linux/kernel/sched/sched.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Scheduler internal types and methods:
   4 */
   5#include <linux/sched.h>
   6
   7#include <linux/sched/autogroup.h>
   8#include <linux/sched/clock.h>
   9#include <linux/sched/coredump.h>
  10#include <linux/sched/cpufreq.h>
  11#include <linux/sched/cputime.h>
  12#include <linux/sched/deadline.h>
  13#include <linux/sched/debug.h>
  14#include <linux/sched/hotplug.h>
  15#include <linux/sched/idle.h>
  16#include <linux/sched/init.h>
  17#include <linux/sched/isolation.h>
  18#include <linux/sched/jobctl.h>
  19#include <linux/sched/loadavg.h>
  20#include <linux/sched/mm.h>
  21#include <linux/sched/nohz.h>
  22#include <linux/sched/numa_balancing.h>
  23#include <linux/sched/prio.h>
  24#include <linux/sched/rt.h>
  25#include <linux/sched/signal.h>
  26#include <linux/sched/smt.h>
  27#include <linux/sched/stat.h>
  28#include <linux/sched/sysctl.h>
  29#include <linux/sched/task.h>
  30#include <linux/sched/task_stack.h>
  31#include <linux/sched/topology.h>
  32#include <linux/sched/user.h>
  33#include <linux/sched/wake_q.h>
  34#include <linux/sched/xacct.h>
  35
  36#include <uapi/linux/sched/types.h>
  37
  38#include <linux/binfmts.h>
  39#include <linux/bitops.h>
  40#include <linux/blkdev.h>
  41#include <linux/compat.h>
  42#include <linux/context_tracking.h>
  43#include <linux/cpufreq.h>
  44#include <linux/cpuidle.h>
  45#include <linux/cpuset.h>
  46#include <linux/ctype.h>
  47#include <linux/debugfs.h>
  48#include <linux/delayacct.h>
  49#include <linux/energy_model.h>
  50#include <linux/init_task.h>
  51#include <linux/kprobes.h>
  52#include <linux/kthread.h>
  53#include <linux/membarrier.h>
  54#include <linux/migrate.h>
  55#include <linux/mmu_context.h>
  56#include <linux/nmi.h>
  57#include <linux/proc_fs.h>
  58#include <linux/prefetch.h>
  59#include <linux/profile.h>
  60#include <linux/psi.h>
  61#include <linux/ratelimit.h>
  62#include <linux/rcupdate_wait.h>
  63#include <linux/security.h>
  64#include <linux/stop_machine.h>
  65#include <linux/suspend.h>
  66#include <linux/swait.h>
  67#include <linux/syscalls.h>
  68#include <linux/task_work.h>
  69#include <linux/tsacct_kern.h>
  70
  71#include <asm/tlb.h>
  72
  73#ifdef CONFIG_PARAVIRT
  74# include <asm/paravirt.h>
  75#endif
  76
  77#include "cpupri.h"
  78#include "cpudeadline.h"
  79
  80#include <trace/events/sched.h>
  81
  82#ifdef CONFIG_SCHED_DEBUG
  83# define SCHED_WARN_ON(x)       WARN_ONCE(x, #x)
  84#else
  85# define SCHED_WARN_ON(x)       ({ (void)(x), 0; })
  86#endif
  87
  88struct rq;
  89struct cpuidle_state;
  90
  91/* task_struct::on_rq states: */
  92#define TASK_ON_RQ_QUEUED       1
  93#define TASK_ON_RQ_MIGRATING    2
  94
  95extern __read_mostly int scheduler_running;
  96
  97extern unsigned long calc_load_update;
  98extern atomic_long_t calc_load_tasks;
  99
 100extern void calc_global_load_tick(struct rq *this_rq);
 101extern long calc_load_fold_active(struct rq *this_rq, long adjust);
 102
 103extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
 104/*
 105 * Helpers for converting nanosecond timing to jiffy resolution
 106 */
 107#define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
 108
 109/*
 110 * Increase resolution of nice-level calculations for 64-bit architectures.
 111 * The extra resolution improves shares distribution and load balancing of
 112 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 113 * hierarchies, especially on larger systems. This is not a user-visible change
 114 * and does not change the user-interface for setting shares/weights.
 115 *
 116 * We increase resolution only if we have enough bits to allow this increased
 117 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 118 * are pretty high and the returns do not justify the increased costs.
 119 *
 120 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 121 * increase coverage and consistency always enable it on 64-bit platforms.
 122 */
 123#ifdef CONFIG_64BIT
 124# define NICE_0_LOAD_SHIFT      (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
 125# define scale_load(w)          ((w) << SCHED_FIXEDPOINT_SHIFT)
 126# define scale_load_down(w) \
 127({ \
 128        unsigned long __w = (w); \
 129        if (__w) \
 130                __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
 131        __w; \
 132})
 133#else
 134# define NICE_0_LOAD_SHIFT      (SCHED_FIXEDPOINT_SHIFT)
 135# define scale_load(w)          (w)
 136# define scale_load_down(w)     (w)
 137#endif
 138
 139/*
 140 * Task weight (visible to users) and its load (invisible to users) have
 141 * independent resolution, but they should be well calibrated. We use
 142 * scale_load() and scale_load_down(w) to convert between them. The
 143 * following must be true:
 144 *
 145 *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
 146 *
 147 */
 148#define NICE_0_LOAD             (1L << NICE_0_LOAD_SHIFT)
 149
 150/*
 151 * Single value that decides SCHED_DEADLINE internal math precision.
 152 * 10 -> just above 1us
 153 * 9  -> just above 0.5us
 154 */
 155#define DL_SCALE                10
 156
 157/*
 158 * Single value that denotes runtime == period, ie unlimited time.
 159 */
 160#define RUNTIME_INF             ((u64)~0ULL)
 161
 162static inline int idle_policy(int policy)
 163{
 164        return policy == SCHED_IDLE;
 165}
 166static inline int fair_policy(int policy)
 167{
 168        return policy == SCHED_NORMAL || policy == SCHED_BATCH;
 169}
 170
 171static inline int rt_policy(int policy)
 172{
 173        return policy == SCHED_FIFO || policy == SCHED_RR;
 174}
 175
 176static inline int dl_policy(int policy)
 177{
 178        return policy == SCHED_DEADLINE;
 179}
 180static inline bool valid_policy(int policy)
 181{
 182        return idle_policy(policy) || fair_policy(policy) ||
 183                rt_policy(policy) || dl_policy(policy);
 184}
 185
 186static inline int task_has_idle_policy(struct task_struct *p)
 187{
 188        return idle_policy(p->policy);
 189}
 190
 191static inline int task_has_rt_policy(struct task_struct *p)
 192{
 193        return rt_policy(p->policy);
 194}
 195
 196static inline int task_has_dl_policy(struct task_struct *p)
 197{
 198        return dl_policy(p->policy);
 199}
 200
 201#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
 202
 203static inline void update_avg(u64 *avg, u64 sample)
 204{
 205        s64 diff = sample - *avg;
 206        *avg += diff / 8;
 207}
 208
 209/*
 210 * Shifting a value by an exponent greater *or equal* to the size of said value
 211 * is UB; cap at size-1.
 212 */
 213#define shr_bound(val, shift)                                                   \
 214        (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
 215
 216/*
 217 * !! For sched_setattr_nocheck() (kernel) only !!
 218 *
 219 * This is actually gross. :(
 220 *
 221 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 222 * tasks, but still be able to sleep. We need this on platforms that cannot
 223 * atomically change clock frequency. Remove once fast switching will be
 224 * available on such platforms.
 225 *
 226 * SUGOV stands for SchedUtil GOVernor.
 227 */
 228#define SCHED_FLAG_SUGOV        0x10000000
 229
 230static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
 231{
 232#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
 233        return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
 234#else
 235        return false;
 236#endif
 237}
 238
 239/*
 240 * Tells if entity @a should preempt entity @b.
 241 */
 242static inline bool
 243dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 244{
 245        return dl_entity_is_special(a) ||
 246               dl_time_before(a->deadline, b->deadline);
 247}
 248
 249/*
 250 * This is the priority-queue data structure of the RT scheduling class:
 251 */
 252struct rt_prio_array {
 253        DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 254        struct list_head queue[MAX_RT_PRIO];
 255};
 256
 257struct rt_bandwidth {
 258        /* nests inside the rq lock: */
 259        raw_spinlock_t          rt_runtime_lock;
 260        ktime_t                 rt_period;
 261        u64                     rt_runtime;
 262        struct hrtimer          rt_period_timer;
 263        unsigned int            rt_period_active;
 264};
 265
 266void __dl_clear_params(struct task_struct *p);
 267
 268struct dl_bandwidth {
 269        raw_spinlock_t          dl_runtime_lock;
 270        u64                     dl_runtime;
 271        u64                     dl_period;
 272};
 273
 274static inline int dl_bandwidth_enabled(void)
 275{
 276        return sysctl_sched_rt_runtime >= 0;
 277}
 278
 279/*
 280 * To keep the bandwidth of -deadline tasks under control
 281 * we need some place where:
 282 *  - store the maximum -deadline bandwidth of each cpu;
 283 *  - cache the fraction of bandwidth that is currently allocated in
 284 *    each root domain;
 285 *
 286 * This is all done in the data structure below. It is similar to the
 287 * one used for RT-throttling (rt_bandwidth), with the main difference
 288 * that, since here we are only interested in admission control, we
 289 * do not decrease any runtime while the group "executes", neither we
 290 * need a timer to replenish it.
 291 *
 292 * With respect to SMP, bandwidth is given on a per root domain basis,
 293 * meaning that:
 294 *  - bw (< 100%) is the deadline bandwidth of each CPU;
 295 *  - total_bw is the currently allocated bandwidth in each root domain;
 296 */
 297struct dl_bw {
 298        raw_spinlock_t          lock;
 299        u64                     bw;
 300        u64                     total_bw;
 301};
 302
 303static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
 304
 305static inline
 306void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 307{
 308        dl_b->total_bw -= tsk_bw;
 309        __dl_update(dl_b, (s32)tsk_bw / cpus);
 310}
 311
 312static inline
 313void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 314{
 315        dl_b->total_bw += tsk_bw;
 316        __dl_update(dl_b, -((s32)tsk_bw / cpus));
 317}
 318
 319static inline bool __dl_overflow(struct dl_bw *dl_b, unsigned long cap,
 320                                 u64 old_bw, u64 new_bw)
 321{
 322        return dl_b->bw != -1 &&
 323               cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
 324}
 325
 326/*
 327 * Verify the fitness of task @p to run on @cpu taking into account the
 328 * CPU original capacity and the runtime/deadline ratio of the task.
 329 *
 330 * The function will return true if the CPU original capacity of the
 331 * @cpu scaled by SCHED_CAPACITY_SCALE >= runtime/deadline ratio of the
 332 * task and false otherwise.
 333 */
 334static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
 335{
 336        unsigned long cap = arch_scale_cpu_capacity(cpu);
 337
 338        return cap_scale(p->dl.dl_deadline, cap) >= p->dl.dl_runtime;
 339}
 340
 341extern void init_dl_bw(struct dl_bw *dl_b);
 342extern int  sched_dl_global_validate(void);
 343extern void sched_dl_do_global(void);
 344extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
 345extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
 346extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
 347extern bool __checkparam_dl(const struct sched_attr *attr);
 348extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
 349extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
 350extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
 351extern bool dl_cpu_busy(unsigned int cpu);
 352
 353#ifdef CONFIG_CGROUP_SCHED
 354
 355#include <linux/cgroup.h>
 356#include <linux/psi.h>
 357
 358struct cfs_rq;
 359struct rt_rq;
 360
 361extern struct list_head task_groups;
 362
 363struct cfs_bandwidth {
 364#ifdef CONFIG_CFS_BANDWIDTH
 365        raw_spinlock_t          lock;
 366        ktime_t                 period;
 367        u64                     quota;
 368        u64                     runtime;
 369        u64                     burst;
 370        s64                     hierarchical_quota;
 371
 372        u8                      idle;
 373        u8                      period_active;
 374        u8                      slack_started;
 375        struct hrtimer          period_timer;
 376        struct hrtimer          slack_timer;
 377        struct list_head        throttled_cfs_rq;
 378
 379        /* Statistics: */
 380        int                     nr_periods;
 381        int                     nr_throttled;
 382        u64                     throttled_time;
 383#endif
 384};
 385
 386/* Task group related information */
 387struct task_group {
 388        struct cgroup_subsys_state css;
 389
 390#ifdef CONFIG_FAIR_GROUP_SCHED
 391        /* schedulable entities of this group on each CPU */
 392        struct sched_entity     **se;
 393        /* runqueue "owned" by this group on each CPU */
 394        struct cfs_rq           **cfs_rq;
 395        unsigned long           shares;
 396
 397#ifdef  CONFIG_SMP
 398        /*
 399         * load_avg can be heavily contended at clock tick time, so put
 400         * it in its own cacheline separated from the fields above which
 401         * will also be accessed at each tick.
 402         */
 403        atomic_long_t           load_avg ____cacheline_aligned;
 404#endif
 405#endif
 406
 407#ifdef CONFIG_RT_GROUP_SCHED
 408        struct sched_rt_entity  **rt_se;
 409        struct rt_rq            **rt_rq;
 410
 411        struct rt_bandwidth     rt_bandwidth;
 412#endif
 413
 414        struct rcu_head         rcu;
 415        struct list_head        list;
 416
 417        struct task_group       *parent;
 418        struct list_head        siblings;
 419        struct list_head        children;
 420
 421#ifdef CONFIG_SCHED_AUTOGROUP
 422        struct autogroup        *autogroup;
 423#endif
 424
 425        struct cfs_bandwidth    cfs_bandwidth;
 426
 427#ifdef CONFIG_UCLAMP_TASK_GROUP
 428        /* The two decimal precision [%] value requested from user-space */
 429        unsigned int            uclamp_pct[UCLAMP_CNT];
 430        /* Clamp values requested for a task group */
 431        struct uclamp_se        uclamp_req[UCLAMP_CNT];
 432        /* Effective clamp values used for a task group */
 433        struct uclamp_se        uclamp[UCLAMP_CNT];
 434#endif
 435
 436};
 437
 438#ifdef CONFIG_FAIR_GROUP_SCHED
 439#define ROOT_TASK_GROUP_LOAD    NICE_0_LOAD
 440
 441/*
 442 * A weight of 0 or 1 can cause arithmetics problems.
 443 * A weight of a cfs_rq is the sum of weights of which entities
 444 * are queued on this cfs_rq, so a weight of a entity should not be
 445 * too large, so as the shares value of a task group.
 446 * (The default weight is 1024 - so there's no practical
 447 *  limitation from this.)
 448 */
 449#define MIN_SHARES              (1UL <<  1)
 450#define MAX_SHARES              (1UL << 18)
 451#endif
 452
 453typedef int (*tg_visitor)(struct task_group *, void *);
 454
 455extern int walk_tg_tree_from(struct task_group *from,
 456                             tg_visitor down, tg_visitor up, void *data);
 457
 458/*
 459 * Iterate the full tree, calling @down when first entering a node and @up when
 460 * leaving it for the final time.
 461 *
 462 * Caller must hold rcu_lock or sufficient equivalent.
 463 */
 464static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 465{
 466        return walk_tg_tree_from(&root_task_group, down, up, data);
 467}
 468
 469extern int tg_nop(struct task_group *tg, void *data);
 470
 471extern void free_fair_sched_group(struct task_group *tg);
 472extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 473extern void online_fair_sched_group(struct task_group *tg);
 474extern void unregister_fair_sched_group(struct task_group *tg);
 475extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 476                        struct sched_entity *se, int cpu,
 477                        struct sched_entity *parent);
 478extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 479
 480extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 481extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 482extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 483
 484extern void free_rt_sched_group(struct task_group *tg);
 485extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 486extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 487                struct sched_rt_entity *rt_se, int cpu,
 488                struct sched_rt_entity *parent);
 489extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
 490extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
 491extern long sched_group_rt_runtime(struct task_group *tg);
 492extern long sched_group_rt_period(struct task_group *tg);
 493extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
 494
 495extern struct task_group *sched_create_group(struct task_group *parent);
 496extern void sched_online_group(struct task_group *tg,
 497                               struct task_group *parent);
 498extern void sched_destroy_group(struct task_group *tg);
 499extern void sched_offline_group(struct task_group *tg);
 500
 501extern void sched_move_task(struct task_struct *tsk);
 502
 503#ifdef CONFIG_FAIR_GROUP_SCHED
 504extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 505
 506#ifdef CONFIG_SMP
 507extern void set_task_rq_fair(struct sched_entity *se,
 508                             struct cfs_rq *prev, struct cfs_rq *next);
 509#else /* !CONFIG_SMP */
 510static inline void set_task_rq_fair(struct sched_entity *se,
 511                             struct cfs_rq *prev, struct cfs_rq *next) { }
 512#endif /* CONFIG_SMP */
 513#endif /* CONFIG_FAIR_GROUP_SCHED */
 514
 515#else /* CONFIG_CGROUP_SCHED */
 516
 517struct cfs_bandwidth { };
 518
 519#endif  /* CONFIG_CGROUP_SCHED */
 520
 521/* CFS-related fields in a runqueue */
 522struct cfs_rq {
 523        struct load_weight      load;
 524        unsigned int            nr_running;
 525        unsigned int            h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
 526        unsigned int            idle_h_nr_running; /* SCHED_IDLE */
 527
 528        u64                     exec_clock;
 529        u64                     min_vruntime;
 530#ifdef CONFIG_SCHED_CORE
 531        unsigned int            forceidle_seq;
 532        u64                     min_vruntime_fi;
 533#endif
 534
 535#ifndef CONFIG_64BIT
 536        u64                     min_vruntime_copy;
 537#endif
 538
 539        struct rb_root_cached   tasks_timeline;
 540
 541        /*
 542         * 'curr' points to currently running entity on this cfs_rq.
 543         * It is set to NULL otherwise (i.e when none are currently running).
 544         */
 545        struct sched_entity     *curr;
 546        struct sched_entity     *next;
 547        struct sched_entity     *last;
 548        struct sched_entity     *skip;
 549
 550#ifdef  CONFIG_SCHED_DEBUG
 551        unsigned int            nr_spread_over;
 552#endif
 553
 554#ifdef CONFIG_SMP
 555        /*
 556         * CFS load tracking
 557         */
 558        struct sched_avg        avg;
 559#ifndef CONFIG_64BIT
 560        u64                     load_last_update_time_copy;
 561#endif
 562        struct {
 563                raw_spinlock_t  lock ____cacheline_aligned;
 564                int             nr;
 565                unsigned long   load_avg;
 566                unsigned long   util_avg;
 567                unsigned long   runnable_avg;
 568        } removed;
 569
 570#ifdef CONFIG_FAIR_GROUP_SCHED
 571        unsigned long           tg_load_avg_contrib;
 572        long                    propagate;
 573        long                    prop_runnable_sum;
 574
 575        /*
 576         *   h_load = weight * f(tg)
 577         *
 578         * Where f(tg) is the recursive weight fraction assigned to
 579         * this group.
 580         */
 581        unsigned long           h_load;
 582        u64                     last_h_load_update;
 583        struct sched_entity     *h_load_next;
 584#endif /* CONFIG_FAIR_GROUP_SCHED */
 585#endif /* CONFIG_SMP */
 586
 587#ifdef CONFIG_FAIR_GROUP_SCHED
 588        struct rq               *rq;    /* CPU runqueue to which this cfs_rq is attached */
 589
 590        /*
 591         * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 592         * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 593         * (like users, containers etc.)
 594         *
 595         * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
 596         * This list is used during load balance.
 597         */
 598        int                     on_list;
 599        struct list_head        leaf_cfs_rq_list;
 600        struct task_group       *tg;    /* group that "owns" this runqueue */
 601
 602#ifdef CONFIG_CFS_BANDWIDTH
 603        int                     runtime_enabled;
 604        s64                     runtime_remaining;
 605
 606        u64                     throttled_clock;
 607        u64                     throttled_clock_task;
 608        u64                     throttled_clock_task_time;
 609        int                     throttled;
 610        int                     throttle_count;
 611        struct list_head        throttled_list;
 612#endif /* CONFIG_CFS_BANDWIDTH */
 613#endif /* CONFIG_FAIR_GROUP_SCHED */
 614};
 615
 616static inline int rt_bandwidth_enabled(void)
 617{
 618        return sysctl_sched_rt_runtime >= 0;
 619}
 620
 621/* RT IPI pull logic requires IRQ_WORK */
 622#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
 623# define HAVE_RT_PUSH_IPI
 624#endif
 625
 626/* Real-Time classes' related field in a runqueue: */
 627struct rt_rq {
 628        struct rt_prio_array    active;
 629        unsigned int            rt_nr_running;
 630        unsigned int            rr_nr_running;
 631#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 632        struct {
 633                int             curr; /* highest queued rt task prio */
 634#ifdef CONFIG_SMP
 635                int             next; /* next highest */
 636#endif
 637        } highest_prio;
 638#endif
 639#ifdef CONFIG_SMP
 640        unsigned int            rt_nr_migratory;
 641        unsigned int            rt_nr_total;
 642        int                     overloaded;
 643        struct plist_head       pushable_tasks;
 644
 645#endif /* CONFIG_SMP */
 646        int                     rt_queued;
 647
 648        int                     rt_throttled;
 649        u64                     rt_time;
 650        u64                     rt_runtime;
 651        /* Nests inside the rq lock: */
 652        raw_spinlock_t          rt_runtime_lock;
 653
 654#ifdef CONFIG_RT_GROUP_SCHED
 655        unsigned int            rt_nr_boosted;
 656
 657        struct rq               *rq;
 658        struct task_group       *tg;
 659#endif
 660};
 661
 662static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
 663{
 664        return rt_rq->rt_queued && rt_rq->rt_nr_running;
 665}
 666
 667/* Deadline class' related fields in a runqueue */
 668struct dl_rq {
 669        /* runqueue is an rbtree, ordered by deadline */
 670        struct rb_root_cached   root;
 671
 672        unsigned int            dl_nr_running;
 673
 674#ifdef CONFIG_SMP
 675        /*
 676         * Deadline values of the currently executing and the
 677         * earliest ready task on this rq. Caching these facilitates
 678         * the decision whether or not a ready but not running task
 679         * should migrate somewhere else.
 680         */
 681        struct {
 682                u64             curr;
 683                u64             next;
 684        } earliest_dl;
 685
 686        unsigned int            dl_nr_migratory;
 687        int                     overloaded;
 688
 689        /*
 690         * Tasks on this rq that can be pushed away. They are kept in
 691         * an rb-tree, ordered by tasks' deadlines, with caching
 692         * of the leftmost (earliest deadline) element.
 693         */
 694        struct rb_root_cached   pushable_dl_tasks_root;
 695#else
 696        struct dl_bw            dl_bw;
 697#endif
 698        /*
 699         * "Active utilization" for this runqueue: increased when a
 700         * task wakes up (becomes TASK_RUNNING) and decreased when a
 701         * task blocks
 702         */
 703        u64                     running_bw;
 704
 705        /*
 706         * Utilization of the tasks "assigned" to this runqueue (including
 707         * the tasks that are in runqueue and the tasks that executed on this
 708         * CPU and blocked). Increased when a task moves to this runqueue, and
 709         * decreased when the task moves away (migrates, changes scheduling
 710         * policy, or terminates).
 711         * This is needed to compute the "inactive utilization" for the
 712         * runqueue (inactive utilization = this_bw - running_bw).
 713         */
 714        u64                     this_bw;
 715        u64                     extra_bw;
 716
 717        /*
 718         * Inverse of the fraction of CPU utilization that can be reclaimed
 719         * by the GRUB algorithm.
 720         */
 721        u64                     bw_ratio;
 722};
 723
 724#ifdef CONFIG_FAIR_GROUP_SCHED
 725/* An entity is a task if it doesn't "own" a runqueue */
 726#define entity_is_task(se)      (!se->my_q)
 727
 728static inline void se_update_runnable(struct sched_entity *se)
 729{
 730        if (!entity_is_task(se))
 731                se->runnable_weight = se->my_q->h_nr_running;
 732}
 733
 734static inline long se_runnable(struct sched_entity *se)
 735{
 736        if (entity_is_task(se))
 737                return !!se->on_rq;
 738        else
 739                return se->runnable_weight;
 740}
 741
 742#else
 743#define entity_is_task(se)      1
 744
 745static inline void se_update_runnable(struct sched_entity *se) {}
 746
 747static inline long se_runnable(struct sched_entity *se)
 748{
 749        return !!se->on_rq;
 750}
 751#endif
 752
 753#ifdef CONFIG_SMP
 754/*
 755 * XXX we want to get rid of these helpers and use the full load resolution.
 756 */
 757static inline long se_weight(struct sched_entity *se)
 758{
 759        return scale_load_down(se->load.weight);
 760}
 761
 762
 763static inline bool sched_asym_prefer(int a, int b)
 764{
 765        return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
 766}
 767
 768struct perf_domain {
 769        struct em_perf_domain *em_pd;
 770        struct perf_domain *next;
 771        struct rcu_head rcu;
 772};
 773
 774/* Scheduling group status flags */
 775#define SG_OVERLOAD             0x1 /* More than one runnable task on a CPU. */
 776#define SG_OVERUTILIZED         0x2 /* One or more CPUs are over-utilized. */
 777
 778/*
 779 * We add the notion of a root-domain which will be used to define per-domain
 780 * variables. Each exclusive cpuset essentially defines an island domain by
 781 * fully partitioning the member CPUs from any other cpuset. Whenever a new
 782 * exclusive cpuset is created, we also create and attach a new root-domain
 783 * object.
 784 *
 785 */
 786struct root_domain {
 787        atomic_t                refcount;
 788        atomic_t                rto_count;
 789        struct rcu_head         rcu;
 790        cpumask_var_t           span;
 791        cpumask_var_t           online;
 792
 793        /*
 794         * Indicate pullable load on at least one CPU, e.g:
 795         * - More than one runnable task
 796         * - Running task is misfit
 797         */
 798        int                     overload;
 799
 800        /* Indicate one or more cpus over-utilized (tipping point) */
 801        int                     overutilized;
 802
 803        /*
 804         * The bit corresponding to a CPU gets set here if such CPU has more
 805         * than one runnable -deadline task (as it is below for RT tasks).
 806         */
 807        cpumask_var_t           dlo_mask;
 808        atomic_t                dlo_count;
 809        struct dl_bw            dl_bw;
 810        struct cpudl            cpudl;
 811
 812        /*
 813         * Indicate whether a root_domain's dl_bw has been checked or
 814         * updated. It's monotonously increasing value.
 815         *
 816         * Also, some corner cases, like 'wrap around' is dangerous, but given
 817         * that u64 is 'big enough'. So that shouldn't be a concern.
 818         */
 819        u64 visit_gen;
 820
 821#ifdef HAVE_RT_PUSH_IPI
 822        /*
 823         * For IPI pull requests, loop across the rto_mask.
 824         */
 825        struct irq_work         rto_push_work;
 826        raw_spinlock_t          rto_lock;
 827        /* These are only updated and read within rto_lock */
 828        int                     rto_loop;
 829        int                     rto_cpu;
 830        /* These atomics are updated outside of a lock */
 831        atomic_t                rto_loop_next;
 832        atomic_t                rto_loop_start;
 833#endif
 834        /*
 835         * The "RT overload" flag: it gets set if a CPU has more than
 836         * one runnable RT task.
 837         */
 838        cpumask_var_t           rto_mask;
 839        struct cpupri           cpupri;
 840
 841        unsigned long           max_cpu_capacity;
 842
 843        /*
 844         * NULL-terminated list of performance domains intersecting with the
 845         * CPUs of the rd. Protected by RCU.
 846         */
 847        struct perf_domain __rcu *pd;
 848};
 849
 850extern void init_defrootdomain(void);
 851extern int sched_init_domains(const struct cpumask *cpu_map);
 852extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
 853extern void sched_get_rd(struct root_domain *rd);
 854extern void sched_put_rd(struct root_domain *rd);
 855
 856#ifdef HAVE_RT_PUSH_IPI
 857extern void rto_push_irq_work_func(struct irq_work *work);
 858#endif
 859#endif /* CONFIG_SMP */
 860
 861#ifdef CONFIG_UCLAMP_TASK
 862/*
 863 * struct uclamp_bucket - Utilization clamp bucket
 864 * @value: utilization clamp value for tasks on this clamp bucket
 865 * @tasks: number of RUNNABLE tasks on this clamp bucket
 866 *
 867 * Keep track of how many tasks are RUNNABLE for a given utilization
 868 * clamp value.
 869 */
 870struct uclamp_bucket {
 871        unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
 872        unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
 873};
 874
 875/*
 876 * struct uclamp_rq - rq's utilization clamp
 877 * @value: currently active clamp values for a rq
 878 * @bucket: utilization clamp buckets affecting a rq
 879 *
 880 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
 881 * A clamp value is affecting a rq when there is at least one task RUNNABLE
 882 * (or actually running) with that value.
 883 *
 884 * There are up to UCLAMP_CNT possible different clamp values, currently there
 885 * are only two: minimum utilization and maximum utilization.
 886 *
 887 * All utilization clamping values are MAX aggregated, since:
 888 * - for util_min: we want to run the CPU at least at the max of the minimum
 889 *   utilization required by its currently RUNNABLE tasks.
 890 * - for util_max: we want to allow the CPU to run up to the max of the
 891 *   maximum utilization allowed by its currently RUNNABLE tasks.
 892 *
 893 * Since on each system we expect only a limited number of different
 894 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
 895 * the metrics required to compute all the per-rq utilization clamp values.
 896 */
 897struct uclamp_rq {
 898        unsigned int value;
 899        struct uclamp_bucket bucket[UCLAMP_BUCKETS];
 900};
 901
 902DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
 903#endif /* CONFIG_UCLAMP_TASK */
 904
 905/*
 906 * This is the main, per-CPU runqueue data structure.
 907 *
 908 * Locking rule: those places that want to lock multiple runqueues
 909 * (such as the load balancing or the thread migration code), lock
 910 * acquire operations must be ordered by ascending &runqueue.
 911 */
 912struct rq {
 913        /* runqueue lock: */
 914        raw_spinlock_t          __lock;
 915
 916        /*
 917         * nr_running and cpu_load should be in the same cacheline because
 918         * remote CPUs use both these fields when doing load calculation.
 919         */
 920        unsigned int            nr_running;
 921#ifdef CONFIG_NUMA_BALANCING
 922        unsigned int            nr_numa_running;
 923        unsigned int            nr_preferred_running;
 924        unsigned int            numa_migrate_on;
 925#endif
 926#ifdef CONFIG_NO_HZ_COMMON
 927#ifdef CONFIG_SMP
 928        unsigned long           last_blocked_load_update_tick;
 929        unsigned int            has_blocked_load;
 930        call_single_data_t      nohz_csd;
 931#endif /* CONFIG_SMP */
 932        unsigned int            nohz_tick_stopped;
 933        atomic_t                nohz_flags;
 934#endif /* CONFIG_NO_HZ_COMMON */
 935
 936#ifdef CONFIG_SMP
 937        unsigned int            ttwu_pending;
 938#endif
 939        u64                     nr_switches;
 940
 941#ifdef CONFIG_UCLAMP_TASK
 942        /* Utilization clamp values based on CPU's RUNNABLE tasks */
 943        struct uclamp_rq        uclamp[UCLAMP_CNT] ____cacheline_aligned;
 944        unsigned int            uclamp_flags;
 945#define UCLAMP_FLAG_IDLE 0x01
 946#endif
 947
 948        struct cfs_rq           cfs;
 949        struct rt_rq            rt;
 950        struct dl_rq            dl;
 951
 952#ifdef CONFIG_FAIR_GROUP_SCHED
 953        /* list of leaf cfs_rq on this CPU: */
 954        struct list_head        leaf_cfs_rq_list;
 955        struct list_head        *tmp_alone_branch;
 956#endif /* CONFIG_FAIR_GROUP_SCHED */
 957
 958        /*
 959         * This is part of a global counter where only the total sum
 960         * over all CPUs matters. A task can increase this counter on
 961         * one CPU and if it got migrated afterwards it may decrease
 962         * it on another CPU. Always updated under the runqueue lock:
 963         */
 964        unsigned int            nr_uninterruptible;
 965
 966        struct task_struct __rcu        *curr;
 967        struct task_struct      *idle;
 968        struct task_struct      *stop;
 969        unsigned long           next_balance;
 970        struct mm_struct        *prev_mm;
 971
 972        unsigned int            clock_update_flags;
 973        u64                     clock;
 974        /* Ensure that all clocks are in the same cache line */
 975        u64                     clock_task ____cacheline_aligned;
 976        u64                     clock_pelt;
 977        unsigned long           lost_idle_time;
 978
 979        atomic_t                nr_iowait;
 980
 981#ifdef CONFIG_SCHED_DEBUG
 982        u64 last_seen_need_resched_ns;
 983        int ticks_without_resched;
 984#endif
 985
 986#ifdef CONFIG_MEMBARRIER
 987        int membarrier_state;
 988#endif
 989
 990#ifdef CONFIG_SMP
 991        struct root_domain              *rd;
 992        struct sched_domain __rcu       *sd;
 993
 994        unsigned long           cpu_capacity;
 995        unsigned long           cpu_capacity_orig;
 996
 997        struct callback_head    *balance_callback;
 998
 999        unsigned char           nohz_idle_balance;
1000        unsigned char           idle_balance;
1001
1002        unsigned long           misfit_task_load;
1003
1004        /* For active balancing */
1005        int                     active_balance;
1006        int                     push_cpu;
1007        struct cpu_stop_work    active_balance_work;
1008
1009        /* CPU of this runqueue: */
1010        int                     cpu;
1011        int                     online;
1012
1013        struct list_head cfs_tasks;
1014
1015        struct sched_avg        avg_rt;
1016        struct sched_avg        avg_dl;
1017#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1018        struct sched_avg        avg_irq;
1019#endif
1020#ifdef CONFIG_SCHED_THERMAL_PRESSURE
1021        struct sched_avg        avg_thermal;
1022#endif
1023        u64                     idle_stamp;
1024        u64                     avg_idle;
1025
1026        unsigned long           wake_stamp;
1027        u64                     wake_avg_idle;
1028
1029        /* This is used to determine avg_idle's max value */
1030        u64                     max_idle_balance_cost;
1031
1032#ifdef CONFIG_HOTPLUG_CPU
1033        struct rcuwait          hotplug_wait;
1034#endif
1035#endif /* CONFIG_SMP */
1036
1037#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1038        u64                     prev_irq_time;
1039#endif
1040#ifdef CONFIG_PARAVIRT
1041        u64                     prev_steal_time;
1042#endif
1043#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1044        u64                     prev_steal_time_rq;
1045#endif
1046
1047        /* calc_load related fields */
1048        unsigned long           calc_load_update;
1049        long                    calc_load_active;
1050
1051#ifdef CONFIG_SCHED_HRTICK
1052#ifdef CONFIG_SMP
1053        call_single_data_t      hrtick_csd;
1054#endif
1055        struct hrtimer          hrtick_timer;
1056        ktime_t                 hrtick_time;
1057#endif
1058
1059#ifdef CONFIG_SCHEDSTATS
1060        /* latency stats */
1061        struct sched_info       rq_sched_info;
1062        unsigned long long      rq_cpu_time;
1063        /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1064
1065        /* sys_sched_yield() stats */
1066        unsigned int            yld_count;
1067
1068        /* schedule() stats */
1069        unsigned int            sched_count;
1070        unsigned int            sched_goidle;
1071
1072        /* try_to_wake_up() stats */
1073        unsigned int            ttwu_count;
1074        unsigned int            ttwu_local;
1075#endif
1076
1077#ifdef CONFIG_CPU_IDLE
1078        /* Must be inspected within a rcu lock section */
1079        struct cpuidle_state    *idle_state;
1080#endif
1081
1082#ifdef CONFIG_SMP
1083        unsigned int            nr_pinned;
1084#endif
1085        unsigned int            push_busy;
1086        struct cpu_stop_work    push_work;
1087
1088#ifdef CONFIG_SCHED_CORE
1089        /* per rq */
1090        struct rq               *core;
1091        struct task_struct      *core_pick;
1092        unsigned int            core_enabled;
1093        unsigned int            core_sched_seq;
1094        struct rb_root          core_tree;
1095
1096        /* shared state -- careful with sched_core_cpu_deactivate() */
1097        unsigned int            core_task_seq;
1098        unsigned int            core_pick_seq;
1099        unsigned long           core_cookie;
1100        unsigned char           core_forceidle;
1101        unsigned int            core_forceidle_seq;
1102#endif
1103};
1104
1105#ifdef CONFIG_FAIR_GROUP_SCHED
1106
1107/* CPU runqueue to which this cfs_rq is attached */
1108static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1109{
1110        return cfs_rq->rq;
1111}
1112
1113#else
1114
1115static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1116{
1117        return container_of(cfs_rq, struct rq, cfs);
1118}
1119#endif
1120
1121static inline int cpu_of(struct rq *rq)
1122{
1123#ifdef CONFIG_SMP
1124        return rq->cpu;
1125#else
1126        return 0;
1127#endif
1128}
1129
1130#define MDF_PUSH        0x01
1131
1132static inline bool is_migration_disabled(struct task_struct *p)
1133{
1134#ifdef CONFIG_SMP
1135        return p->migration_disabled;
1136#else
1137        return false;
1138#endif
1139}
1140
1141struct sched_group;
1142#ifdef CONFIG_SCHED_CORE
1143static inline struct cpumask *sched_group_span(struct sched_group *sg);
1144
1145DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1146
1147static inline bool sched_core_enabled(struct rq *rq)
1148{
1149        return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1150}
1151
1152static inline bool sched_core_disabled(void)
1153{
1154        return !static_branch_unlikely(&__sched_core_enabled);
1155}
1156
1157/*
1158 * Be careful with this function; not for general use. The return value isn't
1159 * stable unless you actually hold a relevant rq->__lock.
1160 */
1161static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1162{
1163        if (sched_core_enabled(rq))
1164                return &rq->core->__lock;
1165
1166        return &rq->__lock;
1167}
1168
1169static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1170{
1171        if (rq->core_enabled)
1172                return &rq->core->__lock;
1173
1174        return &rq->__lock;
1175}
1176
1177bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1178
1179/*
1180 * Helpers to check if the CPU's core cookie matches with the task's cookie
1181 * when core scheduling is enabled.
1182 * A special case is that the task's cookie always matches with CPU's core
1183 * cookie if the CPU is in an idle core.
1184 */
1185static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1186{
1187        /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1188        if (!sched_core_enabled(rq))
1189                return true;
1190
1191        return rq->core->core_cookie == p->core_cookie;
1192}
1193
1194static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1195{
1196        bool idle_core = true;
1197        int cpu;
1198
1199        /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1200        if (!sched_core_enabled(rq))
1201                return true;
1202
1203        for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1204                if (!available_idle_cpu(cpu)) {
1205                        idle_core = false;
1206                        break;
1207                }
1208        }
1209
1210        /*
1211         * A CPU in an idle core is always the best choice for tasks with
1212         * cookies.
1213         */
1214        return idle_core || rq->core->core_cookie == p->core_cookie;
1215}
1216
1217static inline bool sched_group_cookie_match(struct rq *rq,
1218                                            struct task_struct *p,
1219                                            struct sched_group *group)
1220{
1221        int cpu;
1222
1223        /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1224        if (!sched_core_enabled(rq))
1225                return true;
1226
1227        for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1228                if (sched_core_cookie_match(rq, p))
1229                        return true;
1230        }
1231        return false;
1232}
1233
1234extern void queue_core_balance(struct rq *rq);
1235
1236static inline bool sched_core_enqueued(struct task_struct *p)
1237{
1238        return !RB_EMPTY_NODE(&p->core_node);
1239}
1240
1241extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1242extern void sched_core_dequeue(struct rq *rq, struct task_struct *p);
1243
1244extern void sched_core_get(void);
1245extern void sched_core_put(void);
1246
1247extern unsigned long sched_core_alloc_cookie(void);
1248extern void sched_core_put_cookie(unsigned long cookie);
1249extern unsigned long sched_core_get_cookie(unsigned long cookie);
1250extern unsigned long sched_core_update_cookie(struct task_struct *p, unsigned long cookie);
1251
1252#else /* !CONFIG_SCHED_CORE */
1253
1254static inline bool sched_core_enabled(struct rq *rq)
1255{
1256        return false;
1257}
1258
1259static inline bool sched_core_disabled(void)
1260{
1261        return true;
1262}
1263
1264static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1265{
1266        return &rq->__lock;
1267}
1268
1269static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1270{
1271        return &rq->__lock;
1272}
1273
1274static inline void queue_core_balance(struct rq *rq)
1275{
1276}
1277
1278static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1279{
1280        return true;
1281}
1282
1283static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1284{
1285        return true;
1286}
1287
1288static inline bool sched_group_cookie_match(struct rq *rq,
1289                                            struct task_struct *p,
1290                                            struct sched_group *group)
1291{
1292        return true;
1293}
1294#endif /* CONFIG_SCHED_CORE */
1295
1296static inline void lockdep_assert_rq_held(struct rq *rq)
1297{
1298        lockdep_assert_held(__rq_lockp(rq));
1299}
1300
1301extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1302extern bool raw_spin_rq_trylock(struct rq *rq);
1303extern void raw_spin_rq_unlock(struct rq *rq);
1304
1305static inline void raw_spin_rq_lock(struct rq *rq)
1306{
1307        raw_spin_rq_lock_nested(rq, 0);
1308}
1309
1310static inline void raw_spin_rq_lock_irq(struct rq *rq)
1311{
1312        local_irq_disable();
1313        raw_spin_rq_lock(rq);
1314}
1315
1316static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1317{
1318        raw_spin_rq_unlock(rq);
1319        local_irq_enable();
1320}
1321
1322static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1323{
1324        unsigned long flags;
1325        local_irq_save(flags);
1326        raw_spin_rq_lock(rq);
1327        return flags;
1328}
1329
1330static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1331{
1332        raw_spin_rq_unlock(rq);
1333        local_irq_restore(flags);
1334}
1335
1336#define raw_spin_rq_lock_irqsave(rq, flags)     \
1337do {                                            \
1338        flags = _raw_spin_rq_lock_irqsave(rq);  \
1339} while (0)
1340
1341#ifdef CONFIG_SCHED_SMT
1342extern void __update_idle_core(struct rq *rq);
1343
1344static inline void update_idle_core(struct rq *rq)
1345{
1346        if (static_branch_unlikely(&sched_smt_present))
1347                __update_idle_core(rq);
1348}
1349
1350#else
1351static inline void update_idle_core(struct rq *rq) { }
1352#endif
1353
1354DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1355
1356#define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
1357#define this_rq()               this_cpu_ptr(&runqueues)
1358#define task_rq(p)              cpu_rq(task_cpu(p))
1359#define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
1360#define raw_rq()                raw_cpu_ptr(&runqueues)
1361
1362#ifdef CONFIG_FAIR_GROUP_SCHED
1363static inline struct task_struct *task_of(struct sched_entity *se)
1364{
1365        SCHED_WARN_ON(!entity_is_task(se));
1366        return container_of(se, struct task_struct, se);
1367}
1368
1369static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1370{
1371        return p->se.cfs_rq;
1372}
1373
1374/* runqueue on which this entity is (to be) queued */
1375static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1376{
1377        return se->cfs_rq;
1378}
1379
1380/* runqueue "owned" by this group */
1381static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1382{
1383        return grp->my_q;
1384}
1385
1386#else
1387
1388static inline struct task_struct *task_of(struct sched_entity *se)
1389{
1390        return container_of(se, struct task_struct, se);
1391}
1392
1393static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1394{
1395        return &task_rq(p)->cfs;
1396}
1397
1398static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1399{
1400        struct task_struct *p = task_of(se);
1401        struct rq *rq = task_rq(p);
1402
1403        return &rq->cfs;
1404}
1405
1406/* runqueue "owned" by this group */
1407static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1408{
1409        return NULL;
1410}
1411#endif
1412
1413extern void update_rq_clock(struct rq *rq);
1414
1415static inline u64 __rq_clock_broken(struct rq *rq)
1416{
1417        return READ_ONCE(rq->clock);
1418}
1419
1420/*
1421 * rq::clock_update_flags bits
1422 *
1423 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1424 *  call to __schedule(). This is an optimisation to avoid
1425 *  neighbouring rq clock updates.
1426 *
1427 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1428 *  in effect and calls to update_rq_clock() are being ignored.
1429 *
1430 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1431 *  made to update_rq_clock() since the last time rq::lock was pinned.
1432 *
1433 * If inside of __schedule(), clock_update_flags will have been
1434 * shifted left (a left shift is a cheap operation for the fast path
1435 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1436 *
1437 *      if (rq-clock_update_flags >= RQCF_UPDATED)
1438 *
1439 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1440 * one position though, because the next rq_unpin_lock() will shift it
1441 * back.
1442 */
1443#define RQCF_REQ_SKIP           0x01
1444#define RQCF_ACT_SKIP           0x02
1445#define RQCF_UPDATED            0x04
1446
1447static inline void assert_clock_updated(struct rq *rq)
1448{
1449        /*
1450         * The only reason for not seeing a clock update since the
1451         * last rq_pin_lock() is if we're currently skipping updates.
1452         */
1453        SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1454}
1455
1456static inline u64 rq_clock(struct rq *rq)
1457{
1458        lockdep_assert_rq_held(rq);
1459        assert_clock_updated(rq);
1460
1461        return rq->clock;
1462}
1463
1464static inline u64 rq_clock_task(struct rq *rq)
1465{
1466        lockdep_assert_rq_held(rq);
1467        assert_clock_updated(rq);
1468
1469        return rq->clock_task;
1470}
1471
1472/**
1473 * By default the decay is the default pelt decay period.
1474 * The decay shift can change the decay period in
1475 * multiples of 32.
1476 *  Decay shift         Decay period(ms)
1477 *      0                       32
1478 *      1                       64
1479 *      2                       128
1480 *      3                       256
1481 *      4                       512
1482 */
1483extern int sched_thermal_decay_shift;
1484
1485static inline u64 rq_clock_thermal(struct rq *rq)
1486{
1487        return rq_clock_task(rq) >> sched_thermal_decay_shift;
1488}
1489
1490static inline void rq_clock_skip_update(struct rq *rq)
1491{
1492        lockdep_assert_rq_held(rq);
1493        rq->clock_update_flags |= RQCF_REQ_SKIP;
1494}
1495
1496/*
1497 * See rt task throttling, which is the only time a skip
1498 * request is canceled.
1499 */
1500static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1501{
1502        lockdep_assert_rq_held(rq);
1503        rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1504}
1505
1506struct rq_flags {
1507        unsigned long flags;
1508        struct pin_cookie cookie;
1509#ifdef CONFIG_SCHED_DEBUG
1510        /*
1511         * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1512         * current pin context is stashed here in case it needs to be
1513         * restored in rq_repin_lock().
1514         */
1515        unsigned int clock_update_flags;
1516#endif
1517};
1518
1519extern struct callback_head balance_push_callback;
1520
1521/*
1522 * Lockdep annotation that avoids accidental unlocks; it's like a
1523 * sticky/continuous lockdep_assert_held().
1524 *
1525 * This avoids code that has access to 'struct rq *rq' (basically everything in
1526 * the scheduler) from accidentally unlocking the rq if they do not also have a
1527 * copy of the (on-stack) 'struct rq_flags rf'.
1528 *
1529 * Also see Documentation/locking/lockdep-design.rst.
1530 */
1531static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1532{
1533        rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1534
1535#ifdef CONFIG_SCHED_DEBUG
1536        rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1537        rf->clock_update_flags = 0;
1538#ifdef CONFIG_SMP
1539        SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1540#endif
1541#endif
1542}
1543
1544static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1545{
1546#ifdef CONFIG_SCHED_DEBUG
1547        if (rq->clock_update_flags > RQCF_ACT_SKIP)
1548                rf->clock_update_flags = RQCF_UPDATED;
1549#endif
1550
1551        lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1552}
1553
1554static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1555{
1556        lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1557
1558#ifdef CONFIG_SCHED_DEBUG
1559        /*
1560         * Restore the value we stashed in @rf for this pin context.
1561         */
1562        rq->clock_update_flags |= rf->clock_update_flags;
1563#endif
1564}
1565
1566struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1567        __acquires(rq->lock);
1568
1569struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1570        __acquires(p->pi_lock)
1571        __acquires(rq->lock);
1572
1573static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1574        __releases(rq->lock)
1575{
1576        rq_unpin_lock(rq, rf);
1577        raw_spin_rq_unlock(rq);
1578}
1579
1580static inline void
1581task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1582        __releases(rq->lock)
1583        __releases(p->pi_lock)
1584{
1585        rq_unpin_lock(rq, rf);
1586        raw_spin_rq_unlock(rq);
1587        raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1588}
1589
1590static inline void
1591rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1592        __acquires(rq->lock)
1593{
1594        raw_spin_rq_lock_irqsave(rq, rf->flags);
1595        rq_pin_lock(rq, rf);
1596}
1597
1598static inline void
1599rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1600        __acquires(rq->lock)
1601{
1602        raw_spin_rq_lock_irq(rq);
1603        rq_pin_lock(rq, rf);
1604}
1605
1606static inline void
1607rq_lock(struct rq *rq, struct rq_flags *rf)
1608        __acquires(rq->lock)
1609{
1610        raw_spin_rq_lock(rq);
1611        rq_pin_lock(rq, rf);
1612}
1613
1614static inline void
1615rq_relock(struct rq *rq, struct rq_flags *rf)
1616        __acquires(rq->lock)
1617{
1618        raw_spin_rq_lock(rq);
1619        rq_repin_lock(rq, rf);
1620}
1621
1622static inline void
1623rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1624        __releases(rq->lock)
1625{
1626        rq_unpin_lock(rq, rf);
1627        raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1628}
1629
1630static inline void
1631rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1632        __releases(rq->lock)
1633{
1634        rq_unpin_lock(rq, rf);
1635        raw_spin_rq_unlock_irq(rq);
1636}
1637
1638static inline void
1639rq_unlock(struct rq *rq, struct rq_flags *rf)
1640        __releases(rq->lock)
1641{
1642        rq_unpin_lock(rq, rf);
1643        raw_spin_rq_unlock(rq);
1644}
1645
1646static inline struct rq *
1647this_rq_lock_irq(struct rq_flags *rf)
1648        __acquires(rq->lock)
1649{
1650        struct rq *rq;
1651
1652        local_irq_disable();
1653        rq = this_rq();
1654        rq_lock(rq, rf);
1655        return rq;
1656}
1657
1658#ifdef CONFIG_NUMA
1659enum numa_topology_type {
1660        NUMA_DIRECT,
1661        NUMA_GLUELESS_MESH,
1662        NUMA_BACKPLANE,
1663};
1664extern enum numa_topology_type sched_numa_topology_type;
1665extern int sched_max_numa_distance;
1666extern bool find_numa_distance(int distance);
1667extern void sched_init_numa(void);
1668extern void sched_domains_numa_masks_set(unsigned int cpu);
1669extern void sched_domains_numa_masks_clear(unsigned int cpu);
1670extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1671#else
1672static inline void sched_init_numa(void) { }
1673static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1674static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1675static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1676{
1677        return nr_cpu_ids;
1678}
1679#endif
1680
1681#ifdef CONFIG_NUMA_BALANCING
1682/* The regions in numa_faults array from task_struct */
1683enum numa_faults_stats {
1684        NUMA_MEM = 0,
1685        NUMA_CPU,
1686        NUMA_MEMBUF,
1687        NUMA_CPUBUF
1688};
1689extern void sched_setnuma(struct task_struct *p, int node);
1690extern int migrate_task_to(struct task_struct *p, int cpu);
1691extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1692                        int cpu, int scpu);
1693extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1694#else
1695static inline void
1696init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1697{
1698}
1699#endif /* CONFIG_NUMA_BALANCING */
1700
1701#ifdef CONFIG_SMP
1702
1703static inline void
1704queue_balance_callback(struct rq *rq,
1705                       struct callback_head *head,
1706                       void (*func)(struct rq *rq))
1707{
1708        lockdep_assert_rq_held(rq);
1709
1710        if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1711                return;
1712
1713        head->func = (void (*)(struct callback_head *))func;
1714        head->next = rq->balance_callback;
1715        rq->balance_callback = head;
1716}
1717
1718#define rcu_dereference_check_sched_domain(p) \
1719        rcu_dereference_check((p), \
1720                              lockdep_is_held(&sched_domains_mutex))
1721
1722/*
1723 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1724 * See destroy_sched_domains: call_rcu for details.
1725 *
1726 * The domain tree of any CPU may only be accessed from within
1727 * preempt-disabled sections.
1728 */
1729#define for_each_domain(cpu, __sd) \
1730        for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1731                        __sd; __sd = __sd->parent)
1732
1733/**
1734 * highest_flag_domain - Return highest sched_domain containing flag.
1735 * @cpu:        The CPU whose highest level of sched domain is to
1736 *              be returned.
1737 * @flag:       The flag to check for the highest sched_domain
1738 *              for the given CPU.
1739 *
1740 * Returns the highest sched_domain of a CPU which contains the given flag.
1741 */
1742static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1743{
1744        struct sched_domain *sd, *hsd = NULL;
1745
1746        for_each_domain(cpu, sd) {
1747                if (!(sd->flags & flag))
1748                        break;
1749                hsd = sd;
1750        }
1751
1752        return hsd;
1753}
1754
1755static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1756{
1757        struct sched_domain *sd;
1758
1759        for_each_domain(cpu, sd) {
1760                if (sd->flags & flag)
1761                        break;
1762        }
1763
1764        return sd;
1765}
1766
1767DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1768DECLARE_PER_CPU(int, sd_llc_size);
1769DECLARE_PER_CPU(int, sd_llc_id);
1770DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1771DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1772DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1773DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1774extern struct static_key_false sched_asym_cpucapacity;
1775
1776struct sched_group_capacity {
1777        atomic_t                ref;
1778        /*
1779         * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1780         * for a single CPU.
1781         */
1782        unsigned long           capacity;
1783        unsigned long           min_capacity;           /* Min per-CPU capacity in group */
1784        unsigned long           max_capacity;           /* Max per-CPU capacity in group */
1785        unsigned long           next_update;
1786        int                     imbalance;              /* XXX unrelated to capacity but shared group state */
1787
1788#ifdef CONFIG_SCHED_DEBUG
1789        int                     id;
1790#endif
1791
1792        unsigned long           cpumask[];              /* Balance mask */
1793};
1794
1795struct sched_group {
1796        struct sched_group      *next;                  /* Must be a circular list */
1797        atomic_t                ref;
1798
1799        unsigned int            group_weight;
1800        struct sched_group_capacity *sgc;
1801        int                     asym_prefer_cpu;        /* CPU of highest priority in group */
1802
1803        /*
1804         * The CPUs this group covers.
1805         *
1806         * NOTE: this field is variable length. (Allocated dynamically
1807         * by attaching extra space to the end of the structure,
1808         * depending on how many CPUs the kernel has booted up with)
1809         */
1810        unsigned long           cpumask[];
1811};
1812
1813static inline struct cpumask *sched_group_span(struct sched_group *sg)
1814{
1815        return to_cpumask(sg->cpumask);
1816}
1817
1818/*
1819 * See build_balance_mask().
1820 */
1821static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1822{
1823        return to_cpumask(sg->sgc->cpumask);
1824}
1825
1826/**
1827 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1828 * @group: The group whose first CPU is to be returned.
1829 */
1830static inline unsigned int group_first_cpu(struct sched_group *group)
1831{
1832        return cpumask_first(sched_group_span(group));
1833}
1834
1835extern int group_balance_cpu(struct sched_group *sg);
1836
1837#ifdef CONFIG_SCHED_DEBUG
1838void update_sched_domain_debugfs(void);
1839void dirty_sched_domain_sysctl(int cpu);
1840#else
1841static inline void update_sched_domain_debugfs(void)
1842{
1843}
1844static inline void dirty_sched_domain_sysctl(int cpu)
1845{
1846}
1847#endif
1848
1849extern int sched_update_scaling(void);
1850
1851extern void flush_smp_call_function_from_idle(void);
1852
1853#else /* !CONFIG_SMP: */
1854static inline void flush_smp_call_function_from_idle(void) { }
1855#endif
1856
1857#include "stats.h"
1858#include "autogroup.h"
1859
1860#ifdef CONFIG_CGROUP_SCHED
1861
1862/*
1863 * Return the group to which this tasks belongs.
1864 *
1865 * We cannot use task_css() and friends because the cgroup subsystem
1866 * changes that value before the cgroup_subsys::attach() method is called,
1867 * therefore we cannot pin it and might observe the wrong value.
1868 *
1869 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1870 * core changes this before calling sched_move_task().
1871 *
1872 * Instead we use a 'copy' which is updated from sched_move_task() while
1873 * holding both task_struct::pi_lock and rq::lock.
1874 */
1875static inline struct task_group *task_group(struct task_struct *p)
1876{
1877        return p->sched_task_group;
1878}
1879
1880/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1881static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1882{
1883#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1884        struct task_group *tg = task_group(p);
1885#endif
1886
1887#ifdef CONFIG_FAIR_GROUP_SCHED
1888        set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1889        p->se.cfs_rq = tg->cfs_rq[cpu];
1890        p->se.parent = tg->se[cpu];
1891#endif
1892
1893#ifdef CONFIG_RT_GROUP_SCHED
1894        p->rt.rt_rq  = tg->rt_rq[cpu];
1895        p->rt.parent = tg->rt_se[cpu];
1896#endif
1897}
1898
1899#else /* CONFIG_CGROUP_SCHED */
1900
1901static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1902static inline struct task_group *task_group(struct task_struct *p)
1903{
1904        return NULL;
1905}
1906
1907#endif /* CONFIG_CGROUP_SCHED */
1908
1909static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1910{
1911        set_task_rq(p, cpu);
1912#ifdef CONFIG_SMP
1913        /*
1914         * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1915         * successfully executed on another CPU. We must ensure that updates of
1916         * per-task data have been completed by this moment.
1917         */
1918        smp_wmb();
1919#ifdef CONFIG_THREAD_INFO_IN_TASK
1920        WRITE_ONCE(p->cpu, cpu);
1921#else
1922        WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1923#endif
1924        p->wake_cpu = cpu;
1925#endif
1926}
1927
1928/*
1929 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1930 */
1931#ifdef CONFIG_SCHED_DEBUG
1932# include <linux/static_key.h>
1933# define const_debug __read_mostly
1934#else
1935# define const_debug const
1936#endif
1937
1938#define SCHED_FEAT(name, enabled)       \
1939        __SCHED_FEAT_##name ,
1940
1941enum {
1942#include "features.h"
1943        __SCHED_FEAT_NR,
1944};
1945
1946#undef SCHED_FEAT
1947
1948#ifdef CONFIG_SCHED_DEBUG
1949
1950/*
1951 * To support run-time toggling of sched features, all the translation units
1952 * (but core.c) reference the sysctl_sched_features defined in core.c.
1953 */
1954extern const_debug unsigned int sysctl_sched_features;
1955
1956#ifdef CONFIG_JUMP_LABEL
1957#define SCHED_FEAT(name, enabled)                                       \
1958static __always_inline bool static_branch_##name(struct static_key *key) \
1959{                                                                       \
1960        return static_key_##enabled(key);                               \
1961}
1962
1963#include "features.h"
1964#undef SCHED_FEAT
1965
1966extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1967#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1968
1969#else /* !CONFIG_JUMP_LABEL */
1970
1971#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1972
1973#endif /* CONFIG_JUMP_LABEL */
1974
1975#else /* !SCHED_DEBUG */
1976
1977/*
1978 * Each translation unit has its own copy of sysctl_sched_features to allow
1979 * constants propagation at compile time and compiler optimization based on
1980 * features default.
1981 */
1982#define SCHED_FEAT(name, enabled)       \
1983        (1UL << __SCHED_FEAT_##name) * enabled |
1984static const_debug __maybe_unused unsigned int sysctl_sched_features =
1985#include "features.h"
1986        0;
1987#undef SCHED_FEAT
1988
1989#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1990
1991#endif /* SCHED_DEBUG */
1992
1993extern struct static_key_false sched_numa_balancing;
1994extern struct static_key_false sched_schedstats;
1995
1996static inline u64 global_rt_period(void)
1997{
1998        return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1999}
2000
2001static inline u64 global_rt_runtime(void)
2002{
2003        if (sysctl_sched_rt_runtime < 0)
2004                return RUNTIME_INF;
2005
2006        return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2007}
2008
2009static inline int task_current(struct rq *rq, struct task_struct *p)
2010{
2011        return rq->curr == p;
2012}
2013
2014static inline int task_running(struct rq *rq, struct task_struct *p)
2015{
2016#ifdef CONFIG_SMP
2017        return p->on_cpu;
2018#else
2019        return task_current(rq, p);
2020#endif
2021}
2022
2023static inline int task_on_rq_queued(struct task_struct *p)
2024{
2025        return p->on_rq == TASK_ON_RQ_QUEUED;
2026}
2027
2028static inline int task_on_rq_migrating(struct task_struct *p)
2029{
2030        return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2031}
2032
2033/* Wake flags. The first three directly map to some SD flag value */
2034#define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2035#define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2036#define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2037
2038#define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
2039#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2040#define WF_ON_CPU   0x40 /* Wakee is on_cpu */
2041
2042#ifdef CONFIG_SMP
2043static_assert(WF_EXEC == SD_BALANCE_EXEC);
2044static_assert(WF_FORK == SD_BALANCE_FORK);
2045static_assert(WF_TTWU == SD_BALANCE_WAKE);
2046#endif
2047
2048/*
2049 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2050 * of tasks with abnormal "nice" values across CPUs the contribution that
2051 * each task makes to its run queue's load is weighted according to its
2052 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2053 * scaled version of the new time slice allocation that they receive on time
2054 * slice expiry etc.
2055 */
2056
2057#define WEIGHT_IDLEPRIO         3
2058#define WMULT_IDLEPRIO          1431655765
2059
2060extern const int                sched_prio_to_weight[40];
2061extern const u32                sched_prio_to_wmult[40];
2062
2063/*
2064 * {de,en}queue flags:
2065 *
2066 * DEQUEUE_SLEEP  - task is no longer runnable
2067 * ENQUEUE_WAKEUP - task just became runnable
2068 *
2069 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2070 *                are in a known state which allows modification. Such pairs
2071 *                should preserve as much state as possible.
2072 *
2073 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2074 *        in the runqueue.
2075 *
2076 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2077 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2078 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2079 *
2080 */
2081
2082#define DEQUEUE_SLEEP           0x01
2083#define DEQUEUE_SAVE            0x02 /* Matches ENQUEUE_RESTORE */
2084#define DEQUEUE_MOVE            0x04 /* Matches ENQUEUE_MOVE */
2085#define DEQUEUE_NOCLOCK         0x08 /* Matches ENQUEUE_NOCLOCK */
2086
2087#define ENQUEUE_WAKEUP          0x01
2088#define ENQUEUE_RESTORE         0x02
2089#define ENQUEUE_MOVE            0x04
2090#define ENQUEUE_NOCLOCK         0x08
2091
2092#define ENQUEUE_HEAD            0x10
2093#define ENQUEUE_REPLENISH       0x20
2094#ifdef CONFIG_SMP
2095#define ENQUEUE_MIGRATED        0x40
2096#else
2097#define ENQUEUE_MIGRATED        0x00
2098#endif
2099
2100#define RETRY_TASK              ((void *)-1UL)
2101
2102struct sched_class {
2103
2104#ifdef CONFIG_UCLAMP_TASK
2105        int uclamp_enabled;
2106#endif
2107
2108        void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2109        void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2110        void (*yield_task)   (struct rq *rq);
2111        bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2112
2113        void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2114
2115        struct task_struct *(*pick_next_task)(struct rq *rq);
2116
2117        void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2118        void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2119
2120#ifdef CONFIG_SMP
2121        int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2122        int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2123
2124        struct task_struct * (*pick_task)(struct rq *rq);
2125
2126        void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2127
2128        void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2129
2130        void (*set_cpus_allowed)(struct task_struct *p,
2131                                 const struct cpumask *newmask,
2132                                 u32 flags);
2133
2134        void (*rq_online)(struct rq *rq);
2135        void (*rq_offline)(struct rq *rq);
2136
2137        struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2138#endif
2139
2140        void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2141        void (*task_fork)(struct task_struct *p);
2142        void (*task_dead)(struct task_struct *p);
2143
2144        /*
2145         * The switched_from() call is allowed to drop rq->lock, therefore we
2146         * cannot assume the switched_from/switched_to pair is serialized by
2147         * rq->lock. They are however serialized by p->pi_lock.
2148         */
2149        void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2150        void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2151        void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2152                              int oldprio);
2153
2154        unsigned int (*get_rr_interval)(struct rq *rq,
2155                                        struct task_struct *task);
2156
2157        void (*update_curr)(struct rq *rq);
2158
2159#define TASK_SET_GROUP          0
2160#define TASK_MOVE_GROUP         1
2161
2162#ifdef CONFIG_FAIR_GROUP_SCHED
2163        void (*task_change_group)(struct task_struct *p, int type);
2164#endif
2165};
2166
2167static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2168{
2169        WARN_ON_ONCE(rq->curr != prev);
2170        prev->sched_class->put_prev_task(rq, prev);
2171}
2172
2173static inline void set_next_task(struct rq *rq, struct task_struct *next)
2174{
2175        next->sched_class->set_next_task(rq, next, false);
2176}
2177
2178
2179/*
2180 * Helper to define a sched_class instance; each one is placed in a separate
2181 * section which is ordered by the linker script:
2182 *
2183 *   include/asm-generic/vmlinux.lds.h
2184 *
2185 * Also enforce alignment on the instance, not the type, to guarantee layout.
2186 */
2187#define DEFINE_SCHED_CLASS(name) \
2188const struct sched_class name##_sched_class \
2189        __aligned(__alignof__(struct sched_class)) \
2190        __section("__" #name "_sched_class")
2191
2192/* Defined in include/asm-generic/vmlinux.lds.h */
2193extern struct sched_class __begin_sched_classes[];
2194extern struct sched_class __end_sched_classes[];
2195
2196#define sched_class_highest (__end_sched_classes - 1)
2197#define sched_class_lowest  (__begin_sched_classes - 1)
2198
2199#define for_class_range(class, _from, _to) \
2200        for (class = (_from); class != (_to); class--)
2201
2202#define for_each_class(class) \
2203        for_class_range(class, sched_class_highest, sched_class_lowest)
2204
2205extern const struct sched_class stop_sched_class;
2206extern const struct sched_class dl_sched_class;
2207extern const struct sched_class rt_sched_class;
2208extern const struct sched_class fair_sched_class;
2209extern const struct sched_class idle_sched_class;
2210
2211static inline bool sched_stop_runnable(struct rq *rq)
2212{
2213        return rq->stop && task_on_rq_queued(rq->stop);
2214}
2215
2216static inline bool sched_dl_runnable(struct rq *rq)
2217{
2218        return rq->dl.dl_nr_running > 0;
2219}
2220
2221static inline bool sched_rt_runnable(struct rq *rq)
2222{
2223        return rq->rt.rt_queued > 0;
2224}
2225
2226static inline bool sched_fair_runnable(struct rq *rq)
2227{
2228        return rq->cfs.nr_running > 0;
2229}
2230
2231extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2232extern struct task_struct *pick_next_task_idle(struct rq *rq);
2233
2234#define SCA_CHECK               0x01
2235#define SCA_MIGRATE_DISABLE     0x02
2236#define SCA_MIGRATE_ENABLE      0x04
2237
2238#ifdef CONFIG_SMP
2239
2240extern void update_group_capacity(struct sched_domain *sd, int cpu);
2241
2242extern void trigger_load_balance(struct rq *rq);
2243
2244extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2245
2246static inline struct task_struct *get_push_task(struct rq *rq)
2247{
2248        struct task_struct *p = rq->curr;
2249
2250        lockdep_assert_rq_held(rq);
2251
2252        if (rq->push_busy)
2253                return NULL;
2254
2255        if (p->nr_cpus_allowed == 1)
2256                return NULL;
2257
2258        if (p->migration_disabled)
2259                return NULL;
2260
2261        rq->push_busy = true;
2262        return get_task_struct(p);
2263}
2264
2265extern int push_cpu_stop(void *arg);
2266
2267#endif
2268
2269#ifdef CONFIG_CPU_IDLE
2270static inline void idle_set_state(struct rq *rq,
2271                                  struct cpuidle_state *idle_state)
2272{
2273        rq->idle_state = idle_state;
2274}
2275
2276static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2277{
2278        SCHED_WARN_ON(!rcu_read_lock_held());
2279
2280        return rq->idle_state;
2281}
2282#else
2283static inline void idle_set_state(struct rq *rq,
2284                                  struct cpuidle_state *idle_state)
2285{
2286}
2287
2288static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2289{
2290        return NULL;
2291}
2292#endif
2293
2294extern void schedule_idle(void);
2295
2296extern void sysrq_sched_debug_show(void);
2297extern void sched_init_granularity(void);
2298extern void update_max_interval(void);
2299
2300extern void init_sched_dl_class(void);
2301extern void init_sched_rt_class(void);
2302extern void init_sched_fair_class(void);
2303
2304extern void reweight_task(struct task_struct *p, int prio);
2305
2306extern void resched_curr(struct rq *rq);
2307extern void resched_cpu(int cpu);
2308
2309extern struct rt_bandwidth def_rt_bandwidth;
2310extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2311
2312extern struct dl_bandwidth def_dl_bandwidth;
2313extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2314extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2315extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2316
2317#define BW_SHIFT                20
2318#define BW_UNIT                 (1 << BW_SHIFT)
2319#define RATIO_SHIFT             8
2320#define MAX_BW_BITS             (64 - BW_SHIFT)
2321#define MAX_BW                  ((1ULL << MAX_BW_BITS) - 1)
2322unsigned long to_ratio(u64 period, u64 runtime);
2323
2324extern void init_entity_runnable_average(struct sched_entity *se);
2325extern void post_init_entity_util_avg(struct task_struct *p);
2326
2327#ifdef CONFIG_NO_HZ_FULL
2328extern bool sched_can_stop_tick(struct rq *rq);
2329extern int __init sched_tick_offload_init(void);
2330
2331/*
2332 * Tick may be needed by tasks in the runqueue depending on their policy and
2333 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2334 * nohz mode if necessary.
2335 */
2336static inline void sched_update_tick_dependency(struct rq *rq)
2337{
2338        int cpu = cpu_of(rq);
2339
2340        if (!tick_nohz_full_cpu(cpu))
2341                return;
2342
2343        if (sched_can_stop_tick(rq))
2344                tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2345        else
2346                tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2347}
2348#else
2349static inline int sched_tick_offload_init(void) { return 0; }
2350static inline void sched_update_tick_dependency(struct rq *rq) { }
2351#endif
2352
2353static inline void add_nr_running(struct rq *rq, unsigned count)
2354{
2355        unsigned prev_nr = rq->nr_running;
2356
2357        rq->nr_running = prev_nr + count;
2358        if (trace_sched_update_nr_running_tp_enabled()) {
2359                call_trace_sched_update_nr_running(rq, count);
2360        }
2361
2362#ifdef CONFIG_SMP
2363        if (prev_nr < 2 && rq->nr_running >= 2) {
2364                if (!READ_ONCE(rq->rd->overload))
2365                        WRITE_ONCE(rq->rd->overload, 1);
2366        }
2367#endif
2368
2369        sched_update_tick_dependency(rq);
2370}
2371
2372static inline void sub_nr_running(struct rq *rq, unsigned count)
2373{
2374        rq->nr_running -= count;
2375        if (trace_sched_update_nr_running_tp_enabled()) {
2376                call_trace_sched_update_nr_running(rq, -count);
2377        }
2378
2379        /* Check if we still need preemption */
2380        sched_update_tick_dependency(rq);
2381}
2382
2383extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2384extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2385
2386extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2387
2388extern const_debug unsigned int sysctl_sched_nr_migrate;
2389extern const_debug unsigned int sysctl_sched_migration_cost;
2390
2391#ifdef CONFIG_SCHED_HRTICK
2392
2393/*
2394 * Use hrtick when:
2395 *  - enabled by features
2396 *  - hrtimer is actually high res
2397 */
2398static inline int hrtick_enabled(struct rq *rq)
2399{
2400        if (!cpu_active(cpu_of(rq)))
2401                return 0;
2402        return hrtimer_is_hres_active(&rq->hrtick_timer);
2403}
2404
2405static inline int hrtick_enabled_fair(struct rq *rq)
2406{
2407        if (!sched_feat(HRTICK))
2408                return 0;
2409        return hrtick_enabled(rq);
2410}
2411
2412static inline int hrtick_enabled_dl(struct rq *rq)
2413{
2414        if (!sched_feat(HRTICK_DL))
2415                return 0;
2416        return hrtick_enabled(rq);
2417}
2418
2419void hrtick_start(struct rq *rq, u64 delay);
2420
2421#else
2422
2423static inline int hrtick_enabled_fair(struct rq *rq)
2424{
2425        return 0;
2426}
2427
2428static inline int hrtick_enabled_dl(struct rq *rq)
2429{
2430        return 0;
2431}
2432
2433static inline int hrtick_enabled(struct rq *rq)
2434{
2435        return 0;
2436}
2437
2438#endif /* CONFIG_SCHED_HRTICK */
2439
2440#ifndef arch_scale_freq_tick
2441static __always_inline
2442void arch_scale_freq_tick(void)
2443{
2444}
2445#endif
2446
2447#ifndef arch_scale_freq_capacity
2448/**
2449 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2450 * @cpu: the CPU in question.
2451 *
2452 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2453 *
2454 *     f_curr
2455 *     ------ * SCHED_CAPACITY_SCALE
2456 *     f_max
2457 */
2458static __always_inline
2459unsigned long arch_scale_freq_capacity(int cpu)
2460{
2461        return SCHED_CAPACITY_SCALE;
2462}
2463#endif
2464
2465
2466#ifdef CONFIG_SMP
2467
2468static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2469{
2470#ifdef CONFIG_SCHED_CORE
2471        /*
2472         * In order to not have {0,2},{1,3} turn into into an AB-BA,
2473         * order by core-id first and cpu-id second.
2474         *
2475         * Notably:
2476         *
2477         *      double_rq_lock(0,3); will take core-0, core-1 lock
2478         *      double_rq_lock(1,2); will take core-1, core-0 lock
2479         *
2480         * when only cpu-id is considered.
2481         */
2482        if (rq1->core->cpu < rq2->core->cpu)
2483                return true;
2484        if (rq1->core->cpu > rq2->core->cpu)
2485                return false;
2486
2487        /*
2488         * __sched_core_flip() relies on SMT having cpu-id lock order.
2489         */
2490#endif
2491        return rq1->cpu < rq2->cpu;
2492}
2493
2494extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2495
2496#ifdef CONFIG_PREEMPTION
2497
2498/*
2499 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2500 * way at the expense of forcing extra atomic operations in all
2501 * invocations.  This assures that the double_lock is acquired using the
2502 * same underlying policy as the spinlock_t on this architecture, which
2503 * reduces latency compared to the unfair variant below.  However, it
2504 * also adds more overhead and therefore may reduce throughput.
2505 */
2506static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2507        __releases(this_rq->lock)
2508        __acquires(busiest->lock)
2509        __acquires(this_rq->lock)
2510{
2511        raw_spin_rq_unlock(this_rq);
2512        double_rq_lock(this_rq, busiest);
2513
2514        return 1;
2515}
2516
2517#else
2518/*
2519 * Unfair double_lock_balance: Optimizes throughput at the expense of
2520 * latency by eliminating extra atomic operations when the locks are
2521 * already in proper order on entry.  This favors lower CPU-ids and will
2522 * grant the double lock to lower CPUs over higher ids under contention,
2523 * regardless of entry order into the function.
2524 */
2525static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2526        __releases(this_rq->lock)
2527        __acquires(busiest->lock)
2528        __acquires(this_rq->lock)
2529{
2530        if (__rq_lockp(this_rq) == __rq_lockp(busiest))
2531                return 0;
2532
2533        if (likely(raw_spin_rq_trylock(busiest)))
2534                return 0;
2535
2536        if (rq_order_less(this_rq, busiest)) {
2537                raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2538                return 0;
2539        }
2540
2541        raw_spin_rq_unlock(this_rq);
2542        double_rq_lock(this_rq, busiest);
2543
2544        return 1;
2545}
2546
2547#endif /* CONFIG_PREEMPTION */
2548
2549/*
2550 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2551 */
2552static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2553{
2554        lockdep_assert_irqs_disabled();
2555
2556        return _double_lock_balance(this_rq, busiest);
2557}
2558
2559static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2560        __releases(busiest->lock)
2561{
2562        if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2563                raw_spin_rq_unlock(busiest);
2564        lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2565}
2566
2567static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2568{
2569        if (l1 > l2)
2570                swap(l1, l2);
2571
2572        spin_lock(l1);
2573        spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2574}
2575
2576static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2577{
2578        if (l1 > l2)
2579                swap(l1, l2);
2580
2581        spin_lock_irq(l1);
2582        spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2583}
2584
2585static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2586{
2587        if (l1 > l2)
2588                swap(l1, l2);
2589
2590        raw_spin_lock(l1);
2591        raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2592}
2593
2594/*
2595 * double_rq_unlock - safely unlock two runqueues
2596 *
2597 * Note this does not restore interrupts like task_rq_unlock,
2598 * you need to do so manually after calling.
2599 */
2600static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2601        __releases(rq1->lock)
2602        __releases(rq2->lock)
2603{
2604        if (__rq_lockp(rq1) != __rq_lockp(rq2))
2605                raw_spin_rq_unlock(rq2);
2606        else
2607                __release(rq2->lock);
2608        raw_spin_rq_unlock(rq1);
2609}
2610
2611extern void set_rq_online (struct rq *rq);
2612extern void set_rq_offline(struct rq *rq);
2613extern bool sched_smp_initialized;
2614
2615#else /* CONFIG_SMP */
2616
2617/*
2618 * double_rq_lock - safely lock two runqueues
2619 *
2620 * Note this does not disable interrupts like task_rq_lock,
2621 * you need to do so manually before calling.
2622 */
2623static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2624        __acquires(rq1->lock)
2625        __acquires(rq2->lock)
2626{
2627        BUG_ON(!irqs_disabled());
2628        BUG_ON(rq1 != rq2);
2629        raw_spin_rq_lock(rq1);
2630        __acquire(rq2->lock);   /* Fake it out ;) */
2631}
2632
2633/*
2634 * double_rq_unlock - safely unlock two runqueues
2635 *
2636 * Note this does not restore interrupts like task_rq_unlock,
2637 * you need to do so manually after calling.
2638 */
2639static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2640        __releases(rq1->lock)
2641        __releases(rq2->lock)
2642{
2643        BUG_ON(rq1 != rq2);
2644        raw_spin_rq_unlock(rq1);
2645        __release(rq2->lock);
2646}
2647
2648#endif
2649
2650extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2651extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2652
2653#ifdef  CONFIG_SCHED_DEBUG
2654extern bool sched_debug_verbose;
2655
2656extern void print_cfs_stats(struct seq_file *m, int cpu);
2657extern void print_rt_stats(struct seq_file *m, int cpu);
2658extern void print_dl_stats(struct seq_file *m, int cpu);
2659extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2660extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2661extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2662
2663extern void resched_latency_warn(int cpu, u64 latency);
2664#ifdef CONFIG_NUMA_BALANCING
2665extern void
2666show_numa_stats(struct task_struct *p, struct seq_file *m);
2667extern void
2668print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2669        unsigned long tpf, unsigned long gsf, unsigned long gpf);
2670#endif /* CONFIG_NUMA_BALANCING */
2671#else
2672static inline void resched_latency_warn(int cpu, u64 latency) {}
2673#endif /* CONFIG_SCHED_DEBUG */
2674
2675extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2676extern void init_rt_rq(struct rt_rq *rt_rq);
2677extern void init_dl_rq(struct dl_rq *dl_rq);
2678
2679extern void cfs_bandwidth_usage_inc(void);
2680extern void cfs_bandwidth_usage_dec(void);
2681
2682#ifdef CONFIG_NO_HZ_COMMON
2683#define NOHZ_BALANCE_KICK_BIT   0
2684#define NOHZ_STATS_KICK_BIT     1
2685#define NOHZ_NEWILB_KICK_BIT    2
2686
2687#define NOHZ_BALANCE_KICK       BIT(NOHZ_BALANCE_KICK_BIT)
2688#define NOHZ_STATS_KICK         BIT(NOHZ_STATS_KICK_BIT)
2689#define NOHZ_NEWILB_KICK        BIT(NOHZ_NEWILB_KICK_BIT)
2690
2691#define NOHZ_KICK_MASK  (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2692
2693#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2694
2695extern void nohz_balance_exit_idle(struct rq *rq);
2696#else
2697static inline void nohz_balance_exit_idle(struct rq *rq) { }
2698#endif
2699
2700#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2701extern void nohz_run_idle_balance(int cpu);
2702#else
2703static inline void nohz_run_idle_balance(int cpu) { }
2704#endif
2705
2706#ifdef CONFIG_SMP
2707static inline
2708void __dl_update(struct dl_bw *dl_b, s64 bw)
2709{
2710        struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2711        int i;
2712
2713        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2714                         "sched RCU must be held");
2715        for_each_cpu_and(i, rd->span, cpu_active_mask) {
2716                struct rq *rq = cpu_rq(i);
2717
2718                rq->dl.extra_bw += bw;
2719        }
2720}
2721#else
2722static inline
2723void __dl_update(struct dl_bw *dl_b, s64 bw)
2724{
2725        struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2726
2727        dl->extra_bw += bw;
2728}
2729#endif
2730
2731
2732#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2733struct irqtime {
2734        u64                     total;
2735        u64                     tick_delta;
2736        u64                     irq_start_time;
2737        struct u64_stats_sync   sync;
2738};
2739
2740DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2741
2742/*
2743 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2744 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2745 * and never move forward.
2746 */
2747static inline u64 irq_time_read(int cpu)
2748{
2749        struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2750        unsigned int seq;
2751        u64 total;
2752
2753        do {
2754                seq = __u64_stats_fetch_begin(&irqtime->sync);
2755                total = irqtime->total;
2756        } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2757
2758        return total;
2759}
2760#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2761
2762#ifdef CONFIG_CPU_FREQ
2763DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2764
2765/**
2766 * cpufreq_update_util - Take a note about CPU utilization changes.
2767 * @rq: Runqueue to carry out the update for.
2768 * @flags: Update reason flags.
2769 *
2770 * This function is called by the scheduler on the CPU whose utilization is
2771 * being updated.
2772 *
2773 * It can only be called from RCU-sched read-side critical sections.
2774 *
2775 * The way cpufreq is currently arranged requires it to evaluate the CPU
2776 * performance state (frequency/voltage) on a regular basis to prevent it from
2777 * being stuck in a completely inadequate performance level for too long.
2778 * That is not guaranteed to happen if the updates are only triggered from CFS
2779 * and DL, though, because they may not be coming in if only RT tasks are
2780 * active all the time (or there are RT tasks only).
2781 *
2782 * As a workaround for that issue, this function is called periodically by the
2783 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2784 * but that really is a band-aid.  Going forward it should be replaced with
2785 * solutions targeted more specifically at RT tasks.
2786 */
2787static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2788{
2789        struct update_util_data *data;
2790
2791        data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2792                                                  cpu_of(rq)));
2793        if (data)
2794                data->func(data, rq_clock(rq), flags);
2795}
2796#else
2797static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2798#endif /* CONFIG_CPU_FREQ */
2799
2800#ifdef CONFIG_UCLAMP_TASK
2801unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
2802
2803/**
2804 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
2805 * @rq:         The rq to clamp against. Must not be NULL.
2806 * @util:       The util value to clamp.
2807 * @p:          The task to clamp against. Can be NULL if you want to clamp
2808 *              against @rq only.
2809 *
2810 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
2811 *
2812 * If sched_uclamp_used static key is disabled, then just return the util
2813 * without any clamping since uclamp aggregation at the rq level in the fast
2814 * path is disabled, rendering this operation a NOP.
2815 *
2816 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
2817 * will return the correct effective uclamp value of the task even if the
2818 * static key is disabled.
2819 */
2820static __always_inline
2821unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2822                                  struct task_struct *p)
2823{
2824        unsigned long min_util = 0;
2825        unsigned long max_util = 0;
2826
2827        if (!static_branch_likely(&sched_uclamp_used))
2828                return util;
2829
2830        if (p) {
2831                min_util = uclamp_eff_value(p, UCLAMP_MIN);
2832                max_util = uclamp_eff_value(p, UCLAMP_MAX);
2833
2834                /*
2835                 * Ignore last runnable task's max clamp, as this task will
2836                 * reset it. Similarly, no need to read the rq's min clamp.
2837                 */
2838                if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
2839                        goto out;
2840        }
2841
2842        min_util = max_t(unsigned long, min_util, READ_ONCE(rq->uclamp[UCLAMP_MIN].value));
2843        max_util = max_t(unsigned long, max_util, READ_ONCE(rq->uclamp[UCLAMP_MAX].value));
2844out:
2845        /*
2846         * Since CPU's {min,max}_util clamps are MAX aggregated considering
2847         * RUNNABLE tasks with _different_ clamps, we can end up with an
2848         * inversion. Fix it now when the clamps are applied.
2849         */
2850        if (unlikely(min_util >= max_util))
2851                return min_util;
2852
2853        return clamp(util, min_util, max_util);
2854}
2855
2856/*
2857 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
2858 * by default in the fast path and only gets turned on once userspace performs
2859 * an operation that requires it.
2860 *
2861 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
2862 * hence is active.
2863 */
2864static inline bool uclamp_is_used(void)
2865{
2866        return static_branch_likely(&sched_uclamp_used);
2867}
2868#else /* CONFIG_UCLAMP_TASK */
2869static inline
2870unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
2871                                  struct task_struct *p)
2872{
2873        return util;
2874}
2875
2876static inline bool uclamp_is_used(void)
2877{
2878        return false;
2879}
2880#endif /* CONFIG_UCLAMP_TASK */
2881
2882#ifdef arch_scale_freq_capacity
2883# ifndef arch_scale_freq_invariant
2884#  define arch_scale_freq_invariant()   true
2885# endif
2886#else
2887# define arch_scale_freq_invariant()    false
2888#endif
2889
2890#ifdef CONFIG_SMP
2891static inline unsigned long capacity_orig_of(int cpu)
2892{
2893        return cpu_rq(cpu)->cpu_capacity_orig;
2894}
2895
2896/**
2897 * enum cpu_util_type - CPU utilization type
2898 * @FREQUENCY_UTIL:     Utilization used to select frequency
2899 * @ENERGY_UTIL:        Utilization used during energy calculation
2900 *
2901 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2902 * need to be aggregated differently depending on the usage made of them. This
2903 * enum is used within effective_cpu_util() to differentiate the types of
2904 * utilization expected by the callers, and adjust the aggregation accordingly.
2905 */
2906enum cpu_util_type {
2907        FREQUENCY_UTIL,
2908        ENERGY_UTIL,
2909};
2910
2911unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2912                                 unsigned long max, enum cpu_util_type type,
2913                                 struct task_struct *p);
2914
2915static inline unsigned long cpu_bw_dl(struct rq *rq)
2916{
2917        return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2918}
2919
2920static inline unsigned long cpu_util_dl(struct rq *rq)
2921{
2922        return READ_ONCE(rq->avg_dl.util_avg);
2923}
2924
2925static inline unsigned long cpu_util_cfs(struct rq *rq)
2926{
2927        unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2928
2929        if (sched_feat(UTIL_EST)) {
2930                util = max_t(unsigned long, util,
2931                             READ_ONCE(rq->cfs.avg.util_est.enqueued));
2932        }
2933
2934        return util;
2935}
2936
2937static inline unsigned long cpu_util_rt(struct rq *rq)
2938{
2939        return READ_ONCE(rq->avg_rt.util_avg);
2940}
2941#endif
2942
2943#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2944static inline unsigned long cpu_util_irq(struct rq *rq)
2945{
2946        return rq->avg_irq.util_avg;
2947}
2948
2949static inline
2950unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2951{
2952        util *= (max - irq);
2953        util /= max;
2954
2955        return util;
2956
2957}
2958#else
2959static inline unsigned long cpu_util_irq(struct rq *rq)
2960{
2961        return 0;
2962}
2963
2964static inline
2965unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2966{
2967        return util;
2968}
2969#endif
2970
2971#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2972
2973#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2974
2975DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2976
2977static inline bool sched_energy_enabled(void)
2978{
2979        return static_branch_unlikely(&sched_energy_present);
2980}
2981
2982#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2983
2984#define perf_domain_span(pd) NULL
2985static inline bool sched_energy_enabled(void) { return false; }
2986
2987#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2988
2989#ifdef CONFIG_MEMBARRIER
2990/*
2991 * The scheduler provides memory barriers required by membarrier between:
2992 * - prior user-space memory accesses and store to rq->membarrier_state,
2993 * - store to rq->membarrier_state and following user-space memory accesses.
2994 * In the same way it provides those guarantees around store to rq->curr.
2995 */
2996static inline void membarrier_switch_mm(struct rq *rq,
2997                                        struct mm_struct *prev_mm,
2998                                        struct mm_struct *next_mm)
2999{
3000        int membarrier_state;
3001
3002        if (prev_mm == next_mm)
3003                return;
3004
3005        membarrier_state = atomic_read(&next_mm->membarrier_state);
3006        if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3007                return;
3008
3009        WRITE_ONCE(rq->membarrier_state, membarrier_state);
3010}
3011#else
3012static inline void membarrier_switch_mm(struct rq *rq,
3013                                        struct mm_struct *prev_mm,
3014                                        struct mm_struct *next_mm)
3015{
3016}
3017#endif
3018
3019#ifdef CONFIG_SMP
3020static inline bool is_per_cpu_kthread(struct task_struct *p)
3021{
3022        if (!(p->flags & PF_KTHREAD))
3023                return false;
3024
3025        if (p->nr_cpus_allowed != 1)
3026                return false;
3027
3028        return true;
3029}
3030#endif
3031
3032extern void swake_up_all_locked(struct swait_queue_head *q);
3033extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3034
3035#ifdef CONFIG_PREEMPT_DYNAMIC
3036extern int preempt_dynamic_mode;
3037extern int sched_dynamic_mode(const char *str);
3038extern void sched_dynamic_update(int mode);
3039#endif
3040
3041