linux/mm/kasan/common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * This file contains common KASAN code.
   4 *
   5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
   6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
   7 *
   8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
   9 *        Andrey Konovalov <andreyknvl@gmail.com>
  10 */
  11
  12#include <linux/export.h>
  13#include <linux/init.h>
  14#include <linux/kasan.h>
  15#include <linux/kernel.h>
  16#include <linux/linkage.h>
  17#include <linux/memblock.h>
  18#include <linux/memory.h>
  19#include <linux/mm.h>
  20#include <linux/module.h>
  21#include <linux/printk.h>
  22#include <linux/sched.h>
  23#include <linux/sched/task_stack.h>
  24#include <linux/slab.h>
  25#include <linux/stacktrace.h>
  26#include <linux/string.h>
  27#include <linux/types.h>
  28#include <linux/bug.h>
  29
  30#include "kasan.h"
  31#include "../slab.h"
  32
  33depot_stack_handle_t kasan_save_stack(gfp_t flags)
  34{
  35        unsigned long entries[KASAN_STACK_DEPTH];
  36        unsigned int nr_entries;
  37
  38        nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
  39        nr_entries = filter_irq_stacks(entries, nr_entries);
  40        return stack_depot_save(entries, nr_entries, flags);
  41}
  42
  43void kasan_set_track(struct kasan_track *track, gfp_t flags)
  44{
  45        track->pid = current->pid;
  46        track->stack = kasan_save_stack(flags);
  47}
  48
  49#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
  50void kasan_enable_current(void)
  51{
  52        current->kasan_depth++;
  53}
  54EXPORT_SYMBOL(kasan_enable_current);
  55
  56void kasan_disable_current(void)
  57{
  58        current->kasan_depth--;
  59}
  60EXPORT_SYMBOL(kasan_disable_current);
  61
  62#endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
  63
  64void __kasan_unpoison_range(const void *address, size_t size)
  65{
  66        kasan_unpoison(address, size, false);
  67}
  68
  69#ifdef CONFIG_KASAN_STACK
  70/* Unpoison the entire stack for a task. */
  71void kasan_unpoison_task_stack(struct task_struct *task)
  72{
  73        void *base = task_stack_page(task);
  74
  75        kasan_unpoison(base, THREAD_SIZE, false);
  76}
  77
  78/* Unpoison the stack for the current task beyond a watermark sp value. */
  79asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
  80{
  81        /*
  82         * Calculate the task stack base address.  Avoid using 'current'
  83         * because this function is called by early resume code which hasn't
  84         * yet set up the percpu register (%gs).
  85         */
  86        void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
  87
  88        kasan_unpoison(base, watermark - base, false);
  89}
  90#endif /* CONFIG_KASAN_STACK */
  91
  92/*
  93 * Only allow cache merging when stack collection is disabled and no metadata
  94 * is present.
  95 */
  96slab_flags_t __kasan_never_merge(void)
  97{
  98        if (kasan_stack_collection_enabled())
  99                return SLAB_KASAN;
 100        return 0;
 101}
 102
 103void __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
 104{
 105        u8 tag;
 106        unsigned long i;
 107
 108        if (unlikely(PageHighMem(page)))
 109                return;
 110
 111        tag = kasan_random_tag();
 112        for (i = 0; i < (1 << order); i++)
 113                page_kasan_tag_set(page + i, tag);
 114        kasan_unpoison(page_address(page), PAGE_SIZE << order, init);
 115}
 116
 117void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
 118{
 119        if (likely(!PageHighMem(page)))
 120                kasan_poison(page_address(page), PAGE_SIZE << order,
 121                             KASAN_FREE_PAGE, init);
 122}
 123
 124/*
 125 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
 126 * For larger allocations larger redzones are used.
 127 */
 128static inline unsigned int optimal_redzone(unsigned int object_size)
 129{
 130        return
 131                object_size <= 64        - 16   ? 16 :
 132                object_size <= 128       - 32   ? 32 :
 133                object_size <= 512       - 64   ? 64 :
 134                object_size <= 4096      - 128  ? 128 :
 135                object_size <= (1 << 14) - 256  ? 256 :
 136                object_size <= (1 << 15) - 512  ? 512 :
 137                object_size <= (1 << 16) - 1024 ? 1024 : 2048;
 138}
 139
 140void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
 141                          slab_flags_t *flags)
 142{
 143        unsigned int ok_size;
 144        unsigned int optimal_size;
 145
 146        /*
 147         * SLAB_KASAN is used to mark caches as ones that are sanitized by
 148         * KASAN. Currently this flag is used in two places:
 149         * 1. In slab_ksize() when calculating the size of the accessible
 150         *    memory within the object.
 151         * 2. In slab_common.c to prevent merging of sanitized caches.
 152         */
 153        *flags |= SLAB_KASAN;
 154
 155        if (!kasan_stack_collection_enabled())
 156                return;
 157
 158        ok_size = *size;
 159
 160        /* Add alloc meta into redzone. */
 161        cache->kasan_info.alloc_meta_offset = *size;
 162        *size += sizeof(struct kasan_alloc_meta);
 163
 164        /*
 165         * If alloc meta doesn't fit, don't add it.
 166         * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
 167         * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
 168         * larger sizes.
 169         */
 170        if (*size > KMALLOC_MAX_SIZE) {
 171                cache->kasan_info.alloc_meta_offset = 0;
 172                *size = ok_size;
 173                /* Continue, since free meta might still fit. */
 174        }
 175
 176        /* Only the generic mode uses free meta or flexible redzones. */
 177        if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) {
 178                cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
 179                return;
 180        }
 181
 182        /*
 183         * Add free meta into redzone when it's not possible to store
 184         * it in the object. This is the case when:
 185         * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
 186         *    be touched after it was freed, or
 187         * 2. Object has a constructor, which means it's expected to
 188         *    retain its content until the next allocation, or
 189         * 3. Object is too small.
 190         * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
 191         */
 192        if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
 193            cache->object_size < sizeof(struct kasan_free_meta)) {
 194                ok_size = *size;
 195
 196                cache->kasan_info.free_meta_offset = *size;
 197                *size += sizeof(struct kasan_free_meta);
 198
 199                /* If free meta doesn't fit, don't add it. */
 200                if (*size > KMALLOC_MAX_SIZE) {
 201                        cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
 202                        *size = ok_size;
 203                }
 204        }
 205
 206        /* Calculate size with optimal redzone. */
 207        optimal_size = cache->object_size + optimal_redzone(cache->object_size);
 208        /* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
 209        if (optimal_size > KMALLOC_MAX_SIZE)
 210                optimal_size = KMALLOC_MAX_SIZE;
 211        /* Use optimal size if the size with added metas is not large enough. */
 212        if (*size < optimal_size)
 213                *size = optimal_size;
 214}
 215
 216void __kasan_cache_create_kmalloc(struct kmem_cache *cache)
 217{
 218        cache->kasan_info.is_kmalloc = true;
 219}
 220
 221size_t __kasan_metadata_size(struct kmem_cache *cache)
 222{
 223        if (!kasan_stack_collection_enabled())
 224                return 0;
 225        return (cache->kasan_info.alloc_meta_offset ?
 226                sizeof(struct kasan_alloc_meta) : 0) +
 227                (cache->kasan_info.free_meta_offset ?
 228                sizeof(struct kasan_free_meta) : 0);
 229}
 230
 231struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
 232                                              const void *object)
 233{
 234        if (!cache->kasan_info.alloc_meta_offset)
 235                return NULL;
 236        return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset;
 237}
 238
 239#ifdef CONFIG_KASAN_GENERIC
 240struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
 241                                            const void *object)
 242{
 243        BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
 244        if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
 245                return NULL;
 246        return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset;
 247}
 248#endif
 249
 250void __kasan_poison_slab(struct page *page)
 251{
 252        unsigned long i;
 253
 254        for (i = 0; i < compound_nr(page); i++)
 255                page_kasan_tag_reset(page + i);
 256        kasan_poison(page_address(page), page_size(page),
 257                     KASAN_KMALLOC_REDZONE, false);
 258}
 259
 260void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
 261{
 262        kasan_unpoison(object, cache->object_size, false);
 263}
 264
 265void __kasan_poison_object_data(struct kmem_cache *cache, void *object)
 266{
 267        kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
 268                        KASAN_KMALLOC_REDZONE, false);
 269}
 270
 271/*
 272 * This function assigns a tag to an object considering the following:
 273 * 1. A cache might have a constructor, which might save a pointer to a slab
 274 *    object somewhere (e.g. in the object itself). We preassign a tag for
 275 *    each object in caches with constructors during slab creation and reuse
 276 *    the same tag each time a particular object is allocated.
 277 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
 278 *    accessed after being freed. We preassign tags for objects in these
 279 *    caches as well.
 280 * 3. For SLAB allocator we can't preassign tags randomly since the freelist
 281 *    is stored as an array of indexes instead of a linked list. Assign tags
 282 *    based on objects indexes, so that objects that are next to each other
 283 *    get different tags.
 284 */
 285static inline u8 assign_tag(struct kmem_cache *cache,
 286                                        const void *object, bool init)
 287{
 288        if (IS_ENABLED(CONFIG_KASAN_GENERIC))
 289                return 0xff;
 290
 291        /*
 292         * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
 293         * set, assign a tag when the object is being allocated (init == false).
 294         */
 295        if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
 296                return init ? KASAN_TAG_KERNEL : kasan_random_tag();
 297
 298        /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
 299#ifdef CONFIG_SLAB
 300        /* For SLAB assign tags based on the object index in the freelist. */
 301        return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
 302#else
 303        /*
 304         * For SLUB assign a random tag during slab creation, otherwise reuse
 305         * the already assigned tag.
 306         */
 307        return init ? kasan_random_tag() : get_tag(object);
 308#endif
 309}
 310
 311void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
 312                                                const void *object)
 313{
 314        struct kasan_alloc_meta *alloc_meta;
 315
 316        if (kasan_stack_collection_enabled()) {
 317                alloc_meta = kasan_get_alloc_meta(cache, object);
 318                if (alloc_meta)
 319                        __memset(alloc_meta, 0, sizeof(*alloc_meta));
 320        }
 321
 322        /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
 323        object = set_tag(object, assign_tag(cache, object, true));
 324
 325        return (void *)object;
 326}
 327
 328static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object,
 329                                unsigned long ip, bool quarantine, bool init)
 330{
 331        u8 tag;
 332        void *tagged_object;
 333
 334        if (!kasan_arch_is_ready())
 335                return false;
 336
 337        tag = get_tag(object);
 338        tagged_object = object;
 339        object = kasan_reset_tag(object);
 340
 341        if (is_kfence_address(object))
 342                return false;
 343
 344        if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
 345            object)) {
 346                kasan_report_invalid_free(tagged_object, ip);
 347                return true;
 348        }
 349
 350        /* RCU slabs could be legally used after free within the RCU period */
 351        if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
 352                return false;
 353
 354        if (!kasan_byte_accessible(tagged_object)) {
 355                kasan_report_invalid_free(tagged_object, ip);
 356                return true;
 357        }
 358
 359        kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
 360                        KASAN_KMALLOC_FREE, init);
 361
 362        if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine))
 363                return false;
 364
 365        if (kasan_stack_collection_enabled())
 366                kasan_set_free_info(cache, object, tag);
 367
 368        return kasan_quarantine_put(cache, object);
 369}
 370
 371bool __kasan_slab_free(struct kmem_cache *cache, void *object,
 372                                unsigned long ip, bool init)
 373{
 374        return ____kasan_slab_free(cache, object, ip, true, init);
 375}
 376
 377static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip)
 378{
 379        if (ptr != page_address(virt_to_head_page(ptr))) {
 380                kasan_report_invalid_free(ptr, ip);
 381                return true;
 382        }
 383
 384        if (!kasan_byte_accessible(ptr)) {
 385                kasan_report_invalid_free(ptr, ip);
 386                return true;
 387        }
 388
 389        /*
 390         * The object will be poisoned by kasan_free_pages() or
 391         * kasan_slab_free_mempool().
 392         */
 393
 394        return false;
 395}
 396
 397void __kasan_kfree_large(void *ptr, unsigned long ip)
 398{
 399        ____kasan_kfree_large(ptr, ip);
 400}
 401
 402void __kasan_slab_free_mempool(void *ptr, unsigned long ip)
 403{
 404        struct page *page;
 405
 406        page = virt_to_head_page(ptr);
 407
 408        /*
 409         * Even though this function is only called for kmem_cache_alloc and
 410         * kmalloc backed mempool allocations, those allocations can still be
 411         * !PageSlab() when the size provided to kmalloc is larger than
 412         * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc.
 413         */
 414        if (unlikely(!PageSlab(page))) {
 415                if (____kasan_kfree_large(ptr, ip))
 416                        return;
 417                kasan_poison(ptr, page_size(page), KASAN_FREE_PAGE, false);
 418        } else {
 419                ____kasan_slab_free(page->slab_cache, ptr, ip, false, false);
 420        }
 421}
 422
 423static void set_alloc_info(struct kmem_cache *cache, void *object,
 424                                gfp_t flags, bool is_kmalloc)
 425{
 426        struct kasan_alloc_meta *alloc_meta;
 427
 428        /* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */
 429        if (cache->kasan_info.is_kmalloc && !is_kmalloc)
 430                return;
 431
 432        alloc_meta = kasan_get_alloc_meta(cache, object);
 433        if (alloc_meta)
 434                kasan_set_track(&alloc_meta->alloc_track, flags);
 435}
 436
 437void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
 438                                        void *object, gfp_t flags, bool init)
 439{
 440        u8 tag;
 441        void *tagged_object;
 442
 443        if (gfpflags_allow_blocking(flags))
 444                kasan_quarantine_reduce();
 445
 446        if (unlikely(object == NULL))
 447                return NULL;
 448
 449        if (is_kfence_address(object))
 450                return (void *)object;
 451
 452        /*
 453         * Generate and assign random tag for tag-based modes.
 454         * Tag is ignored in set_tag() for the generic mode.
 455         */
 456        tag = assign_tag(cache, object, false);
 457        tagged_object = set_tag(object, tag);
 458
 459        /*
 460         * Unpoison the whole object.
 461         * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning.
 462         */
 463        kasan_unpoison(tagged_object, cache->object_size, init);
 464
 465        /* Save alloc info (if possible) for non-kmalloc() allocations. */
 466        if (kasan_stack_collection_enabled())
 467                set_alloc_info(cache, (void *)object, flags, false);
 468
 469        return tagged_object;
 470}
 471
 472static inline void *____kasan_kmalloc(struct kmem_cache *cache,
 473                                const void *object, size_t size, gfp_t flags)
 474{
 475        unsigned long redzone_start;
 476        unsigned long redzone_end;
 477
 478        if (gfpflags_allow_blocking(flags))
 479                kasan_quarantine_reduce();
 480
 481        if (unlikely(object == NULL))
 482                return NULL;
 483
 484        if (is_kfence_address(kasan_reset_tag(object)))
 485                return (void *)object;
 486
 487        /*
 488         * The object has already been unpoisoned by kasan_slab_alloc() for
 489         * kmalloc() or by kasan_krealloc() for krealloc().
 490         */
 491
 492        /*
 493         * The redzone has byte-level precision for the generic mode.
 494         * Partially poison the last object granule to cover the unaligned
 495         * part of the redzone.
 496         */
 497        if (IS_ENABLED(CONFIG_KASAN_GENERIC))
 498                kasan_poison_last_granule((void *)object, size);
 499
 500        /* Poison the aligned part of the redzone. */
 501        redzone_start = round_up((unsigned long)(object + size),
 502                                KASAN_GRANULE_SIZE);
 503        redzone_end = round_up((unsigned long)(object + cache->object_size),
 504                                KASAN_GRANULE_SIZE);
 505        kasan_poison((void *)redzone_start, redzone_end - redzone_start,
 506                           KASAN_KMALLOC_REDZONE, false);
 507
 508        /*
 509         * Save alloc info (if possible) for kmalloc() allocations.
 510         * This also rewrites the alloc info when called from kasan_krealloc().
 511         */
 512        if (kasan_stack_collection_enabled())
 513                set_alloc_info(cache, (void *)object, flags, true);
 514
 515        /* Keep the tag that was set by kasan_slab_alloc(). */
 516        return (void *)object;
 517}
 518
 519void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
 520                                        size_t size, gfp_t flags)
 521{
 522        return ____kasan_kmalloc(cache, object, size, flags);
 523}
 524EXPORT_SYMBOL(__kasan_kmalloc);
 525
 526void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
 527                                                gfp_t flags)
 528{
 529        unsigned long redzone_start;
 530        unsigned long redzone_end;
 531
 532        if (gfpflags_allow_blocking(flags))
 533                kasan_quarantine_reduce();
 534
 535        if (unlikely(ptr == NULL))
 536                return NULL;
 537
 538        /*
 539         * The object has already been unpoisoned by kasan_alloc_pages() for
 540         * alloc_pages() or by kasan_krealloc() for krealloc().
 541         */
 542
 543        /*
 544         * The redzone has byte-level precision for the generic mode.
 545         * Partially poison the last object granule to cover the unaligned
 546         * part of the redzone.
 547         */
 548        if (IS_ENABLED(CONFIG_KASAN_GENERIC))
 549                kasan_poison_last_granule(ptr, size);
 550
 551        /* Poison the aligned part of the redzone. */
 552        redzone_start = round_up((unsigned long)(ptr + size),
 553                                KASAN_GRANULE_SIZE);
 554        redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
 555        kasan_poison((void *)redzone_start, redzone_end - redzone_start,
 556                     KASAN_PAGE_REDZONE, false);
 557
 558        return (void *)ptr;
 559}
 560
 561void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
 562{
 563        struct page *page;
 564
 565        if (unlikely(object == ZERO_SIZE_PTR))
 566                return (void *)object;
 567
 568        /*
 569         * Unpoison the object's data.
 570         * Part of it might already have been unpoisoned, but it's unknown
 571         * how big that part is.
 572         */
 573        kasan_unpoison(object, size, false);
 574
 575        page = virt_to_head_page(object);
 576
 577        /* Piggy-back on kmalloc() instrumentation to poison the redzone. */
 578        if (unlikely(!PageSlab(page)))
 579                return __kasan_kmalloc_large(object, size, flags);
 580        else
 581                return ____kasan_kmalloc(page->slab_cache, object, size, flags);
 582}
 583
 584bool __kasan_check_byte(const void *address, unsigned long ip)
 585{
 586        if (!kasan_byte_accessible(address)) {
 587                kasan_report((unsigned long)address, 1, false, ip);
 588                return false;
 589        }
 590        return true;
 591}
 592