linux/fs/proc/task_mmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/pagewalk.h>
   3#include <linux/vmacache.h>
   4#include <linux/hugetlb.h>
   5#include <linux/huge_mm.h>
   6#include <linux/mount.h>
   7#include <linux/seq_file.h>
   8#include <linux/highmem.h>
   9#include <linux/ptrace.h>
  10#include <linux/slab.h>
  11#include <linux/pagemap.h>
  12#include <linux/mempolicy.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
  15#include <linux/sched/mm.h>
  16#include <linux/swapops.h>
  17#include <linux/mmu_notifier.h>
  18#include <linux/page_idle.h>
  19#include <linux/shmem_fs.h>
  20#include <linux/uaccess.h>
  21#include <linux/pkeys.h>
  22
  23#include <asm/elf.h>
  24#include <asm/tlb.h>
  25#include <asm/tlbflush.h>
  26#include "internal.h"
  27
  28#define SEQ_PUT_DEC(str, val) \
  29                seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
  30void task_mem(struct seq_file *m, struct mm_struct *mm)
  31{
  32        unsigned long text, lib, swap, anon, file, shmem;
  33        unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  34
  35        anon = get_mm_counter(mm, MM_ANONPAGES);
  36        file = get_mm_counter(mm, MM_FILEPAGES);
  37        shmem = get_mm_counter(mm, MM_SHMEMPAGES);
  38
  39        /*
  40         * Note: to minimize their overhead, mm maintains hiwater_vm and
  41         * hiwater_rss only when about to *lower* total_vm or rss.  Any
  42         * collector of these hiwater stats must therefore get total_vm
  43         * and rss too, which will usually be the higher.  Barriers? not
  44         * worth the effort, such snapshots can always be inconsistent.
  45         */
  46        hiwater_vm = total_vm = mm->total_vm;
  47        if (hiwater_vm < mm->hiwater_vm)
  48                hiwater_vm = mm->hiwater_vm;
  49        hiwater_rss = total_rss = anon + file + shmem;
  50        if (hiwater_rss < mm->hiwater_rss)
  51                hiwater_rss = mm->hiwater_rss;
  52
  53        /* split executable areas between text and lib */
  54        text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
  55        text = min(text, mm->exec_vm << PAGE_SHIFT);
  56        lib = (mm->exec_vm << PAGE_SHIFT) - text;
  57
  58        swap = get_mm_counter(mm, MM_SWAPENTS);
  59        SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
  60        SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
  61        SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
  62        SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
  63        SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
  64        SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
  65        SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
  66        SEQ_PUT_DEC(" kB\nRssFile:\t", file);
  67        SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
  68        SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
  69        SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
  70        seq_put_decimal_ull_width(m,
  71                    " kB\nVmExe:\t", text >> 10, 8);
  72        seq_put_decimal_ull_width(m,
  73                    " kB\nVmLib:\t", lib >> 10, 8);
  74        seq_put_decimal_ull_width(m,
  75                    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
  76        SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
  77        seq_puts(m, " kB\n");
  78        hugetlb_report_usage(m, mm);
  79}
  80#undef SEQ_PUT_DEC
  81
  82unsigned long task_vsize(struct mm_struct *mm)
  83{
  84        return PAGE_SIZE * mm->total_vm;
  85}
  86
  87unsigned long task_statm(struct mm_struct *mm,
  88                         unsigned long *shared, unsigned long *text,
  89                         unsigned long *data, unsigned long *resident)
  90{
  91        *shared = get_mm_counter(mm, MM_FILEPAGES) +
  92                        get_mm_counter(mm, MM_SHMEMPAGES);
  93        *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  94                                                                >> PAGE_SHIFT;
  95        *data = mm->data_vm + mm->stack_vm;
  96        *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  97        return mm->total_vm;
  98}
  99
 100#ifdef CONFIG_NUMA
 101/*
 102 * Save get_task_policy() for show_numa_map().
 103 */
 104static void hold_task_mempolicy(struct proc_maps_private *priv)
 105{
 106        struct task_struct *task = priv->task;
 107
 108        task_lock(task);
 109        priv->task_mempolicy = get_task_policy(task);
 110        mpol_get(priv->task_mempolicy);
 111        task_unlock(task);
 112}
 113static void release_task_mempolicy(struct proc_maps_private *priv)
 114{
 115        mpol_put(priv->task_mempolicy);
 116}
 117#else
 118static void hold_task_mempolicy(struct proc_maps_private *priv)
 119{
 120}
 121static void release_task_mempolicy(struct proc_maps_private *priv)
 122{
 123}
 124#endif
 125
 126static void *m_start(struct seq_file *m, loff_t *ppos)
 127{
 128        struct proc_maps_private *priv = m->private;
 129        unsigned long last_addr = *ppos;
 130        struct mm_struct *mm;
 131        struct vm_area_struct *vma;
 132
 133        /* See m_next(). Zero at the start or after lseek. */
 134        if (last_addr == -1UL)
 135                return NULL;
 136
 137        priv->task = get_proc_task(priv->inode);
 138        if (!priv->task)
 139                return ERR_PTR(-ESRCH);
 140
 141        mm = priv->mm;
 142        if (!mm || !mmget_not_zero(mm)) {
 143                put_task_struct(priv->task);
 144                priv->task = NULL;
 145                return NULL;
 146        }
 147
 148        if (mmap_read_lock_killable(mm)) {
 149                mmput(mm);
 150                put_task_struct(priv->task);
 151                priv->task = NULL;
 152                return ERR_PTR(-EINTR);
 153        }
 154
 155        hold_task_mempolicy(priv);
 156        priv->tail_vma = get_gate_vma(mm);
 157
 158        vma = find_vma(mm, last_addr);
 159        if (vma)
 160                return vma;
 161
 162        return priv->tail_vma;
 163}
 164
 165static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
 166{
 167        struct proc_maps_private *priv = m->private;
 168        struct vm_area_struct *next, *vma = v;
 169
 170        if (vma == priv->tail_vma)
 171                next = NULL;
 172        else if (vma->vm_next)
 173                next = vma->vm_next;
 174        else
 175                next = priv->tail_vma;
 176
 177        *ppos = next ? next->vm_start : -1UL;
 178
 179        return next;
 180}
 181
 182static void m_stop(struct seq_file *m, void *v)
 183{
 184        struct proc_maps_private *priv = m->private;
 185        struct mm_struct *mm = priv->mm;
 186
 187        if (!priv->task)
 188                return;
 189
 190        release_task_mempolicy(priv);
 191        mmap_read_unlock(mm);
 192        mmput(mm);
 193        put_task_struct(priv->task);
 194        priv->task = NULL;
 195}
 196
 197static int proc_maps_open(struct inode *inode, struct file *file,
 198                        const struct seq_operations *ops, int psize)
 199{
 200        struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
 201
 202        if (!priv)
 203                return -ENOMEM;
 204
 205        priv->inode = inode;
 206        priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
 207        if (IS_ERR(priv->mm)) {
 208                int err = PTR_ERR(priv->mm);
 209
 210                seq_release_private(inode, file);
 211                return err;
 212        }
 213
 214        return 0;
 215}
 216
 217static int proc_map_release(struct inode *inode, struct file *file)
 218{
 219        struct seq_file *seq = file->private_data;
 220        struct proc_maps_private *priv = seq->private;
 221
 222        if (priv->mm)
 223                mmdrop(priv->mm);
 224
 225        return seq_release_private(inode, file);
 226}
 227
 228static int do_maps_open(struct inode *inode, struct file *file,
 229                        const struct seq_operations *ops)
 230{
 231        return proc_maps_open(inode, file, ops,
 232                                sizeof(struct proc_maps_private));
 233}
 234
 235/*
 236 * Indicate if the VMA is a stack for the given task; for
 237 * /proc/PID/maps that is the stack of the main task.
 238 */
 239static int is_stack(struct vm_area_struct *vma)
 240{
 241        /*
 242         * We make no effort to guess what a given thread considers to be
 243         * its "stack".  It's not even well-defined for programs written
 244         * languages like Go.
 245         */
 246        return vma->vm_start <= vma->vm_mm->start_stack &&
 247                vma->vm_end >= vma->vm_mm->start_stack;
 248}
 249
 250static void show_vma_header_prefix(struct seq_file *m,
 251                                   unsigned long start, unsigned long end,
 252                                   vm_flags_t flags, unsigned long long pgoff,
 253                                   dev_t dev, unsigned long ino)
 254{
 255        seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
 256        seq_put_hex_ll(m, NULL, start, 8);
 257        seq_put_hex_ll(m, "-", end, 8);
 258        seq_putc(m, ' ');
 259        seq_putc(m, flags & VM_READ ? 'r' : '-');
 260        seq_putc(m, flags & VM_WRITE ? 'w' : '-');
 261        seq_putc(m, flags & VM_EXEC ? 'x' : '-');
 262        seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
 263        seq_put_hex_ll(m, " ", pgoff, 8);
 264        seq_put_hex_ll(m, " ", MAJOR(dev), 2);
 265        seq_put_hex_ll(m, ":", MINOR(dev), 2);
 266        seq_put_decimal_ull(m, " ", ino);
 267        seq_putc(m, ' ');
 268}
 269
 270static void
 271show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
 272{
 273        struct mm_struct *mm = vma->vm_mm;
 274        struct file *file = vma->vm_file;
 275        vm_flags_t flags = vma->vm_flags;
 276        unsigned long ino = 0;
 277        unsigned long long pgoff = 0;
 278        unsigned long start, end;
 279        dev_t dev = 0;
 280        const char *name = NULL;
 281
 282        if (file) {
 283                struct inode *inode = file_inode(vma->vm_file);
 284                dev = inode->i_sb->s_dev;
 285                ino = inode->i_ino;
 286                pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
 287        }
 288
 289        start = vma->vm_start;
 290        end = vma->vm_end;
 291        show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
 292
 293        /*
 294         * Print the dentry name for named mappings, and a
 295         * special [heap] marker for the heap:
 296         */
 297        if (file) {
 298                seq_pad(m, ' ');
 299                seq_file_path(m, file, "\n");
 300                goto done;
 301        }
 302
 303        if (vma->vm_ops && vma->vm_ops->name) {
 304                name = vma->vm_ops->name(vma);
 305                if (name)
 306                        goto done;
 307        }
 308
 309        name = arch_vma_name(vma);
 310        if (!name) {
 311                if (!mm) {
 312                        name = "[vdso]";
 313                        goto done;
 314                }
 315
 316                if (vma->vm_start <= mm->brk &&
 317                    vma->vm_end >= mm->start_brk) {
 318                        name = "[heap]";
 319                        goto done;
 320                }
 321
 322                if (is_stack(vma))
 323                        name = "[stack]";
 324        }
 325
 326done:
 327        if (name) {
 328                seq_pad(m, ' ');
 329                seq_puts(m, name);
 330        }
 331        seq_putc(m, '\n');
 332}
 333
 334static int show_map(struct seq_file *m, void *v)
 335{
 336        show_map_vma(m, v);
 337        return 0;
 338}
 339
 340static const struct seq_operations proc_pid_maps_op = {
 341        .start  = m_start,
 342        .next   = m_next,
 343        .stop   = m_stop,
 344        .show   = show_map
 345};
 346
 347static int pid_maps_open(struct inode *inode, struct file *file)
 348{
 349        return do_maps_open(inode, file, &proc_pid_maps_op);
 350}
 351
 352const struct file_operations proc_pid_maps_operations = {
 353        .open           = pid_maps_open,
 354        .read           = seq_read,
 355        .llseek         = seq_lseek,
 356        .release        = proc_map_release,
 357};
 358
 359/*
 360 * Proportional Set Size(PSS): my share of RSS.
 361 *
 362 * PSS of a process is the count of pages it has in memory, where each
 363 * page is divided by the number of processes sharing it.  So if a
 364 * process has 1000 pages all to itself, and 1000 shared with one other
 365 * process, its PSS will be 1500.
 366 *
 367 * To keep (accumulated) division errors low, we adopt a 64bit
 368 * fixed-point pss counter to minimize division errors. So (pss >>
 369 * PSS_SHIFT) would be the real byte count.
 370 *
 371 * A shift of 12 before division means (assuming 4K page size):
 372 *      - 1M 3-user-pages add up to 8KB errors;
 373 *      - supports mapcount up to 2^24, or 16M;
 374 *      - supports PSS up to 2^52 bytes, or 4PB.
 375 */
 376#define PSS_SHIFT 12
 377
 378#ifdef CONFIG_PROC_PAGE_MONITOR
 379struct mem_size_stats {
 380        unsigned long resident;
 381        unsigned long shared_clean;
 382        unsigned long shared_dirty;
 383        unsigned long private_clean;
 384        unsigned long private_dirty;
 385        unsigned long referenced;
 386        unsigned long anonymous;
 387        unsigned long lazyfree;
 388        unsigned long anonymous_thp;
 389        unsigned long shmem_thp;
 390        unsigned long file_thp;
 391        unsigned long swap;
 392        unsigned long shared_hugetlb;
 393        unsigned long private_hugetlb;
 394        u64 pss;
 395        u64 pss_anon;
 396        u64 pss_file;
 397        u64 pss_shmem;
 398        u64 pss_locked;
 399        u64 swap_pss;
 400        bool check_shmem_swap;
 401};
 402
 403static void smaps_page_accumulate(struct mem_size_stats *mss,
 404                struct page *page, unsigned long size, unsigned long pss,
 405                bool dirty, bool locked, bool private)
 406{
 407        mss->pss += pss;
 408
 409        if (PageAnon(page))
 410                mss->pss_anon += pss;
 411        else if (PageSwapBacked(page))
 412                mss->pss_shmem += pss;
 413        else
 414                mss->pss_file += pss;
 415
 416        if (locked)
 417                mss->pss_locked += pss;
 418
 419        if (dirty || PageDirty(page)) {
 420                if (private)
 421                        mss->private_dirty += size;
 422                else
 423                        mss->shared_dirty += size;
 424        } else {
 425                if (private)
 426                        mss->private_clean += size;
 427                else
 428                        mss->shared_clean += size;
 429        }
 430}
 431
 432static void smaps_account(struct mem_size_stats *mss, struct page *page,
 433                bool compound, bool young, bool dirty, bool locked)
 434{
 435        int i, nr = compound ? compound_nr(page) : 1;
 436        unsigned long size = nr * PAGE_SIZE;
 437
 438        /*
 439         * First accumulate quantities that depend only on |size| and the type
 440         * of the compound page.
 441         */
 442        if (PageAnon(page)) {
 443                mss->anonymous += size;
 444                if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
 445                        mss->lazyfree += size;
 446        }
 447
 448        mss->resident += size;
 449        /* Accumulate the size in pages that have been accessed. */
 450        if (young || page_is_young(page) || PageReferenced(page))
 451                mss->referenced += size;
 452
 453        /*
 454         * Then accumulate quantities that may depend on sharing, or that may
 455         * differ page-by-page.
 456         *
 457         * page_count(page) == 1 guarantees the page is mapped exactly once.
 458         * If any subpage of the compound page mapped with PTE it would elevate
 459         * page_count().
 460         */
 461        if (page_count(page) == 1) {
 462                smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
 463                        locked, true);
 464                return;
 465        }
 466        for (i = 0; i < nr; i++, page++) {
 467                int mapcount = page_mapcount(page);
 468                unsigned long pss = PAGE_SIZE << PSS_SHIFT;
 469                if (mapcount >= 2)
 470                        pss /= mapcount;
 471                smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
 472                                      mapcount < 2);
 473        }
 474}
 475
 476#ifdef CONFIG_SHMEM
 477static int smaps_pte_hole(unsigned long addr, unsigned long end,
 478                          __always_unused int depth, struct mm_walk *walk)
 479{
 480        struct mem_size_stats *mss = walk->private;
 481
 482        mss->swap += shmem_partial_swap_usage(
 483                        walk->vma->vm_file->f_mapping, addr, end);
 484
 485        return 0;
 486}
 487#else
 488#define smaps_pte_hole          NULL
 489#endif /* CONFIG_SHMEM */
 490
 491static void smaps_pte_entry(pte_t *pte, unsigned long addr,
 492                struct mm_walk *walk)
 493{
 494        struct mem_size_stats *mss = walk->private;
 495        struct vm_area_struct *vma = walk->vma;
 496        bool locked = !!(vma->vm_flags & VM_LOCKED);
 497        struct page *page = NULL;
 498
 499        if (pte_present(*pte)) {
 500                page = vm_normal_page(vma, addr, *pte);
 501        } else if (is_swap_pte(*pte)) {
 502                swp_entry_t swpent = pte_to_swp_entry(*pte);
 503
 504                if (!non_swap_entry(swpent)) {
 505                        int mapcount;
 506
 507                        mss->swap += PAGE_SIZE;
 508                        mapcount = swp_swapcount(swpent);
 509                        if (mapcount >= 2) {
 510                                u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
 511
 512                                do_div(pss_delta, mapcount);
 513                                mss->swap_pss += pss_delta;
 514                        } else {
 515                                mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
 516                        }
 517                } else if (is_pfn_swap_entry(swpent))
 518                        page = pfn_swap_entry_to_page(swpent);
 519        } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
 520                                                        && pte_none(*pte))) {
 521                page = xa_load(&vma->vm_file->f_mapping->i_pages,
 522                                                linear_page_index(vma, addr));
 523                if (xa_is_value(page))
 524                        mss->swap += PAGE_SIZE;
 525                return;
 526        }
 527
 528        if (!page)
 529                return;
 530
 531        smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
 532}
 533
 534#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 535static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 536                struct mm_walk *walk)
 537{
 538        struct mem_size_stats *mss = walk->private;
 539        struct vm_area_struct *vma = walk->vma;
 540        bool locked = !!(vma->vm_flags & VM_LOCKED);
 541        struct page *page = NULL;
 542
 543        if (pmd_present(*pmd)) {
 544                /* FOLL_DUMP will return -EFAULT on huge zero page */
 545                page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
 546        } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
 547                swp_entry_t entry = pmd_to_swp_entry(*pmd);
 548
 549                if (is_migration_entry(entry))
 550                        page = pfn_swap_entry_to_page(entry);
 551        }
 552        if (IS_ERR_OR_NULL(page))
 553                return;
 554        if (PageAnon(page))
 555                mss->anonymous_thp += HPAGE_PMD_SIZE;
 556        else if (PageSwapBacked(page))
 557                mss->shmem_thp += HPAGE_PMD_SIZE;
 558        else if (is_zone_device_page(page))
 559                /* pass */;
 560        else
 561                mss->file_thp += HPAGE_PMD_SIZE;
 562        smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
 563}
 564#else
 565static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
 566                struct mm_walk *walk)
 567{
 568}
 569#endif
 570
 571static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
 572                           struct mm_walk *walk)
 573{
 574        struct vm_area_struct *vma = walk->vma;
 575        pte_t *pte;
 576        spinlock_t *ptl;
 577
 578        ptl = pmd_trans_huge_lock(pmd, vma);
 579        if (ptl) {
 580                smaps_pmd_entry(pmd, addr, walk);
 581                spin_unlock(ptl);
 582                goto out;
 583        }
 584
 585        if (pmd_trans_unstable(pmd))
 586                goto out;
 587        /*
 588         * The mmap_lock held all the way back in m_start() is what
 589         * keeps khugepaged out of here and from collapsing things
 590         * in here.
 591         */
 592        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
 593        for (; addr != end; pte++, addr += PAGE_SIZE)
 594                smaps_pte_entry(pte, addr, walk);
 595        pte_unmap_unlock(pte - 1, ptl);
 596out:
 597        cond_resched();
 598        return 0;
 599}
 600
 601static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
 602{
 603        /*
 604         * Don't forget to update Documentation/ on changes.
 605         */
 606        static const char mnemonics[BITS_PER_LONG][2] = {
 607                /*
 608                 * In case if we meet a flag we don't know about.
 609                 */
 610                [0 ... (BITS_PER_LONG-1)] = "??",
 611
 612                [ilog2(VM_READ)]        = "rd",
 613                [ilog2(VM_WRITE)]       = "wr",
 614                [ilog2(VM_EXEC)]        = "ex",
 615                [ilog2(VM_SHARED)]      = "sh",
 616                [ilog2(VM_MAYREAD)]     = "mr",
 617                [ilog2(VM_MAYWRITE)]    = "mw",
 618                [ilog2(VM_MAYEXEC)]     = "me",
 619                [ilog2(VM_MAYSHARE)]    = "ms",
 620                [ilog2(VM_GROWSDOWN)]   = "gd",
 621                [ilog2(VM_PFNMAP)]      = "pf",
 622                [ilog2(VM_DENYWRITE)]   = "dw",
 623                [ilog2(VM_LOCKED)]      = "lo",
 624                [ilog2(VM_IO)]          = "io",
 625                [ilog2(VM_SEQ_READ)]    = "sr",
 626                [ilog2(VM_RAND_READ)]   = "rr",
 627                [ilog2(VM_DONTCOPY)]    = "dc",
 628                [ilog2(VM_DONTEXPAND)]  = "de",
 629                [ilog2(VM_ACCOUNT)]     = "ac",
 630                [ilog2(VM_NORESERVE)]   = "nr",
 631                [ilog2(VM_HUGETLB)]     = "ht",
 632                [ilog2(VM_SYNC)]        = "sf",
 633                [ilog2(VM_ARCH_1)]      = "ar",
 634                [ilog2(VM_WIPEONFORK)]  = "wf",
 635                [ilog2(VM_DONTDUMP)]    = "dd",
 636#ifdef CONFIG_ARM64_BTI
 637                [ilog2(VM_ARM64_BTI)]   = "bt",
 638#endif
 639#ifdef CONFIG_MEM_SOFT_DIRTY
 640                [ilog2(VM_SOFTDIRTY)]   = "sd",
 641#endif
 642                [ilog2(VM_MIXEDMAP)]    = "mm",
 643                [ilog2(VM_HUGEPAGE)]    = "hg",
 644                [ilog2(VM_NOHUGEPAGE)]  = "nh",
 645                [ilog2(VM_MERGEABLE)]   = "mg",
 646                [ilog2(VM_UFFD_MISSING)]= "um",
 647                [ilog2(VM_UFFD_WP)]     = "uw",
 648#ifdef CONFIG_ARM64_MTE
 649                [ilog2(VM_MTE)]         = "mt",
 650                [ilog2(VM_MTE_ALLOWED)] = "",
 651#endif
 652#ifdef CONFIG_ARCH_HAS_PKEYS
 653                /* These come out via ProtectionKey: */
 654                [ilog2(VM_PKEY_BIT0)]   = "",
 655                [ilog2(VM_PKEY_BIT1)]   = "",
 656                [ilog2(VM_PKEY_BIT2)]   = "",
 657                [ilog2(VM_PKEY_BIT3)]   = "",
 658#if VM_PKEY_BIT4
 659                [ilog2(VM_PKEY_BIT4)]   = "",
 660#endif
 661#endif /* CONFIG_ARCH_HAS_PKEYS */
 662#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
 663                [ilog2(VM_UFFD_MINOR)]  = "ui",
 664#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
 665        };
 666        size_t i;
 667
 668        seq_puts(m, "VmFlags: ");
 669        for (i = 0; i < BITS_PER_LONG; i++) {
 670                if (!mnemonics[i][0])
 671                        continue;
 672                if (vma->vm_flags & (1UL << i)) {
 673                        seq_putc(m, mnemonics[i][0]);
 674                        seq_putc(m, mnemonics[i][1]);
 675                        seq_putc(m, ' ');
 676                }
 677        }
 678        seq_putc(m, '\n');
 679}
 680
 681#ifdef CONFIG_HUGETLB_PAGE
 682static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
 683                                 unsigned long addr, unsigned long end,
 684                                 struct mm_walk *walk)
 685{
 686        struct mem_size_stats *mss = walk->private;
 687        struct vm_area_struct *vma = walk->vma;
 688        struct page *page = NULL;
 689
 690        if (pte_present(*pte)) {
 691                page = vm_normal_page(vma, addr, *pte);
 692        } else if (is_swap_pte(*pte)) {
 693                swp_entry_t swpent = pte_to_swp_entry(*pte);
 694
 695                if (is_pfn_swap_entry(swpent))
 696                        page = pfn_swap_entry_to_page(swpent);
 697        }
 698        if (page) {
 699                int mapcount = page_mapcount(page);
 700
 701                if (mapcount >= 2)
 702                        mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
 703                else
 704                        mss->private_hugetlb += huge_page_size(hstate_vma(vma));
 705        }
 706        return 0;
 707}
 708#else
 709#define smaps_hugetlb_range     NULL
 710#endif /* HUGETLB_PAGE */
 711
 712static const struct mm_walk_ops smaps_walk_ops = {
 713        .pmd_entry              = smaps_pte_range,
 714        .hugetlb_entry          = smaps_hugetlb_range,
 715};
 716
 717static const struct mm_walk_ops smaps_shmem_walk_ops = {
 718        .pmd_entry              = smaps_pte_range,
 719        .hugetlb_entry          = smaps_hugetlb_range,
 720        .pte_hole               = smaps_pte_hole,
 721};
 722
 723/*
 724 * Gather mem stats from @vma with the indicated beginning
 725 * address @start, and keep them in @mss.
 726 *
 727 * Use vm_start of @vma as the beginning address if @start is 0.
 728 */
 729static void smap_gather_stats(struct vm_area_struct *vma,
 730                struct mem_size_stats *mss, unsigned long start)
 731{
 732        const struct mm_walk_ops *ops = &smaps_walk_ops;
 733
 734        /* Invalid start */
 735        if (start >= vma->vm_end)
 736                return;
 737
 738#ifdef CONFIG_SHMEM
 739        /* In case of smaps_rollup, reset the value from previous vma */
 740        mss->check_shmem_swap = false;
 741        if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
 742                /*
 743                 * For shared or readonly shmem mappings we know that all
 744                 * swapped out pages belong to the shmem object, and we can
 745                 * obtain the swap value much more efficiently. For private
 746                 * writable mappings, we might have COW pages that are
 747                 * not affected by the parent swapped out pages of the shmem
 748                 * object, so we have to distinguish them during the page walk.
 749                 * Unless we know that the shmem object (or the part mapped by
 750                 * our VMA) has no swapped out pages at all.
 751                 */
 752                unsigned long shmem_swapped = shmem_swap_usage(vma);
 753
 754                if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
 755                                        !(vma->vm_flags & VM_WRITE))) {
 756                        mss->swap += shmem_swapped;
 757                } else {
 758                        mss->check_shmem_swap = true;
 759                        ops = &smaps_shmem_walk_ops;
 760                }
 761        }
 762#endif
 763        /* mmap_lock is held in m_start */
 764        if (!start)
 765                walk_page_vma(vma, ops, mss);
 766        else
 767                walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
 768}
 769
 770#define SEQ_PUT_DEC(str, val) \
 771                seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
 772
 773/* Show the contents common for smaps and smaps_rollup */
 774static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
 775        bool rollup_mode)
 776{
 777        SEQ_PUT_DEC("Rss:            ", mss->resident);
 778        SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
 779        if (rollup_mode) {
 780                /*
 781                 * These are meaningful only for smaps_rollup, otherwise two of
 782                 * them are zero, and the other one is the same as Pss.
 783                 */
 784                SEQ_PUT_DEC(" kB\nPss_Anon:       ",
 785                        mss->pss_anon >> PSS_SHIFT);
 786                SEQ_PUT_DEC(" kB\nPss_File:       ",
 787                        mss->pss_file >> PSS_SHIFT);
 788                SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
 789                        mss->pss_shmem >> PSS_SHIFT);
 790        }
 791        SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
 792        SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
 793        SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
 794        SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
 795        SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
 796        SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
 797        SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
 798        SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
 799        SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
 800        SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
 801        SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
 802        seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
 803                                  mss->private_hugetlb >> 10, 7);
 804        SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
 805        SEQ_PUT_DEC(" kB\nSwapPss:        ",
 806                                        mss->swap_pss >> PSS_SHIFT);
 807        SEQ_PUT_DEC(" kB\nLocked:         ",
 808                                        mss->pss_locked >> PSS_SHIFT);
 809        seq_puts(m, " kB\n");
 810}
 811
 812static int show_smap(struct seq_file *m, void *v)
 813{
 814        struct vm_area_struct *vma = v;
 815        struct mem_size_stats mss;
 816
 817        memset(&mss, 0, sizeof(mss));
 818
 819        smap_gather_stats(vma, &mss, 0);
 820
 821        show_map_vma(m, vma);
 822
 823        SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
 824        SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
 825        SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
 826        seq_puts(m, " kB\n");
 827
 828        __show_smap(m, &mss, false);
 829
 830        seq_printf(m, "THPeligible:    %d\n",
 831                   transparent_hugepage_active(vma));
 832
 833        if (arch_pkeys_enabled())
 834                seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
 835        show_smap_vma_flags(m, vma);
 836
 837        return 0;
 838}
 839
 840static int show_smaps_rollup(struct seq_file *m, void *v)
 841{
 842        struct proc_maps_private *priv = m->private;
 843        struct mem_size_stats mss;
 844        struct mm_struct *mm;
 845        struct vm_area_struct *vma;
 846        unsigned long last_vma_end = 0;
 847        int ret = 0;
 848
 849        priv->task = get_proc_task(priv->inode);
 850        if (!priv->task)
 851                return -ESRCH;
 852
 853        mm = priv->mm;
 854        if (!mm || !mmget_not_zero(mm)) {
 855                ret = -ESRCH;
 856                goto out_put_task;
 857        }
 858
 859        memset(&mss, 0, sizeof(mss));
 860
 861        ret = mmap_read_lock_killable(mm);
 862        if (ret)
 863                goto out_put_mm;
 864
 865        hold_task_mempolicy(priv);
 866
 867        for (vma = priv->mm->mmap; vma;) {
 868                smap_gather_stats(vma, &mss, 0);
 869                last_vma_end = vma->vm_end;
 870
 871                /*
 872                 * Release mmap_lock temporarily if someone wants to
 873                 * access it for write request.
 874                 */
 875                if (mmap_lock_is_contended(mm)) {
 876                        mmap_read_unlock(mm);
 877                        ret = mmap_read_lock_killable(mm);
 878                        if (ret) {
 879                                release_task_mempolicy(priv);
 880                                goto out_put_mm;
 881                        }
 882
 883                        /*
 884                         * After dropping the lock, there are four cases to
 885                         * consider. See the following example for explanation.
 886                         *
 887                         *   +------+------+-----------+
 888                         *   | VMA1 | VMA2 | VMA3      |
 889                         *   +------+------+-----------+
 890                         *   |      |      |           |
 891                         *  4k     8k     16k         400k
 892                         *
 893                         * Suppose we drop the lock after reading VMA2 due to
 894                         * contention, then we get:
 895                         *
 896                         *      last_vma_end = 16k
 897                         *
 898                         * 1) VMA2 is freed, but VMA3 exists:
 899                         *
 900                         *    find_vma(mm, 16k - 1) will return VMA3.
 901                         *    In this case, just continue from VMA3.
 902                         *
 903                         * 2) VMA2 still exists:
 904                         *
 905                         *    find_vma(mm, 16k - 1) will return VMA2.
 906                         *    Iterate the loop like the original one.
 907                         *
 908                         * 3) No more VMAs can be found:
 909                         *
 910                         *    find_vma(mm, 16k - 1) will return NULL.
 911                         *    No more things to do, just break.
 912                         *
 913                         * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
 914                         *
 915                         *    find_vma(mm, 16k - 1) will return VMA' whose range
 916                         *    contains last_vma_end.
 917                         *    Iterate VMA' from last_vma_end.
 918                         */
 919                        vma = find_vma(mm, last_vma_end - 1);
 920                        /* Case 3 above */
 921                        if (!vma)
 922                                break;
 923
 924                        /* Case 1 above */
 925                        if (vma->vm_start >= last_vma_end)
 926                                continue;
 927
 928                        /* Case 4 above */
 929                        if (vma->vm_end > last_vma_end)
 930                                smap_gather_stats(vma, &mss, last_vma_end);
 931                }
 932                /* Case 2 above */
 933                vma = vma->vm_next;
 934        }
 935
 936        show_vma_header_prefix(m, priv->mm->mmap->vm_start,
 937                               last_vma_end, 0, 0, 0, 0);
 938        seq_pad(m, ' ');
 939        seq_puts(m, "[rollup]\n");
 940
 941        __show_smap(m, &mss, true);
 942
 943        release_task_mempolicy(priv);
 944        mmap_read_unlock(mm);
 945
 946out_put_mm:
 947        mmput(mm);
 948out_put_task:
 949        put_task_struct(priv->task);
 950        priv->task = NULL;
 951
 952        return ret;
 953}
 954#undef SEQ_PUT_DEC
 955
 956static const struct seq_operations proc_pid_smaps_op = {
 957        .start  = m_start,
 958        .next   = m_next,
 959        .stop   = m_stop,
 960        .show   = show_smap
 961};
 962
 963static int pid_smaps_open(struct inode *inode, struct file *file)
 964{
 965        return do_maps_open(inode, file, &proc_pid_smaps_op);
 966}
 967
 968static int smaps_rollup_open(struct inode *inode, struct file *file)
 969{
 970        int ret;
 971        struct proc_maps_private *priv;
 972
 973        priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
 974        if (!priv)
 975                return -ENOMEM;
 976
 977        ret = single_open(file, show_smaps_rollup, priv);
 978        if (ret)
 979                goto out_free;
 980
 981        priv->inode = inode;
 982        priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
 983        if (IS_ERR(priv->mm)) {
 984                ret = PTR_ERR(priv->mm);
 985
 986                single_release(inode, file);
 987                goto out_free;
 988        }
 989
 990        return 0;
 991
 992out_free:
 993        kfree(priv);
 994        return ret;
 995}
 996
 997static int smaps_rollup_release(struct inode *inode, struct file *file)
 998{
 999        struct seq_file *seq = file->private_data;
1000        struct proc_maps_private *priv = seq->private;
1001
1002        if (priv->mm)
1003                mmdrop(priv->mm);
1004
1005        kfree(priv);
1006        return single_release(inode, file);
1007}
1008
1009const struct file_operations proc_pid_smaps_operations = {
1010        .open           = pid_smaps_open,
1011        .read           = seq_read,
1012        .llseek         = seq_lseek,
1013        .release        = proc_map_release,
1014};
1015
1016const struct file_operations proc_pid_smaps_rollup_operations = {
1017        .open           = smaps_rollup_open,
1018        .read           = seq_read,
1019        .llseek         = seq_lseek,
1020        .release        = smaps_rollup_release,
1021};
1022
1023enum clear_refs_types {
1024        CLEAR_REFS_ALL = 1,
1025        CLEAR_REFS_ANON,
1026        CLEAR_REFS_MAPPED,
1027        CLEAR_REFS_SOFT_DIRTY,
1028        CLEAR_REFS_MM_HIWATER_RSS,
1029        CLEAR_REFS_LAST,
1030};
1031
1032struct clear_refs_private {
1033        enum clear_refs_types type;
1034};
1035
1036#ifdef CONFIG_MEM_SOFT_DIRTY
1037
1038static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1039{
1040        struct page *page;
1041
1042        if (!pte_write(pte))
1043                return false;
1044        if (!is_cow_mapping(vma->vm_flags))
1045                return false;
1046        if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1047                return false;
1048        page = vm_normal_page(vma, addr, pte);
1049        if (!page)
1050                return false;
1051        return page_maybe_dma_pinned(page);
1052}
1053
1054static inline void clear_soft_dirty(struct vm_area_struct *vma,
1055                unsigned long addr, pte_t *pte)
1056{
1057        /*
1058         * The soft-dirty tracker uses #PF-s to catch writes
1059         * to pages, so write-protect the pte as well. See the
1060         * Documentation/admin-guide/mm/soft-dirty.rst for full description
1061         * of how soft-dirty works.
1062         */
1063        pte_t ptent = *pte;
1064
1065        if (pte_present(ptent)) {
1066                pte_t old_pte;
1067
1068                if (pte_is_pinned(vma, addr, ptent))
1069                        return;
1070                old_pte = ptep_modify_prot_start(vma, addr, pte);
1071                ptent = pte_wrprotect(old_pte);
1072                ptent = pte_clear_soft_dirty(ptent);
1073                ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1074        } else if (is_swap_pte(ptent)) {
1075                ptent = pte_swp_clear_soft_dirty(ptent);
1076                set_pte_at(vma->vm_mm, addr, pte, ptent);
1077        }
1078}
1079#else
1080static inline void clear_soft_dirty(struct vm_area_struct *vma,
1081                unsigned long addr, pte_t *pte)
1082{
1083}
1084#endif
1085
1086#if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1087static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1088                unsigned long addr, pmd_t *pmdp)
1089{
1090        pmd_t old, pmd = *pmdp;
1091
1092        if (pmd_present(pmd)) {
1093                /* See comment in change_huge_pmd() */
1094                old = pmdp_invalidate(vma, addr, pmdp);
1095                if (pmd_dirty(old))
1096                        pmd = pmd_mkdirty(pmd);
1097                if (pmd_young(old))
1098                        pmd = pmd_mkyoung(pmd);
1099
1100                pmd = pmd_wrprotect(pmd);
1101                pmd = pmd_clear_soft_dirty(pmd);
1102
1103                set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1104        } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1105                pmd = pmd_swp_clear_soft_dirty(pmd);
1106                set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1107        }
1108}
1109#else
1110static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1111                unsigned long addr, pmd_t *pmdp)
1112{
1113}
1114#endif
1115
1116static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1117                                unsigned long end, struct mm_walk *walk)
1118{
1119        struct clear_refs_private *cp = walk->private;
1120        struct vm_area_struct *vma = walk->vma;
1121        pte_t *pte, ptent;
1122        spinlock_t *ptl;
1123        struct page *page;
1124
1125        ptl = pmd_trans_huge_lock(pmd, vma);
1126        if (ptl) {
1127                if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1128                        clear_soft_dirty_pmd(vma, addr, pmd);
1129                        goto out;
1130                }
1131
1132                if (!pmd_present(*pmd))
1133                        goto out;
1134
1135                page = pmd_page(*pmd);
1136
1137                /* Clear accessed and referenced bits. */
1138                pmdp_test_and_clear_young(vma, addr, pmd);
1139                test_and_clear_page_young(page);
1140                ClearPageReferenced(page);
1141out:
1142                spin_unlock(ptl);
1143                return 0;
1144        }
1145
1146        if (pmd_trans_unstable(pmd))
1147                return 0;
1148
1149        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1150        for (; addr != end; pte++, addr += PAGE_SIZE) {
1151                ptent = *pte;
1152
1153                if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1154                        clear_soft_dirty(vma, addr, pte);
1155                        continue;
1156                }
1157
1158                if (!pte_present(ptent))
1159                        continue;
1160
1161                page = vm_normal_page(vma, addr, ptent);
1162                if (!page)
1163                        continue;
1164
1165                /* Clear accessed and referenced bits. */
1166                ptep_test_and_clear_young(vma, addr, pte);
1167                test_and_clear_page_young(page);
1168                ClearPageReferenced(page);
1169        }
1170        pte_unmap_unlock(pte - 1, ptl);
1171        cond_resched();
1172        return 0;
1173}
1174
1175static int clear_refs_test_walk(unsigned long start, unsigned long end,
1176                                struct mm_walk *walk)
1177{
1178        struct clear_refs_private *cp = walk->private;
1179        struct vm_area_struct *vma = walk->vma;
1180
1181        if (vma->vm_flags & VM_PFNMAP)
1182                return 1;
1183
1184        /*
1185         * Writing 1 to /proc/pid/clear_refs affects all pages.
1186         * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1187         * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1188         * Writing 4 to /proc/pid/clear_refs affects all pages.
1189         */
1190        if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1191                return 1;
1192        if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1193                return 1;
1194        return 0;
1195}
1196
1197static const struct mm_walk_ops clear_refs_walk_ops = {
1198        .pmd_entry              = clear_refs_pte_range,
1199        .test_walk              = clear_refs_test_walk,
1200};
1201
1202static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1203                                size_t count, loff_t *ppos)
1204{
1205        struct task_struct *task;
1206        char buffer[PROC_NUMBUF];
1207        struct mm_struct *mm;
1208        struct vm_area_struct *vma;
1209        enum clear_refs_types type;
1210        int itype;
1211        int rv;
1212
1213        memset(buffer, 0, sizeof(buffer));
1214        if (count > sizeof(buffer) - 1)
1215                count = sizeof(buffer) - 1;
1216        if (copy_from_user(buffer, buf, count))
1217                return -EFAULT;
1218        rv = kstrtoint(strstrip(buffer), 10, &itype);
1219        if (rv < 0)
1220                return rv;
1221        type = (enum clear_refs_types)itype;
1222        if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1223                return -EINVAL;
1224
1225        task = get_proc_task(file_inode(file));
1226        if (!task)
1227                return -ESRCH;
1228        mm = get_task_mm(task);
1229        if (mm) {
1230                struct mmu_notifier_range range;
1231                struct clear_refs_private cp = {
1232                        .type = type,
1233                };
1234
1235                if (mmap_write_lock_killable(mm)) {
1236                        count = -EINTR;
1237                        goto out_mm;
1238                }
1239                if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1240                        /*
1241                         * Writing 5 to /proc/pid/clear_refs resets the peak
1242                         * resident set size to this mm's current rss value.
1243                         */
1244                        reset_mm_hiwater_rss(mm);
1245                        goto out_unlock;
1246                }
1247
1248                if (type == CLEAR_REFS_SOFT_DIRTY) {
1249                        for (vma = mm->mmap; vma; vma = vma->vm_next) {
1250                                if (!(vma->vm_flags & VM_SOFTDIRTY))
1251                                        continue;
1252                                vma->vm_flags &= ~VM_SOFTDIRTY;
1253                                vma_set_page_prot(vma);
1254                        }
1255
1256                        inc_tlb_flush_pending(mm);
1257                        mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1258                                                0, NULL, mm, 0, -1UL);
1259                        mmu_notifier_invalidate_range_start(&range);
1260                }
1261                walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1262                                &cp);
1263                if (type == CLEAR_REFS_SOFT_DIRTY) {
1264                        mmu_notifier_invalidate_range_end(&range);
1265                        flush_tlb_mm(mm);
1266                        dec_tlb_flush_pending(mm);
1267                }
1268out_unlock:
1269                mmap_write_unlock(mm);
1270out_mm:
1271                mmput(mm);
1272        }
1273        put_task_struct(task);
1274
1275        return count;
1276}
1277
1278const struct file_operations proc_clear_refs_operations = {
1279        .write          = clear_refs_write,
1280        .llseek         = noop_llseek,
1281};
1282
1283typedef struct {
1284        u64 pme;
1285} pagemap_entry_t;
1286
1287struct pagemapread {
1288        int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1289        pagemap_entry_t *buffer;
1290        bool show_pfn;
1291};
1292
1293#define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1294#define PAGEMAP_WALK_MASK       (PMD_MASK)
1295
1296#define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1297#define PM_PFRAME_BITS          55
1298#define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1299#define PM_SOFT_DIRTY           BIT_ULL(55)
1300#define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1301#define PM_UFFD_WP              BIT_ULL(57)
1302#define PM_FILE                 BIT_ULL(61)
1303#define PM_SWAP                 BIT_ULL(62)
1304#define PM_PRESENT              BIT_ULL(63)
1305
1306#define PM_END_OF_BUFFER    1
1307
1308static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1309{
1310        return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1311}
1312
1313static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1314                          struct pagemapread *pm)
1315{
1316        pm->buffer[pm->pos++] = *pme;
1317        if (pm->pos >= pm->len)
1318                return PM_END_OF_BUFFER;
1319        return 0;
1320}
1321
1322static int pagemap_pte_hole(unsigned long start, unsigned long end,
1323                            __always_unused int depth, struct mm_walk *walk)
1324{
1325        struct pagemapread *pm = walk->private;
1326        unsigned long addr = start;
1327        int err = 0;
1328
1329        while (addr < end) {
1330                struct vm_area_struct *vma = find_vma(walk->mm, addr);
1331                pagemap_entry_t pme = make_pme(0, 0);
1332                /* End of address space hole, which we mark as non-present. */
1333                unsigned long hole_end;
1334
1335                if (vma)
1336                        hole_end = min(end, vma->vm_start);
1337                else
1338                        hole_end = end;
1339
1340                for (; addr < hole_end; addr += PAGE_SIZE) {
1341                        err = add_to_pagemap(addr, &pme, pm);
1342                        if (err)
1343                                goto out;
1344                }
1345
1346                if (!vma)
1347                        break;
1348
1349                /* Addresses in the VMA. */
1350                if (vma->vm_flags & VM_SOFTDIRTY)
1351                        pme = make_pme(0, PM_SOFT_DIRTY);
1352                for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1353                        err = add_to_pagemap(addr, &pme, pm);
1354                        if (err)
1355                                goto out;
1356                }
1357        }
1358out:
1359        return err;
1360}
1361
1362static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1363                struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1364{
1365        u64 frame = 0, flags = 0;
1366        struct page *page = NULL;
1367
1368        if (pte_present(pte)) {
1369                if (pm->show_pfn)
1370                        frame = pte_pfn(pte);
1371                flags |= PM_PRESENT;
1372                page = vm_normal_page(vma, addr, pte);
1373                if (pte_soft_dirty(pte))
1374                        flags |= PM_SOFT_DIRTY;
1375                if (pte_uffd_wp(pte))
1376                        flags |= PM_UFFD_WP;
1377        } else if (is_swap_pte(pte)) {
1378                swp_entry_t entry;
1379                if (pte_swp_soft_dirty(pte))
1380                        flags |= PM_SOFT_DIRTY;
1381                if (pte_swp_uffd_wp(pte))
1382                        flags |= PM_UFFD_WP;
1383                entry = pte_to_swp_entry(pte);
1384                if (pm->show_pfn)
1385                        frame = swp_type(entry) |
1386                                (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1387                flags |= PM_SWAP;
1388                if (is_pfn_swap_entry(entry))
1389                        page = pfn_swap_entry_to_page(entry);
1390        }
1391
1392        if (page && !PageAnon(page))
1393                flags |= PM_FILE;
1394        if (page && page_mapcount(page) == 1)
1395                flags |= PM_MMAP_EXCLUSIVE;
1396        if (vma->vm_flags & VM_SOFTDIRTY)
1397                flags |= PM_SOFT_DIRTY;
1398
1399        return make_pme(frame, flags);
1400}
1401
1402static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1403                             struct mm_walk *walk)
1404{
1405        struct vm_area_struct *vma = walk->vma;
1406        struct pagemapread *pm = walk->private;
1407        spinlock_t *ptl;
1408        pte_t *pte, *orig_pte;
1409        int err = 0;
1410
1411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412        ptl = pmd_trans_huge_lock(pmdp, vma);
1413        if (ptl) {
1414                u64 flags = 0, frame = 0;
1415                pmd_t pmd = *pmdp;
1416                struct page *page = NULL;
1417
1418                if (vma->vm_flags & VM_SOFTDIRTY)
1419                        flags |= PM_SOFT_DIRTY;
1420
1421                if (pmd_present(pmd)) {
1422                        page = pmd_page(pmd);
1423
1424                        flags |= PM_PRESENT;
1425                        if (pmd_soft_dirty(pmd))
1426                                flags |= PM_SOFT_DIRTY;
1427                        if (pmd_uffd_wp(pmd))
1428                                flags |= PM_UFFD_WP;
1429                        if (pm->show_pfn)
1430                                frame = pmd_pfn(pmd) +
1431                                        ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1432                }
1433#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1434                else if (is_swap_pmd(pmd)) {
1435                        swp_entry_t entry = pmd_to_swp_entry(pmd);
1436                        unsigned long offset;
1437
1438                        if (pm->show_pfn) {
1439                                offset = swp_offset(entry) +
1440                                        ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1441                                frame = swp_type(entry) |
1442                                        (offset << MAX_SWAPFILES_SHIFT);
1443                        }
1444                        flags |= PM_SWAP;
1445                        if (pmd_swp_soft_dirty(pmd))
1446                                flags |= PM_SOFT_DIRTY;
1447                        if (pmd_swp_uffd_wp(pmd))
1448                                flags |= PM_UFFD_WP;
1449                        VM_BUG_ON(!is_pmd_migration_entry(pmd));
1450                        page = pfn_swap_entry_to_page(entry);
1451                }
1452#endif
1453
1454                if (page && page_mapcount(page) == 1)
1455                        flags |= PM_MMAP_EXCLUSIVE;
1456
1457                for (; addr != end; addr += PAGE_SIZE) {
1458                        pagemap_entry_t pme = make_pme(frame, flags);
1459
1460                        err = add_to_pagemap(addr, &pme, pm);
1461                        if (err)
1462                                break;
1463                        if (pm->show_pfn) {
1464                                if (flags & PM_PRESENT)
1465                                        frame++;
1466                                else if (flags & PM_SWAP)
1467                                        frame += (1 << MAX_SWAPFILES_SHIFT);
1468                        }
1469                }
1470                spin_unlock(ptl);
1471                return err;
1472        }
1473
1474        if (pmd_trans_unstable(pmdp))
1475                return 0;
1476#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1477
1478        /*
1479         * We can assume that @vma always points to a valid one and @end never
1480         * goes beyond vma->vm_end.
1481         */
1482        orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1483        for (; addr < end; pte++, addr += PAGE_SIZE) {
1484                pagemap_entry_t pme;
1485
1486                pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1487                err = add_to_pagemap(addr, &pme, pm);
1488                if (err)
1489                        break;
1490        }
1491        pte_unmap_unlock(orig_pte, ptl);
1492
1493        cond_resched();
1494
1495        return err;
1496}
1497
1498#ifdef CONFIG_HUGETLB_PAGE
1499/* This function walks within one hugetlb entry in the single call */
1500static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1501                                 unsigned long addr, unsigned long end,
1502                                 struct mm_walk *walk)
1503{
1504        struct pagemapread *pm = walk->private;
1505        struct vm_area_struct *vma = walk->vma;
1506        u64 flags = 0, frame = 0;
1507        int err = 0;
1508        pte_t pte;
1509
1510        if (vma->vm_flags & VM_SOFTDIRTY)
1511                flags |= PM_SOFT_DIRTY;
1512
1513        pte = huge_ptep_get(ptep);
1514        if (pte_present(pte)) {
1515                struct page *page = pte_page(pte);
1516
1517                if (!PageAnon(page))
1518                        flags |= PM_FILE;
1519
1520                if (page_mapcount(page) == 1)
1521                        flags |= PM_MMAP_EXCLUSIVE;
1522
1523                flags |= PM_PRESENT;
1524                if (pm->show_pfn)
1525                        frame = pte_pfn(pte) +
1526                                ((addr & ~hmask) >> PAGE_SHIFT);
1527        }
1528
1529        for (; addr != end; addr += PAGE_SIZE) {
1530                pagemap_entry_t pme = make_pme(frame, flags);
1531
1532                err = add_to_pagemap(addr, &pme, pm);
1533                if (err)
1534                        return err;
1535                if (pm->show_pfn && (flags & PM_PRESENT))
1536                        frame++;
1537        }
1538
1539        cond_resched();
1540
1541        return err;
1542}
1543#else
1544#define pagemap_hugetlb_range   NULL
1545#endif /* HUGETLB_PAGE */
1546
1547static const struct mm_walk_ops pagemap_ops = {
1548        .pmd_entry      = pagemap_pmd_range,
1549        .pte_hole       = pagemap_pte_hole,
1550        .hugetlb_entry  = pagemap_hugetlb_range,
1551};
1552
1553/*
1554 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1555 *
1556 * For each page in the address space, this file contains one 64-bit entry
1557 * consisting of the following:
1558 *
1559 * Bits 0-54  page frame number (PFN) if present
1560 * Bits 0-4   swap type if swapped
1561 * Bits 5-54  swap offset if swapped
1562 * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1563 * Bit  56    page exclusively mapped
1564 * Bits 57-60 zero
1565 * Bit  61    page is file-page or shared-anon
1566 * Bit  62    page swapped
1567 * Bit  63    page present
1568 *
1569 * If the page is not present but in swap, then the PFN contains an
1570 * encoding of the swap file number and the page's offset into the
1571 * swap. Unmapped pages return a null PFN. This allows determining
1572 * precisely which pages are mapped (or in swap) and comparing mapped
1573 * pages between processes.
1574 *
1575 * Efficient users of this interface will use /proc/pid/maps to
1576 * determine which areas of memory are actually mapped and llseek to
1577 * skip over unmapped regions.
1578 */
1579static ssize_t pagemap_read(struct file *file, char __user *buf,
1580                            size_t count, loff_t *ppos)
1581{
1582        struct mm_struct *mm = file->private_data;
1583        struct pagemapread pm;
1584        unsigned long src;
1585        unsigned long svpfn;
1586        unsigned long start_vaddr;
1587        unsigned long end_vaddr;
1588        int ret = 0, copied = 0;
1589
1590        if (!mm || !mmget_not_zero(mm))
1591                goto out;
1592
1593        ret = -EINVAL;
1594        /* file position must be aligned */
1595        if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1596                goto out_mm;
1597
1598        ret = 0;
1599        if (!count)
1600                goto out_mm;
1601
1602        /* do not disclose physical addresses: attack vector */
1603        pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1604
1605        pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1606        pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1607        ret = -ENOMEM;
1608        if (!pm.buffer)
1609                goto out_mm;
1610
1611        src = *ppos;
1612        svpfn = src / PM_ENTRY_BYTES;
1613        end_vaddr = mm->task_size;
1614
1615        /* watch out for wraparound */
1616        start_vaddr = end_vaddr;
1617        if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1618                start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1619
1620        /* Ensure the address is inside the task */
1621        if (start_vaddr > mm->task_size)
1622                start_vaddr = end_vaddr;
1623
1624        /*
1625         * The odds are that this will stop walking way
1626         * before end_vaddr, because the length of the
1627         * user buffer is tracked in "pm", and the walk
1628         * will stop when we hit the end of the buffer.
1629         */
1630        ret = 0;
1631        while (count && (start_vaddr < end_vaddr)) {
1632                int len;
1633                unsigned long end;
1634
1635                pm.pos = 0;
1636                end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1637                /* overflow ? */
1638                if (end < start_vaddr || end > end_vaddr)
1639                        end = end_vaddr;
1640                ret = mmap_read_lock_killable(mm);
1641                if (ret)
1642                        goto out_free;
1643                ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1644                mmap_read_unlock(mm);
1645                start_vaddr = end;
1646
1647                len = min(count, PM_ENTRY_BYTES * pm.pos);
1648                if (copy_to_user(buf, pm.buffer, len)) {
1649                        ret = -EFAULT;
1650                        goto out_free;
1651                }
1652                copied += len;
1653                buf += len;
1654                count -= len;
1655        }
1656        *ppos += copied;
1657        if (!ret || ret == PM_END_OF_BUFFER)
1658                ret = copied;
1659
1660out_free:
1661        kfree(pm.buffer);
1662out_mm:
1663        mmput(mm);
1664out:
1665        return ret;
1666}
1667
1668static int pagemap_open(struct inode *inode, struct file *file)
1669{
1670        struct mm_struct *mm;
1671
1672        mm = proc_mem_open(inode, PTRACE_MODE_READ);
1673        if (IS_ERR(mm))
1674                return PTR_ERR(mm);
1675        file->private_data = mm;
1676        return 0;
1677}
1678
1679static int pagemap_release(struct inode *inode, struct file *file)
1680{
1681        struct mm_struct *mm = file->private_data;
1682
1683        if (mm)
1684                mmdrop(mm);
1685        return 0;
1686}
1687
1688const struct file_operations proc_pagemap_operations = {
1689        .llseek         = mem_lseek, /* borrow this */
1690        .read           = pagemap_read,
1691        .open           = pagemap_open,
1692        .release        = pagemap_release,
1693};
1694#endif /* CONFIG_PROC_PAGE_MONITOR */
1695
1696#ifdef CONFIG_NUMA
1697
1698struct numa_maps {
1699        unsigned long pages;
1700        unsigned long anon;
1701        unsigned long active;
1702        unsigned long writeback;
1703        unsigned long mapcount_max;
1704        unsigned long dirty;
1705        unsigned long swapcache;
1706        unsigned long node[MAX_NUMNODES];
1707};
1708
1709struct numa_maps_private {
1710        struct proc_maps_private proc_maps;
1711        struct numa_maps md;
1712};
1713
1714static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1715                        unsigned long nr_pages)
1716{
1717        int count = page_mapcount(page);
1718
1719        md->pages += nr_pages;
1720        if (pte_dirty || PageDirty(page))
1721                md->dirty += nr_pages;
1722
1723        if (PageSwapCache(page))
1724                md->swapcache += nr_pages;
1725
1726        if (PageActive(page) || PageUnevictable(page))
1727                md->active += nr_pages;
1728
1729        if (PageWriteback(page))
1730                md->writeback += nr_pages;
1731
1732        if (PageAnon(page))
1733                md->anon += nr_pages;
1734
1735        if (count > md->mapcount_max)
1736                md->mapcount_max = count;
1737
1738        md->node[page_to_nid(page)] += nr_pages;
1739}
1740
1741static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1742                unsigned long addr)
1743{
1744        struct page *page;
1745        int nid;
1746
1747        if (!pte_present(pte))
1748                return NULL;
1749
1750        page = vm_normal_page(vma, addr, pte);
1751        if (!page)
1752                return NULL;
1753
1754        if (PageReserved(page))
1755                return NULL;
1756
1757        nid = page_to_nid(page);
1758        if (!node_isset(nid, node_states[N_MEMORY]))
1759                return NULL;
1760
1761        return page;
1762}
1763
1764#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1765static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1766                                              struct vm_area_struct *vma,
1767                                              unsigned long addr)
1768{
1769        struct page *page;
1770        int nid;
1771
1772        if (!pmd_present(pmd))
1773                return NULL;
1774
1775        page = vm_normal_page_pmd(vma, addr, pmd);
1776        if (!page)
1777                return NULL;
1778
1779        if (PageReserved(page))
1780                return NULL;
1781
1782        nid = page_to_nid(page);
1783        if (!node_isset(nid, node_states[N_MEMORY]))
1784                return NULL;
1785
1786        return page;
1787}
1788#endif
1789
1790static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1791                unsigned long end, struct mm_walk *walk)
1792{
1793        struct numa_maps *md = walk->private;
1794        struct vm_area_struct *vma = walk->vma;
1795        spinlock_t *ptl;
1796        pte_t *orig_pte;
1797        pte_t *pte;
1798
1799#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1800        ptl = pmd_trans_huge_lock(pmd, vma);
1801        if (ptl) {
1802                struct page *page;
1803
1804                page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1805                if (page)
1806                        gather_stats(page, md, pmd_dirty(*pmd),
1807                                     HPAGE_PMD_SIZE/PAGE_SIZE);
1808                spin_unlock(ptl);
1809                return 0;
1810        }
1811
1812        if (pmd_trans_unstable(pmd))
1813                return 0;
1814#endif
1815        orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1816        do {
1817                struct page *page = can_gather_numa_stats(*pte, vma, addr);
1818                if (!page)
1819                        continue;
1820                gather_stats(page, md, pte_dirty(*pte), 1);
1821
1822        } while (pte++, addr += PAGE_SIZE, addr != end);
1823        pte_unmap_unlock(orig_pte, ptl);
1824        cond_resched();
1825        return 0;
1826}
1827#ifdef CONFIG_HUGETLB_PAGE
1828static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1829                unsigned long addr, unsigned long end, struct mm_walk *walk)
1830{
1831        pte_t huge_pte = huge_ptep_get(pte);
1832        struct numa_maps *md;
1833        struct page *page;
1834
1835        if (!pte_present(huge_pte))
1836                return 0;
1837
1838        page = pte_page(huge_pte);
1839        if (!page)
1840                return 0;
1841
1842        md = walk->private;
1843        gather_stats(page, md, pte_dirty(huge_pte), 1);
1844        return 0;
1845}
1846
1847#else
1848static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1849                unsigned long addr, unsigned long end, struct mm_walk *walk)
1850{
1851        return 0;
1852}
1853#endif
1854
1855static const struct mm_walk_ops show_numa_ops = {
1856        .hugetlb_entry = gather_hugetlb_stats,
1857        .pmd_entry = gather_pte_stats,
1858};
1859
1860/*
1861 * Display pages allocated per node and memory policy via /proc.
1862 */
1863static int show_numa_map(struct seq_file *m, void *v)
1864{
1865        struct numa_maps_private *numa_priv = m->private;
1866        struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1867        struct vm_area_struct *vma = v;
1868        struct numa_maps *md = &numa_priv->md;
1869        struct file *file = vma->vm_file;
1870        struct mm_struct *mm = vma->vm_mm;
1871        struct mempolicy *pol;
1872        char buffer[64];
1873        int nid;
1874
1875        if (!mm)
1876                return 0;
1877
1878        /* Ensure we start with an empty set of numa_maps statistics. */
1879        memset(md, 0, sizeof(*md));
1880
1881        pol = __get_vma_policy(vma, vma->vm_start);
1882        if (pol) {
1883                mpol_to_str(buffer, sizeof(buffer), pol);
1884                mpol_cond_put(pol);
1885        } else {
1886                mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1887        }
1888
1889        seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1890
1891        if (file) {
1892                seq_puts(m, " file=");
1893                seq_file_path(m, file, "\n\t= ");
1894        } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1895                seq_puts(m, " heap");
1896        } else if (is_stack(vma)) {
1897                seq_puts(m, " stack");
1898        }
1899
1900        if (is_vm_hugetlb_page(vma))
1901                seq_puts(m, " huge");
1902
1903        /* mmap_lock is held by m_start */
1904        walk_page_vma(vma, &show_numa_ops, md);
1905
1906        if (!md->pages)
1907                goto out;
1908
1909        if (md->anon)
1910                seq_printf(m, " anon=%lu", md->anon);
1911
1912        if (md->dirty)
1913                seq_printf(m, " dirty=%lu", md->dirty);
1914
1915        if (md->pages != md->anon && md->pages != md->dirty)
1916                seq_printf(m, " mapped=%lu", md->pages);
1917
1918        if (md->mapcount_max > 1)
1919                seq_printf(m, " mapmax=%lu", md->mapcount_max);
1920
1921        if (md->swapcache)
1922                seq_printf(m, " swapcache=%lu", md->swapcache);
1923
1924        if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1925                seq_printf(m, " active=%lu", md->active);
1926
1927        if (md->writeback)
1928                seq_printf(m, " writeback=%lu", md->writeback);
1929
1930        for_each_node_state(nid, N_MEMORY)
1931                if (md->node[nid])
1932                        seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1933
1934        seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1935out:
1936        seq_putc(m, '\n');
1937        return 0;
1938}
1939
1940static const struct seq_operations proc_pid_numa_maps_op = {
1941        .start  = m_start,
1942        .next   = m_next,
1943        .stop   = m_stop,
1944        .show   = show_numa_map,
1945};
1946
1947static int pid_numa_maps_open(struct inode *inode, struct file *file)
1948{
1949        return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1950                                sizeof(struct numa_maps_private));
1951}
1952
1953const struct file_operations proc_pid_numa_maps_operations = {
1954        .open           = pid_numa_maps_open,
1955        .read           = seq_read,
1956        .llseek         = seq_lseek,
1957        .release        = proc_map_release,
1958};
1959
1960#endif /* CONFIG_NUMA */
1961