linux/drivers/pci/controller/pcie-iproc-msi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2015 Broadcom Corporation
   4 */
   5
   6#include <linux/interrupt.h>
   7#include <linux/irqchip/chained_irq.h>
   8#include <linux/irqdomain.h>
   9#include <linux/msi.h>
  10#include <linux/of_irq.h>
  11#include <linux/of_pci.h>
  12#include <linux/pci.h>
  13
  14#include "pcie-iproc.h"
  15
  16#define IPROC_MSI_INTR_EN_SHIFT        11
  17#define IPROC_MSI_INTR_EN              BIT(IPROC_MSI_INTR_EN_SHIFT)
  18#define IPROC_MSI_INT_N_EVENT_SHIFT    1
  19#define IPROC_MSI_INT_N_EVENT          BIT(IPROC_MSI_INT_N_EVENT_SHIFT)
  20#define IPROC_MSI_EQ_EN_SHIFT          0
  21#define IPROC_MSI_EQ_EN                BIT(IPROC_MSI_EQ_EN_SHIFT)
  22
  23#define IPROC_MSI_EQ_MASK              0x3f
  24
  25/* Max number of GIC interrupts */
  26#define NR_HW_IRQS                     6
  27
  28/* Number of entries in each event queue */
  29#define EQ_LEN                         64
  30
  31/* Size of each event queue memory region */
  32#define EQ_MEM_REGION_SIZE             SZ_4K
  33
  34/* Size of each MSI address region */
  35#define MSI_MEM_REGION_SIZE            SZ_4K
  36
  37enum iproc_msi_reg {
  38        IPROC_MSI_EQ_PAGE = 0,
  39        IPROC_MSI_EQ_PAGE_UPPER,
  40        IPROC_MSI_PAGE,
  41        IPROC_MSI_PAGE_UPPER,
  42        IPROC_MSI_CTRL,
  43        IPROC_MSI_EQ_HEAD,
  44        IPROC_MSI_EQ_TAIL,
  45        IPROC_MSI_INTS_EN,
  46        IPROC_MSI_REG_SIZE,
  47};
  48
  49struct iproc_msi;
  50
  51/**
  52 * struct iproc_msi_grp - iProc MSI group
  53 *
  54 * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI
  55 * event queue.
  56 *
  57 * @msi: pointer to iProc MSI data
  58 * @gic_irq: GIC interrupt
  59 * @eq: Event queue number
  60 */
  61struct iproc_msi_grp {
  62        struct iproc_msi *msi;
  63        int gic_irq;
  64        unsigned int eq;
  65};
  66
  67/**
  68 * struct iproc_msi - iProc event queue based MSI
  69 *
  70 * Only meant to be used on platforms without MSI support integrated into the
  71 * GIC.
  72 *
  73 * @pcie: pointer to iProc PCIe data
  74 * @reg_offsets: MSI register offsets
  75 * @grps: MSI groups
  76 * @nr_irqs: number of total interrupts connected to GIC
  77 * @nr_cpus: number of toal CPUs
  78 * @has_inten_reg: indicates the MSI interrupt enable register needs to be
  79 * set explicitly (required for some legacy platforms)
  80 * @bitmap: MSI vector bitmap
  81 * @bitmap_lock: lock to protect access to the MSI bitmap
  82 * @nr_msi_vecs: total number of MSI vectors
  83 * @inner_domain: inner IRQ domain
  84 * @msi_domain: MSI IRQ domain
  85 * @nr_eq_region: required number of 4K aligned memory region for MSI event
  86 * queues
  87 * @nr_msi_region: required number of 4K aligned address region for MSI posted
  88 * writes
  89 * @eq_cpu: pointer to allocated memory region for MSI event queues
  90 * @eq_dma: DMA address of MSI event queues
  91 * @msi_addr: MSI address
  92 */
  93struct iproc_msi {
  94        struct iproc_pcie *pcie;
  95        const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE];
  96        struct iproc_msi_grp *grps;
  97        int nr_irqs;
  98        int nr_cpus;
  99        bool has_inten_reg;
 100        unsigned long *bitmap;
 101        struct mutex bitmap_lock;
 102        unsigned int nr_msi_vecs;
 103        struct irq_domain *inner_domain;
 104        struct irq_domain *msi_domain;
 105        unsigned int nr_eq_region;
 106        unsigned int nr_msi_region;
 107        void *eq_cpu;
 108        dma_addr_t eq_dma;
 109        phys_addr_t msi_addr;
 110};
 111
 112static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
 113        { 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 },
 114        { 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 },
 115        { 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 },
 116        { 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 },
 117        { 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 },
 118        { 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 },
 119};
 120
 121static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = {
 122        { 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 },
 123        { 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 },
 124        { 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 },
 125        { 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c },
 126};
 127
 128static inline u32 iproc_msi_read_reg(struct iproc_msi *msi,
 129                                     enum iproc_msi_reg reg,
 130                                     unsigned int eq)
 131{
 132        struct iproc_pcie *pcie = msi->pcie;
 133
 134        return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]);
 135}
 136
 137static inline void iproc_msi_write_reg(struct iproc_msi *msi,
 138                                       enum iproc_msi_reg reg,
 139                                       int eq, u32 val)
 140{
 141        struct iproc_pcie *pcie = msi->pcie;
 142
 143        writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]);
 144}
 145
 146static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq)
 147{
 148        return (hwirq % msi->nr_irqs);
 149}
 150
 151static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi,
 152                                                 unsigned long hwirq)
 153{
 154        if (msi->nr_msi_region > 1)
 155                return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE;
 156        else
 157                return hwirq_to_group(msi, hwirq) * sizeof(u32);
 158}
 159
 160static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq)
 161{
 162        if (msi->nr_eq_region > 1)
 163                return eq * EQ_MEM_REGION_SIZE;
 164        else
 165                return eq * EQ_LEN * sizeof(u32);
 166}
 167
 168static struct irq_chip iproc_msi_irq_chip = {
 169        .name = "iProc-MSI",
 170};
 171
 172static struct msi_domain_info iproc_msi_domain_info = {
 173        .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
 174                MSI_FLAG_PCI_MSIX,
 175        .chip = &iproc_msi_irq_chip,
 176};
 177
 178/*
 179 * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a
 180 * dedicated event queue.  Each MSI group can support up to 64 MSI vectors.
 181 *
 182 * The number of MSI groups varies between different iProc SoCs.  The total
 183 * number of CPU cores also varies.  To support MSI IRQ affinity, we
 184 * distribute GIC interrupts across all available CPUs.  MSI vector is moved
 185 * from one GIC interrupt to another to steer to the target CPU.
 186 *
 187 * Assuming:
 188 * - the number of MSI groups is M
 189 * - the number of CPU cores is N
 190 * - M is always a multiple of N
 191 *
 192 * Total number of raw MSI vectors = M * 64
 193 * Total number of supported MSI vectors = (M * 64) / N
 194 */
 195static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq)
 196{
 197        return (hwirq % msi->nr_cpus);
 198}
 199
 200static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi,
 201                                                     unsigned long hwirq)
 202{
 203        return (hwirq - hwirq_to_cpu(msi, hwirq));
 204}
 205
 206static int iproc_msi_irq_set_affinity(struct irq_data *data,
 207                                      const struct cpumask *mask, bool force)
 208{
 209        struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
 210        int target_cpu = cpumask_first(mask);
 211        int curr_cpu;
 212        int ret;
 213
 214        curr_cpu = hwirq_to_cpu(msi, data->hwirq);
 215        if (curr_cpu == target_cpu)
 216                ret = IRQ_SET_MASK_OK_DONE;
 217        else {
 218                /* steer MSI to the target CPU */
 219                data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu;
 220                ret = IRQ_SET_MASK_OK;
 221        }
 222
 223        irq_data_update_effective_affinity(data, cpumask_of(target_cpu));
 224
 225        return ret;
 226}
 227
 228static void iproc_msi_irq_compose_msi_msg(struct irq_data *data,
 229                                          struct msi_msg *msg)
 230{
 231        struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
 232        dma_addr_t addr;
 233
 234        addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq);
 235        msg->address_lo = lower_32_bits(addr);
 236        msg->address_hi = upper_32_bits(addr);
 237        msg->data = data->hwirq << 5;
 238}
 239
 240static struct irq_chip iproc_msi_bottom_irq_chip = {
 241        .name = "MSI",
 242        .irq_set_affinity = iproc_msi_irq_set_affinity,
 243        .irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg,
 244};
 245
 246static int iproc_msi_irq_domain_alloc(struct irq_domain *domain,
 247                                      unsigned int virq, unsigned int nr_irqs,
 248                                      void *args)
 249{
 250        struct iproc_msi *msi = domain->host_data;
 251        int hwirq, i;
 252
 253        if (msi->nr_cpus > 1 && nr_irqs > 1)
 254                return -EINVAL;
 255
 256        mutex_lock(&msi->bitmap_lock);
 257
 258        /*
 259         * Allocate 'nr_irqs' multiplied by 'nr_cpus' number of MSI vectors
 260         * each time
 261         */
 262        hwirq = bitmap_find_free_region(msi->bitmap, msi->nr_msi_vecs,
 263                                        order_base_2(msi->nr_cpus * nr_irqs));
 264
 265        mutex_unlock(&msi->bitmap_lock);
 266
 267        if (hwirq < 0)
 268                return -ENOSPC;
 269
 270        for (i = 0; i < nr_irqs; i++) {
 271                irq_domain_set_info(domain, virq + i, hwirq + i,
 272                                    &iproc_msi_bottom_irq_chip,
 273                                    domain->host_data, handle_simple_irq,
 274                                    NULL, NULL);
 275        }
 276
 277        return 0;
 278}
 279
 280static void iproc_msi_irq_domain_free(struct irq_domain *domain,
 281                                      unsigned int virq, unsigned int nr_irqs)
 282{
 283        struct irq_data *data = irq_domain_get_irq_data(domain, virq);
 284        struct iproc_msi *msi = irq_data_get_irq_chip_data(data);
 285        unsigned int hwirq;
 286
 287        mutex_lock(&msi->bitmap_lock);
 288
 289        hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq);
 290        bitmap_release_region(msi->bitmap, hwirq,
 291                              order_base_2(msi->nr_cpus * nr_irqs));
 292
 293        mutex_unlock(&msi->bitmap_lock);
 294
 295        irq_domain_free_irqs_parent(domain, virq, nr_irqs);
 296}
 297
 298static const struct irq_domain_ops msi_domain_ops = {
 299        .alloc = iproc_msi_irq_domain_alloc,
 300        .free = iproc_msi_irq_domain_free,
 301};
 302
 303static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head)
 304{
 305        u32 __iomem *msg;
 306        u32 hwirq;
 307        unsigned int offs;
 308
 309        offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32);
 310        msg = (u32 __iomem *)(msi->eq_cpu + offs);
 311        hwirq = readl(msg);
 312        hwirq = (hwirq >> 5) + (hwirq & 0x1f);
 313
 314        /*
 315         * Since we have multiple hwirq mapped to a single MSI vector,
 316         * now we need to derive the hwirq at CPU0.  It can then be used to
 317         * mapped back to virq.
 318         */
 319        return hwirq_to_canonical_hwirq(msi, hwirq);
 320}
 321
 322static void iproc_msi_handler(struct irq_desc *desc)
 323{
 324        struct irq_chip *chip = irq_desc_get_chip(desc);
 325        struct iproc_msi_grp *grp;
 326        struct iproc_msi *msi;
 327        u32 eq, head, tail, nr_events;
 328        unsigned long hwirq;
 329        int virq;
 330
 331        chained_irq_enter(chip, desc);
 332
 333        grp = irq_desc_get_handler_data(desc);
 334        msi = grp->msi;
 335        eq = grp->eq;
 336
 337        /*
 338         * iProc MSI event queue is tracked by head and tail pointers.  Head
 339         * pointer indicates the next entry (MSI data) to be consumed by SW in
 340         * the queue and needs to be updated by SW.  iProc MSI core uses the
 341         * tail pointer as the next data insertion point.
 342         *
 343         * Entries between head and tail pointers contain valid MSI data.  MSI
 344         * data is guaranteed to be in the event queue memory before the tail
 345         * pointer is updated by the iProc MSI core.
 346         */
 347        head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD,
 348                                  eq) & IPROC_MSI_EQ_MASK;
 349        do {
 350                tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL,
 351                                          eq) & IPROC_MSI_EQ_MASK;
 352
 353                /*
 354                 * Figure out total number of events (MSI data) to be
 355                 * processed.
 356                 */
 357                nr_events = (tail < head) ?
 358                        (EQ_LEN - (head - tail)) : (tail - head);
 359                if (!nr_events)
 360                        break;
 361
 362                /* process all outstanding events */
 363                while (nr_events--) {
 364                        hwirq = decode_msi_hwirq(msi, eq, head);
 365                        virq = irq_find_mapping(msi->inner_domain, hwirq);
 366                        generic_handle_irq(virq);
 367
 368                        head++;
 369                        head %= EQ_LEN;
 370                }
 371
 372                /*
 373                 * Now all outstanding events have been processed.  Update the
 374                 * head pointer.
 375                 */
 376                iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head);
 377
 378                /*
 379                 * Now go read the tail pointer again to see if there are new
 380                 * outstanding events that came in during the above window.
 381                 */
 382        } while (true);
 383
 384        chained_irq_exit(chip, desc);
 385}
 386
 387static void iproc_msi_enable(struct iproc_msi *msi)
 388{
 389        int i, eq;
 390        u32 val;
 391
 392        /* Program memory region for each event queue */
 393        for (i = 0; i < msi->nr_eq_region; i++) {
 394                dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE);
 395
 396                iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i,
 397                                    lower_32_bits(addr));
 398                iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i,
 399                                    upper_32_bits(addr));
 400        }
 401
 402        /* Program address region for MSI posted writes */
 403        for (i = 0; i < msi->nr_msi_region; i++) {
 404                phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE);
 405
 406                iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i,
 407                                    lower_32_bits(addr));
 408                iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i,
 409                                    upper_32_bits(addr));
 410        }
 411
 412        for (eq = 0; eq < msi->nr_irqs; eq++) {
 413                /* Enable MSI event queue */
 414                val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
 415                        IPROC_MSI_EQ_EN;
 416                iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
 417
 418                /*
 419                 * Some legacy platforms require the MSI interrupt enable
 420                 * register to be set explicitly.
 421                 */
 422                if (msi->has_inten_reg) {
 423                        val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
 424                        val |= BIT(eq);
 425                        iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
 426                }
 427        }
 428}
 429
 430static void iproc_msi_disable(struct iproc_msi *msi)
 431{
 432        u32 eq, val;
 433
 434        for (eq = 0; eq < msi->nr_irqs; eq++) {
 435                if (msi->has_inten_reg) {
 436                        val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq);
 437                        val &= ~BIT(eq);
 438                        iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val);
 439                }
 440
 441                val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq);
 442                val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT |
 443                         IPROC_MSI_EQ_EN);
 444                iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val);
 445        }
 446}
 447
 448static int iproc_msi_alloc_domains(struct device_node *node,
 449                                   struct iproc_msi *msi)
 450{
 451        msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs,
 452                                                  &msi_domain_ops, msi);
 453        if (!msi->inner_domain)
 454                return -ENOMEM;
 455
 456        msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node),
 457                                                    &iproc_msi_domain_info,
 458                                                    msi->inner_domain);
 459        if (!msi->msi_domain) {
 460                irq_domain_remove(msi->inner_domain);
 461                return -ENOMEM;
 462        }
 463
 464        return 0;
 465}
 466
 467static void iproc_msi_free_domains(struct iproc_msi *msi)
 468{
 469        if (msi->msi_domain)
 470                irq_domain_remove(msi->msi_domain);
 471
 472        if (msi->inner_domain)
 473                irq_domain_remove(msi->inner_domain);
 474}
 475
 476static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu)
 477{
 478        int i;
 479
 480        for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
 481                irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
 482                                                 NULL, NULL);
 483        }
 484}
 485
 486static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu)
 487{
 488        int i, ret;
 489        cpumask_var_t mask;
 490        struct iproc_pcie *pcie = msi->pcie;
 491
 492        for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) {
 493                irq_set_chained_handler_and_data(msi->grps[i].gic_irq,
 494                                                 iproc_msi_handler,
 495                                                 &msi->grps[i]);
 496                /* Dedicate GIC interrupt to each CPU core */
 497                if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
 498                        cpumask_clear(mask);
 499                        cpumask_set_cpu(cpu, mask);
 500                        ret = irq_set_affinity(msi->grps[i].gic_irq, mask);
 501                        if (ret)
 502                                dev_err(pcie->dev,
 503                                        "failed to set affinity for IRQ%d\n",
 504                                        msi->grps[i].gic_irq);
 505                        free_cpumask_var(mask);
 506                } else {
 507                        dev_err(pcie->dev, "failed to alloc CPU mask\n");
 508                        ret = -EINVAL;
 509                }
 510
 511                if (ret) {
 512                        /* Free all configured/unconfigured IRQs */
 513                        iproc_msi_irq_free(msi, cpu);
 514                        return ret;
 515                }
 516        }
 517
 518        return 0;
 519}
 520
 521int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node)
 522{
 523        struct iproc_msi *msi;
 524        int i, ret;
 525        unsigned int cpu;
 526
 527        if (!of_device_is_compatible(node, "brcm,iproc-msi"))
 528                return -ENODEV;
 529
 530        if (!of_find_property(node, "msi-controller", NULL))
 531                return -ENODEV;
 532
 533        if (pcie->msi)
 534                return -EBUSY;
 535
 536        msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL);
 537        if (!msi)
 538                return -ENOMEM;
 539
 540        msi->pcie = pcie;
 541        pcie->msi = msi;
 542        msi->msi_addr = pcie->base_addr;
 543        mutex_init(&msi->bitmap_lock);
 544        msi->nr_cpus = num_possible_cpus();
 545
 546        if (msi->nr_cpus == 1)
 547                iproc_msi_domain_info.flags |=  MSI_FLAG_MULTI_PCI_MSI;
 548
 549        msi->nr_irqs = of_irq_count(node);
 550        if (!msi->nr_irqs) {
 551                dev_err(pcie->dev, "found no MSI GIC interrupt\n");
 552                return -ENODEV;
 553        }
 554
 555        if (msi->nr_irqs > NR_HW_IRQS) {
 556                dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n",
 557                         msi->nr_irqs);
 558                msi->nr_irqs = NR_HW_IRQS;
 559        }
 560
 561        if (msi->nr_irqs < msi->nr_cpus) {
 562                dev_err(pcie->dev,
 563                        "not enough GIC interrupts for MSI affinity\n");
 564                return -EINVAL;
 565        }
 566
 567        if (msi->nr_irqs % msi->nr_cpus != 0) {
 568                msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus;
 569                dev_warn(pcie->dev, "Reducing number of interrupts to %d\n",
 570                         msi->nr_irqs);
 571        }
 572
 573        switch (pcie->type) {
 574        case IPROC_PCIE_PAXB_BCMA:
 575        case IPROC_PCIE_PAXB:
 576                msi->reg_offsets = iproc_msi_reg_paxb;
 577                msi->nr_eq_region = 1;
 578                msi->nr_msi_region = 1;
 579                break;
 580        case IPROC_PCIE_PAXC:
 581                msi->reg_offsets = iproc_msi_reg_paxc;
 582                msi->nr_eq_region = msi->nr_irqs;
 583                msi->nr_msi_region = msi->nr_irqs;
 584                break;
 585        default:
 586                dev_err(pcie->dev, "incompatible iProc PCIe interface\n");
 587                return -EINVAL;
 588        }
 589
 590        if (of_find_property(node, "brcm,pcie-msi-inten", NULL))
 591                msi->has_inten_reg = true;
 592
 593        msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN;
 594        msi->bitmap = devm_kcalloc(pcie->dev, BITS_TO_LONGS(msi->nr_msi_vecs),
 595                                   sizeof(*msi->bitmap), GFP_KERNEL);
 596        if (!msi->bitmap)
 597                return -ENOMEM;
 598
 599        msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps),
 600                                 GFP_KERNEL);
 601        if (!msi->grps)
 602                return -ENOMEM;
 603
 604        for (i = 0; i < msi->nr_irqs; i++) {
 605                unsigned int irq = irq_of_parse_and_map(node, i);
 606
 607                if (!irq) {
 608                        dev_err(pcie->dev, "unable to parse/map interrupt\n");
 609                        ret = -ENODEV;
 610                        goto free_irqs;
 611                }
 612                msi->grps[i].gic_irq = irq;
 613                msi->grps[i].msi = msi;
 614                msi->grps[i].eq = i;
 615        }
 616
 617        /* Reserve memory for event queue and make sure memories are zeroed */
 618        msi->eq_cpu = dma_alloc_coherent(pcie->dev,
 619                                         msi->nr_eq_region * EQ_MEM_REGION_SIZE,
 620                                         &msi->eq_dma, GFP_KERNEL);
 621        if (!msi->eq_cpu) {
 622                ret = -ENOMEM;
 623                goto free_irqs;
 624        }
 625
 626        ret = iproc_msi_alloc_domains(node, msi);
 627        if (ret) {
 628                dev_err(pcie->dev, "failed to create MSI domains\n");
 629                goto free_eq_dma;
 630        }
 631
 632        for_each_online_cpu(cpu) {
 633                ret = iproc_msi_irq_setup(msi, cpu);
 634                if (ret)
 635                        goto free_msi_irq;
 636        }
 637
 638        iproc_msi_enable(msi);
 639
 640        return 0;
 641
 642free_msi_irq:
 643        for_each_online_cpu(cpu)
 644                iproc_msi_irq_free(msi, cpu);
 645        iproc_msi_free_domains(msi);
 646
 647free_eq_dma:
 648        dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
 649                          msi->eq_cpu, msi->eq_dma);
 650
 651free_irqs:
 652        for (i = 0; i < msi->nr_irqs; i++) {
 653                if (msi->grps[i].gic_irq)
 654                        irq_dispose_mapping(msi->grps[i].gic_irq);
 655        }
 656        pcie->msi = NULL;
 657        return ret;
 658}
 659EXPORT_SYMBOL(iproc_msi_init);
 660
 661void iproc_msi_exit(struct iproc_pcie *pcie)
 662{
 663        struct iproc_msi *msi = pcie->msi;
 664        unsigned int i, cpu;
 665
 666        if (!msi)
 667                return;
 668
 669        iproc_msi_disable(msi);
 670
 671        for_each_online_cpu(cpu)
 672                iproc_msi_irq_free(msi, cpu);
 673
 674        iproc_msi_free_domains(msi);
 675
 676        dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE,
 677                          msi->eq_cpu, msi->eq_dma);
 678
 679        for (i = 0; i < msi->nr_irqs; i++) {
 680                if (msi->grps[i].gic_irq)
 681                        irq_dispose_mapping(msi->grps[i].gic_irq);
 682        }
 683}
 684EXPORT_SYMBOL(iproc_msi_exit);
 685