linux/include/linux/math64.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_MATH64_H
   3#define _LINUX_MATH64_H
   4
   5#include <linux/types.h>
   6#include <linux/math.h>
   7#include <vdso/math64.h>
   8#include <asm/div64.h>
   9
  10#if BITS_PER_LONG == 64
  11
  12#define div64_long(x, y) div64_s64((x), (y))
  13#define div64_ul(x, y)   div64_u64((x), (y))
  14
  15/**
  16 * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
  17 * @dividend: unsigned 64bit dividend
  18 * @divisor: unsigned 32bit divisor
  19 * @remainder: pointer to unsigned 32bit remainder
  20 *
  21 * Return: sets ``*remainder``, then returns dividend / divisor
  22 *
  23 * This is commonly provided by 32bit archs to provide an optimized 64bit
  24 * divide.
  25 */
  26static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
  27{
  28        *remainder = dividend % divisor;
  29        return dividend / divisor;
  30}
  31
  32/*
  33 * div_s64_rem - signed 64bit divide with 32bit divisor with remainder
  34 * @dividend: signed 64bit dividend
  35 * @divisor: signed 32bit divisor
  36 * @remainder: pointer to signed 32bit remainder
  37 *
  38 * Return: sets ``*remainder``, then returns dividend / divisor
  39 */
  40static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
  41{
  42        *remainder = dividend % divisor;
  43        return dividend / divisor;
  44}
  45
  46/*
  47 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
  48 * @dividend: unsigned 64bit dividend
  49 * @divisor: unsigned 64bit divisor
  50 * @remainder: pointer to unsigned 64bit remainder
  51 *
  52 * Return: sets ``*remainder``, then returns dividend / divisor
  53 */
  54static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
  55{
  56        *remainder = dividend % divisor;
  57        return dividend / divisor;
  58}
  59
  60/*
  61 * div64_u64 - unsigned 64bit divide with 64bit divisor
  62 * @dividend: unsigned 64bit dividend
  63 * @divisor: unsigned 64bit divisor
  64 *
  65 * Return: dividend / divisor
  66 */
  67static inline u64 div64_u64(u64 dividend, u64 divisor)
  68{
  69        return dividend / divisor;
  70}
  71
  72/*
  73 * div64_s64 - signed 64bit divide with 64bit divisor
  74 * @dividend: signed 64bit dividend
  75 * @divisor: signed 64bit divisor
  76 *
  77 * Return: dividend / divisor
  78 */
  79static inline s64 div64_s64(s64 dividend, s64 divisor)
  80{
  81        return dividend / divisor;
  82}
  83
  84#elif BITS_PER_LONG == 32
  85
  86#define div64_long(x, y) div_s64((x), (y))
  87#define div64_ul(x, y)   div_u64((x), (y))
  88
  89#ifndef div_u64_rem
  90static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
  91{
  92        *remainder = do_div(dividend, divisor);
  93        return dividend;
  94}
  95#endif
  96
  97#ifndef div_s64_rem
  98extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
  99#endif
 100
 101#ifndef div64_u64_rem
 102extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
 103#endif
 104
 105#ifndef div64_u64
 106extern u64 div64_u64(u64 dividend, u64 divisor);
 107#endif
 108
 109#ifndef div64_s64
 110extern s64 div64_s64(s64 dividend, s64 divisor);
 111#endif
 112
 113#endif /* BITS_PER_LONG */
 114
 115/**
 116 * div_u64 - unsigned 64bit divide with 32bit divisor
 117 * @dividend: unsigned 64bit dividend
 118 * @divisor: unsigned 32bit divisor
 119 *
 120 * This is the most common 64bit divide and should be used if possible,
 121 * as many 32bit archs can optimize this variant better than a full 64bit
 122 * divide.
 123 */
 124#ifndef div_u64
 125static inline u64 div_u64(u64 dividend, u32 divisor)
 126{
 127        u32 remainder;
 128        return div_u64_rem(dividend, divisor, &remainder);
 129}
 130#endif
 131
 132/**
 133 * div_s64 - signed 64bit divide with 32bit divisor
 134 * @dividend: signed 64bit dividend
 135 * @divisor: signed 32bit divisor
 136 */
 137#ifndef div_s64
 138static inline s64 div_s64(s64 dividend, s32 divisor)
 139{
 140        s32 remainder;
 141        return div_s64_rem(dividend, divisor, &remainder);
 142}
 143#endif
 144
 145u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
 146
 147#ifndef mul_u32_u32
 148/*
 149 * Many a GCC version messes this up and generates a 64x64 mult :-(
 150 */
 151static inline u64 mul_u32_u32(u32 a, u32 b)
 152{
 153        return (u64)a * b;
 154}
 155#endif
 156
 157#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
 158
 159#ifndef mul_u64_u32_shr
 160static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
 161{
 162        return (u64)(((unsigned __int128)a * mul) >> shift);
 163}
 164#endif /* mul_u64_u32_shr */
 165
 166#ifndef mul_u64_u64_shr
 167static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
 168{
 169        return (u64)(((unsigned __int128)a * mul) >> shift);
 170}
 171#endif /* mul_u64_u64_shr */
 172
 173#else
 174
 175#ifndef mul_u64_u32_shr
 176static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
 177{
 178        u32 ah, al;
 179        u64 ret;
 180
 181        al = a;
 182        ah = a >> 32;
 183
 184        ret = mul_u32_u32(al, mul) >> shift;
 185        if (ah)
 186                ret += mul_u32_u32(ah, mul) << (32 - shift);
 187
 188        return ret;
 189}
 190#endif /* mul_u64_u32_shr */
 191
 192#ifndef mul_u64_u64_shr
 193static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
 194{
 195        union {
 196                u64 ll;
 197                struct {
 198#ifdef __BIG_ENDIAN
 199                        u32 high, low;
 200#else
 201                        u32 low, high;
 202#endif
 203                } l;
 204        } rl, rm, rn, rh, a0, b0;
 205        u64 c;
 206
 207        a0.ll = a;
 208        b0.ll = b;
 209
 210        rl.ll = mul_u32_u32(a0.l.low, b0.l.low);
 211        rm.ll = mul_u32_u32(a0.l.low, b0.l.high);
 212        rn.ll = mul_u32_u32(a0.l.high, b0.l.low);
 213        rh.ll = mul_u32_u32(a0.l.high, b0.l.high);
 214
 215        /*
 216         * Each of these lines computes a 64-bit intermediate result into "c",
 217         * starting at bits 32-95.  The low 32-bits go into the result of the
 218         * multiplication, the high 32-bits are carried into the next step.
 219         */
 220        rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
 221        rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
 222        rh.l.high = (c >> 32) + rh.l.high;
 223
 224        /*
 225         * The 128-bit result of the multiplication is in rl.ll and rh.ll,
 226         * shift it right and throw away the high part of the result.
 227         */
 228        if (shift == 0)
 229                return rl.ll;
 230        if (shift < 64)
 231                return (rl.ll >> shift) | (rh.ll << (64 - shift));
 232        return rh.ll >> (shift & 63);
 233}
 234#endif /* mul_u64_u64_shr */
 235
 236#endif
 237
 238#ifndef mul_s64_u64_shr
 239static inline u64 mul_s64_u64_shr(s64 a, u64 b, unsigned int shift)
 240{
 241        u64 ret;
 242
 243        /*
 244         * Extract the sign before the multiplication and put it back
 245         * afterwards if needed.
 246         */
 247        ret = mul_u64_u64_shr(abs(a), b, shift);
 248
 249        if (a < 0)
 250                ret = -((s64) ret);
 251
 252        return ret;
 253}
 254#endif /* mul_s64_u64_shr */
 255
 256#ifndef mul_u64_u32_div
 257static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
 258{
 259        union {
 260                u64 ll;
 261                struct {
 262#ifdef __BIG_ENDIAN
 263                        u32 high, low;
 264#else
 265                        u32 low, high;
 266#endif
 267                } l;
 268        } u, rl, rh;
 269
 270        u.ll = a;
 271        rl.ll = mul_u32_u32(u.l.low, mul);
 272        rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high;
 273
 274        /* Bits 32-63 of the result will be in rh.l.low. */
 275        rl.l.high = do_div(rh.ll, divisor);
 276
 277        /* Bits 0-31 of the result will be in rl.l.low. */
 278        do_div(rl.ll, divisor);
 279
 280        rl.l.high = rh.l.low;
 281        return rl.ll;
 282}
 283#endif /* mul_u64_u32_div */
 284
 285u64 mul_u64_u64_div_u64(u64 a, u64 mul, u64 div);
 286
 287#define DIV64_U64_ROUND_UP(ll, d)       \
 288        ({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); })
 289
 290/**
 291 * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer
 292 * @dividend: unsigned 64bit dividend
 293 * @divisor: unsigned 64bit divisor
 294 *
 295 * Divide unsigned 64bit dividend by unsigned 64bit divisor
 296 * and round to closest integer.
 297 *
 298 * Return: dividend / divisor rounded to nearest integer
 299 */
 300#define DIV64_U64_ROUND_CLOSEST(dividend, divisor)      \
 301        ({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); })
 302
 303/*
 304 * DIV_S64_ROUND_CLOSEST - signed 64bit divide with 32bit divisor rounded to nearest integer
 305 * @dividend: signed 64bit dividend
 306 * @divisor: signed 32bit divisor
 307 *
 308 * Divide signed 64bit dividend by signed 32bit divisor
 309 * and round to closest integer.
 310 *
 311 * Return: dividend / divisor rounded to nearest integer
 312 */
 313#define DIV_S64_ROUND_CLOSEST(dividend, divisor)(       \
 314{                                                       \
 315        s64 __x = (dividend);                           \
 316        s32 __d = (divisor);                            \
 317        ((__x > 0) == (__d > 0)) ?                      \
 318                div_s64((__x + (__d / 2)), __d) :       \
 319                div_s64((__x - (__d / 2)), __d);        \
 320}                                                       \
 321)
 322#endif /* _LINUX_MATH64_H */
 323