } else {
6417                put_css_set(cset);
6418                cset = NULL;
6419        }
6420
6421        if (!(child->flags & PF_KTHREAD)) {
6422                if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6423                        /*
6424                         * If the cgroup has to be frozen, the new task has
6425                         * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6426                         * get the task into the frozen state.
6427                         */
6428                        spin_lock(&child->sighand->siglock);
6429                        WARN_ON_ONCE(child->frozen);
6430                        child->jobctl |= JOBCTL_TRAP_FREEZE;
6431                        spin_unlock(&child->sighand->siglock);
6432
6433                        /*
6434                         * Calling cgroup_update_frozen() isn't required here,
6435                         * because it will be called anyway a bit later from
6436                         * do_freezer_trap(). So we avoid cgroup's transient
6437                         * switch from the frozen state and back.
6438                         */
6439                }
6440
6441                /*
6442                 * If the cgroup is to be killed notice it now and take the
6443                 * child down right after we finished preparing it for
6444                 * userspace.
6445                 */
6446                kill = test_bit(CGRP_KILL, &cgrp_flags);
6447        }
6448
6449        spin_unlock_irq(&css_set_lock);
6450
6451        /*
6452         * Call ss->fork().  This must happen after @child is linked on
6453         * css_set; otherwise, @child might change state between ->fork()
6454         * and addition to css_set.
6455         */
6456        do_each_subsys_mask(ss, i, have_fork_callback) {
6457                ss->fork(child);
6458        } while_each_subsys_mask();
6459
6460        /* Make the new cset the root_cset of the new cgroup namespace. */
6461        if (kargs->flags & CLONE_NEWCGROUP) {
6462                struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6463
6464                get_css_set(cset);
6465                child->nsproxy->cgroup_ns->root_cset = cset;
6466                put_css_set(rcset);
6467        }
6468
6469        /* Cgroup has to be killed so take down child immediately. */
6470        if (unlikely(kill))
6471                do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6472
6473        cgroup_css_set_put_fork(kargs);
6474}
6475
6476/**
6477 * cgroup_exit - detach cgroup from exiting task
6478 * @tsk: pointer to task_struct of exiting process
6479 *
6480 * Description: Detach cgroup from @tsk.
6481 *
6482 */
6483void cgroup_exit(struct task_struct *tsk)
6484{
6485        struct cgroup_subsys *ss;
6486        struct css_set *cset;
6487        int i;
6488
6489        spin_lock_irq(&css_set_lock);
6490
6491        WARN_ON_ONCE(list_empty(&tsk->cg_list));
6492        cset = task_css_set(tsk);
6493        css_set_move_task(tsk, cset, NULL, false);
6494        list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6495        cset->nr_tasks--;
6496
6497        WARN_ON_ONCE(cgroup_task_frozen(tsk));
6498        if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6499                     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6500                cgroup_update_frozen(task_dfl_cgroup(tsk));
6501
6502        spin_unlock_irq(&css_set_lock);
6503
6504        /* see cgroup_post_fork() for details */
6505        do_each_subsys_mask(ss, i, have_exit_callback) {
6506                ss->exit(tsk);
6507        } while_each_subsys_mask();
6508}
6509
6510void cgroup_release(struct task_struct *task)
6511{
6512        struct cgroup_subsys *ss;
6513        int ssid;
6514
6515        do_each_subsys_mask(ss, ssid, have_release_callback) {
6516                ss->release(task);
6517        } while_each_subsys_mask();
6518
6519        spin_lock_irq(&css_set_lock);
6520        css_set_skip_task_iters(task_css_set(task), task);
6521        list_del_init(&task->cg_list);
6522        spin_unlock_irq(&css_set_lock);
6523}
6524
6525void cgroup_free(struct task_struct *task)
6526{
6527        struct css_set *cset = task_css_set(task);
6528        put_css_set(cset);
6529}
6530
6531static int __init cgroup_disable(char *str)
6532{
6533        struct cgroup_subsys *ss;
6534        char *token;
6535        int i;
6536
6537        while ((token = strsep(&str, ",")) != NULL) {
6538                if (!*token)
6539                        continue;
6540
6541                for_each_subsys(ss, i) {
6542                        if (strcmp(token, ss->name) &&
6543                            strcmp(token, ss->legacy_name))
6544                                continue;
6545
6546                        static_branch_disable(cgroup_subsys_enabled_key[i]);
6547                        pr_info("Disabling %s control group subsystem\n",
6548                                ss->name);
6549                }
6550
6551                for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6552                        if (strcmp(token, cgroup_opt_feature_names[i]))
6553                                continue;
6554                        cgroup_feature_disable_mask |= 1 << i;
6555                        pr_info("Disabling %s control group feature\n",
6556                                cgroup_opt_feature_names[i]);
6557                        break;
6558                }
6559        }
6560        return 1;
6561}
6562__setup("cgroup_disable=", cgroup_disable);
6563
6564void __init __weak enable_debug_cgroup(void) { }
6565
6566static int __init enable_cgroup_debug(char *str)
6567{
6568        cgroup_debug = true;
6569        enable_debug_cgroup();
6570        return 1;
6571}
6572__setup("cgroup_debug", enable_cgroup_debug);
6573
6574/**
6575 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6576 * @dentry: directory dentry of interest
6577 * @ss: subsystem of interest
6578 *
6579 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6580 * to get the corresponding css and return it.  If such css doesn't exist
6581 * or can't be pinned, an ERR_PTR value is returned.
6582 */
6583struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6584                                                       struct cgroup_subsys *ss)
6585{
6586        struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6587        struct file_system_type *s_type = dentry->d_sb->s_type;
6588        struct cgroup_subsys_state *css = NULL;
6589        struct cgroup *cgrp;
6590
6591        /* is @dentry a cgroup dir? */
6592        if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6593            !kn || kernfs_type(kn) != KERNFS_DIR)
6594                return ERR_PTR(-EBADF);
6595
6596        rcu_read_lock();
6597
6598        /*
6599         * This path doesn't originate from kernfs and @kn could already
6600         * have been or be removed at any point.  @kn->priv is RCU
6601         * protected for this access.  See css_release_work_fn() for details.
6602         */
6603        cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6604        if (cgrp)
6605                css = cgroup_css(cgrp, ss);
6606
6607        if (!css || !css_tryget_online(css))
6608                css = ERR_PTR(-ENOENT);
6609
6610        rcu_read_unlock();
6611        return css;
6612}
6613
6614/**
6615 * css_from_id - lookup css by id
6616 * @id: the cgroup id
6617 * @ss: cgroup subsys to be looked into
6618 *
6619 * Returns the css if there's valid one with @id, otherwise returns NULL.
6620 * Should be called under rcu_read_lock().
6621 */
6622struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6623{
6624        WARN_ON_ONCE(!rcu_read_lock_held());
6625        return idr_find(&ss->css_idr, id);
6626}
6627
6628/**
6629 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6630 * @path: path on the default hierarchy
6631 *
6632 * Find the cgroup at @path on the default hierarchy, increment its
6633 * reference count and return it.  Returns pointer to the found cgroup on
6634 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6635 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6636 */
6637struct cgroup *cgroup_get_from_path(const char *path)
6638{
6639        struct kernfs_node *kn;
6640        struct cgroup *cgrp = ERR_PTR(-ENOENT);
6641        struct cgroup *root_cgrp;
6642
6643        spin_lock_irq(&css_set_lock);
6644        root_cgrp = current_cgns_cgroup_from_root(&cgrp_dfl_root);
6645        kn = kernfs_walk_and_get(root_cgrp->kn, path);
6646        spin_unlock_irq(&css_set_lock);
6647        if (!kn)
6648                goto out;
6649
6650        if (kernfs_type(kn) != KERNFS_DIR) {
6651                cgrp = ERR_PTR(-ENOTDIR);
6652                goto out_kernfs;
6653        }
6654
6655        rcu_read_lock();
6656
6657        cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6658        if (!cgrp || !cgroup_tryget(cgrp))
6659                cgrp = ERR_PTR(-ENOENT);
6660
6661        rcu_read_unlock();
6662
6663out_kernfs:
6664        kernfs_put(kn);
6665out:
6666        return cgrp;
6667}
6668EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6669
6670/**
6671 * cgroup_get_from_fd - get a cgroup pointer from a fd
6672 * @fd: fd obtained by open(cgroup2_dir)
6673 *
6674 * Find the cgroup from a fd which should be obtained
6675 * by opening a cgroup directory.  Returns a pointer to the
6676 * cgroup on success. ERR_PTR is returned if the cgroup
6677 * cannot be found.
6678 */
6679struct cgroup *cgroup_get_from_fd(int fd)
6680{
6681        struct cgroup *cgrp;
6682        struct file *f;
6683
6684        f = fget_raw(fd);
6685        if (!f)
6686                return ERR_PTR(-EBADF);
6687
6688        cgrp = cgroup_get_from_file(f);
6689        fput(f);
6690        return cgrp;
6691}
6692EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6693
6694static u64 power_of_ten(int power)
6695{
6696        u64 v = 1;
6697        while (power--)
6698                v *= 10;
6699        return v;
6700}
6701
6702/**
6703 * cgroup_parse_float - parse a floating number
6704 * @input: input string
6705 * @dec_shift: number of decimal digits to shift
6706 * @v: output
6707 *
6708 * Parse a decimal floating point number in @input and store the result in
6709 * @v with decimal point right shifted @dec_shift times.  For example, if
6710 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6711 * Returns 0 on success, -errno otherwise.
6712 *
6713 * There's nothing cgroup specific about this function except that it's
6714 * currently the only user.
6715 */
6716int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6717{
6718        s64 whole, frac = 0;
6719        int fstart = 0, fend = 0, flen;
6720
6721        if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6722                return -EINVAL;
6723        if (frac < 0)
6724                return -EINVAL;
6725
6726        flen = fend > fstart ? fend - fstart : 0;
6727        if (flen < dec_shift)
6728                frac *= power_of_ten(dec_shift - flen);
6729        else
6730                frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6731
6732        *v = whole * power_of_ten(dec_shift) + frac;
6733        return 0;
6734}
6735
6736/*
6737 * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6738 * definition in cgroup-defs.h.
6739 */
6740#ifdef CONFIG_SOCK_CGROUP_DATA
6741
6742void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6743{
6744        struct cgroup *cgroup;
6745
6746        rcu_read_lock();
6747        /* Don't associate the sock with unrelated interrupted task's cgroup. */
6748        if (in_interrupt()) {
6749                cgroup = &cgrp_dfl_root.cgrp;
6750                cgroup_get(cgroup);
6751                goto out;
6752        }
6753
6754        while (true) {
6755                struct css_set *cset;
6756
6757                cset = task_css_set(current);
6758                if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6759                        cgroup = cset->dfl_cgrp;
6760                        break;
6761                }
6762                cpu_relax();
6763        }
6764out:
6765        skcd->cgroup = cgroup;
6766        cgroup_bpf_get(cgroup);
6767        rcu_read_unlock();
6768}
6769
6770void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6771{
6772        struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6773
6774        /*
6775         * We might be cloning a socket which is left in an empty
6776         * cgroup and the cgroup might have already been rmdir'd.
6777         * Don't use cgroup_get_live().
6778         */
6779        cgroup_get(cgrp);
6780        cgroup_bpf_get(cgrp);
6781}
6782
6783void cgroup_sk_free(struct sock_cgroup_data *skcd)
6784{
6785        struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6786
6787        cgroup_bpf_put(cgrp);
6788        cgroup_put(cgrp);
6789}
6790
6791#endif  /* CONFIG_SOCK_CGROUP_DATA */
6792
6793#ifdef CONFIG_SYSFS
6794static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6795                                      ssize_t size, const char *prefix)
6796{
6797        struct cftype *cft;
6798        ssize_t ret = 0;
6799
6800        for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6801                if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6802                        continue;
6803
6804                if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6805                        continue;
6806
6807                if (prefix)
6808                        ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6809
6810                ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6811
6812                if (WARN_ON(ret >= size))
6813                        break;
6814        }
6815
6816        return ret;
6817}
6818
6819static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6820                              char *buf)
6821{
6822        struct cgroup_subsys *ss;
6823        int ssid;
6824        ssize_t ret = 0;
6825
6826        ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6827                                     NULL);
6828
6829        for_each_subsys(ss, ssid)
6830                ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6831                                              PAGE_SIZE - ret,
6832                                              cgroup_subsys_name[ssid]);
6833
6834        return ret;
6835}
6836static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6837
6838static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6839                             char *buf)
6840{
6841        return snprintf(buf, PAGE_SIZE,
6842                        "nsdelegate\n"
6843                        "favordynmods\n"
6844                        "memory_localevents\n"
6845                        "memory_recursiveprot\n");
6846}
6847static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6848
6849static struct attribute *cgroup_sysfs_attrs[] = {
6850        &cgroup_delegate_attr.attr,
6851        &cgroup_features_attr.attr,
6852        NULL,
6853};
6854
6855static const struct attribute_group cgroup_sysfs_attr_group = {
6856        .attrs = cgroup_sysfs_attrs,
6857        .name = "cgroup",
6858};
6859
6860static int __init cgroup_sysfs_init(void)
6861{
6862        return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6863}
6864subsys_initcall(cgroup_sysfs_init);
6865
6866#endif /* CONFIG_SYSFS */
6867