linux/kernel/time/tick-sched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  No idle tick implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
  10 */
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
  23#include <linux/sched/loadavg.h>
  24#include <linux/module.h>
  25#include <linux/irq_work.h>
  26#include <linux/posix-timers.h>
  27#include <linux/context_tracking.h>
  28#include <linux/mm.h>
  29
  30#include <asm/irq_regs.h>
  31
  32#include "tick-internal.h"
  33
  34#include <trace/events/timer.h>
  35
  36/*
  37 * Per-CPU nohz control structure
  38 */
  39static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  40
  41struct tick_sched *tick_get_tick_sched(int cpu)
  42{
  43        return &per_cpu(tick_cpu_sched, cpu);
  44}
  45
  46#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  47/*
  48 * The time, when the last jiffy update happened. Write access must hold
  49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
  50 * consistent view of jiffies and last_jiffies_update.
  51 */
  52static ktime_t last_jiffies_update;
  53
  54/*
  55 * Must be called with interrupts disabled !
  56 */
  57static void tick_do_update_jiffies64(ktime_t now)
  58{
  59        unsigned long ticks = 1;
  60        ktime_t delta, nextp;
  61
  62        /*
  63         * 64bit can do a quick check without holding jiffies lock and
  64         * without looking at the sequence count. The smp_load_acquire()
  65         * pairs with the update done later in this function.
  66         *
  67         * 32bit cannot do that because the store of tick_next_period
  68         * consists of two 32bit stores and the first store could move it
  69         * to a random point in the future.
  70         */
  71        if (IS_ENABLED(CONFIG_64BIT)) {
  72                if (ktime_before(now, smp_load_acquire(&tick_next_period)))
  73                        return;
  74        } else {
  75                unsigned int seq;
  76
  77                /*
  78                 * Avoid contention on jiffies_lock and protect the quick
  79                 * check with the sequence count.
  80                 */
  81                do {
  82                        seq = read_seqcount_begin(&jiffies_seq);
  83                        nextp = tick_next_period;
  84                } while (read_seqcount_retry(&jiffies_seq, seq));
  85
  86                if (ktime_before(now, nextp))
  87                        return;
  88        }
  89
  90        /* Quick check failed, i.e. update is required. */
  91        raw_spin_lock(&jiffies_lock);
  92        /*
  93         * Reevaluate with the lock held. Another CPU might have done the
  94         * update already.
  95         */
  96        if (ktime_before(now, tick_next_period)) {
  97                raw_spin_unlock(&jiffies_lock);
  98                return;
  99        }
 100
 101        write_seqcount_begin(&jiffies_seq);
 102
 103        delta = ktime_sub(now, tick_next_period);
 104        if (unlikely(delta >= TICK_NSEC)) {
 105                /* Slow path for long idle sleep times */
 106                s64 incr = TICK_NSEC;
 107
 108                ticks += ktime_divns(delta, incr);
 109
 110                last_jiffies_update = ktime_add_ns(last_jiffies_update,
 111                                                   incr * ticks);
 112        } else {
 113                last_jiffies_update = ktime_add_ns(last_jiffies_update,
 114                                                   TICK_NSEC);
 115        }
 116
 117        /* Advance jiffies to complete the jiffies_seq protected job */
 118        jiffies_64 += ticks;
 119
 120        /*
 121         * Keep the tick_next_period variable up to date.
 122         */
 123        nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
 124
 125        if (IS_ENABLED(CONFIG_64BIT)) {
 126                /*
 127                 * Pairs with smp_load_acquire() in the lockless quick
 128                 * check above and ensures that the update to jiffies_64 is
 129                 * not reordered vs. the store to tick_next_period, neither
 130                 * by the compiler nor by the CPU.
 131                 */
 132                smp_store_release(&tick_next_period, nextp);
 133        } else {
 134                /*
 135                 * A plain store is good enough on 32bit as the quick check
 136                 * above is protected by the sequence count.
 137                 */
 138                tick_next_period = nextp;
 139        }
 140
 141        /*
 142         * Release the sequence count. calc_global_load() below is not
 143         * protected by it, but jiffies_lock needs to be held to prevent
 144         * concurrent invocations.
 145         */
 146        write_seqcount_end(&jiffies_seq);
 147
 148        calc_global_load();
 149
 150        raw_spin_unlock(&jiffies_lock);
 151        update_wall_time();
 152}
 153
 154/*
 155 * Initialize and return retrieve the jiffies update.
 156 */
 157static ktime_t tick_init_jiffy_update(void)
 158{
 159        ktime_t period;
 160
 161        raw_spin_lock(&jiffies_lock);
 162        write_seqcount_begin(&jiffies_seq);
 163        /* Did we start the jiffies update yet ? */
 164        if (last_jiffies_update == 0)
 165                last_jiffies_update = tick_next_period;
 166        period = last_jiffies_update;
 167        write_seqcount_end(&jiffies_seq);
 168        raw_spin_unlock(&jiffies_lock);
 169        return period;
 170}
 171
 172static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 173{
 174        int cpu = smp_processor_id();
 175
 176#ifdef CONFIG_NO_HZ_COMMON
 177        /*
 178         * Check if the do_timer duty was dropped. We don't care about
 179         * concurrency: This happens only when the CPU in charge went
 180         * into a long sleep. If two CPUs happen to assign themselves to
 181         * this duty, then the jiffies update is still serialized by
 182         * jiffies_lock.
 183         *
 184         * If nohz_full is enabled, this should not happen because the
 185         * tick_do_timer_cpu never relinquishes.
 186         */
 187        if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 188#ifdef CONFIG_NO_HZ_FULL
 189                WARN_ON(tick_nohz_full_running);
 190#endif
 191                tick_do_timer_cpu = cpu;
 192        }
 193#endif
 194
 195        /* Check, if the jiffies need an update */
 196        if (tick_do_timer_cpu == cpu)
 197                tick_do_update_jiffies64(now);
 198
 199        if (ts->inidle)
 200                ts->got_idle_tick = 1;
 201}
 202
 203static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 204{
 205#ifdef CONFIG_NO_HZ_COMMON
 206        /*
 207         * When we are idle and the tick is stopped, we have to touch
 208         * the watchdog as we might not schedule for a really long
 209         * time. This happens on complete idle SMP systems while
 210         * waiting on the login prompt. We also increment the "start of
 211         * idle" jiffy stamp so the idle accounting adjustment we do
 212         * when we go busy again does not account too much ticks.
 213         */
 214        if (ts->tick_stopped) {
 215                touch_softlockup_watchdog_sched();
 216                if (is_idle_task(current))
 217                        ts->idle_jiffies++;
 218                /*
 219                 * In case the current tick fired too early past its expected
 220                 * expiration, make sure we don't bypass the next clock reprogramming
 221                 * to the same deadline.
 222                 */
 223                ts->next_tick = 0;
 224        }
 225#endif
 226        update_process_times(user_mode(regs));
 227        profile_tick(CPU_PROFILING);
 228}
 229#endif
 230
 231#ifdef CONFIG_NO_HZ_FULL
 232cpumask_var_t tick_nohz_full_mask;
 233EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
 234bool tick_nohz_full_running;
 235EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 236static atomic_t tick_dep_mask;
 237
 238static bool check_tick_dependency(atomic_t *dep)
 239{
 240        int val = atomic_read(dep);
 241
 242        if (val & TICK_DEP_MASK_POSIX_TIMER) {
 243                trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 244                return true;
 245        }
 246
 247        if (val & TICK_DEP_MASK_PERF_EVENTS) {
 248                trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 249                return true;
 250        }
 251
 252        if (val & TICK_DEP_MASK_SCHED) {
 253                trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 254                return true;
 255        }
 256
 257        if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 258                trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 259                return true;
 260        }
 261
 262        if (val & TICK_DEP_MASK_RCU) {
 263                trace_tick_stop(0, TICK_DEP_MASK_RCU);
 264                return true;
 265        }
 266
 267        return false;
 268}
 269
 270static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 271{
 272        lockdep_assert_irqs_disabled();
 273
 274        if (unlikely(!cpu_online(cpu)))
 275                return false;
 276
 277        if (check_tick_dependency(&tick_dep_mask))
 278                return false;
 279
 280        if (check_tick_dependency(&ts->tick_dep_mask))
 281                return false;
 282
 283        if (check_tick_dependency(&current->tick_dep_mask))
 284                return false;
 285
 286        if (check_tick_dependency(&current->signal->tick_dep_mask))
 287                return false;
 288
 289        return true;
 290}
 291
 292static void nohz_full_kick_func(struct irq_work *work)
 293{
 294        /* Empty, the tick restart happens on tick_nohz_irq_exit() */
 295}
 296
 297static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
 298        IRQ_WORK_INIT_HARD(nohz_full_kick_func);
 299
 300/*
 301 * Kick this CPU if it's full dynticks in order to force it to
 302 * re-evaluate its dependency on the tick and restart it if necessary.
 303 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 304 * is NMI safe.
 305 */
 306static void tick_nohz_full_kick(void)
 307{
 308        if (!tick_nohz_full_cpu(smp_processor_id()))
 309                return;
 310
 311        irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 312}
 313
 314/*
 315 * Kick the CPU if it's full dynticks in order to force it to
 316 * re-evaluate its dependency on the tick and restart it if necessary.
 317 */
 318void tick_nohz_full_kick_cpu(int cpu)
 319{
 320        if (!tick_nohz_full_cpu(cpu))
 321                return;
 322
 323        irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 324}
 325
 326static void tick_nohz_kick_task(struct task_struct *tsk)
 327{
 328        int cpu;
 329
 330        /*
 331         * If the task is not running, run_posix_cpu_timers()
 332         * has nothing to elapse, IPI can then be spared.
 333         *
 334         * activate_task()                      STORE p->tick_dep_mask
 335         *   STORE p->on_rq
 336         * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
 337         *   LOCK rq->lock                      LOAD p->on_rq
 338         *   smp_mb__after_spin_lock()
 339         *   tick_nohz_task_switch()
 340         *     LOAD p->tick_dep_mask
 341         */
 342        if (!sched_task_on_rq(tsk))
 343                return;
 344
 345        /*
 346         * If the task concurrently migrates to another CPU,
 347         * we guarantee it sees the new tick dependency upon
 348         * schedule.
 349         *
 350         * set_task_cpu(p, cpu);
 351         *   STORE p->cpu = @cpu
 352         * __schedule() (switch to task 'p')
 353         *   LOCK rq->lock
 354         *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
 355         *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
 356         *      LOAD p->tick_dep_mask           LOAD p->cpu
 357         */
 358        cpu = task_cpu(tsk);
 359
 360        preempt_disable();
 361        if (cpu_online(cpu))
 362                tick_nohz_full_kick_cpu(cpu);
 363        preempt_enable();
 364}
 365
 366/*
 367 * Kick all full dynticks CPUs in order to force these to re-evaluate
 368 * their dependency on the tick and restart it if necessary.
 369 */
 370static void tick_nohz_full_kick_all(void)
 371{
 372        int cpu;
 373
 374        if (!tick_nohz_full_running)
 375                return;
 376
 377        preempt_disable();
 378        for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 379                tick_nohz_full_kick_cpu(cpu);
 380        preempt_enable();
 381}
 382
 383static void tick_nohz_dep_set_all(atomic_t *dep,
 384                                  enum tick_dep_bits bit)
 385{
 386        int prev;
 387
 388        prev = atomic_fetch_or(BIT(bit), dep);
 389        if (!prev)
 390                tick_nohz_full_kick_all();
 391}
 392
 393/*
 394 * Set a global tick dependency. Used by perf events that rely on freq and
 395 * by unstable clock.
 396 */
 397void tick_nohz_dep_set(enum tick_dep_bits bit)
 398{
 399        tick_nohz_dep_set_all(&tick_dep_mask, bit);
 400}
 401
 402void tick_nohz_dep_clear(enum tick_dep_bits bit)
 403{
 404        atomic_andnot(BIT(bit), &tick_dep_mask);
 405}
 406
 407/*
 408 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 409 * manage events throttling.
 410 */
 411void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 412{
 413        int prev;
 414        struct tick_sched *ts;
 415
 416        ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 417
 418        prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 419        if (!prev) {
 420                preempt_disable();
 421                /* Perf needs local kick that is NMI safe */
 422                if (cpu == smp_processor_id()) {
 423                        tick_nohz_full_kick();
 424                } else {
 425                        /* Remote irq work not NMI-safe */
 426                        if (!WARN_ON_ONCE(in_nmi()))
 427                                tick_nohz_full_kick_cpu(cpu);
 428                }
 429                preempt_enable();
 430        }
 431}
 432EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 433
 434void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 435{
 436        struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 437
 438        atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 439}
 440EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 441
 442/*
 443 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
 444 * in order to elapse per task timers.
 445 */
 446void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 447{
 448        if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
 449                tick_nohz_kick_task(tsk);
 450}
 451EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 452
 453void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 454{
 455        atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 456}
 457EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 458
 459/*
 460 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 461 * per process timers.
 462 */
 463void tick_nohz_dep_set_signal(struct task_struct *tsk,
 464                              enum tick_dep_bits bit)
 465{
 466        int prev;
 467        struct signal_struct *sig = tsk->signal;
 468
 469        prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
 470        if (!prev) {
 471                struct task_struct *t;
 472
 473                lockdep_assert_held(&tsk->sighand->siglock);
 474                __for_each_thread(sig, t)
 475                        tick_nohz_kick_task(t);
 476        }
 477}
 478
 479void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 480{
 481        atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 482}
 483
 484/*
 485 * Re-evaluate the need for the tick as we switch the current task.
 486 * It might need the tick due to per task/process properties:
 487 * perf events, posix CPU timers, ...
 488 */
 489void __tick_nohz_task_switch(void)
 490{
 491        struct tick_sched *ts;
 492
 493        if (!tick_nohz_full_cpu(smp_processor_id()))
 494                return;
 495
 496        ts = this_cpu_ptr(&tick_cpu_sched);
 497
 498        if (ts->tick_stopped) {
 499                if (atomic_read(&current->tick_dep_mask) ||
 500                    atomic_read(&current->signal->tick_dep_mask))
 501                        tick_nohz_full_kick();
 502        }
 503}
 504
 505/* Get the boot-time nohz CPU list from the kernel parameters. */
 506void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 507{
 508        alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 509        cpumask_copy(tick_nohz_full_mask, cpumask);
 510        tick_nohz_full_running = true;
 511}
 512EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
 513
 514static int tick_nohz_cpu_down(unsigned int cpu)
 515{
 516        /*
 517         * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
 518         * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 519         * CPUs. It must remain online when nohz full is enabled.
 520         */
 521        if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 522                return -EBUSY;
 523        return 0;
 524}
 525
 526void __init tick_nohz_init(void)
 527{
 528        int cpu, ret;
 529
 530        if (!tick_nohz_full_running)
 531                return;
 532
 533        /*
 534         * Full dynticks uses irq work to drive the tick rescheduling on safe
 535         * locking contexts. But then we need irq work to raise its own
 536         * interrupts to avoid circular dependency on the tick
 537         */
 538        if (!arch_irq_work_has_interrupt()) {
 539                pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
 540                cpumask_clear(tick_nohz_full_mask);
 541                tick_nohz_full_running = false;
 542                return;
 543        }
 544
 545        if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 546                        !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 547                cpu = smp_processor_id();
 548
 549                if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 550                        pr_warn("NO_HZ: Clearing %d from nohz_full range "
 551                                "for timekeeping\n", cpu);
 552                        cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 553                }
 554        }
 555
 556        for_each_cpu(cpu, tick_nohz_full_mask)
 557                context_tracking_cpu_set(cpu);
 558
 559        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 560                                        "kernel/nohz:predown", NULL,
 561                                        tick_nohz_cpu_down);
 562        WARN_ON(ret < 0);
 563        pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 564                cpumask_pr_args(tick_nohz_full_mask));
 565}
 566#endif
 567
 568/*
 569 * NOHZ - aka dynamic tick functionality
 570 */
 571#ifdef CONFIG_NO_HZ_COMMON
 572/*
 573 * NO HZ enabled ?
 574 */
 575bool tick_nohz_enabled __read_mostly  = true;
 576unsigned long tick_nohz_active  __read_mostly;
 577/*
 578 * Enable / Disable tickless mode
 579 */
 580static int __init setup_tick_nohz(char *str)
 581{
 582        return (kstrtobool(str, &tick_nohz_enabled) == 0);
 583}
 584
 585__setup("nohz=", setup_tick_nohz);
 586
 587bool tick_nohz_tick_stopped(void)
 588{
 589        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 590
 591        return ts->tick_stopped;
 592}
 593
 594bool tick_nohz_tick_stopped_cpu(int cpu)
 595{
 596        struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 597
 598        return ts->tick_stopped;
 599}
 600
 601/**
 602 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 603 *
 604 * Called from interrupt entry when the CPU was idle
 605 *
 606 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 607 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 608 * value. We do this unconditionally on any CPU, as we don't know whether the
 609 * CPU, which has the update task assigned is in a long sleep.
 610 */
 611static void tick_nohz_update_jiffies(ktime_t now)
 612{
 613        unsigned long flags;
 614
 615        __this_cpu_write(tick_cpu_sched.idle_waketime, now);
 616
 617        local_irq_save(flags);
 618        tick_do_update_jiffies64(now);
 619        local_irq_restore(flags);
 620
 621        touch_softlockup_watchdog_sched();
 622}
 623
 624/*
 625 * Updates the per-CPU time idle statistics counters
 626 */
 627static void
 628update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 629{
 630        ktime_t delta;
 631
 632        if (ts->idle_active) {
 633                delta = ktime_sub(now, ts->idle_entrytime);
 634                if (nr_iowait_cpu(cpu) > 0)
 635                        ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 636                else
 637                        ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 638                ts->idle_entrytime = now;
 639        }
 640
 641        if (last_update_time)
 642                *last_update_time = ktime_to_us(now);
 643
 644}
 645
 646static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 647{
 648        update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 649        ts->idle_active = 0;
 650
 651        sched_clock_idle_wakeup_event();
 652}
 653
 654static void tick_nohz_start_idle(struct tick_sched *ts)
 655{
 656        ts->idle_entrytime = ktime_get();
 657        ts->idle_active = 1;
 658        sched_clock_idle_sleep_event();
 659}
 660
 661/**
 662 * get_cpu_idle_time_us - get the total idle time of a CPU
 663 * @cpu: CPU number to query
 664 * @last_update_time: variable to store update time in. Do not update
 665 * counters if NULL.
 666 *
 667 * Return the cumulative idle time (since boot) for a given
 668 * CPU, in microseconds.
 669 *
 670 * This time is measured via accounting rather than sampling,
 671 * and is as accurate as ktime_get() is.
 672 *
 673 * This function returns -1 if NOHZ is not enabled.
 674 */
 675u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 676{
 677        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 678        ktime_t now, idle;
 679
 680        if (!tick_nohz_active)
 681                return -1;
 682
 683        now = ktime_get();
 684        if (last_update_time) {
 685                update_ts_time_stats(cpu, ts, now, last_update_time);
 686                idle = ts->idle_sleeptime;
 687        } else {
 688                if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 689                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 690
 691                        idle = ktime_add(ts->idle_sleeptime, delta);
 692                } else {
 693                        idle = ts->idle_sleeptime;
 694                }
 695        }
 696
 697        return ktime_to_us(idle);
 698
 699}
 700EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 701
 702/**
 703 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 704 * @cpu: CPU number to query
 705 * @last_update_time: variable to store update time in. Do not update
 706 * counters if NULL.
 707 *
 708 * Return the cumulative iowait time (since boot) for a given
 709 * CPU, in microseconds.
 710 *
 711 * This time is measured via accounting rather than sampling,
 712 * and is as accurate as ktime_get() is.
 713 *
 714 * This function returns -1 if NOHZ is not enabled.
 715 */
 716u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 717{
 718        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 719        ktime_t now, iowait;
 720
 721        if (!tick_nohz_active)
 722                return -1;
 723
 724        now = ktime_get();
 725        if (last_update_time) {
 726                update_ts_time_stats(cpu, ts, now, last_update_time);
 727                iowait = ts->iowait_sleeptime;
 728        } else {
 729                if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 730                        ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 731
 732                        iowait = ktime_add(ts->iowait_sleeptime, delta);
 733                } else {
 734                        iowait = ts->iowait_sleeptime;
 735                }
 736        }
 737
 738        return ktime_to_us(iowait);
 739}
 740EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 741
 742static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 743{
 744        hrtimer_cancel(&ts->sched_timer);
 745        hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 746
 747        /* Forward the time to expire in the future */
 748        hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
 749
 750        if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 751                hrtimer_start_expires(&ts->sched_timer,
 752                                      HRTIMER_MODE_ABS_PINNED_HARD);
 753        } else {
 754                tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 755        }
 756
 757        /*
 758         * Reset to make sure next tick stop doesn't get fooled by past
 759         * cached clock deadline.
 760         */
 761        ts->next_tick = 0;
 762}
 763
 764static inline bool local_timer_softirq_pending(void)
 765{
 766        return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 767}
 768
 769static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 770{
 771        u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
 772        unsigned long basejiff;
 773        unsigned int seq;
 774
 775        /* Read jiffies and the time when jiffies were updated last */
 776        do {
 777                seq = read_seqcount_begin(&jiffies_seq);
 778                basemono = last_jiffies_update;
 779                basejiff = jiffies;
 780        } while (read_seqcount_retry(&jiffies_seq, seq));
 781        ts->last_jiffies = basejiff;
 782        ts->timer_expires_base = basemono;
 783
 784        /*
 785         * Keep the periodic tick, when RCU, architecture or irq_work
 786         * requests it.
 787         * Aside of that check whether the local timer softirq is
 788         * pending. If so its a bad idea to call get_next_timer_interrupt()
 789         * because there is an already expired timer, so it will request
 790         * immediate expiry, which rearms the hardware timer with a
 791         * minimal delta which brings us back to this place
 792         * immediately. Lather, rinse and repeat...
 793         */
 794        if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
 795            irq_work_needs_cpu() || local_timer_softirq_pending()) {
 796                next_tick = basemono + TICK_NSEC;
 797        } else {
 798                /*
 799                 * Get the next pending timer. If high resolution
 800                 * timers are enabled this only takes the timer wheel
 801                 * timers into account. If high resolution timers are
 802                 * disabled this also looks at the next expiring
 803                 * hrtimer.
 804                 */
 805                next_tmr = get_next_timer_interrupt(basejiff, basemono);
 806                ts->next_timer = next_tmr;
 807                /* Take the next rcu event into account */
 808                next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
 809        }
 810
 811        /*
 812         * If the tick is due in the next period, keep it ticking or
 813         * force prod the timer.
 814         */
 815        delta = next_tick - basemono;
 816        if (delta <= (u64)TICK_NSEC) {
 817                /*
 818                 * Tell the timer code that the base is not idle, i.e. undo
 819                 * the effect of get_next_timer_interrupt():
 820                 */
 821                timer_clear_idle();
 822                /*
 823                 * We've not stopped the tick yet, and there's a timer in the
 824                 * next period, so no point in stopping it either, bail.
 825                 */
 826                if (!ts->tick_stopped) {
 827                        ts->timer_expires = 0;
 828                        goto out;
 829                }
 830        }
 831
 832        /*
 833         * If this CPU is the one which had the do_timer() duty last, we limit
 834         * the sleep time to the timekeeping max_deferment value.
 835         * Otherwise we can sleep as long as we want.
 836         */
 837        delta = timekeeping_max_deferment();
 838        if (cpu != tick_do_timer_cpu &&
 839            (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 840                delta = KTIME_MAX;
 841
 842        /* Calculate the next expiry time */
 843        if (delta < (KTIME_MAX - basemono))
 844                expires = basemono + delta;
 845        else
 846                expires = KTIME_MAX;
 847
 848        ts->timer_expires = min_t(u64, expires, next_tick);
 849
 850out:
 851        return ts->timer_expires;
 852}
 853
 854static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 855{
 856        struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 857        u64 basemono = ts->timer_expires_base;
 858        u64 expires = ts->timer_expires;
 859        ktime_t tick = expires;
 860
 861        /* Make sure we won't be trying to stop it twice in a row. */
 862        ts->timer_expires_base = 0;
 863
 864        /*
 865         * If this CPU is the one which updates jiffies, then give up
 866         * the assignment and let it be taken by the CPU which runs
 867         * the tick timer next, which might be this CPU as well. If we
 868         * don't drop this here the jiffies might be stale and
 869         * do_timer() never invoked. Keep track of the fact that it
 870         * was the one which had the do_timer() duty last.
 871         */
 872        if (cpu == tick_do_timer_cpu) {
 873                tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 874                ts->do_timer_last = 1;
 875        } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 876                ts->do_timer_last = 0;
 877        }
 878
 879        /* Skip reprogram of event if its not changed */
 880        if (ts->tick_stopped && (expires == ts->next_tick)) {
 881                /* Sanity check: make sure clockevent is actually programmed */
 882                if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 883                        return;
 884
 885                WARN_ON_ONCE(1);
 886                printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 887                            basemono, ts->next_tick, dev->next_event,
 888                            hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 889        }
 890
 891        /*
 892         * nohz_stop_sched_tick can be called several times before
 893         * the nohz_restart_sched_tick is called. This happens when
 894         * interrupts arrive which do not cause a reschedule. In the
 895         * first call we save the current tick time, so we can restart
 896         * the scheduler tick in nohz_restart_sched_tick.
 897         */
 898        if (!ts->tick_stopped) {
 899                calc_load_nohz_start();
 900                quiet_vmstat();
 901
 902                ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 903                ts->tick_stopped = 1;
 904                trace_tick_stop(1, TICK_DEP_MASK_NONE);
 905        }
 906
 907        ts->next_tick = tick;
 908
 909        /*
 910         * If the expiration time == KTIME_MAX, then we simply stop
 911         * the tick timer.
 912         */
 913        if (unlikely(expires == KTIME_MAX)) {
 914                if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 915                        hrtimer_cancel(&ts->sched_timer);
 916                return;
 917        }
 918
 919        if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 920                hrtimer_start(&ts->sched_timer, tick,
 921                              HRTIMER_MODE_ABS_PINNED_HARD);
 922        } else {
 923                hrtimer_set_expires(&ts->sched_timer, tick);
 924                tick_program_event(tick, 1);
 925        }
 926}
 927
 928static void tick_nohz_retain_tick(struct tick_sched *ts)
 929{
 930        ts->timer_expires_base = 0;
 931}
 932
 933#ifdef CONFIG_NO_HZ_FULL
 934static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 935{
 936        if (tick_nohz_next_event(ts, cpu))
 937                tick_nohz_stop_tick(ts, cpu);
 938        else
 939                tick_nohz_retain_tick(ts);
 940}
 941#endif /* CONFIG_NO_HZ_FULL */
 942
 943static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 944{
 945        /* Update jiffies first */
 946        tick_do_update_jiffies64(now);
 947
 948        /*
 949         * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 950         * the clock forward checks in the enqueue path:
 951         */
 952        timer_clear_idle();
 953
 954        calc_load_nohz_stop();
 955        touch_softlockup_watchdog_sched();
 956        /*
 957         * Cancel the scheduled timer and restore the tick
 958         */
 959        ts->tick_stopped  = 0;
 960        tick_nohz_restart(ts, now);
 961}
 962
 963static void __tick_nohz_full_update_tick(struct tick_sched *ts,
 964                                         ktime_t now)
 965{
 966#ifdef CONFIG_NO_HZ_FULL
 967        int cpu = smp_processor_id();
 968
 969        if (can_stop_full_tick(cpu, ts))
 970                tick_nohz_stop_sched_tick(ts, cpu);
 971        else if (ts->tick_stopped)
 972                tick_nohz_restart_sched_tick(ts, now);
 973#endif
 974}
 975
 976static void tick_nohz_full_update_tick(struct tick_sched *ts)
 977{
 978        if (!tick_nohz_full_cpu(smp_processor_id()))
 979                return;
 980
 981        if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 982                return;
 983
 984        __tick_nohz_full_update_tick(ts, ktime_get());
 985}
 986
 987static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 988{
 989        /*
 990         * If this CPU is offline and it is the one which updates
 991         * jiffies, then give up the assignment and let it be taken by
 992         * the CPU which runs the tick timer next. If we don't drop
 993         * this here the jiffies might be stale and do_timer() never
 994         * invoked.
 995         */
 996        if (unlikely(!cpu_online(cpu))) {
 997                if (cpu == tick_do_timer_cpu)
 998                        tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 999                /*
1000                 * Make sure the CPU doesn't get fooled by obsolete tick
1001                 * deadline if it comes back online later.
1002                 */
1003                ts->next_tick = 0;
1004                return false;
1005        }
1006
1007        if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1008                return false;
1009
1010        if (need_resched())
1011                return false;
1012
1013        if (unlikely(local_softirq_pending())) {
1014                static int ratelimit;
1015
1016                if (ratelimit < 10 && !local_bh_blocked() &&
1017                    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
1018                        pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
1019                                (unsigned int) local_softirq_pending());
1020                        ratelimit++;
1021                }
1022                return false;
1023        }
1024
1025        if (tick_nohz_full_enabled()) {
1026                /*
1027                 * Keep the tick alive to guarantee timekeeping progression
1028                 * if there are full dynticks CPUs around
1029                 */
1030                if (tick_do_timer_cpu == cpu)
1031                        return false;
1032
1033                /* Should not happen for nohz-full */
1034                if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1035                        return false;
1036        }
1037
1038        return true;
1039}
1040
1041static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1042{
1043        ktime_t expires;
1044        int cpu = smp_processor_id();
1045
1046        /*
1047         * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1048         * tick timer expiration time is known already.
1049         */
1050        if (ts->timer_expires_base)
1051                expires = ts->timer_expires;
1052        else if (can_stop_idle_tick(cpu, ts))
1053                expires = tick_nohz_next_event(ts, cpu);
1054        else
1055                return;
1056
1057        ts->idle_calls++;
1058
1059        if (expires > 0LL) {
1060                int was_stopped = ts->tick_stopped;
1061
1062                tick_nohz_stop_tick(ts, cpu);
1063
1064                ts->idle_sleeps++;
1065                ts->idle_expires = expires;
1066
1067                if (!was_stopped && ts->tick_stopped) {
1068                        ts->idle_jiffies = ts->last_jiffies;
1069                        nohz_balance_enter_idle(cpu);
1070                }
1071        } else {
1072                tick_nohz_retain_tick(ts);
1073        }
1074}
1075
1076/**
1077 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1078 *
1079 * When the next event is more than a tick into the future, stop the idle tick
1080 */
1081void tick_nohz_idle_stop_tick(void)
1082{
1083        __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1084}
1085
1086void tick_nohz_idle_retain_tick(void)
1087{
1088        tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1089        /*
1090         * Undo the effect of get_next_timer_interrupt() called from
1091         * tick_nohz_next_event().
1092         */
1093        timer_clear_idle();
1094}
1095
1096/**
1097 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1098 *
1099 * Called when we start the idle loop.
1100 */
1101void tick_nohz_idle_enter(void)
1102{
1103        struct tick_sched *ts;
1104
1105        lockdep_assert_irqs_enabled();
1106
1107        local_irq_disable();
1108
1109        ts = this_cpu_ptr(&tick_cpu_sched);
1110
1111        WARN_ON_ONCE(ts->timer_expires_base);
1112
1113        ts->inidle = 1;
1114        tick_nohz_start_idle(ts);
1115
1116        local_irq_enable();
1117}
1118
1119/**
1120 * tick_nohz_irq_exit - update next tick event from interrupt exit
1121 *
1122 * When an interrupt fires while we are idle and it doesn't cause
1123 * a reschedule, it may still add, modify or delete a timer, enqueue
1124 * an RCU callback, etc...
1125 * So we need to re-calculate and reprogram the next tick event.
1126 */
1127void tick_nohz_irq_exit(void)
1128{
1129        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1130
1131        if (ts->inidle)
1132                tick_nohz_start_idle(ts);
1133        else
1134                tick_nohz_full_update_tick(ts);
1135}
1136
1137/**
1138 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1139 */
1140bool tick_nohz_idle_got_tick(void)
1141{
1142        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1143
1144        if (ts->got_idle_tick) {
1145                ts->got_idle_tick = 0;
1146                return true;
1147        }
1148        return false;
1149}
1150
1151/**
1152 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1153 * or the tick, whatever that expires first. Note that, if the tick has been
1154 * stopped, it returns the next hrtimer.
1155 *
1156 * Called from power state control code with interrupts disabled
1157 */
1158ktime_t tick_nohz_get_next_hrtimer(void)
1159{
1160        return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1161}
1162
1163/**
1164 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1165 * @delta_next: duration until the next event if the tick cannot be stopped
1166 *
1167 * Called from power state control code with interrupts disabled.
1168 *
1169 * The return value of this function and/or the value returned by it through the
1170 * @delta_next pointer can be negative which must be taken into account by its
1171 * callers.
1172 */
1173ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1174{
1175        struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1176        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1177        int cpu = smp_processor_id();
1178        /*
1179         * The idle entry time is expected to be a sufficient approximation of
1180         * the current time at this point.
1181         */
1182        ktime_t now = ts->idle_entrytime;
1183        ktime_t next_event;
1184
1185        WARN_ON_ONCE(!ts->inidle);
1186
1187        *delta_next = ktime_sub(dev->next_event, now);
1188
1189        if (!can_stop_idle_tick(cpu, ts))
1190                return *delta_next;
1191
1192        next_event = tick_nohz_next_event(ts, cpu);
1193        if (!next_event)
1194                return *delta_next;
1195
1196        /*
1197         * If the next highres timer to expire is earlier than next_event, the
1198         * idle governor needs to know that.
1199         */
1200        next_event = min_t(u64, next_event,
1201                           hrtimer_next_event_without(&ts->sched_timer));
1202
1203        return ktime_sub(next_event, now);
1204}
1205
1206/**
1207 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1208 * for a particular CPU.
1209 *
1210 * Called from the schedutil frequency scaling governor in scheduler context.
1211 */
1212unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1213{
1214        struct tick_sched *ts = tick_get_tick_sched(cpu);
1215
1216        return ts->idle_calls;
1217}
1218
1219/**
1220 * tick_nohz_get_idle_calls - return the current idle calls counter value
1221 *
1222 * Called from the schedutil frequency scaling governor in scheduler context.
1223 */
1224unsigned long tick_nohz_get_idle_calls(void)
1225{
1226        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1227
1228        return ts->idle_calls;
1229}
1230
1231static void tick_nohz_account_idle_time(struct tick_sched *ts,
1232                                        ktime_t now)
1233{
1234        unsigned long ticks;
1235
1236        ts->idle_exittime = now;
1237
1238        if (vtime_accounting_enabled_this_cpu())
1239                return;
1240        /*
1241         * We stopped the tick in idle. Update process times would miss the
1242         * time we slept as update_process_times does only a 1 tick
1243         * accounting. Enforce that this is accounted to idle !
1244         */
1245        ticks = jiffies - ts->idle_jiffies;
1246        /*
1247         * We might be one off. Do not randomly account a huge number of ticks!
1248         */
1249        if (ticks && ticks < LONG_MAX)
1250                account_idle_ticks(ticks);
1251}
1252
1253void tick_nohz_idle_restart_tick(void)
1254{
1255        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1256
1257        if (ts->tick_stopped) {
1258                ktime_t now = ktime_get();
1259                tick_nohz_restart_sched_tick(ts, now);
1260                tick_nohz_account_idle_time(ts, now);
1261        }
1262}
1263
1264static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1265{
1266        if (tick_nohz_full_cpu(smp_processor_id()))
1267                __tick_nohz_full_update_tick(ts, now);
1268        else
1269                tick_nohz_restart_sched_tick(ts, now);
1270
1271        tick_nohz_account_idle_time(ts, now);
1272}
1273
1274/**
1275 * tick_nohz_idle_exit - restart the idle tick from the idle task
1276 *
1277 * Restart the idle tick when the CPU is woken up from idle
1278 * This also exit the RCU extended quiescent state. The CPU
1279 * can use RCU again after this function is called.
1280 */
1281void tick_nohz_idle_exit(void)
1282{
1283        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1284        bool idle_active, tick_stopped;
1285        ktime_t now;
1286
1287        local_irq_disable();
1288
1289        WARN_ON_ONCE(!ts->inidle);
1290        WARN_ON_ONCE(ts->timer_expires_base);
1291
1292        ts->inidle = 0;
1293        idle_active = ts->idle_active;
1294        tick_stopped = ts->tick_stopped;
1295
1296        if (idle_active || tick_stopped)
1297                now = ktime_get();
1298
1299        if (idle_active)
1300                tick_nohz_stop_idle(ts, now);
1301
1302        if (tick_stopped)
1303                tick_nohz_idle_update_tick(ts, now);
1304
1305        local_irq_enable();
1306}
1307
1308/*
1309 * The nohz low res interrupt handler
1310 */
1311static void tick_nohz_handler(struct clock_event_device *dev)
1312{
1313        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1314        struct pt_regs *regs = get_irq_regs();
1315        ktime_t now = ktime_get();
1316
1317        dev->next_event = KTIME_MAX;
1318
1319        tick_sched_do_timer(ts, now);
1320        tick_sched_handle(ts, regs);
1321
1322        /* No need to reprogram if we are running tickless  */
1323        if (unlikely(ts->tick_stopped))
1324                return;
1325
1326        hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1327        tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1328}
1329
1330static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1331{
1332        if (!tick_nohz_enabled)
1333                return;
1334        ts->nohz_mode = mode;
1335        /* One update is enough */
1336        if (!test_and_set_bit(0, &tick_nohz_active))
1337                timers_update_nohz();
1338}
1339
1340/**
1341 * tick_nohz_switch_to_nohz - switch to nohz mode
1342 */
1343static void tick_nohz_switch_to_nohz(void)
1344{
1345        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1346        ktime_t next;
1347
1348        if (!tick_nohz_enabled)
1349                return;
1350
1351        if (tick_switch_to_oneshot(tick_nohz_handler))
1352                return;
1353
1354        /*
1355         * Recycle the hrtimer in ts, so we can share the
1356         * hrtimer_forward with the highres code.
1357         */
1358        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1359        /* Get the next period */
1360        next = tick_init_jiffy_update();
1361
1362        hrtimer_set_expires(&ts->sched_timer, next);
1363        hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1364        tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1365        tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1366}
1367
1368static inline void tick_nohz_irq_enter(void)
1369{
1370        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1371        ktime_t now;
1372
1373        if (!ts->idle_active && !ts->tick_stopped)
1374                return;
1375        now = ktime_get();
1376        if (ts->idle_active)
1377                tick_nohz_stop_idle(ts, now);
1378        if (ts->tick_stopped)
1379                tick_nohz_update_jiffies(now);
1380}
1381
1382#else
1383
1384static inline void tick_nohz_switch_to_nohz(void) { }
1385static inline void tick_nohz_irq_enter(void) { }
1386static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1387
1388#endif /* CONFIG_NO_HZ_COMMON */
1389
1390/*
1391 * Called from irq_enter to notify about the possible interruption of idle()
1392 */
1393void tick_irq_enter(void)
1394{
1395        tick_check_oneshot_broadcast_this_cpu();
1396        tick_nohz_irq_enter();
1397}
1398
1399/*
1400 * High resolution timer specific code
1401 */
1402#ifdef CONFIG_HIGH_RES_TIMERS
1403/*
1404 * We rearm the timer until we get disabled by the idle code.
1405 * Called with interrupts disabled.
1406 */
1407static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1408{
1409        struct tick_sched *ts =
1410                container_of(timer, struct tick_sched, sched_timer);
1411        struct pt_regs *regs = get_irq_regs();
1412        ktime_t now = ktime_get();
1413
1414        tick_sched_do_timer(ts, now);
1415
1416        /*
1417         * Do not call, when we are not in irq context and have
1418         * no valid regs pointer
1419         */
1420        if (regs)
1421                tick_sched_handle(ts, regs);
1422        else
1423                ts->next_tick = 0;
1424
1425        /* No need to reprogram if we are in idle or full dynticks mode */
1426        if (unlikely(ts->tick_stopped))
1427                return HRTIMER_NORESTART;
1428
1429        hrtimer_forward(timer, now, TICK_NSEC);
1430
1431        return HRTIMER_RESTART;
1432}
1433
1434static int sched_skew_tick;
1435
1436static int __init skew_tick(char *str)
1437{
1438        get_option(&str, &sched_skew_tick);
1439
1440        return 0;
1441}
1442early_param("skew_tick", skew_tick);
1443
1444/**
1445 * tick_setup_sched_timer - setup the tick emulation timer
1446 */
1447void tick_setup_sched_timer(void)
1448{
1449        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1450        ktime_t now = ktime_get();
1451
1452        /*
1453         * Emulate tick processing via per-CPU hrtimers:
1454         */
1455        hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1456        ts->sched_timer.function = tick_sched_timer;
1457
1458        /* Get the next period (per-CPU) */
1459        hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1460
1461        /* Offset the tick to avert jiffies_lock contention. */
1462        if (sched_skew_tick) {
1463                u64 offset = TICK_NSEC >> 1;
1464                do_div(offset, num_possible_cpus());
1465                offset *= smp_processor_id();
1466                hrtimer_add_expires_ns(&ts->sched_timer, offset);
1467        }
1468
1469        hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1470        hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1471        tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1472}
1473#endif /* HIGH_RES_TIMERS */
1474
1475#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1476void tick_cancel_sched_timer(int cpu)
1477{
1478        struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1479
1480# ifdef CONFIG_HIGH_RES_TIMERS
1481        if (ts->sched_timer.base)
1482                hrtimer_cancel(&ts->sched_timer);
1483# endif
1484
1485        memset(ts, 0, sizeof(*ts));
1486}
1487#endif
1488
1489/**
1490 * Async notification about clocksource changes
1491 */
1492void tick_clock_notify(void)
1493{
1494        int cpu;
1495
1496        for_each_possible_cpu(cpu)
1497                set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1498}
1499
1500/*
1501 * Async notification about clock event changes
1502 */
1503void tick_oneshot_notify(void)
1504{
1505        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1506
1507        set_bit(0, &ts->check_clocks);
1508}
1509
1510/**
1511 * Check, if a change happened, which makes oneshot possible.
1512 *
1513 * Called cyclic from the hrtimer softirq (driven by the timer
1514 * softirq) allow_nohz signals, that we can switch into low-res nohz
1515 * mode, because high resolution timers are disabled (either compile
1516 * or runtime). Called with interrupts disabled.
1517 */
1518int tick_check_oneshot_change(int allow_nohz)
1519{
1520        struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1521
1522        if (!test_and_clear_bit(0, &ts->check_clocks))
1523                return 0;
1524
1525        if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1526                return 0;
1527
1528        if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1529                return 0;
1530
1531        if (!allow_nohz)
1532                return 1;
1533
1534        tick_nohz_switch_to_nohz();
1535        return 0;
1536}
1537