linux/include/uapi/misc/habanalabs.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
   2 *
   3 * Copyright 2016-2020 HabanaLabs, Ltd.
   4 * All Rights Reserved.
   5 *
   6 */
   7
   8#ifndef HABANALABS_H_
   9#define HABANALABS_H_
  10
  11#include <linux/types.h>
  12#include <linux/ioctl.h>
  13
  14/*
  15 * Defines that are asic-specific but constitutes as ABI between kernel driver
  16 * and userspace
  17 */
  18#define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START          0x8000  /* 32KB */
  19#define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START      0x80    /* 128 bytes */
  20
  21/*
  22 * 128 SOBs reserved for collective wait
  23 * 16 SOBs reserved for sync stream
  24 */
  25#define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT           144
  26
  27/*
  28 * 64 monitors reserved for collective wait
  29 * 8 monitors reserved for sync stream
  30 */
  31#define GAUDI_FIRST_AVAILABLE_W_S_MONITOR               72
  32
  33/*
  34 * Goya queue Numbering
  35 *
  36 * The external queues (PCI DMA channels) MUST be before the internal queues
  37 * and each group (PCI DMA channels and internal) must be contiguous inside
  38 * itself but there can be a gap between the two groups (although not
  39 * recommended)
  40 */
  41
  42enum goya_queue_id {
  43        GOYA_QUEUE_ID_DMA_0 = 0,
  44        GOYA_QUEUE_ID_DMA_1 = 1,
  45        GOYA_QUEUE_ID_DMA_2 = 2,
  46        GOYA_QUEUE_ID_DMA_3 = 3,
  47        GOYA_QUEUE_ID_DMA_4 = 4,
  48        GOYA_QUEUE_ID_CPU_PQ = 5,
  49        GOYA_QUEUE_ID_MME = 6,  /* Internal queues start here */
  50        GOYA_QUEUE_ID_TPC0 = 7,
  51        GOYA_QUEUE_ID_TPC1 = 8,
  52        GOYA_QUEUE_ID_TPC2 = 9,
  53        GOYA_QUEUE_ID_TPC3 = 10,
  54        GOYA_QUEUE_ID_TPC4 = 11,
  55        GOYA_QUEUE_ID_TPC5 = 12,
  56        GOYA_QUEUE_ID_TPC6 = 13,
  57        GOYA_QUEUE_ID_TPC7 = 14,
  58        GOYA_QUEUE_ID_SIZE
  59};
  60
  61/*
  62 * Gaudi queue Numbering
  63 * External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*.
  64 * Except one CPU queue, all the rest are internal queues.
  65 */
  66
  67enum gaudi_queue_id {
  68        GAUDI_QUEUE_ID_DMA_0_0 = 0,     /* external */
  69        GAUDI_QUEUE_ID_DMA_0_1 = 1,     /* external */
  70        GAUDI_QUEUE_ID_DMA_0_2 = 2,     /* external */
  71        GAUDI_QUEUE_ID_DMA_0_3 = 3,     /* external */
  72        GAUDI_QUEUE_ID_DMA_1_0 = 4,     /* external */
  73        GAUDI_QUEUE_ID_DMA_1_1 = 5,     /* external */
  74        GAUDI_QUEUE_ID_DMA_1_2 = 6,     /* external */
  75        GAUDI_QUEUE_ID_DMA_1_3 = 7,     /* external */
  76        GAUDI_QUEUE_ID_CPU_PQ = 8,      /* CPU */
  77        GAUDI_QUEUE_ID_DMA_2_0 = 9,     /* internal */
  78        GAUDI_QUEUE_ID_DMA_2_1 = 10,    /* internal */
  79        GAUDI_QUEUE_ID_DMA_2_2 = 11,    /* internal */
  80        GAUDI_QUEUE_ID_DMA_2_3 = 12,    /* internal */
  81        GAUDI_QUEUE_ID_DMA_3_0 = 13,    /* internal */
  82        GAUDI_QUEUE_ID_DMA_3_1 = 14,    /* internal */
  83        GAUDI_QUEUE_ID_DMA_3_2 = 15,    /* internal */
  84        GAUDI_QUEUE_ID_DMA_3_3 = 16,    /* internal */
  85        GAUDI_QUEUE_ID_DMA_4_0 = 17,    /* internal */
  86        GAUDI_QUEUE_ID_DMA_4_1 = 18,    /* internal */
  87        GAUDI_QUEUE_ID_DMA_4_2 = 19,    /* internal */
  88        GAUDI_QUEUE_ID_DMA_4_3 = 20,    /* internal */
  89        GAUDI_QUEUE_ID_DMA_5_0 = 21,    /* internal */
  90        GAUDI_QUEUE_ID_DMA_5_1 = 22,    /* internal */
  91        GAUDI_QUEUE_ID_DMA_5_2 = 23,    /* internal */
  92        GAUDI_QUEUE_ID_DMA_5_3 = 24,    /* internal */
  93        GAUDI_QUEUE_ID_DMA_6_0 = 25,    /* internal */
  94        GAUDI_QUEUE_ID_DMA_6_1 = 26,    /* internal */
  95        GAUDI_QUEUE_ID_DMA_6_2 = 27,    /* internal */
  96        GAUDI_QUEUE_ID_DMA_6_3 = 28,    /* internal */
  97        GAUDI_QUEUE_ID_DMA_7_0 = 29,    /* internal */
  98        GAUDI_QUEUE_ID_DMA_7_1 = 30,    /* internal */
  99        GAUDI_QUEUE_ID_DMA_7_2 = 31,    /* internal */
 100        GAUDI_QUEUE_ID_DMA_7_3 = 32,    /* internal */
 101        GAUDI_QUEUE_ID_MME_0_0 = 33,    /* internal */
 102        GAUDI_QUEUE_ID_MME_0_1 = 34,    /* internal */
 103        GAUDI_QUEUE_ID_MME_0_2 = 35,    /* internal */
 104        GAUDI_QUEUE_ID_MME_0_3 = 36,    /* internal */
 105        GAUDI_QUEUE_ID_MME_1_0 = 37,    /* internal */
 106        GAUDI_QUEUE_ID_MME_1_1 = 38,    /* internal */
 107        GAUDI_QUEUE_ID_MME_1_2 = 39,    /* internal */
 108        GAUDI_QUEUE_ID_MME_1_3 = 40,    /* internal */
 109        GAUDI_QUEUE_ID_TPC_0_0 = 41,    /* internal */
 110        GAUDI_QUEUE_ID_TPC_0_1 = 42,    /* internal */
 111        GAUDI_QUEUE_ID_TPC_0_2 = 43,    /* internal */
 112        GAUDI_QUEUE_ID_TPC_0_3 = 44,    /* internal */
 113        GAUDI_QUEUE_ID_TPC_1_0 = 45,    /* internal */
 114        GAUDI_QUEUE_ID_TPC_1_1 = 46,    /* internal */
 115        GAUDI_QUEUE_ID_TPC_1_2 = 47,    /* internal */
 116        GAUDI_QUEUE_ID_TPC_1_3 = 48,    /* internal */
 117        GAUDI_QUEUE_ID_TPC_2_0 = 49,    /* internal */
 118        GAUDI_QUEUE_ID_TPC_2_1 = 50,    /* internal */
 119        GAUDI_QUEUE_ID_TPC_2_2 = 51,    /* internal */
 120        GAUDI_QUEUE_ID_TPC_2_3 = 52,    /* internal */
 121        GAUDI_QUEUE_ID_TPC_3_0 = 53,    /* internal */
 122        GAUDI_QUEUE_ID_TPC_3_1 = 54,    /* internal */
 123        GAUDI_QUEUE_ID_TPC_3_2 = 55,    /* internal */
 124        GAUDI_QUEUE_ID_TPC_3_3 = 56,    /* internal */
 125        GAUDI_QUEUE_ID_TPC_4_0 = 57,    /* internal */
 126        GAUDI_QUEUE_ID_TPC_4_1 = 58,    /* internal */
 127        GAUDI_QUEUE_ID_TPC_4_2 = 59,    /* internal */
 128        GAUDI_QUEUE_ID_TPC_4_3 = 60,    /* internal */
 129        GAUDI_QUEUE_ID_TPC_5_0 = 61,    /* internal */
 130        GAUDI_QUEUE_ID_TPC_5_1 = 62,    /* internal */
 131        GAUDI_QUEUE_ID_TPC_5_2 = 63,    /* internal */
 132        GAUDI_QUEUE_ID_TPC_5_3 = 64,    /* internal */
 133        GAUDI_QUEUE_ID_TPC_6_0 = 65,    /* internal */
 134        GAUDI_QUEUE_ID_TPC_6_1 = 66,    /* internal */
 135        GAUDI_QUEUE_ID_TPC_6_2 = 67,    /* internal */
 136        GAUDI_QUEUE_ID_TPC_6_3 = 68,    /* internal */
 137        GAUDI_QUEUE_ID_TPC_7_0 = 69,    /* internal */
 138        GAUDI_QUEUE_ID_TPC_7_1 = 70,    /* internal */
 139        GAUDI_QUEUE_ID_TPC_7_2 = 71,    /* internal */
 140        GAUDI_QUEUE_ID_TPC_7_3 = 72,    /* internal */
 141        GAUDI_QUEUE_ID_NIC_0_0 = 73,    /* internal */
 142        GAUDI_QUEUE_ID_NIC_0_1 = 74,    /* internal */
 143        GAUDI_QUEUE_ID_NIC_0_2 = 75,    /* internal */
 144        GAUDI_QUEUE_ID_NIC_0_3 = 76,    /* internal */
 145        GAUDI_QUEUE_ID_NIC_1_0 = 77,    /* internal */
 146        GAUDI_QUEUE_ID_NIC_1_1 = 78,    /* internal */
 147        GAUDI_QUEUE_ID_NIC_1_2 = 79,    /* internal */
 148        GAUDI_QUEUE_ID_NIC_1_3 = 80,    /* internal */
 149        GAUDI_QUEUE_ID_NIC_2_0 = 81,    /* internal */
 150        GAUDI_QUEUE_ID_NIC_2_1 = 82,    /* internal */
 151        GAUDI_QUEUE_ID_NIC_2_2 = 83,    /* internal */
 152        GAUDI_QUEUE_ID_NIC_2_3 = 84,    /* internal */
 153        GAUDI_QUEUE_ID_NIC_3_0 = 85,    /* internal */
 154        GAUDI_QUEUE_ID_NIC_3_1 = 86,    /* internal */
 155        GAUDI_QUEUE_ID_NIC_3_2 = 87,    /* internal */
 156        GAUDI_QUEUE_ID_NIC_3_3 = 88,    /* internal */
 157        GAUDI_QUEUE_ID_NIC_4_0 = 89,    /* internal */
 158        GAUDI_QUEUE_ID_NIC_4_1 = 90,    /* internal */
 159        GAUDI_QUEUE_ID_NIC_4_2 = 91,    /* internal */
 160        GAUDI_QUEUE_ID_NIC_4_3 = 92,    /* internal */
 161        GAUDI_QUEUE_ID_NIC_5_0 = 93,    /* internal */
 162        GAUDI_QUEUE_ID_NIC_5_1 = 94,    /* internal */
 163        GAUDI_QUEUE_ID_NIC_5_2 = 95,    /* internal */
 164        GAUDI_QUEUE_ID_NIC_5_3 = 96,    /* internal */
 165        GAUDI_QUEUE_ID_NIC_6_0 = 97,    /* internal */
 166        GAUDI_QUEUE_ID_NIC_6_1 = 98,    /* internal */
 167        GAUDI_QUEUE_ID_NIC_6_2 = 99,    /* internal */
 168        GAUDI_QUEUE_ID_NIC_6_3 = 100,   /* internal */
 169        GAUDI_QUEUE_ID_NIC_7_0 = 101,   /* internal */
 170        GAUDI_QUEUE_ID_NIC_7_1 = 102,   /* internal */
 171        GAUDI_QUEUE_ID_NIC_7_2 = 103,   /* internal */
 172        GAUDI_QUEUE_ID_NIC_7_3 = 104,   /* internal */
 173        GAUDI_QUEUE_ID_NIC_8_0 = 105,   /* internal */
 174        GAUDI_QUEUE_ID_NIC_8_1 = 106,   /* internal */
 175        GAUDI_QUEUE_ID_NIC_8_2 = 107,   /* internal */
 176        GAUDI_QUEUE_ID_NIC_8_3 = 108,   /* internal */
 177        GAUDI_QUEUE_ID_NIC_9_0 = 109,   /* internal */
 178        GAUDI_QUEUE_ID_NIC_9_1 = 110,   /* internal */
 179        GAUDI_QUEUE_ID_NIC_9_2 = 111,   /* internal */
 180        GAUDI_QUEUE_ID_NIC_9_3 = 112,   /* internal */
 181        GAUDI_QUEUE_ID_SIZE
 182};
 183
 184/*
 185 * Engine Numbering
 186 *
 187 * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle'
 188 */
 189
 190enum goya_engine_id {
 191        GOYA_ENGINE_ID_DMA_0 = 0,
 192        GOYA_ENGINE_ID_DMA_1,
 193        GOYA_ENGINE_ID_DMA_2,
 194        GOYA_ENGINE_ID_DMA_3,
 195        GOYA_ENGINE_ID_DMA_4,
 196        GOYA_ENGINE_ID_MME_0,
 197        GOYA_ENGINE_ID_TPC_0,
 198        GOYA_ENGINE_ID_TPC_1,
 199        GOYA_ENGINE_ID_TPC_2,
 200        GOYA_ENGINE_ID_TPC_3,
 201        GOYA_ENGINE_ID_TPC_4,
 202        GOYA_ENGINE_ID_TPC_5,
 203        GOYA_ENGINE_ID_TPC_6,
 204        GOYA_ENGINE_ID_TPC_7,
 205        GOYA_ENGINE_ID_SIZE
 206};
 207
 208enum gaudi_engine_id {
 209        GAUDI_ENGINE_ID_DMA_0 = 0,
 210        GAUDI_ENGINE_ID_DMA_1,
 211        GAUDI_ENGINE_ID_DMA_2,
 212        GAUDI_ENGINE_ID_DMA_3,
 213        GAUDI_ENGINE_ID_DMA_4,
 214        GAUDI_ENGINE_ID_DMA_5,
 215        GAUDI_ENGINE_ID_DMA_6,
 216        GAUDI_ENGINE_ID_DMA_7,
 217        GAUDI_ENGINE_ID_MME_0,
 218        GAUDI_ENGINE_ID_MME_1,
 219        GAUDI_ENGINE_ID_MME_2,
 220        GAUDI_ENGINE_ID_MME_3,
 221        GAUDI_ENGINE_ID_TPC_0,
 222        GAUDI_ENGINE_ID_TPC_1,
 223        GAUDI_ENGINE_ID_TPC_2,
 224        GAUDI_ENGINE_ID_TPC_3,
 225        GAUDI_ENGINE_ID_TPC_4,
 226        GAUDI_ENGINE_ID_TPC_5,
 227        GAUDI_ENGINE_ID_TPC_6,
 228        GAUDI_ENGINE_ID_TPC_7,
 229        GAUDI_ENGINE_ID_NIC_0,
 230        GAUDI_ENGINE_ID_NIC_1,
 231        GAUDI_ENGINE_ID_NIC_2,
 232        GAUDI_ENGINE_ID_NIC_3,
 233        GAUDI_ENGINE_ID_NIC_4,
 234        GAUDI_ENGINE_ID_NIC_5,
 235        GAUDI_ENGINE_ID_NIC_6,
 236        GAUDI_ENGINE_ID_NIC_7,
 237        GAUDI_ENGINE_ID_NIC_8,
 238        GAUDI_ENGINE_ID_NIC_9,
 239        GAUDI_ENGINE_ID_SIZE
 240};
 241
 242/*
 243 * ASIC specific PLL index
 244 *
 245 * Used to retrieve in frequency info of different IPs via
 246 * HL_INFO_PLL_FREQUENCY under HL_IOCTL_INFO IOCTL. The enums need to be
 247 * used as an index in struct hl_pll_frequency_info
 248 */
 249
 250enum hl_goya_pll_index {
 251        HL_GOYA_CPU_PLL = 0,
 252        HL_GOYA_IC_PLL,
 253        HL_GOYA_MC_PLL,
 254        HL_GOYA_MME_PLL,
 255        HL_GOYA_PCI_PLL,
 256        HL_GOYA_EMMC_PLL,
 257        HL_GOYA_TPC_PLL,
 258        HL_GOYA_PLL_MAX
 259};
 260
 261enum hl_gaudi_pll_index {
 262        HL_GAUDI_CPU_PLL = 0,
 263        HL_GAUDI_PCI_PLL,
 264        HL_GAUDI_SRAM_PLL,
 265        HL_GAUDI_HBM_PLL,
 266        HL_GAUDI_NIC_PLL,
 267        HL_GAUDI_DMA_PLL,
 268        HL_GAUDI_MESH_PLL,
 269        HL_GAUDI_MME_PLL,
 270        HL_GAUDI_TPC_PLL,
 271        HL_GAUDI_IF_PLL,
 272        HL_GAUDI_PLL_MAX
 273};
 274
 275enum hl_device_status {
 276        HL_DEVICE_STATUS_OPERATIONAL,
 277        HL_DEVICE_STATUS_IN_RESET,
 278        HL_DEVICE_STATUS_MALFUNCTION,
 279        HL_DEVICE_STATUS_NEEDS_RESET
 280};
 281
 282/* Opcode for management ioctl
 283 *
 284 * HW_IP_INFO            - Receive information about different IP blocks in the
 285 *                         device.
 286 * HL_INFO_HW_EVENTS     - Receive an array describing how many times each event
 287 *                         occurred since the last hard reset.
 288 * HL_INFO_DRAM_USAGE    - Retrieve the dram usage inside the device and of the
 289 *                         specific context. This is relevant only for devices
 290 *                         where the dram is managed by the kernel driver
 291 * HL_INFO_HW_IDLE       - Retrieve information about the idle status of each
 292 *                         internal engine.
 293 * HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't
 294 *                         require an open context.
 295 * HL_INFO_DEVICE_UTILIZATION  - Retrieve the total utilization of the device
 296 *                               over the last period specified by the user.
 297 *                               The period can be between 100ms to 1s, in
 298 *                               resolution of 100ms. The return value is a
 299 *                               percentage of the utilization rate.
 300 * HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each
 301 *                               event occurred since the driver was loaded.
 302 * HL_INFO_CLK_RATE            - Retrieve the current and maximum clock rate
 303 *                               of the device in MHz. The maximum clock rate is
 304 *                               configurable via sysfs parameter
 305 * HL_INFO_RESET_COUNT   - Retrieve the counts of the soft and hard reset
 306 *                         operations performed on the device since the last
 307 *                         time the driver was loaded.
 308 * HL_INFO_TIME_SYNC     - Retrieve the device's time alongside the host's time
 309 *                         for synchronization.
 310 * HL_INFO_CS_COUNTERS   - Retrieve command submission counters
 311 * HL_INFO_PCI_COUNTERS  - Retrieve PCI counters
 312 * HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason
 313 * HL_INFO_SYNC_MANAGER  - Retrieve sync manager info per dcore
 314 * HL_INFO_TOTAL_ENERGY  - Retrieve total energy consumption
 315 * HL_INFO_PLL_FREQUENCY - Retrieve PLL frequency
 316 * HL_INFO_OPEN_STATS    - Retrieve info regarding recent device open calls
 317 */
 318#define HL_INFO_HW_IP_INFO              0
 319#define HL_INFO_HW_EVENTS               1
 320#define HL_INFO_DRAM_USAGE              2
 321#define HL_INFO_HW_IDLE                 3
 322#define HL_INFO_DEVICE_STATUS           4
 323#define HL_INFO_DEVICE_UTILIZATION      6
 324#define HL_INFO_HW_EVENTS_AGGREGATE     7
 325#define HL_INFO_CLK_RATE                8
 326#define HL_INFO_RESET_COUNT             9
 327#define HL_INFO_TIME_SYNC               10
 328#define HL_INFO_CS_COUNTERS             11
 329#define HL_INFO_PCI_COUNTERS            12
 330#define HL_INFO_CLK_THROTTLE_REASON     13
 331#define HL_INFO_SYNC_MANAGER            14
 332#define HL_INFO_TOTAL_ENERGY            15
 333#define HL_INFO_PLL_FREQUENCY           16
 334#define HL_INFO_POWER                   17
 335#define HL_INFO_OPEN_STATS              18
 336
 337#define HL_INFO_VERSION_MAX_LEN 128
 338#define HL_INFO_CARD_NAME_MAX_LEN       16
 339
 340struct hl_info_hw_ip_info {
 341        __u64 sram_base_address;
 342        __u64 dram_base_address;
 343        __u64 dram_size;
 344        __u32 sram_size;
 345        __u32 num_of_events;
 346        __u32 device_id; /* PCI Device ID */
 347        __u32 module_id; /* For mezzanine cards in servers (From OCP spec.) */
 348        __u32 reserved;
 349        __u16 first_available_interrupt_id;
 350        __u16 reserved2;
 351        __u32 cpld_version;
 352        __u32 psoc_pci_pll_nr;
 353        __u32 psoc_pci_pll_nf;
 354        __u32 psoc_pci_pll_od;
 355        __u32 psoc_pci_pll_div_factor;
 356        __u8 tpc_enabled_mask;
 357        __u8 dram_enabled;
 358        __u8 pad[2];
 359        __u8 cpucp_version[HL_INFO_VERSION_MAX_LEN];
 360        __u8 card_name[HL_INFO_CARD_NAME_MAX_LEN];
 361        __u64 reserved3;
 362        __u64 dram_page_size;
 363};
 364
 365struct hl_info_dram_usage {
 366        __u64 dram_free_mem;
 367        __u64 ctx_dram_mem;
 368};
 369
 370#define HL_BUSY_ENGINES_MASK_EXT_SIZE   2
 371
 372struct hl_info_hw_idle {
 373        __u32 is_idle;
 374        /*
 375         * Bitmask of busy engines.
 376         * Bits definition is according to `enum <chip>_enging_id'.
 377         */
 378        __u32 busy_engines_mask;
 379
 380        /*
 381         * Extended Bitmask of busy engines.
 382         * Bits definition is according to `enum <chip>_enging_id'.
 383         */
 384        __u64 busy_engines_mask_ext[HL_BUSY_ENGINES_MASK_EXT_SIZE];
 385};
 386
 387struct hl_info_device_status {
 388        __u32 status;
 389        __u32 pad;
 390};
 391
 392struct hl_info_device_utilization {
 393        __u32 utilization;
 394        __u32 pad;
 395};
 396
 397struct hl_info_clk_rate {
 398        __u32 cur_clk_rate_mhz;
 399        __u32 max_clk_rate_mhz;
 400};
 401
 402struct hl_info_reset_count {
 403        __u32 hard_reset_cnt;
 404        __u32 soft_reset_cnt;
 405};
 406
 407struct hl_info_time_sync {
 408        __u64 device_time;
 409        __u64 host_time;
 410};
 411
 412/**
 413 * struct hl_info_pci_counters - pci counters
 414 * @rx_throughput: PCI rx throughput KBps
 415 * @tx_throughput: PCI tx throughput KBps
 416 * @replay_cnt: PCI replay counter
 417 */
 418struct hl_info_pci_counters {
 419        __u64 rx_throughput;
 420        __u64 tx_throughput;
 421        __u64 replay_cnt;
 422};
 423
 424#define HL_CLK_THROTTLE_POWER   0x1
 425#define HL_CLK_THROTTLE_THERMAL 0x2
 426
 427/**
 428 * struct hl_info_clk_throttle - clock throttling reason
 429 * @clk_throttling_reason: each bit represents a clk throttling reason
 430 */
 431struct hl_info_clk_throttle {
 432        __u32 clk_throttling_reason;
 433};
 434
 435/**
 436 * struct hl_info_energy - device energy information
 437 * @total_energy_consumption: total device energy consumption
 438 */
 439struct hl_info_energy {
 440        __u64 total_energy_consumption;
 441};
 442
 443#define HL_PLL_NUM_OUTPUTS 4
 444
 445struct hl_pll_frequency_info {
 446        __u16 output[HL_PLL_NUM_OUTPUTS];
 447};
 448
 449/**
 450 * struct hl_open_stats_info - device open statistics information
 451 * @open_counter: ever growing counter, increased on each successful dev open
 452 * @last_open_period_ms: duration (ms) device was open last time
 453 */
 454struct hl_open_stats_info {
 455        __u64 open_counter;
 456        __u64 last_open_period_ms;
 457};
 458
 459/**
 460 * struct hl_power_info - power information
 461 * @power: power consumption
 462 */
 463struct hl_power_info {
 464        __u64 power;
 465};
 466
 467/**
 468 * struct hl_info_sync_manager - sync manager information
 469 * @first_available_sync_object: first available sob
 470 * @first_available_monitor: first available monitor
 471 * @first_available_cq: first available cq
 472 */
 473struct hl_info_sync_manager {
 474        __u32 first_available_sync_object;
 475        __u32 first_available_monitor;
 476        __u32 first_available_cq;
 477        __u32 reserved;
 478};
 479
 480/**
 481 * struct hl_info_cs_counters - command submission counters
 482 * @total_out_of_mem_drop_cnt: total dropped due to memory allocation issue
 483 * @ctx_out_of_mem_drop_cnt: context dropped due to memory allocation issue
 484 * @total_parsing_drop_cnt: total dropped due to error in packet parsing
 485 * @ctx_parsing_drop_cnt: context dropped due to error in packet parsing
 486 * @total_queue_full_drop_cnt: total dropped due to queue full
 487 * @ctx_queue_full_drop_cnt: context dropped due to queue full
 488 * @total_device_in_reset_drop_cnt: total dropped due to device in reset
 489 * @ctx_device_in_reset_drop_cnt: context dropped due to device in reset
 490 * @total_max_cs_in_flight_drop_cnt: total dropped due to maximum CS in-flight
 491 * @ctx_max_cs_in_flight_drop_cnt: context dropped due to maximum CS in-flight
 492 * @total_validation_drop_cnt: total dropped due to validation error
 493 * @ctx_validation_drop_cnt: context dropped due to validation error
 494 */
 495struct hl_info_cs_counters {
 496        __u64 total_out_of_mem_drop_cnt;
 497        __u64 ctx_out_of_mem_drop_cnt;
 498        __u64 total_parsing_drop_cnt;
 499        __u64 ctx_parsing_drop_cnt;
 500        __u64 total_queue_full_drop_cnt;
 501        __u64 ctx_queue_full_drop_cnt;
 502        __u64 total_device_in_reset_drop_cnt;
 503        __u64 ctx_device_in_reset_drop_cnt;
 504        __u64 total_max_cs_in_flight_drop_cnt;
 505        __u64 ctx_max_cs_in_flight_drop_cnt;
 506        __u64 total_validation_drop_cnt;
 507        __u64 ctx_validation_drop_cnt;
 508};
 509
 510enum gaudi_dcores {
 511        HL_GAUDI_WS_DCORE,
 512        HL_GAUDI_WN_DCORE,
 513        HL_GAUDI_EN_DCORE,
 514        HL_GAUDI_ES_DCORE
 515};
 516
 517struct hl_info_args {
 518        /* Location of relevant struct in userspace */
 519        __u64 return_pointer;
 520        /*
 521         * The size of the return value. Just like "size" in "snprintf",
 522         * it limits how many bytes the kernel can write
 523         *
 524         * For hw_events array, the size should be
 525         * hl_info_hw_ip_info.num_of_events * sizeof(__u32)
 526         */
 527        __u32 return_size;
 528
 529        /* HL_INFO_* */
 530        __u32 op;
 531
 532        union {
 533                /* Dcore id for which the information is relevant.
 534                 * For Gaudi refer to 'enum gaudi_dcores'
 535                 */
 536                __u32 dcore_id;
 537                /* Context ID - Currently not in use */
 538                __u32 ctx_id;
 539                /* Period value for utilization rate (100ms - 1000ms, in 100ms
 540                 * resolution.
 541                 */
 542                __u32 period_ms;
 543                /* PLL frequency retrieval */
 544                __u32 pll_index;
 545        };
 546
 547        __u32 pad;
 548};
 549
 550/* Opcode to create a new command buffer */
 551#define HL_CB_OP_CREATE         0
 552/* Opcode to destroy previously created command buffer */
 553#define HL_CB_OP_DESTROY        1
 554/* Opcode to retrieve information about a command buffer */
 555#define HL_CB_OP_INFO           2
 556
 557/* 2MB minus 32 bytes for 2xMSG_PROT */
 558#define HL_MAX_CB_SIZE          (0x200000 - 32)
 559
 560/* Indicates whether the command buffer should be mapped to the device's MMU */
 561#define HL_CB_FLAGS_MAP         0x1
 562
 563struct hl_cb_in {
 564        /* Handle of CB or 0 if we want to create one */
 565        __u64 cb_handle;
 566        /* HL_CB_OP_* */
 567        __u32 op;
 568        /* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
 569         * will be allocated, regardless of this parameter's value, is PAGE_SIZE
 570         */
 571        __u32 cb_size;
 572        /* Context ID - Currently not in use */
 573        __u32 ctx_id;
 574        /* HL_CB_FLAGS_* */
 575        __u32 flags;
 576};
 577
 578struct hl_cb_out {
 579        union {
 580                /* Handle of CB */
 581                __u64 cb_handle;
 582
 583                /* Information about CB */
 584                struct {
 585                        /* Usage count of CB */
 586                        __u32 usage_cnt;
 587                        __u32 pad;
 588                };
 589        };
 590};
 591
 592union hl_cb_args {
 593        struct hl_cb_in in;
 594        struct hl_cb_out out;
 595};
 596
 597/* HL_CS_CHUNK_FLAGS_ values
 598 *
 599 * HL_CS_CHUNK_FLAGS_USER_ALLOC_CB:
 600 *      Indicates if the CB was allocated and mapped by userspace.
 601 *      User allocated CB is a command buffer allocated by the user, via malloc
 602 *      (or similar). After allocating the CB, the user invokes “memory ioctl”
 603 *      to map the user memory into a device virtual address. The user provides
 604 *      this address via the cb_handle field. The interface provides the
 605 *      ability to create a large CBs, Which aren’t limited to
 606 *      “HL_MAX_CB_SIZE”. Therefore, it increases the PCI-DMA queues
 607 *      throughput. This CB allocation method also reduces the use of Linux
 608 *      DMA-able memory pool. Which are limited and used by other Linux
 609 *      sub-systems.
 610 */
 611#define HL_CS_CHUNK_FLAGS_USER_ALLOC_CB 0x1
 612
 613/*
 614 * This structure size must always be fixed to 64-bytes for backward
 615 * compatibility
 616 */
 617struct hl_cs_chunk {
 618        union {
 619                /* For external queue, this represents a Handle of CB on the
 620                 * Host.
 621                 * For internal queue in Goya, this represents an SRAM or
 622                 * a DRAM address of the internal CB. In Gaudi, this might also
 623                 * represent a mapped host address of the CB.
 624                 *
 625                 * A mapped host address is in the device address space, after
 626                 * a host address was mapped by the device MMU.
 627                 */
 628                __u64 cb_handle;
 629
 630                /* Relevant only when HL_CS_FLAGS_WAIT or
 631                 * HL_CS_FLAGS_COLLECTIVE_WAIT is set.
 632                 * This holds address of array of u64 values that contain
 633                 * signal CS sequence numbers. The wait described by this job
 634                 * will listen on all those signals (wait event per signal)
 635                 */
 636                __u64 signal_seq_arr;
 637        };
 638
 639        /* Index of queue to put the CB on */
 640        __u32 queue_index;
 641
 642        union {
 643                /*
 644                 * Size of command buffer with valid packets
 645                 * Can be smaller then actual CB size
 646                 */
 647                __u32 cb_size;
 648
 649                /* Relevant only when HL_CS_FLAGS_WAIT or
 650                 * HL_CS_FLAGS_COLLECTIVE_WAIT is set.
 651                 * Number of entries in signal_seq_arr
 652                 */
 653                __u32 num_signal_seq_arr;
 654        };
 655
 656        /* HL_CS_CHUNK_FLAGS_* */
 657        __u32 cs_chunk_flags;
 658
 659        /* Relevant only when HL_CS_FLAGS_COLLECTIVE_WAIT is set.
 660         * This holds the collective engine ID. The wait described by this job
 661         * will sync with this engine and with all NICs before completion.
 662         */
 663        __u32 collective_engine_id;
 664
 665        /* Align structure to 64 bytes */
 666        __u32 pad[10];
 667};
 668
 669/* SIGNAL and WAIT/COLLECTIVE_WAIT flags are mutually exclusive */
 670#define HL_CS_FLAGS_FORCE_RESTORE               0x1
 671#define HL_CS_FLAGS_SIGNAL                      0x2
 672#define HL_CS_FLAGS_WAIT                        0x4
 673#define HL_CS_FLAGS_COLLECTIVE_WAIT             0x8
 674#define HL_CS_FLAGS_TIMESTAMP                   0x20
 675#define HL_CS_FLAGS_STAGED_SUBMISSION           0x40
 676#define HL_CS_FLAGS_STAGED_SUBMISSION_FIRST     0x80
 677#define HL_CS_FLAGS_STAGED_SUBMISSION_LAST      0x100
 678#define HL_CS_FLAGS_CUSTOM_TIMEOUT              0x200
 679#define HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT       0x400
 680
 681#define HL_CS_STATUS_SUCCESS            0
 682
 683#define HL_MAX_JOBS_PER_CS              512
 684
 685struct hl_cs_in {
 686
 687        /* this holds address of array of hl_cs_chunk for restore phase */
 688        __u64 chunks_restore;
 689
 690        /* holds address of array of hl_cs_chunk for execution phase */
 691        __u64 chunks_execute;
 692
 693        /* Sequence number of a staged submission CS
 694         * valid only if HL_CS_FLAGS_STAGED_SUBMISSION is set
 695         */
 696        __u64 seq;
 697
 698        /* Number of chunks in restore phase array. Maximum number is
 699         * HL_MAX_JOBS_PER_CS
 700         */
 701        __u32 num_chunks_restore;
 702
 703        /* Number of chunks in execution array. Maximum number is
 704         * HL_MAX_JOBS_PER_CS
 705         */
 706        __u32 num_chunks_execute;
 707
 708        /* timeout in seconds - valid only if HL_CS_FLAGS_CUSTOM_TIMEOUT
 709         * is set
 710         */
 711        __u32 timeout;
 712
 713        /* HL_CS_FLAGS_* */
 714        __u32 cs_flags;
 715
 716        /* Context ID - Currently not in use */
 717        __u32 ctx_id;
 718};
 719
 720struct hl_cs_out {
 721        /*
 722         * seq holds the sequence number of the CS to pass to wait ioctl. All
 723         * values are valid except for 0 and ULLONG_MAX
 724         */
 725        __u64 seq;
 726        /* HL_CS_STATUS_* */
 727        __u32 status;
 728        __u32 pad;
 729};
 730
 731union hl_cs_args {
 732        struct hl_cs_in in;
 733        struct hl_cs_out out;
 734};
 735
 736#define HL_WAIT_CS_FLAGS_INTERRUPT      0x2
 737#define HL_WAIT_CS_FLAGS_INTERRUPT_MASK 0xFFF00000
 738
 739struct hl_wait_cs_in {
 740        union {
 741                struct {
 742                        /* Command submission sequence number */
 743                        __u64 seq;
 744                        /* Absolute timeout to wait for command submission
 745                         * in microseconds
 746                         */
 747                        __u64 timeout_us;
 748                };
 749
 750                struct {
 751                        /* User address for completion comparison.
 752                         * upon interrupt, driver will compare the value pointed
 753                         * by this address with the supplied target value.
 754                         * in order not to perform any comparison, set address
 755                         * to all 1s.
 756                         * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
 757                         */
 758                        __u64 addr;
 759                        /* Target value for completion comparison */
 760                        __u32 target;
 761                        /* Absolute timeout to wait for interrupt
 762                         * in microseconds
 763                         */
 764                        __u32 interrupt_timeout_us;
 765                };
 766        };
 767
 768        /* Context ID - Currently not in use */
 769        __u32 ctx_id;
 770        /* HL_WAIT_CS_FLAGS_*
 771         * If HL_WAIT_CS_FLAGS_INTERRUPT is set, this field should include
 772         * interrupt id according to HL_WAIT_CS_FLAGS_INTERRUPT_MASK, in order
 773         * not to specify an interrupt id ,set mask to all 1s.
 774         */
 775        __u32 flags;
 776};
 777
 778#define HL_WAIT_CS_STATUS_COMPLETED     0
 779#define HL_WAIT_CS_STATUS_BUSY          1
 780#define HL_WAIT_CS_STATUS_TIMEDOUT      2
 781#define HL_WAIT_CS_STATUS_ABORTED       3
 782#define HL_WAIT_CS_STATUS_INTERRUPTED   4
 783
 784#define HL_WAIT_CS_STATUS_FLAG_GONE             0x1
 785#define HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD    0x2
 786
 787struct hl_wait_cs_out {
 788        /* HL_WAIT_CS_STATUS_* */
 789        __u32 status;
 790        /* HL_WAIT_CS_STATUS_FLAG* */
 791        __u32 flags;
 792        /* valid only if HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD is set */
 793        __s64 timestamp_nsec;
 794};
 795
 796union hl_wait_cs_args {
 797        struct hl_wait_cs_in in;
 798        struct hl_wait_cs_out out;
 799};
 800
 801/* Opcode to allocate device memory */
 802#define HL_MEM_OP_ALLOC                 0
 803/* Opcode to free previously allocated device memory */
 804#define HL_MEM_OP_FREE                  1
 805/* Opcode to map host and device memory */
 806#define HL_MEM_OP_MAP                   2
 807/* Opcode to unmap previously mapped host and device memory */
 808#define HL_MEM_OP_UNMAP                 3
 809/* Opcode to map a hw block */
 810#define HL_MEM_OP_MAP_BLOCK             4
 811
 812/* Memory flags */
 813#define HL_MEM_CONTIGUOUS       0x1
 814#define HL_MEM_SHARED           0x2
 815#define HL_MEM_USERPTR          0x4
 816
 817struct hl_mem_in {
 818        union {
 819                /* HL_MEM_OP_ALLOC- allocate device memory */
 820                struct {
 821                        /* Size to alloc */
 822                        __u64 mem_size;
 823                } alloc;
 824
 825                /* HL_MEM_OP_FREE - free device memory */
 826                struct {
 827                        /* Handle returned from HL_MEM_OP_ALLOC */
 828                        __u64 handle;
 829                } free;
 830
 831                /* HL_MEM_OP_MAP - map device memory */
 832                struct {
 833                        /*
 834                         * Requested virtual address of mapped memory.
 835                         * The driver will try to map the requested region to
 836                         * this hint address, as long as the address is valid
 837                         * and not already mapped. The user should check the
 838                         * returned address of the IOCTL to make sure he got
 839                         * the hint address. Passing 0 here means that the
 840                         * driver will choose the address itself.
 841                         */
 842                        __u64 hint_addr;
 843                        /* Handle returned from HL_MEM_OP_ALLOC */
 844                        __u64 handle;
 845                } map_device;
 846
 847                /* HL_MEM_OP_MAP - map host memory */
 848                struct {
 849                        /* Address of allocated host memory */
 850                        __u64 host_virt_addr;
 851                        /*
 852                         * Requested virtual address of mapped memory.
 853                         * The driver will try to map the requested region to
 854                         * this hint address, as long as the address is valid
 855                         * and not already mapped. The user should check the
 856                         * returned address of the IOCTL to make sure he got
 857                         * the hint address. Passing 0 here means that the
 858                         * driver will choose the address itself.
 859                         */
 860                        __u64 hint_addr;
 861                        /* Size of allocated host memory */
 862                        __u64 mem_size;
 863                } map_host;
 864
 865                /* HL_MEM_OP_MAP_BLOCK - map a hw block */
 866                struct {
 867                        /*
 868                         * HW block address to map, a handle and size will be
 869                         * returned to the user and will be used to mmap the
 870                         * relevant block. Only addresses from configuration
 871                         * space are allowed.
 872                         */
 873                        __u64 block_addr;
 874                } map_block;
 875
 876                /* HL_MEM_OP_UNMAP - unmap host memory */
 877                struct {
 878                        /* Virtual address returned from HL_MEM_OP_MAP */
 879                        __u64 device_virt_addr;
 880                } unmap;
 881        };
 882
 883        /* HL_MEM_OP_* */
 884        __u32 op;
 885        /* HL_MEM_* flags */
 886        __u32 flags;
 887        /* Context ID - Currently not in use */
 888        __u32 ctx_id;
 889        __u32 pad;
 890};
 891
 892struct hl_mem_out {
 893        union {
 894                /*
 895                 * Used for HL_MEM_OP_MAP as the virtual address that was
 896                 * assigned in the device VA space.
 897                 * A value of 0 means the requested operation failed.
 898                 */
 899                __u64 device_virt_addr;
 900
 901                /*
 902                 * Used in HL_MEM_OP_ALLOC
 903                 * This is the assigned handle for the allocated memory
 904                 */
 905                __u64 handle;
 906
 907                struct {
 908                        /*
 909                         * Used in HL_MEM_OP_MAP_BLOCK.
 910                         * This is the assigned handle for the mapped block
 911                         */
 912                        __u64 block_handle;
 913
 914                        /*
 915                         * Used in HL_MEM_OP_MAP_BLOCK
 916                         * This is the size of the mapped block
 917                         */
 918                        __u32 block_size;
 919
 920                        __u32 pad;
 921                };
 922        };
 923};
 924
 925union hl_mem_args {
 926        struct hl_mem_in in;
 927        struct hl_mem_out out;
 928};
 929
 930#define HL_DEBUG_MAX_AUX_VALUES         10
 931
 932struct hl_debug_params_etr {
 933        /* Address in memory to allocate buffer */
 934        __u64 buffer_address;
 935
 936        /* Size of buffer to allocate */
 937        __u64 buffer_size;
 938
 939        /* Sink operation mode: SW fifo, HW fifo, Circular buffer */
 940        __u32 sink_mode;
 941        __u32 pad;
 942};
 943
 944struct hl_debug_params_etf {
 945        /* Address in memory to allocate buffer */
 946        __u64 buffer_address;
 947
 948        /* Size of buffer to allocate */
 949        __u64 buffer_size;
 950
 951        /* Sink operation mode: SW fifo, HW fifo, Circular buffer */
 952        __u32 sink_mode;
 953        __u32 pad;
 954};
 955
 956struct hl_debug_params_stm {
 957        /* Two bit masks for HW event and Stimulus Port */
 958        __u64 he_mask;
 959        __u64 sp_mask;
 960
 961        /* Trace source ID */
 962        __u32 id;
 963
 964        /* Frequency for the timestamp register */
 965        __u32 frequency;
 966};
 967
 968struct hl_debug_params_bmon {
 969        /* Two address ranges that the user can request to filter */
 970        __u64 start_addr0;
 971        __u64 addr_mask0;
 972
 973        __u64 start_addr1;
 974        __u64 addr_mask1;
 975
 976        /* Capture window configuration */
 977        __u32 bw_win;
 978        __u32 win_capture;
 979
 980        /* Trace source ID */
 981        __u32 id;
 982        __u32 pad;
 983};
 984
 985struct hl_debug_params_spmu {
 986        /* Event types selection */
 987        __u64 event_types[HL_DEBUG_MAX_AUX_VALUES];
 988
 989        /* Number of event types selection */
 990        __u32 event_types_num;
 991        __u32 pad;
 992};
 993
 994/* Opcode for ETR component */
 995#define HL_DEBUG_OP_ETR         0
 996/* Opcode for ETF component */
 997#define HL_DEBUG_OP_ETF         1
 998/* Opcode for STM component */
 999#define HL_DEBUG_OP_STM         2
1000/* Opcode for FUNNEL component */
1001#define HL_DEBUG_OP_FUNNEL      3
1002/* Opcode for BMON component */
1003#define HL_DEBUG_OP_BMON        4
1004/* Opcode for SPMU component */
1005#define HL_DEBUG_OP_SPMU        5
1006/* Opcode for timestamp (deprecated) */
1007#define HL_DEBUG_OP_TIMESTAMP   6
1008/* Opcode for setting the device into or out of debug mode. The enable
1009 * variable should be 1 for enabling debug mode and 0 for disabling it
1010 */
1011#define HL_DEBUG_OP_SET_MODE    7
1012
1013struct hl_debug_args {
1014        /*
1015         * Pointer to user input structure.
1016         * This field is relevant to specific opcodes.
1017         */
1018        __u64 input_ptr;
1019        /* Pointer to user output structure */
1020        __u64 output_ptr;
1021        /* Size of user input structure */
1022        __u32 input_size;
1023        /* Size of user output structure */
1024        __u32 output_size;
1025        /* HL_DEBUG_OP_* */
1026        __u32 op;
1027        /*
1028         * Register index in the component, taken from the debug_regs_index enum
1029         * in the various ASIC header files
1030         */
1031        __u32 reg_idx;
1032        /* Enable/disable */
1033        __u32 enable;
1034        /* Context ID - Currently not in use */
1035        __u32 ctx_id;
1036};
1037
1038/*
1039 * Various information operations such as:
1040 * - H/W IP information
1041 * - Current dram usage
1042 *
1043 * The user calls this IOCTL with an opcode that describes the required
1044 * information. The user should supply a pointer to a user-allocated memory
1045 * chunk, which will be filled by the driver with the requested information.
1046 *
1047 * The user supplies the maximum amount of size to copy into the user's memory,
1048 * in order to prevent data corruption in case of differences between the
1049 * definitions of structures in kernel and userspace, e.g. in case of old
1050 * userspace and new kernel driver
1051 */
1052#define HL_IOCTL_INFO   \
1053                _IOWR('H', 0x01, struct hl_info_args)
1054
1055/*
1056 * Command Buffer
1057 * - Request a Command Buffer
1058 * - Destroy a Command Buffer
1059 *
1060 * The command buffers are memory blocks that reside in DMA-able address
1061 * space and are physically contiguous so they can be accessed by the device
1062 * directly. They are allocated using the coherent DMA API.
1063 *
1064 * When creating a new CB, the IOCTL returns a handle of it, and the user-space
1065 * process needs to use that handle to mmap the buffer so it can access them.
1066 *
1067 * In some instances, the device must access the command buffer through the
1068 * device's MMU, and thus its memory should be mapped. In these cases, user can
1069 * indicate the driver that such a mapping is required.
1070 * The resulting device virtual address will be used internally by the driver,
1071 * and won't be returned to user.
1072 *
1073 */
1074#define HL_IOCTL_CB             \
1075                _IOWR('H', 0x02, union hl_cb_args)
1076
1077/*
1078 * Command Submission
1079 *
1080 * To submit work to the device, the user need to call this IOCTL with a set
1081 * of JOBS. That set of JOBS constitutes a CS object.
1082 * Each JOB will be enqueued on a specific queue, according to the user's input.
1083 * There can be more then one JOB per queue.
1084 *
1085 * The CS IOCTL will receive two sets of JOBS. One set is for "restore" phase
1086 * and a second set is for "execution" phase.
1087 * The JOBS on the "restore" phase are enqueued only after context-switch
1088 * (or if its the first CS for this context). The user can also order the
1089 * driver to run the "restore" phase explicitly
1090 *
1091 * There are two types of queues - external and internal. External queues
1092 * are DMA queues which transfer data from/to the Host. All other queues are
1093 * internal. The driver will get completion notifications from the device only
1094 * on JOBS which are enqueued in the external queues.
1095 *
1096 * For jobs on external queues, the user needs to create command buffers
1097 * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on
1098 * internal queues, the user needs to prepare a "command buffer" with packets
1099 * on either the device SRAM/DRAM or the host, and give the device address of
1100 * that buffer to the CS ioctl.
1101 *
1102 * This IOCTL is asynchronous in regard to the actual execution of the CS. This
1103 * means it returns immediately after ALL the JOBS were enqueued on their
1104 * relevant queues. Therefore, the user mustn't assume the CS has been completed
1105 * or has even started to execute.
1106 *
1107 * Upon successful enqueue, the IOCTL returns a sequence number which the user
1108 * can use with the "Wait for CS" IOCTL to check whether the handle's CS
1109 * external JOBS have been completed. Note that if the CS has internal JOBS
1110 * which can execute AFTER the external JOBS have finished, the driver might
1111 * report that the CS has finished executing BEFORE the internal JOBS have
1112 * actually finished executing.
1113 *
1114 * Even though the sequence number increments per CS, the user can NOT
1115 * automatically assume that if CS with sequence number N finished, then CS
1116 * with sequence number N-1 also finished. The user can make this assumption if
1117 * and only if CS N and CS N-1 are exactly the same (same CBs for the same
1118 * queues).
1119 */
1120#define HL_IOCTL_CS                     \
1121                _IOWR('H', 0x03, union hl_cs_args)
1122
1123/*
1124 * Wait for Command Submission
1125 *
1126 * The user can call this IOCTL with a handle it received from the CS IOCTL
1127 * to wait until the handle's CS has finished executing. The user will wait
1128 * inside the kernel until the CS has finished or until the user-requested
1129 * timeout has expired.
1130 *
1131 * If the timeout value is 0, the driver won't sleep at all. It will check
1132 * the status of the CS and return immediately
1133 *
1134 * The return value of the IOCTL is a standard Linux error code. The possible
1135 * values are:
1136 *
1137 * EINTR     - Kernel waiting has been interrupted, e.g. due to OS signal
1138 *             that the user process received
1139 * ETIMEDOUT - The CS has caused a timeout on the device
1140 * EIO       - The CS was aborted (usually because the device was reset)
1141 * ENODEV    - The device wants to do hard-reset (so user need to close FD)
1142 *
1143 * The driver also returns a custom define inside the IOCTL which can be:
1144 *
1145 * HL_WAIT_CS_STATUS_COMPLETED   - The CS has been completed successfully (0)
1146 * HL_WAIT_CS_STATUS_BUSY        - The CS is still executing (0)
1147 * HL_WAIT_CS_STATUS_TIMEDOUT    - The CS has caused a timeout on the device
1148 *                                 (ETIMEDOUT)
1149 * HL_WAIT_CS_STATUS_ABORTED     - The CS was aborted, usually because the
1150 *                                 device was reset (EIO)
1151 * HL_WAIT_CS_STATUS_INTERRUPTED - Waiting for the CS was interrupted (EINTR)
1152 *
1153 */
1154
1155#define HL_IOCTL_WAIT_CS                        \
1156                _IOWR('H', 0x04, union hl_wait_cs_args)
1157
1158/*
1159 * Memory
1160 * - Map host memory to device MMU
1161 * - Unmap host memory from device MMU
1162 *
1163 * This IOCTL allows the user to map host memory to the device MMU
1164 *
1165 * For host memory, the IOCTL doesn't allocate memory. The user is supposed
1166 * to allocate the memory in user-space (malloc/new). The driver pins the
1167 * physical pages (up to the allowed limit by the OS), assigns a virtual
1168 * address in the device VA space and initializes the device MMU.
1169 *
1170 * There is an option for the user to specify the requested virtual address.
1171 *
1172 */
1173#define HL_IOCTL_MEMORY         \
1174                _IOWR('H', 0x05, union hl_mem_args)
1175
1176/*
1177 * Debug
1178 * - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces
1179 *
1180 * This IOCTL allows the user to get debug traces from the chip.
1181 *
1182 * Before the user can send configuration requests of the various
1183 * debug/profile engines, it needs to set the device into debug mode.
1184 * This is because the debug/profile infrastructure is shared component in the
1185 * device and we can't allow multiple users to access it at the same time.
1186 *
1187 * Once a user set the device into debug mode, the driver won't allow other
1188 * users to "work" with the device, i.e. open a FD. If there are multiple users
1189 * opened on the device, the driver won't allow any user to debug the device.
1190 *
1191 * For each configuration request, the user needs to provide the register index
1192 * and essential data such as buffer address and size.
1193 *
1194 * Once the user has finished using the debug/profile engines, he should
1195 * set the device into non-debug mode, i.e. disable debug mode.
1196 *
1197 * The driver can decide to "kick out" the user if he abuses this interface.
1198 *
1199 */
1200#define HL_IOCTL_DEBUG          \
1201                _IOWR('H', 0x06, struct hl_debug_args)
1202
1203#define HL_COMMAND_START        0x01
1204#define HL_COMMAND_END          0x07
1205
1206#endif /* HABANALABS_H_ */
1207