linux/drivers/net/hyperv/netvsc_drv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 */
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/atomic.h>
  13#include <linux/ethtool.h>
  14#include <linux/module.h>
  15#include <linux/highmem.h>
  16#include <linux/device.h>
  17#include <linux/io.h>
  18#include <linux/delay.h>
  19#include <linux/netdevice.h>
  20#include <linux/inetdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/pci.h>
  23#include <linux/skbuff.h>
  24#include <linux/if_vlan.h>
  25#include <linux/in.h>
  26#include <linux/slab.h>
  27#include <linux/rtnetlink.h>
  28#include <linux/netpoll.h>
  29#include <linux/bpf.h>
  30
  31#include <net/arp.h>
  32#include <net/route.h>
  33#include <net/sock.h>
  34#include <net/pkt_sched.h>
  35#include <net/checksum.h>
  36#include <net/ip6_checksum.h>
  37
  38#include "hyperv_net.h"
  39
  40#define RING_SIZE_MIN   64
  41
  42#define LINKCHANGE_INT (2 * HZ)
  43#define VF_TAKEOVER_INT (HZ / 10)
  44
  45static unsigned int ring_size __ro_after_init = 128;
  46module_param(ring_size, uint, 0444);
  47MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
  48unsigned int netvsc_ring_bytes __ro_after_init;
  49
  50static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  51                                NETIF_MSG_LINK | NETIF_MSG_IFUP |
  52                                NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  53                                NETIF_MSG_TX_ERR;
  54
  55static int debug = -1;
  56module_param(debug, int, 0444);
  57MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  58
  59static LIST_HEAD(netvsc_dev_list);
  60
  61static void netvsc_change_rx_flags(struct net_device *net, int change)
  62{
  63        struct net_device_context *ndev_ctx = netdev_priv(net);
  64        struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  65        int inc;
  66
  67        if (!vf_netdev)
  68                return;
  69
  70        if (change & IFF_PROMISC) {
  71                inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  72                dev_set_promiscuity(vf_netdev, inc);
  73        }
  74
  75        if (change & IFF_ALLMULTI) {
  76                inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  77                dev_set_allmulti(vf_netdev, inc);
  78        }
  79}
  80
  81static void netvsc_set_rx_mode(struct net_device *net)
  82{
  83        struct net_device_context *ndev_ctx = netdev_priv(net);
  84        struct net_device *vf_netdev;
  85        struct netvsc_device *nvdev;
  86
  87        rcu_read_lock();
  88        vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  89        if (vf_netdev) {
  90                dev_uc_sync(vf_netdev, net);
  91                dev_mc_sync(vf_netdev, net);
  92        }
  93
  94        nvdev = rcu_dereference(ndev_ctx->nvdev);
  95        if (nvdev)
  96                rndis_filter_update(nvdev);
  97        rcu_read_unlock();
  98}
  99
 100static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 101                             struct net_device *ndev)
 102{
 103        nvscdev->tx_disable = false;
 104        virt_wmb(); /* ensure queue wake up mechanism is on */
 105
 106        netif_tx_wake_all_queues(ndev);
 107}
 108
 109static int netvsc_open(struct net_device *net)
 110{
 111        struct net_device_context *ndev_ctx = netdev_priv(net);
 112        struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 113        struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 114        struct rndis_device *rdev;
 115        int ret = 0;
 116
 117        netif_carrier_off(net);
 118
 119        /* Open up the device */
 120        ret = rndis_filter_open(nvdev);
 121        if (ret != 0) {
 122                netdev_err(net, "unable to open device (ret %d).\n", ret);
 123                return ret;
 124        }
 125
 126        rdev = nvdev->extension;
 127        if (!rdev->link_state) {
 128                netif_carrier_on(net);
 129                netvsc_tx_enable(nvdev, net);
 130        }
 131
 132        if (vf_netdev) {
 133                /* Setting synthetic device up transparently sets
 134                 * slave as up. If open fails, then slave will be
 135                 * still be offline (and not used).
 136                 */
 137                ret = dev_open(vf_netdev, NULL);
 138                if (ret)
 139                        netdev_warn(net,
 140                                    "unable to open slave: %s: %d\n",
 141                                    vf_netdev->name, ret);
 142        }
 143        return 0;
 144}
 145
 146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 147{
 148        unsigned int retry = 0;
 149        int i;
 150
 151        /* Ensure pending bytes in ring are read */
 152        for (;;) {
 153                u32 aread = 0;
 154
 155                for (i = 0; i < nvdev->num_chn; i++) {
 156                        struct vmbus_channel *chn
 157                                = nvdev->chan_table[i].channel;
 158
 159                        if (!chn)
 160                                continue;
 161
 162                        /* make sure receive not running now */
 163                        napi_synchronize(&nvdev->chan_table[i].napi);
 164
 165                        aread = hv_get_bytes_to_read(&chn->inbound);
 166                        if (aread)
 167                                break;
 168
 169                        aread = hv_get_bytes_to_read(&chn->outbound);
 170                        if (aread)
 171                                break;
 172                }
 173
 174                if (aread == 0)
 175                        return 0;
 176
 177                if (++retry > RETRY_MAX)
 178                        return -ETIMEDOUT;
 179
 180                usleep_range(RETRY_US_LO, RETRY_US_HI);
 181        }
 182}
 183
 184static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 185                              struct net_device *ndev)
 186{
 187        if (nvscdev) {
 188                nvscdev->tx_disable = true;
 189                virt_wmb(); /* ensure txq will not wake up after stop */
 190        }
 191
 192        netif_tx_disable(ndev);
 193}
 194
 195static int netvsc_close(struct net_device *net)
 196{
 197        struct net_device_context *net_device_ctx = netdev_priv(net);
 198        struct net_device *vf_netdev
 199                = rtnl_dereference(net_device_ctx->vf_netdev);
 200        struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 201        int ret;
 202
 203        netvsc_tx_disable(nvdev, net);
 204
 205        /* No need to close rndis filter if it is removed already */
 206        if (!nvdev)
 207                return 0;
 208
 209        ret = rndis_filter_close(nvdev);
 210        if (ret != 0) {
 211                netdev_err(net, "unable to close device (ret %d).\n", ret);
 212                return ret;
 213        }
 214
 215        ret = netvsc_wait_until_empty(nvdev);
 216        if (ret)
 217                netdev_err(net, "Ring buffer not empty after closing rndis\n");
 218
 219        if (vf_netdev)
 220                dev_close(vf_netdev);
 221
 222        return ret;
 223}
 224
 225static inline void *init_ppi_data(struct rndis_message *msg,
 226                                  u32 ppi_size, u32 pkt_type)
 227{
 228        struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 229        struct rndis_per_packet_info *ppi;
 230
 231        rndis_pkt->data_offset += ppi_size;
 232        ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 233                + rndis_pkt->per_pkt_info_len;
 234
 235        ppi->size = ppi_size;
 236        ppi->type = pkt_type;
 237        ppi->internal = 0;
 238        ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 239
 240        rndis_pkt->per_pkt_info_len += ppi_size;
 241
 242        return ppi + 1;
 243}
 244
 245/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
 246 * packets. We can use ethtool to change UDP hash level when necessary.
 247 */
 248static inline u32 netvsc_get_hash(
 249        struct sk_buff *skb,
 250        const struct net_device_context *ndc)
 251{
 252        struct flow_keys flow;
 253        u32 hash, pkt_proto = 0;
 254        static u32 hashrnd __read_mostly;
 255
 256        net_get_random_once(&hashrnd, sizeof(hashrnd));
 257
 258        if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
 259                return 0;
 260
 261        switch (flow.basic.ip_proto) {
 262        case IPPROTO_TCP:
 263                if (flow.basic.n_proto == htons(ETH_P_IP))
 264                        pkt_proto = HV_TCP4_L4HASH;
 265                else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 266                        pkt_proto = HV_TCP6_L4HASH;
 267
 268                break;
 269
 270        case IPPROTO_UDP:
 271                if (flow.basic.n_proto == htons(ETH_P_IP))
 272                        pkt_proto = HV_UDP4_L4HASH;
 273                else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 274                        pkt_proto = HV_UDP6_L4HASH;
 275
 276                break;
 277        }
 278
 279        if (pkt_proto & ndc->l4_hash) {
 280                return skb_get_hash(skb);
 281        } else {
 282                if (flow.basic.n_proto == htons(ETH_P_IP))
 283                        hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
 284                else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 285                        hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
 286                else
 287                        return 0;
 288
 289                __skb_set_sw_hash(skb, hash, false);
 290        }
 291
 292        return hash;
 293}
 294
 295static inline int netvsc_get_tx_queue(struct net_device *ndev,
 296                                      struct sk_buff *skb, int old_idx)
 297{
 298        const struct net_device_context *ndc = netdev_priv(ndev);
 299        struct sock *sk = skb->sk;
 300        int q_idx;
 301
 302        q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 303                              (VRSS_SEND_TAB_SIZE - 1)];
 304
 305        /* If queue index changed record the new value */
 306        if (q_idx != old_idx &&
 307            sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 308                sk_tx_queue_set(sk, q_idx);
 309
 310        return q_idx;
 311}
 312
 313/*
 314 * Select queue for transmit.
 315 *
 316 * If a valid queue has already been assigned, then use that.
 317 * Otherwise compute tx queue based on hash and the send table.
 318 *
 319 * This is basically similar to default (netdev_pick_tx) with the added step
 320 * of using the host send_table when no other queue has been assigned.
 321 *
 322 * TODO support XPS - but get_xps_queue not exported
 323 */
 324static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 325{
 326        int q_idx = sk_tx_queue_get(skb->sk);
 327
 328        if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 329                /* If forwarding a packet, we use the recorded queue when
 330                 * available for better cache locality.
 331                 */
 332                if (skb_rx_queue_recorded(skb))
 333                        q_idx = skb_get_rx_queue(skb);
 334                else
 335                        q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 336        }
 337
 338        return q_idx;
 339}
 340
 341static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 342                               struct net_device *sb_dev)
 343{
 344        struct net_device_context *ndc = netdev_priv(ndev);
 345        struct net_device *vf_netdev;
 346        u16 txq;
 347
 348        rcu_read_lock();
 349        vf_netdev = rcu_dereference(ndc->vf_netdev);
 350        if (vf_netdev) {
 351                const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 352
 353                if (vf_ops->ndo_select_queue)
 354                        txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
 355                else
 356                        txq = netdev_pick_tx(vf_netdev, skb, NULL);
 357
 358                /* Record the queue selected by VF so that it can be
 359                 * used for common case where VF has more queues than
 360                 * the synthetic device.
 361                 */
 362                qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 363        } else {
 364                txq = netvsc_pick_tx(ndev, skb);
 365        }
 366        rcu_read_unlock();
 367
 368        while (txq >= ndev->real_num_tx_queues)
 369                txq -= ndev->real_num_tx_queues;
 370
 371        return txq;
 372}
 373
 374static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
 375                       struct hv_page_buffer *pb)
 376{
 377        int j = 0;
 378
 379        hvpfn += offset >> HV_HYP_PAGE_SHIFT;
 380        offset = offset & ~HV_HYP_PAGE_MASK;
 381
 382        while (len > 0) {
 383                unsigned long bytes;
 384
 385                bytes = HV_HYP_PAGE_SIZE - offset;
 386                if (bytes > len)
 387                        bytes = len;
 388                pb[j].pfn = hvpfn;
 389                pb[j].offset = offset;
 390                pb[j].len = bytes;
 391
 392                offset += bytes;
 393                len -= bytes;
 394
 395                if (offset == HV_HYP_PAGE_SIZE && len) {
 396                        hvpfn++;
 397                        offset = 0;
 398                        j++;
 399                }
 400        }
 401
 402        return j + 1;
 403}
 404
 405static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 406                           struct hv_netvsc_packet *packet,
 407                           struct hv_page_buffer *pb)
 408{
 409        u32 slots_used = 0;
 410        char *data = skb->data;
 411        int frags = skb_shinfo(skb)->nr_frags;
 412        int i;
 413
 414        /* The packet is laid out thus:
 415         * 1. hdr: RNDIS header and PPI
 416         * 2. skb linear data
 417         * 3. skb fragment data
 418         */
 419        slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
 420                                  offset_in_hvpage(hdr),
 421                                  len,
 422                                  &pb[slots_used]);
 423
 424        packet->rmsg_size = len;
 425        packet->rmsg_pgcnt = slots_used;
 426
 427        slots_used += fill_pg_buf(virt_to_hvpfn(data),
 428                                  offset_in_hvpage(data),
 429                                  skb_headlen(skb),
 430                                  &pb[slots_used]);
 431
 432        for (i = 0; i < frags; i++) {
 433                skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 434
 435                slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
 436                                          skb_frag_off(frag),
 437                                          skb_frag_size(frag),
 438                                          &pb[slots_used]);
 439        }
 440        return slots_used;
 441}
 442
 443static int count_skb_frag_slots(struct sk_buff *skb)
 444{
 445        int i, frags = skb_shinfo(skb)->nr_frags;
 446        int pages = 0;
 447
 448        for (i = 0; i < frags; i++) {
 449                skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 450                unsigned long size = skb_frag_size(frag);
 451                unsigned long offset = skb_frag_off(frag);
 452
 453                /* Skip unused frames from start of page */
 454                offset &= ~HV_HYP_PAGE_MASK;
 455                pages += HVPFN_UP(offset + size);
 456        }
 457        return pages;
 458}
 459
 460static int netvsc_get_slots(struct sk_buff *skb)
 461{
 462        char *data = skb->data;
 463        unsigned int offset = offset_in_hvpage(data);
 464        unsigned int len = skb_headlen(skb);
 465        int slots;
 466        int frag_slots;
 467
 468        slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
 469        frag_slots = count_skb_frag_slots(skb);
 470        return slots + frag_slots;
 471}
 472
 473static u32 net_checksum_info(struct sk_buff *skb)
 474{
 475        if (skb->protocol == htons(ETH_P_IP)) {
 476                struct iphdr *ip = ip_hdr(skb);
 477
 478                if (ip->protocol == IPPROTO_TCP)
 479                        return TRANSPORT_INFO_IPV4_TCP;
 480                else if (ip->protocol == IPPROTO_UDP)
 481                        return TRANSPORT_INFO_IPV4_UDP;
 482        } else {
 483                struct ipv6hdr *ip6 = ipv6_hdr(skb);
 484
 485                if (ip6->nexthdr == IPPROTO_TCP)
 486                        return TRANSPORT_INFO_IPV6_TCP;
 487                else if (ip6->nexthdr == IPPROTO_UDP)
 488                        return TRANSPORT_INFO_IPV6_UDP;
 489        }
 490
 491        return TRANSPORT_INFO_NOT_IP;
 492}
 493
 494/* Send skb on the slave VF device. */
 495static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 496                          struct sk_buff *skb)
 497{
 498        struct net_device_context *ndev_ctx = netdev_priv(net);
 499        unsigned int len = skb->len;
 500        int rc;
 501
 502        skb->dev = vf_netdev;
 503        skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
 504
 505        rc = dev_queue_xmit(skb);
 506        if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 507                struct netvsc_vf_pcpu_stats *pcpu_stats
 508                        = this_cpu_ptr(ndev_ctx->vf_stats);
 509
 510                u64_stats_update_begin(&pcpu_stats->syncp);
 511                pcpu_stats->tx_packets++;
 512                pcpu_stats->tx_bytes += len;
 513                u64_stats_update_end(&pcpu_stats->syncp);
 514        } else {
 515                this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 516        }
 517
 518        return rc;
 519}
 520
 521static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
 522{
 523        struct net_device_context *net_device_ctx = netdev_priv(net);
 524        struct hv_netvsc_packet *packet = NULL;
 525        int ret;
 526        unsigned int num_data_pgs;
 527        struct rndis_message *rndis_msg;
 528        struct net_device *vf_netdev;
 529        u32 rndis_msg_size;
 530        u32 hash;
 531        struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 532
 533        /* If VF is present and up then redirect packets to it.
 534         * Skip the VF if it is marked down or has no carrier.
 535         * If netpoll is in uses, then VF can not be used either.
 536         */
 537        vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 538        if (vf_netdev && netif_running(vf_netdev) &&
 539            netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
 540            net_device_ctx->data_path_is_vf)
 541                return netvsc_vf_xmit(net, vf_netdev, skb);
 542
 543        /* We will atmost need two pages to describe the rndis
 544         * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 545         * of pages in a single packet. If skb is scattered around
 546         * more pages we try linearizing it.
 547         */
 548
 549        num_data_pgs = netvsc_get_slots(skb) + 2;
 550
 551        if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 552                ++net_device_ctx->eth_stats.tx_scattered;
 553
 554                if (skb_linearize(skb))
 555                        goto no_memory;
 556
 557                num_data_pgs = netvsc_get_slots(skb) + 2;
 558                if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 559                        ++net_device_ctx->eth_stats.tx_too_big;
 560                        goto drop;
 561                }
 562        }
 563
 564        /*
 565         * Place the rndis header in the skb head room and
 566         * the skb->cb will be used for hv_netvsc_packet
 567         * structure.
 568         */
 569        ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 570        if (ret)
 571                goto no_memory;
 572
 573        /* Use the skb control buffer for building up the packet */
 574        BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 575                        sizeof_field(struct sk_buff, cb));
 576        packet = (struct hv_netvsc_packet *)skb->cb;
 577
 578        packet->q_idx = skb_get_queue_mapping(skb);
 579
 580        packet->total_data_buflen = skb->len;
 581        packet->total_bytes = skb->len;
 582        packet->total_packets = 1;
 583
 584        rndis_msg = (struct rndis_message *)skb->head;
 585
 586        /* Add the rndis header */
 587        rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 588        rndis_msg->msg_len = packet->total_data_buflen;
 589
 590        rndis_msg->msg.pkt = (struct rndis_packet) {
 591                .data_offset = sizeof(struct rndis_packet),
 592                .data_len = packet->total_data_buflen,
 593                .per_pkt_info_offset = sizeof(struct rndis_packet),
 594        };
 595
 596        rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 597
 598        hash = skb_get_hash_raw(skb);
 599        if (hash != 0 && net->real_num_tx_queues > 1) {
 600                u32 *hash_info;
 601
 602                rndis_msg_size += NDIS_HASH_PPI_SIZE;
 603                hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 604                                          NBL_HASH_VALUE);
 605                *hash_info = hash;
 606        }
 607
 608        /* When using AF_PACKET we need to drop VLAN header from
 609         * the frame and update the SKB to allow the HOST OS
 610         * to transmit the 802.1Q packet
 611         */
 612        if (skb->protocol == htons(ETH_P_8021Q)) {
 613                u16 vlan_tci;
 614
 615                skb_reset_mac_header(skb);
 616                if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
 617                        if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
 618                                ++net_device_ctx->eth_stats.vlan_error;
 619                                goto drop;
 620                        }
 621
 622                        __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
 623                        /* Update the NDIS header pkt lengths */
 624                        packet->total_data_buflen -= VLAN_HLEN;
 625                        packet->total_bytes -= VLAN_HLEN;
 626                        rndis_msg->msg_len = packet->total_data_buflen;
 627                        rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
 628                }
 629        }
 630
 631        if (skb_vlan_tag_present(skb)) {
 632                struct ndis_pkt_8021q_info *vlan;
 633
 634                rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 635                vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 636                                     IEEE_8021Q_INFO);
 637
 638                vlan->value = 0;
 639                vlan->vlanid = skb_vlan_tag_get_id(skb);
 640                vlan->cfi = skb_vlan_tag_get_cfi(skb);
 641                vlan->pri = skb_vlan_tag_get_prio(skb);
 642        }
 643
 644        if (skb_is_gso(skb)) {
 645                struct ndis_tcp_lso_info *lso_info;
 646
 647                rndis_msg_size += NDIS_LSO_PPI_SIZE;
 648                lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 649                                         TCP_LARGESEND_PKTINFO);
 650
 651                lso_info->value = 0;
 652                lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 653                if (skb->protocol == htons(ETH_P_IP)) {
 654                        lso_info->lso_v2_transmit.ip_version =
 655                                NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 656                        ip_hdr(skb)->tot_len = 0;
 657                        ip_hdr(skb)->check = 0;
 658                        tcp_hdr(skb)->check =
 659                                ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 660                                                   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 661                } else {
 662                        lso_info->lso_v2_transmit.ip_version =
 663                                NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 664                        tcp_v6_gso_csum_prep(skb);
 665                }
 666                lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 667                lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 668        } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 669                if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 670                        struct ndis_tcp_ip_checksum_info *csum_info;
 671
 672                        rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 673                        csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 674                                                  TCPIP_CHKSUM_PKTINFO);
 675
 676                        csum_info->value = 0;
 677                        csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 678
 679                        if (skb->protocol == htons(ETH_P_IP)) {
 680                                csum_info->transmit.is_ipv4 = 1;
 681
 682                                if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 683                                        csum_info->transmit.tcp_checksum = 1;
 684                                else
 685                                        csum_info->transmit.udp_checksum = 1;
 686                        } else {
 687                                csum_info->transmit.is_ipv6 = 1;
 688
 689                                if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 690                                        csum_info->transmit.tcp_checksum = 1;
 691                                else
 692                                        csum_info->transmit.udp_checksum = 1;
 693                        }
 694                } else {
 695                        /* Can't do offload of this type of checksum */
 696                        if (skb_checksum_help(skb))
 697                                goto drop;
 698                }
 699        }
 700
 701        /* Start filling in the page buffers with the rndis hdr */
 702        rndis_msg->msg_len += rndis_msg_size;
 703        packet->total_data_buflen = rndis_msg->msg_len;
 704        packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 705                                               skb, packet, pb);
 706
 707        /* timestamp packet in software */
 708        skb_tx_timestamp(skb);
 709
 710        ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
 711        if (likely(ret == 0))
 712                return NETDEV_TX_OK;
 713
 714        if (ret == -EAGAIN) {
 715                ++net_device_ctx->eth_stats.tx_busy;
 716                return NETDEV_TX_BUSY;
 717        }
 718
 719        if (ret == -ENOSPC)
 720                ++net_device_ctx->eth_stats.tx_no_space;
 721
 722drop:
 723        dev_kfree_skb_any(skb);
 724        net->stats.tx_dropped++;
 725
 726        return NETDEV_TX_OK;
 727
 728no_memory:
 729        ++net_device_ctx->eth_stats.tx_no_memory;
 730        goto drop;
 731}
 732
 733static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
 734                                     struct net_device *ndev)
 735{
 736        return netvsc_xmit(skb, ndev, false);
 737}
 738
 739/*
 740 * netvsc_linkstatus_callback - Link up/down notification
 741 */
 742void netvsc_linkstatus_callback(struct net_device *net,
 743                                struct rndis_message *resp,
 744                                void *data, u32 data_buflen)
 745{
 746        struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 747        struct net_device_context *ndev_ctx = netdev_priv(net);
 748        struct netvsc_reconfig *event;
 749        unsigned long flags;
 750
 751        /* Ensure the packet is big enough to access its fields */
 752        if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
 753                netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
 754                           resp->msg_len);
 755                return;
 756        }
 757
 758        /* Copy the RNDIS indicate status into nvchan->recv_buf */
 759        memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
 760
 761        /* Update the physical link speed when changing to another vSwitch */
 762        if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 763                u32 speed;
 764
 765                /* Validate status_buf_offset and status_buflen.
 766                 *
 767                 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
 768                 * for the status buffer field in resp->msg_len; perform the validation
 769                 * using data_buflen (>= resp->msg_len).
 770                 */
 771                if (indicate->status_buflen < sizeof(speed) ||
 772                    indicate->status_buf_offset < sizeof(*indicate) ||
 773                    data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
 774                    data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
 775                                < indicate->status_buflen) {
 776                        netdev_err(net, "invalid rndis_indicate_status packet\n");
 777                        return;
 778                }
 779
 780                speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
 781                ndev_ctx->speed = speed;
 782                return;
 783        }
 784
 785        /* Handle these link change statuses below */
 786        if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 787            indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 788            indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 789                return;
 790
 791        if (net->reg_state != NETREG_REGISTERED)
 792                return;
 793
 794        event = kzalloc(sizeof(*event), GFP_ATOMIC);
 795        if (!event)
 796                return;
 797        event->event = indicate->status;
 798
 799        spin_lock_irqsave(&ndev_ctx->lock, flags);
 800        list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 801        spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 802
 803        schedule_delayed_work(&ndev_ctx->dwork, 0);
 804}
 805
 806static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
 807{
 808        int rc;
 809
 810        skb->queue_mapping = skb_get_rx_queue(skb);
 811        __skb_push(skb, ETH_HLEN);
 812
 813        rc = netvsc_xmit(skb, ndev, true);
 814
 815        if (dev_xmit_complete(rc))
 816                return;
 817
 818        dev_kfree_skb_any(skb);
 819        ndev->stats.tx_dropped++;
 820}
 821
 822static void netvsc_comp_ipcsum(struct sk_buff *skb)
 823{
 824        struct iphdr *iph = (struct iphdr *)skb->data;
 825
 826        iph->check = 0;
 827        iph->check = ip_fast_csum(iph, iph->ihl);
 828}
 829
 830static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 831                                             struct netvsc_channel *nvchan,
 832                                             struct xdp_buff *xdp)
 833{
 834        struct napi_struct *napi = &nvchan->napi;
 835        const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
 836        const struct ndis_tcp_ip_checksum_info *csum_info =
 837                                                &nvchan->rsc.csum_info;
 838        const u32 *hash_info = &nvchan->rsc.hash_info;
 839        u8 ppi_flags = nvchan->rsc.ppi_flags;
 840        struct sk_buff *skb;
 841        void *xbuf = xdp->data_hard_start;
 842        int i;
 843
 844        if (xbuf) {
 845                unsigned int hdroom = xdp->data - xdp->data_hard_start;
 846                unsigned int xlen = xdp->data_end - xdp->data;
 847                unsigned int frag_size = xdp->frame_sz;
 848
 849                skb = build_skb(xbuf, frag_size);
 850
 851                if (!skb) {
 852                        __free_page(virt_to_page(xbuf));
 853                        return NULL;
 854                }
 855
 856                skb_reserve(skb, hdroom);
 857                skb_put(skb, xlen);
 858                skb->dev = napi->dev;
 859        } else {
 860                skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 861
 862                if (!skb)
 863                        return NULL;
 864
 865                /* Copy to skb. This copy is needed here since the memory
 866                 * pointed by hv_netvsc_packet cannot be deallocated.
 867                 */
 868                for (i = 0; i < nvchan->rsc.cnt; i++)
 869                        skb_put_data(skb, nvchan->rsc.data[i],
 870                                     nvchan->rsc.len[i]);
 871        }
 872
 873        skb->protocol = eth_type_trans(skb, net);
 874
 875        /* skb is already created with CHECKSUM_NONE */
 876        skb_checksum_none_assert(skb);
 877
 878        /* Incoming packets may have IP header checksum verified by the host.
 879         * They may not have IP header checksum computed after coalescing.
 880         * We compute it here if the flags are set, because on Linux, the IP
 881         * checksum is always checked.
 882         */
 883        if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
 884            csum_info->receive.ip_checksum_succeeded &&
 885            skb->protocol == htons(ETH_P_IP)) {
 886                /* Check that there is enough space to hold the IP header. */
 887                if (skb_headlen(skb) < sizeof(struct iphdr)) {
 888                        kfree_skb(skb);
 889                        return NULL;
 890                }
 891                netvsc_comp_ipcsum(skb);
 892        }
 893
 894        /* Do L4 checksum offload if enabled and present. */
 895        if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
 896                if (csum_info->receive.tcp_checksum_succeeded ||
 897                    csum_info->receive.udp_checksum_succeeded)
 898                        skb->ip_summed = CHECKSUM_UNNECESSARY;
 899        }
 900
 901        if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
 902                skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
 903
 904        if (ppi_flags & NVSC_RSC_VLAN) {
 905                u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 906                        (vlan->cfi ? VLAN_CFI_MASK : 0);
 907
 908                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 909                                       vlan_tci);
 910        }
 911
 912        return skb;
 913}
 914
 915/*
 916 * netvsc_recv_callback -  Callback when we receive a packet from the
 917 * "wire" on the specified device.
 918 */
 919int netvsc_recv_callback(struct net_device *net,
 920                         struct netvsc_device *net_device,
 921                         struct netvsc_channel *nvchan)
 922{
 923        struct net_device_context *net_device_ctx = netdev_priv(net);
 924        struct vmbus_channel *channel = nvchan->channel;
 925        u16 q_idx = channel->offermsg.offer.sub_channel_index;
 926        struct sk_buff *skb;
 927        struct netvsc_stats *rx_stats = &nvchan->rx_stats;
 928        struct xdp_buff xdp;
 929        u32 act;
 930
 931        if (net->reg_state != NETREG_REGISTERED)
 932                return NVSP_STAT_FAIL;
 933
 934        act = netvsc_run_xdp(net, nvchan, &xdp);
 935
 936        if (act != XDP_PASS && act != XDP_TX) {
 937                u64_stats_update_begin(&rx_stats->syncp);
 938                rx_stats->xdp_drop++;
 939                u64_stats_update_end(&rx_stats->syncp);
 940
 941                return NVSP_STAT_SUCCESS; /* consumed by XDP */
 942        }
 943
 944        /* Allocate a skb - TODO direct I/O to pages? */
 945        skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
 946
 947        if (unlikely(!skb)) {
 948                ++net_device_ctx->eth_stats.rx_no_memory;
 949                return NVSP_STAT_FAIL;
 950        }
 951
 952        skb_record_rx_queue(skb, q_idx);
 953
 954        /*
 955         * Even if injecting the packet, record the statistics
 956         * on the synthetic device because modifying the VF device
 957         * statistics will not work correctly.
 958         */
 959        u64_stats_update_begin(&rx_stats->syncp);
 960        rx_stats->packets++;
 961        rx_stats->bytes += nvchan->rsc.pktlen;
 962
 963        if (skb->pkt_type == PACKET_BROADCAST)
 964                ++rx_stats->broadcast;
 965        else if (skb->pkt_type == PACKET_MULTICAST)
 966                ++rx_stats->multicast;
 967        u64_stats_update_end(&rx_stats->syncp);
 968
 969        if (act == XDP_TX) {
 970                netvsc_xdp_xmit(skb, net);
 971                return NVSP_STAT_SUCCESS;
 972        }
 973
 974        napi_gro_receive(&nvchan->napi, skb);
 975        return NVSP_STAT_SUCCESS;
 976}
 977
 978static void netvsc_get_drvinfo(struct net_device *net,
 979                               struct ethtool_drvinfo *info)
 980{
 981        strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 982        strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
 983}
 984
 985static void netvsc_get_channels(struct net_device *net,
 986                                struct ethtool_channels *channel)
 987{
 988        struct net_device_context *net_device_ctx = netdev_priv(net);
 989        struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 990
 991        if (nvdev) {
 992                channel->max_combined   = nvdev->max_chn;
 993                channel->combined_count = nvdev->num_chn;
 994        }
 995}
 996
 997/* Alloc struct netvsc_device_info, and initialize it from either existing
 998 * struct netvsc_device, or from default values.
 999 */
1000static
1001struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
1002{
1003        struct netvsc_device_info *dev_info;
1004        struct bpf_prog *prog;
1005
1006        dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
1007
1008        if (!dev_info)
1009                return NULL;
1010
1011        if (nvdev) {
1012                ASSERT_RTNL();
1013
1014                dev_info->num_chn = nvdev->num_chn;
1015                dev_info->send_sections = nvdev->send_section_cnt;
1016                dev_info->send_section_size = nvdev->send_section_size;
1017                dev_info->recv_sections = nvdev->recv_section_cnt;
1018                dev_info->recv_section_size = nvdev->recv_section_size;
1019
1020                memcpy(dev_info->rss_key, nvdev->extension->rss_key,
1021                       NETVSC_HASH_KEYLEN);
1022
1023                prog = netvsc_xdp_get(nvdev);
1024                if (prog) {
1025                        bpf_prog_inc(prog);
1026                        dev_info->bprog = prog;
1027                }
1028        } else {
1029                dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1030                dev_info->send_sections = NETVSC_DEFAULT_TX;
1031                dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1032                dev_info->recv_sections = NETVSC_DEFAULT_RX;
1033                dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1034        }
1035
1036        return dev_info;
1037}
1038
1039/* Free struct netvsc_device_info */
1040static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1041{
1042        if (dev_info->bprog) {
1043                ASSERT_RTNL();
1044                bpf_prog_put(dev_info->bprog);
1045        }
1046
1047        kfree(dev_info);
1048}
1049
1050static int netvsc_detach(struct net_device *ndev,
1051                         struct netvsc_device *nvdev)
1052{
1053        struct net_device_context *ndev_ctx = netdev_priv(ndev);
1054        struct hv_device *hdev = ndev_ctx->device_ctx;
1055        int ret;
1056
1057        /* Don't try continuing to try and setup sub channels */
1058        if (cancel_work_sync(&nvdev->subchan_work))
1059                nvdev->num_chn = 1;
1060
1061        netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1062
1063        /* If device was up (receiving) then shutdown */
1064        if (netif_running(ndev)) {
1065                netvsc_tx_disable(nvdev, ndev);
1066
1067                ret = rndis_filter_close(nvdev);
1068                if (ret) {
1069                        netdev_err(ndev,
1070                                   "unable to close device (ret %d).\n", ret);
1071                        return ret;
1072                }
1073
1074                ret = netvsc_wait_until_empty(nvdev);
1075                if (ret) {
1076                        netdev_err(ndev,
1077                                   "Ring buffer not empty after closing rndis\n");
1078                        return ret;
1079                }
1080        }
1081
1082        netif_device_detach(ndev);
1083
1084        rndis_filter_device_remove(hdev, nvdev);
1085
1086        return 0;
1087}
1088
1089static int netvsc_attach(struct net_device *ndev,
1090                         struct netvsc_device_info *dev_info)
1091{
1092        struct net_device_context *ndev_ctx = netdev_priv(ndev);
1093        struct hv_device *hdev = ndev_ctx->device_ctx;
1094        struct netvsc_device *nvdev;
1095        struct rndis_device *rdev;
1096        struct bpf_prog *prog;
1097        int ret = 0;
1098
1099        nvdev = rndis_filter_device_add(hdev, dev_info);
1100        if (IS_ERR(nvdev))
1101                return PTR_ERR(nvdev);
1102
1103        if (nvdev->num_chn > 1) {
1104                ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1105
1106                /* if unavailable, just proceed with one queue */
1107                if (ret) {
1108                        nvdev->max_chn = 1;
1109                        nvdev->num_chn = 1;
1110                }
1111        }
1112
1113        prog = dev_info->bprog;
1114        if (prog) {
1115                bpf_prog_inc(prog);
1116                ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1117                if (ret) {
1118                        bpf_prog_put(prog);
1119                        goto err1;
1120                }
1121        }
1122
1123        /* In any case device is now ready */
1124        nvdev->tx_disable = false;
1125        netif_device_attach(ndev);
1126
1127        /* Note: enable and attach happen when sub-channels setup */
1128        netif_carrier_off(ndev);
1129
1130        if (netif_running(ndev)) {
1131                ret = rndis_filter_open(nvdev);
1132                if (ret)
1133                        goto err2;
1134
1135                rdev = nvdev->extension;
1136                if (!rdev->link_state)
1137                        netif_carrier_on(ndev);
1138        }
1139
1140        return 0;
1141
1142err2:
1143        netif_device_detach(ndev);
1144
1145err1:
1146        rndis_filter_device_remove(hdev, nvdev);
1147
1148        return ret;
1149}
1150
1151static int netvsc_set_channels(struct net_device *net,
1152                               struct ethtool_channels *channels)
1153{
1154        struct net_device_context *net_device_ctx = netdev_priv(net);
1155        struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1156        unsigned int orig, count = channels->combined_count;
1157        struct netvsc_device_info *device_info;
1158        int ret;
1159
1160        /* We do not support separate count for rx, tx, or other */
1161        if (count == 0 ||
1162            channels->rx_count || channels->tx_count || channels->other_count)
1163                return -EINVAL;
1164
1165        if (!nvdev || nvdev->destroy)
1166                return -ENODEV;
1167
1168        if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1169                return -EINVAL;
1170
1171        if (count > nvdev->max_chn)
1172                return -EINVAL;
1173
1174        orig = nvdev->num_chn;
1175
1176        device_info = netvsc_devinfo_get(nvdev);
1177
1178        if (!device_info)
1179                return -ENOMEM;
1180
1181        device_info->num_chn = count;
1182
1183        ret = netvsc_detach(net, nvdev);
1184        if (ret)
1185                goto out;
1186
1187        ret = netvsc_attach(net, device_info);
1188        if (ret) {
1189                device_info->num_chn = orig;
1190                if (netvsc_attach(net, device_info))
1191                        netdev_err(net, "restoring channel setting failed\n");
1192        }
1193
1194out:
1195        netvsc_devinfo_put(device_info);
1196        return ret;
1197}
1198
1199static void netvsc_init_settings(struct net_device *dev)
1200{
1201        struct net_device_context *ndc = netdev_priv(dev);
1202
1203        ndc->l4_hash = HV_DEFAULT_L4HASH;
1204
1205        ndc->speed = SPEED_UNKNOWN;
1206        ndc->duplex = DUPLEX_FULL;
1207
1208        dev->features = NETIF_F_LRO;
1209}
1210
1211static int netvsc_get_link_ksettings(struct net_device *dev,
1212                                     struct ethtool_link_ksettings *cmd)
1213{
1214        struct net_device_context *ndc = netdev_priv(dev);
1215        struct net_device *vf_netdev;
1216
1217        vf_netdev = rtnl_dereference(ndc->vf_netdev);
1218
1219        if (vf_netdev)
1220                return __ethtool_get_link_ksettings(vf_netdev, cmd);
1221
1222        cmd->base.speed = ndc->speed;
1223        cmd->base.duplex = ndc->duplex;
1224        cmd->base.port = PORT_OTHER;
1225
1226        return 0;
1227}
1228
1229static int netvsc_set_link_ksettings(struct net_device *dev,
1230                                     const struct ethtool_link_ksettings *cmd)
1231{
1232        struct net_device_context *ndc = netdev_priv(dev);
1233        struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1234
1235        if (vf_netdev) {
1236                if (!vf_netdev->ethtool_ops->set_link_ksettings)
1237                        return -EOPNOTSUPP;
1238
1239                return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1240                                                                  cmd);
1241        }
1242
1243        return ethtool_virtdev_set_link_ksettings(dev, cmd,
1244                                                  &ndc->speed, &ndc->duplex);
1245}
1246
1247static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1248{
1249        struct net_device_context *ndevctx = netdev_priv(ndev);
1250        struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1251        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1252        int orig_mtu = ndev->mtu;
1253        struct netvsc_device_info *device_info;
1254        int ret = 0;
1255
1256        if (!nvdev || nvdev->destroy)
1257                return -ENODEV;
1258
1259        device_info = netvsc_devinfo_get(nvdev);
1260
1261        if (!device_info)
1262                return -ENOMEM;
1263
1264        /* Change MTU of underlying VF netdev first. */
1265        if (vf_netdev) {
1266                ret = dev_set_mtu(vf_netdev, mtu);
1267                if (ret)
1268                        goto out;
1269        }
1270
1271        ret = netvsc_detach(ndev, nvdev);
1272        if (ret)
1273                goto rollback_vf;
1274
1275        ndev->mtu = mtu;
1276
1277        ret = netvsc_attach(ndev, device_info);
1278        if (!ret)
1279                goto out;
1280
1281        /* Attempt rollback to original MTU */
1282        ndev->mtu = orig_mtu;
1283
1284        if (netvsc_attach(ndev, device_info))
1285                netdev_err(ndev, "restoring mtu failed\n");
1286rollback_vf:
1287        if (vf_netdev)
1288                dev_set_mtu(vf_netdev, orig_mtu);
1289
1290out:
1291        netvsc_devinfo_put(device_info);
1292        return ret;
1293}
1294
1295static void netvsc_get_vf_stats(struct net_device *net,
1296                                struct netvsc_vf_pcpu_stats *tot)
1297{
1298        struct net_device_context *ndev_ctx = netdev_priv(net);
1299        int i;
1300
1301        memset(tot, 0, sizeof(*tot));
1302
1303        for_each_possible_cpu(i) {
1304                const struct netvsc_vf_pcpu_stats *stats
1305                        = per_cpu_ptr(ndev_ctx->vf_stats, i);
1306                u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1307                unsigned int start;
1308
1309                do {
1310                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1311                        rx_packets = stats->rx_packets;
1312                        tx_packets = stats->tx_packets;
1313                        rx_bytes = stats->rx_bytes;
1314                        tx_bytes = stats->tx_bytes;
1315                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1316
1317                tot->rx_packets += rx_packets;
1318                tot->tx_packets += tx_packets;
1319                tot->rx_bytes   += rx_bytes;
1320                tot->tx_bytes   += tx_bytes;
1321                tot->tx_dropped += stats->tx_dropped;
1322        }
1323}
1324
1325static void netvsc_get_pcpu_stats(struct net_device *net,
1326                                  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1327{
1328        struct net_device_context *ndev_ctx = netdev_priv(net);
1329        struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1330        int i;
1331
1332        /* fetch percpu stats of vf */
1333        for_each_possible_cpu(i) {
1334                const struct netvsc_vf_pcpu_stats *stats =
1335                        per_cpu_ptr(ndev_ctx->vf_stats, i);
1336                struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1337                unsigned int start;
1338
1339                do {
1340                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1341                        this_tot->vf_rx_packets = stats->rx_packets;
1342                        this_tot->vf_tx_packets = stats->tx_packets;
1343                        this_tot->vf_rx_bytes = stats->rx_bytes;
1344                        this_tot->vf_tx_bytes = stats->tx_bytes;
1345                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1346                this_tot->rx_packets = this_tot->vf_rx_packets;
1347                this_tot->tx_packets = this_tot->vf_tx_packets;
1348                this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1349                this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1350        }
1351
1352        /* fetch percpu stats of netvsc */
1353        for (i = 0; i < nvdev->num_chn; i++) {
1354                const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1355                const struct netvsc_stats *stats;
1356                struct netvsc_ethtool_pcpu_stats *this_tot =
1357                        &pcpu_tot[nvchan->channel->target_cpu];
1358                u64 packets, bytes;
1359                unsigned int start;
1360
1361                stats = &nvchan->tx_stats;
1362                do {
1363                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1364                        packets = stats->packets;
1365                        bytes = stats->bytes;
1366                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1367
1368                this_tot->tx_bytes      += bytes;
1369                this_tot->tx_packets    += packets;
1370
1371                stats = &nvchan->rx_stats;
1372                do {
1373                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1374                        packets = stats->packets;
1375                        bytes = stats->bytes;
1376                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1377
1378                this_tot->rx_bytes      += bytes;
1379                this_tot->rx_packets    += packets;
1380        }
1381}
1382
1383static void netvsc_get_stats64(struct net_device *net,
1384                               struct rtnl_link_stats64 *t)
1385{
1386        struct net_device_context *ndev_ctx = netdev_priv(net);
1387        struct netvsc_device *nvdev;
1388        struct netvsc_vf_pcpu_stats vf_tot;
1389        int i;
1390
1391        rcu_read_lock();
1392
1393        nvdev = rcu_dereference(ndev_ctx->nvdev);
1394        if (!nvdev)
1395                goto out;
1396
1397        netdev_stats_to_stats64(t, &net->stats);
1398
1399        netvsc_get_vf_stats(net, &vf_tot);
1400        t->rx_packets += vf_tot.rx_packets;
1401        t->tx_packets += vf_tot.tx_packets;
1402        t->rx_bytes   += vf_tot.rx_bytes;
1403        t->tx_bytes   += vf_tot.tx_bytes;
1404        t->tx_dropped += vf_tot.tx_dropped;
1405
1406        for (i = 0; i < nvdev->num_chn; i++) {
1407                const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1408                const struct netvsc_stats *stats;
1409                u64 packets, bytes, multicast;
1410                unsigned int start;
1411
1412                stats = &nvchan->tx_stats;
1413                do {
1414                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1415                        packets = stats->packets;
1416                        bytes = stats->bytes;
1417                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1418
1419                t->tx_bytes     += bytes;
1420                t->tx_packets   += packets;
1421
1422                stats = &nvchan->rx_stats;
1423                do {
1424                        start = u64_stats_fetch_begin_irq(&stats->syncp);
1425                        packets = stats->packets;
1426                        bytes = stats->bytes;
1427                        multicast = stats->multicast + stats->broadcast;
1428                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1429
1430                t->rx_bytes     += bytes;
1431                t->rx_packets   += packets;
1432                t->multicast    += multicast;
1433        }
1434out:
1435        rcu_read_unlock();
1436}
1437
1438static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1439{
1440        struct net_device_context *ndc = netdev_priv(ndev);
1441        struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1442        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1443        struct sockaddr *addr = p;
1444        int err;
1445
1446        err = eth_prepare_mac_addr_change(ndev, p);
1447        if (err)
1448                return err;
1449
1450        if (!nvdev)
1451                return -ENODEV;
1452
1453        if (vf_netdev) {
1454                err = dev_set_mac_address(vf_netdev, addr, NULL);
1455                if (err)
1456                        return err;
1457        }
1458
1459        err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1460        if (!err) {
1461                eth_commit_mac_addr_change(ndev, p);
1462        } else if (vf_netdev) {
1463                /* rollback change on VF */
1464                memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1465                dev_set_mac_address(vf_netdev, addr, NULL);
1466        }
1467
1468        return err;
1469}
1470
1471static const struct {
1472        char name[ETH_GSTRING_LEN];
1473        u16 offset;
1474} netvsc_stats[] = {
1475        { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1476        { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1477        { "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1478        { "tx_too_big",   offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1479        { "tx_busy",      offsetof(struct netvsc_ethtool_stats, tx_busy) },
1480        { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1481        { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1482        { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1483        { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1484        { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1485        { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1486}, pcpu_stats[] = {
1487        { "cpu%u_rx_packets",
1488                offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1489        { "cpu%u_rx_bytes",
1490                offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1491        { "cpu%u_tx_packets",
1492                offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1493        { "cpu%u_tx_bytes",
1494                offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1495        { "cpu%u_vf_rx_packets",
1496                offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1497        { "cpu%u_vf_rx_bytes",
1498                offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1499        { "cpu%u_vf_tx_packets",
1500                offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1501        { "cpu%u_vf_tx_bytes",
1502                offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1503}, vf_stats[] = {
1504        { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1505        { "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1506        { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1507        { "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1508        { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1509};
1510
1511#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1512#define NETVSC_VF_STATS_LEN     ARRAY_SIZE(vf_stats)
1513
1514/* statistics per queue (rx/tx packets/bytes) */
1515#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1516
1517/* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1518#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1519
1520static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1521{
1522        struct net_device_context *ndc = netdev_priv(dev);
1523        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1524
1525        if (!nvdev)
1526                return -ENODEV;
1527
1528        switch (string_set) {
1529        case ETH_SS_STATS:
1530                return NETVSC_GLOBAL_STATS_LEN
1531                        + NETVSC_VF_STATS_LEN
1532                        + NETVSC_QUEUE_STATS_LEN(nvdev)
1533                        + NETVSC_PCPU_STATS_LEN;
1534        default:
1535                return -EINVAL;
1536        }
1537}
1538
1539static void netvsc_get_ethtool_stats(struct net_device *dev,
1540                                     struct ethtool_stats *stats, u64 *data)
1541{
1542        struct net_device_context *ndc = netdev_priv(dev);
1543        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1544        const void *nds = &ndc->eth_stats;
1545        const struct netvsc_stats *qstats;
1546        struct netvsc_vf_pcpu_stats sum;
1547        struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1548        unsigned int start;
1549        u64 packets, bytes;
1550        u64 xdp_drop;
1551        int i, j, cpu;
1552
1553        if (!nvdev)
1554                return;
1555
1556        for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1557                data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1558
1559        netvsc_get_vf_stats(dev, &sum);
1560        for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1561                data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1562
1563        for (j = 0; j < nvdev->num_chn; j++) {
1564                qstats = &nvdev->chan_table[j].tx_stats;
1565
1566                do {
1567                        start = u64_stats_fetch_begin_irq(&qstats->syncp);
1568                        packets = qstats->packets;
1569                        bytes = qstats->bytes;
1570                } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1571                data[i++] = packets;
1572                data[i++] = bytes;
1573
1574                qstats = &nvdev->chan_table[j].rx_stats;
1575                do {
1576                        start = u64_stats_fetch_begin_irq(&qstats->syncp);
1577                        packets = qstats->packets;
1578                        bytes = qstats->bytes;
1579                        xdp_drop = qstats->xdp_drop;
1580                } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1581                data[i++] = packets;
1582                data[i++] = bytes;
1583                data[i++] = xdp_drop;
1584        }
1585
1586        pcpu_sum = kvmalloc_array(num_possible_cpus(),
1587                                  sizeof(struct netvsc_ethtool_pcpu_stats),
1588                                  GFP_KERNEL);
1589        netvsc_get_pcpu_stats(dev, pcpu_sum);
1590        for_each_present_cpu(cpu) {
1591                struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1592
1593                for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1594                        data[i++] = *(u64 *)((void *)this_sum
1595                                             + pcpu_stats[j].offset);
1596        }
1597        kvfree(pcpu_sum);
1598}
1599
1600static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1601{
1602        struct net_device_context *ndc = netdev_priv(dev);
1603        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1604        u8 *p = data;
1605        int i, cpu;
1606
1607        if (!nvdev)
1608                return;
1609
1610        switch (stringset) {
1611        case ETH_SS_STATS:
1612                for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1613                        ethtool_sprintf(&p, netvsc_stats[i].name);
1614
1615                for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1616                        ethtool_sprintf(&p, vf_stats[i].name);
1617
1618                for (i = 0; i < nvdev->num_chn; i++) {
1619                        ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1620                        ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1621                        ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1622                        ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1623                        ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1624                }
1625
1626                for_each_present_cpu(cpu) {
1627                        for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1628                                ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1629                }
1630
1631                break;
1632        }
1633}
1634
1635static int
1636netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1637                         struct ethtool_rxnfc *info)
1638{
1639        const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1640
1641        info->data = RXH_IP_SRC | RXH_IP_DST;
1642
1643        switch (info->flow_type) {
1644        case TCP_V4_FLOW:
1645                if (ndc->l4_hash & HV_TCP4_L4HASH)
1646                        info->data |= l4_flag;
1647
1648                break;
1649
1650        case TCP_V6_FLOW:
1651                if (ndc->l4_hash & HV_TCP6_L4HASH)
1652                        info->data |= l4_flag;
1653
1654                break;
1655
1656        case UDP_V4_FLOW:
1657                if (ndc->l4_hash & HV_UDP4_L4HASH)
1658                        info->data |= l4_flag;
1659
1660                break;
1661
1662        case UDP_V6_FLOW:
1663                if (ndc->l4_hash & HV_UDP6_L4HASH)
1664                        info->data |= l4_flag;
1665
1666                break;
1667
1668        case IPV4_FLOW:
1669        case IPV6_FLOW:
1670                break;
1671        default:
1672                info->data = 0;
1673                break;
1674        }
1675
1676        return 0;
1677}
1678
1679static int
1680netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1681                 u32 *rules)
1682{
1683        struct net_device_context *ndc = netdev_priv(dev);
1684        struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1685
1686        if (!nvdev)
1687                return -ENODEV;
1688
1689        switch (info->cmd) {
1690        case ETHTOOL_GRXRINGS:
1691                info->data = nvdev->num_chn;
1692                return 0;
1693
1694        case ETHTOOL_GRXFH:
1695                return netvsc_get_rss_hash_opts(ndc, info);
1696        }
1697        return -EOPNOTSUPP;
1698}
1699
1700static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1701                                    struct ethtool_rxnfc *info)
1702{
1703        if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1704                           RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1705                switch (info->flow_type) {
1706                case TCP_V4_FLOW:
1707                        ndc->l4_hash |= HV_TCP4_L4HASH;
1708                        break;
1709
1710                case TCP_V6_FLOW:
1711                        ndc->l4_hash |= HV_TCP6_L4HASH;
1712                        break;
1713
1714                case UDP_V4_FLOW:
1715                        ndc->l4_hash |= HV_UDP4_L4HASH;
1716                        break;
1717
1718                case UDP_V6_FLOW:
1719                        ndc->l4_hash |= HV_UDP6_L4HASH;
1720                        break;
1721
1722                default:
1723                        return -EOPNOTSUPP;
1724                }
1725
1726                return 0;
1727        }
1728
1729        if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1730                switch (info->flow_type) {
1731                case TCP_V4_FLOW:
1732                        ndc->l4_hash &= ~HV_TCP4_L4HASH;
1733                        break;
1734
1735                case TCP_V6_FLOW:
1736                        ndc->l4_hash &= ~HV_TCP6_L4HASH;
1737                        break;
1738
1739                case UDP_V4_FLOW:
1740                        ndc->l4_hash &= ~HV_UDP4_L4HASH;
1741                        break;
1742
1743                case UDP_V6_FLOW:
1744                        ndc->l4_hash &= ~HV_UDP6_L4HASH;
1745                        break;
1746
1747                default:
1748                        return -EOPNOTSUPP;
1749                }
1750
1751                return 0;
1752        }
1753
1754        return -EOPNOTSUPP;
1755}
1756
1757static int
1758netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1759{
1760        struct net_device_context *ndc = netdev_priv(ndev);
1761
1762        if (info->cmd == ETHTOOL_SRXFH)
1763                return netvsc_set_rss_hash_opts(ndc, info);
1764
1765        return -EOPNOTSUPP;
1766}
1767
1768static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1769{
1770        return NETVSC_HASH_KEYLEN;
1771}
1772
1773static u32 netvsc_rss_indir_size(struct net_device *dev)
1774{
1775        return ITAB_NUM;
1776}
1777
1778static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1779                           u8 *hfunc)
1780{
1781        struct net_device_context *ndc = netdev_priv(dev);
1782        struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1783        struct rndis_device *rndis_dev;
1784        int i;
1785
1786        if (!ndev)
1787                return -ENODEV;
1788
1789        if (hfunc)
1790                *hfunc = ETH_RSS_HASH_TOP;      /* Toeplitz */
1791
1792        rndis_dev = ndev->extension;
1793        if (indir) {
1794                for (i = 0; i < ITAB_NUM; i++)
1795                        indir[i] = ndc->rx_table[i];
1796        }
1797
1798        if (key)
1799                memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1800
1801        return 0;
1802}
1803
1804static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1805                           const u8 *key, const u8 hfunc)
1806{
1807        struct net_device_context *ndc = netdev_priv(dev);
1808        struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1809        struct rndis_device *rndis_dev;
1810        int i;
1811
1812        if (!ndev)
1813                return -ENODEV;
1814
1815        if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1816                return -EOPNOTSUPP;
1817
1818        rndis_dev = ndev->extension;
1819        if (indir) {
1820                for (i = 0; i < ITAB_NUM; i++)
1821                        if (indir[i] >= ndev->num_chn)
1822                                return -EINVAL;
1823
1824                for (i = 0; i < ITAB_NUM; i++)
1825                        ndc->rx_table[i] = indir[i];
1826        }
1827
1828        if (!key) {
1829                if (!indir)
1830                        return 0;
1831
1832                key = rndis_dev->rss_key;
1833        }
1834
1835        return rndis_filter_set_rss_param(rndis_dev, key);
1836}
1837
1838/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1839 * It does have pre-allocated receive area which is divided into sections.
1840 */
1841static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1842                                   struct ethtool_ringparam *ring)
1843{
1844        u32 max_buf_size;
1845
1846        ring->rx_pending = nvdev->recv_section_cnt;
1847        ring->tx_pending = nvdev->send_section_cnt;
1848
1849        if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1850                max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1851        else
1852                max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1853
1854        ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1855        ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1856                / nvdev->send_section_size;
1857}
1858
1859static void netvsc_get_ringparam(struct net_device *ndev,
1860                                 struct ethtool_ringparam *ring)
1861{
1862        struct net_device_context *ndevctx = netdev_priv(ndev);
1863        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1864
1865        if (!nvdev)
1866                return;
1867
1868        __netvsc_get_ringparam(nvdev, ring);
1869}
1870
1871static int netvsc_set_ringparam(struct net_device *ndev,
1872                                struct ethtool_ringparam *ring)
1873{
1874        struct net_device_context *ndevctx = netdev_priv(ndev);
1875        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1876        struct netvsc_device_info *device_info;
1877        struct ethtool_ringparam orig;
1878        u32 new_tx, new_rx;
1879        int ret = 0;
1880
1881        if (!nvdev || nvdev->destroy)
1882                return -ENODEV;
1883
1884        memset(&orig, 0, sizeof(orig));
1885        __netvsc_get_ringparam(nvdev, &orig);
1886
1887        new_tx = clamp_t(u32, ring->tx_pending,
1888                         NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1889        new_rx = clamp_t(u32, ring->rx_pending,
1890                         NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1891
1892        if (new_tx == orig.tx_pending &&
1893            new_rx == orig.rx_pending)
1894                return 0;        /* no change */
1895
1896        device_info = netvsc_devinfo_get(nvdev);
1897
1898        if (!device_info)
1899                return -ENOMEM;
1900
1901        device_info->send_sections = new_tx;
1902        device_info->recv_sections = new_rx;
1903
1904        ret = netvsc_detach(ndev, nvdev);
1905        if (ret)
1906                goto out;
1907
1908        ret = netvsc_attach(ndev, device_info);
1909        if (ret) {
1910                device_info->send_sections = orig.tx_pending;
1911                device_info->recv_sections = orig.rx_pending;
1912
1913                if (netvsc_attach(ndev, device_info))
1914                        netdev_err(ndev, "restoring ringparam failed");
1915        }
1916
1917out:
1918        netvsc_devinfo_put(device_info);
1919        return ret;
1920}
1921
1922static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1923                                             netdev_features_t features)
1924{
1925        struct net_device_context *ndevctx = netdev_priv(ndev);
1926        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1927
1928        if (!nvdev || nvdev->destroy)
1929                return features;
1930
1931        if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1932                features ^= NETIF_F_LRO;
1933                netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1934        }
1935
1936        return features;
1937}
1938
1939static int netvsc_set_features(struct net_device *ndev,
1940                               netdev_features_t features)
1941{
1942        netdev_features_t change = features ^ ndev->features;
1943        struct net_device_context *ndevctx = netdev_priv(ndev);
1944        struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1945        struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1946        struct ndis_offload_params offloads;
1947        int ret = 0;
1948
1949        if (!nvdev || nvdev->destroy)
1950                return -ENODEV;
1951
1952        if (!(change & NETIF_F_LRO))
1953                goto syncvf;
1954
1955        memset(&offloads, 0, sizeof(struct ndis_offload_params));
1956
1957        if (features & NETIF_F_LRO) {
1958                offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1959                offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1960        } else {
1961                offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1962                offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1963        }
1964
1965        ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1966
1967        if (ret) {
1968                features ^= NETIF_F_LRO;
1969                ndev->features = features;
1970        }
1971
1972syncvf:
1973        if (!vf_netdev)
1974                return ret;
1975
1976        vf_netdev->wanted_features = features;
1977        netdev_update_features(vf_netdev);
1978
1979        return ret;
1980}
1981
1982static int netvsc_get_regs_len(struct net_device *netdev)
1983{
1984        return VRSS_SEND_TAB_SIZE * sizeof(u32);
1985}
1986
1987static void netvsc_get_regs(struct net_device *netdev,
1988                            struct ethtool_regs *regs, void *p)
1989{
1990        struct net_device_context *ndc = netdev_priv(netdev);
1991        u32 *regs_buff = p;
1992
1993        /* increase the version, if buffer format is changed. */
1994        regs->version = 1;
1995
1996        memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1997}
1998
1999static u32 netvsc_get_msglevel(struct net_device *ndev)
2000{
2001        struct net_device_context *ndev_ctx = netdev_priv(ndev);
2002
2003        return ndev_ctx->msg_enable;
2004}
2005
2006static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
2007{
2008        struct net_device_context *ndev_ctx = netdev_priv(ndev);
2009
2010        ndev_ctx->msg_enable = val;
2011}
2012
2013static const struct ethtool_ops ethtool_ops = {
2014        .get_drvinfo    = netvsc_get_drvinfo,
2015        .get_regs_len   = netvsc_get_regs_len,
2016        .get_regs       = netvsc_get_regs,
2017        .get_msglevel   = netvsc_get_msglevel,
2018        .set_msglevel   = netvsc_set_msglevel,
2019        .get_link       = ethtool_op_get_link,
2020        .get_ethtool_stats = netvsc_get_ethtool_stats,
2021        .get_sset_count = netvsc_get_sset_count,
2022        .get_strings    = netvsc_get_strings,
2023        .get_channels   = netvsc_get_channels,
2024        .set_channels   = netvsc_set_channels,
2025        .get_ts_info    = ethtool_op_get_ts_info,
2026        .get_rxnfc      = netvsc_get_rxnfc,
2027        .set_rxnfc      = netvsc_set_rxnfc,
2028        .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2029        .get_rxfh_indir_size = netvsc_rss_indir_size,
2030        .get_rxfh       = netvsc_get_rxfh,
2031        .set_rxfh       = netvsc_set_rxfh,
2032        .get_link_ksettings = netvsc_get_link_ksettings,
2033        .set_link_ksettings = netvsc_set_link_ksettings,
2034        .get_ringparam  = netvsc_get_ringparam,
2035        .set_ringparam  = netvsc_set_ringparam,
2036};
2037
2038static const struct net_device_ops device_ops = {
2039        .ndo_open =                     netvsc_open,
2040        .ndo_stop =                     netvsc_close,
2041        .ndo_start_xmit =               netvsc_start_xmit,
2042        .ndo_change_rx_flags =          netvsc_change_rx_flags,
2043        .ndo_set_rx_mode =              netvsc_set_rx_mode,
2044        .ndo_fix_features =             netvsc_fix_features,
2045        .ndo_set_features =             netvsc_set_features,
2046        .ndo_change_mtu =               netvsc_change_mtu,
2047        .ndo_validate_addr =            eth_validate_addr,
2048        .ndo_set_mac_address =          netvsc_set_mac_addr,
2049        .ndo_select_queue =             netvsc_select_queue,
2050        .ndo_get_stats64 =              netvsc_get_stats64,
2051        .ndo_bpf =                      netvsc_bpf,
2052};
2053
2054/*
2055 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2056 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2057 * present send GARP packet to network peers with netif_notify_peers().
2058 */
2059static void netvsc_link_change(struct work_struct *w)
2060{
2061        struct net_device_context *ndev_ctx =
2062                container_of(w, struct net_device_context, dwork.work);
2063        struct hv_device *device_obj = ndev_ctx->device_ctx;
2064        struct net_device *net = hv_get_drvdata(device_obj);
2065        unsigned long flags, next_reconfig, delay;
2066        struct netvsc_reconfig *event = NULL;
2067        struct netvsc_device *net_device;
2068        struct rndis_device *rdev;
2069        bool reschedule = false;
2070
2071        /* if changes are happening, comeback later */
2072        if (!rtnl_trylock()) {
2073                schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2074                return;
2075        }
2076
2077        net_device = rtnl_dereference(ndev_ctx->nvdev);
2078        if (!net_device)
2079                goto out_unlock;
2080
2081        rdev = net_device->extension;
2082
2083        next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2084        if (time_is_after_jiffies(next_reconfig)) {
2085                /* link_watch only sends one notification with current state
2086                 * per second, avoid doing reconfig more frequently. Handle
2087                 * wrap around.
2088                 */
2089                delay = next_reconfig - jiffies;
2090                delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2091                schedule_delayed_work(&ndev_ctx->dwork, delay);
2092                goto out_unlock;
2093        }
2094        ndev_ctx->last_reconfig = jiffies;
2095
2096        spin_lock_irqsave(&ndev_ctx->lock, flags);
2097        if (!list_empty(&ndev_ctx->reconfig_events)) {
2098                event = list_first_entry(&ndev_ctx->reconfig_events,
2099                                         struct netvsc_reconfig, list);
2100                list_del(&event->list);
2101                reschedule = !list_empty(&ndev_ctx->reconfig_events);
2102        }
2103        spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2104
2105        if (!event)
2106                goto out_unlock;
2107
2108        switch (event->event) {
2109                /* Only the following events are possible due to the check in
2110                 * netvsc_linkstatus_callback()
2111                 */
2112        case RNDIS_STATUS_MEDIA_CONNECT:
2113                if (rdev->link_state) {
2114                        rdev->link_state = false;
2115                        netif_carrier_on(net);
2116                        netvsc_tx_enable(net_device, net);
2117                } else {
2118                        __netdev_notify_peers(net);
2119                }
2120                kfree(event);
2121                break;
2122        case RNDIS_STATUS_MEDIA_DISCONNECT:
2123                if (!rdev->link_state) {
2124                        rdev->link_state = true;
2125                        netif_carrier_off(net);
2126                        netvsc_tx_disable(net_device, net);
2127                }
2128                kfree(event);
2129                break;
2130        case RNDIS_STATUS_NETWORK_CHANGE:
2131                /* Only makes sense if carrier is present */
2132                if (!rdev->link_state) {
2133                        rdev->link_state = true;
2134                        netif_carrier_off(net);
2135                        netvsc_tx_disable(net_device, net);
2136                        event->event = RNDIS_STATUS_MEDIA_CONNECT;
2137                        spin_lock_irqsave(&ndev_ctx->lock, flags);
2138                        list_add(&event->list, &ndev_ctx->reconfig_events);
2139                        spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2140                        reschedule = true;
2141                }
2142                break;
2143        }
2144
2145        rtnl_unlock();
2146
2147        /* link_watch only sends one notification with current state per
2148         * second, handle next reconfig event in 2 seconds.
2149         */
2150        if (reschedule)
2151                schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2152
2153        return;
2154
2155out_unlock:
2156        rtnl_unlock();
2157}
2158
2159static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2160{
2161        struct net_device_context *net_device_ctx;
2162        struct net_device *dev;
2163
2164        dev = netdev_master_upper_dev_get(vf_netdev);
2165        if (!dev || dev->netdev_ops != &device_ops)
2166                return NULL;    /* not a netvsc device */
2167
2168        net_device_ctx = netdev_priv(dev);
2169        if (!rtnl_dereference(net_device_ctx->nvdev))
2170                return NULL;    /* device is removed */
2171
2172        return dev;
2173}
2174
2175/* Called when VF is injecting data into network stack.
2176 * Change the associated network device from VF to netvsc.
2177 * note: already called with rcu_read_lock
2178 */
2179static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2180{
2181        struct sk_buff *skb = *pskb;
2182        struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2183        struct net_device_context *ndev_ctx = netdev_priv(ndev);
2184        struct netvsc_vf_pcpu_stats *pcpu_stats
2185                 = this_cpu_ptr(ndev_ctx->vf_stats);
2186
2187        skb = skb_share_check(skb, GFP_ATOMIC);
2188        if (unlikely(!skb))
2189                return RX_HANDLER_CONSUMED;
2190
2191        *pskb = skb;
2192
2193        skb->dev = ndev;
2194
2195        u64_stats_update_begin(&pcpu_stats->syncp);
2196        pcpu_stats->rx_packets++;
2197        pcpu_stats->rx_bytes += skb->len;
2198        u64_stats_update_end(&pcpu_stats->syncp);
2199
2200        return RX_HANDLER_ANOTHER;
2201}
2202
2203static int netvsc_vf_join(struct net_device *vf_netdev,
2204                          struct net_device *ndev)
2205{
2206        struct net_device_context *ndev_ctx = netdev_priv(ndev);
2207        int ret;
2208
2209        ret = netdev_rx_handler_register(vf_netdev,
2210                                         netvsc_vf_handle_frame, ndev);
2211        if (ret != 0) {
2212                netdev_err(vf_netdev,
2213                           "can not register netvsc VF receive handler (err = %d)\n",
2214                           ret);
2215                goto rx_handler_failed;
2216        }
2217
2218        ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2219                                           NULL, NULL, NULL);
2220        if (ret != 0) {
2221                netdev_err(vf_netdev,
2222                           "can not set master device %s (err = %d)\n",
2223                           ndev->name, ret);
2224                goto upper_link_failed;
2225        }
2226
2227        /* set slave flag before open to prevent IPv6 addrconf */
2228        vf_netdev->flags |= IFF_SLAVE;
2229
2230        schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2231
2232        call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2233
2234        netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2235        return 0;
2236
2237upper_link_failed:
2238        netdev_rx_handler_unregister(vf_netdev);
2239rx_handler_failed:
2240        return ret;
2241}
2242
2243static void __netvsc_vf_setup(struct net_device *ndev,
2244                              struct net_device *vf_netdev)
2245{
2246        int ret;
2247
2248        /* Align MTU of VF with master */
2249        ret = dev_set_mtu(vf_netdev, ndev->mtu);
2250        if (ret)
2251                netdev_warn(vf_netdev,
2252                            "unable to change mtu to %u\n", ndev->mtu);
2253
2254        /* set multicast etc flags on VF */
2255        dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2256
2257        /* sync address list from ndev to VF */
2258        netif_addr_lock_bh(ndev);
2259        dev_uc_sync(vf_netdev, ndev);
2260        dev_mc_sync(vf_netdev, ndev);
2261        netif_addr_unlock_bh(ndev);
2262
2263        if (netif_running(ndev)) {
2264                ret = dev_open(vf_netdev, NULL);
2265                if (ret)
2266                        netdev_warn(vf_netdev,
2267                                    "unable to open: %d\n", ret);
2268        }
2269}
2270
2271/* Setup VF as slave of the synthetic device.
2272 * Runs in workqueue to avoid recursion in netlink callbacks.
2273 */
2274static void netvsc_vf_setup(struct work_struct *w)
2275{
2276        struct net_device_context *ndev_ctx
2277                = container_of(w, struct net_device_context, vf_takeover.work);
2278        struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2279        struct net_device *vf_netdev;
2280
2281        if (!rtnl_trylock()) {
2282                schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2283                return;
2284        }
2285
2286        vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2287        if (vf_netdev)
2288                __netvsc_vf_setup(ndev, vf_netdev);
2289
2290        rtnl_unlock();
2291}
2292
2293/* Find netvsc by VF serial number.
2294 * The PCI hyperv controller records the serial number as the slot kobj name.
2295 */
2296static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2297{
2298        struct device *parent = vf_netdev->dev.parent;
2299        struct net_device_context *ndev_ctx;
2300        struct net_device *ndev;
2301        struct pci_dev *pdev;
2302        u32 serial;
2303
2304        if (!parent || !dev_is_pci(parent))
2305                return NULL; /* not a PCI device */
2306
2307        pdev = to_pci_dev(parent);
2308        if (!pdev->slot) {
2309                netdev_notice(vf_netdev, "no PCI slot information\n");
2310                return NULL;
2311        }
2312
2313        if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2314                netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2315                              pci_slot_name(pdev->slot));
2316                return NULL;
2317        }
2318
2319        list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2320                if (!ndev_ctx->vf_alloc)
2321                        continue;
2322
2323                if (ndev_ctx->vf_serial != serial)
2324                        continue;
2325
2326                ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2327                if (ndev->addr_len != vf_netdev->addr_len ||
2328                    memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2329                           ndev->addr_len) != 0)
2330                        continue;
2331
2332                return ndev;
2333
2334        }
2335
2336        netdev_notice(vf_netdev,
2337                      "no netdev found for vf serial:%u\n", serial);
2338        return NULL;
2339}
2340
2341static int netvsc_register_vf(struct net_device *vf_netdev)
2342{
2343        struct net_device_context *net_device_ctx;
2344        struct netvsc_device *netvsc_dev;
2345        struct bpf_prog *prog;
2346        struct net_device *ndev;
2347        int ret;
2348
2349        if (vf_netdev->addr_len != ETH_ALEN)
2350                return NOTIFY_DONE;
2351
2352        ndev = get_netvsc_byslot(vf_netdev);
2353        if (!ndev)
2354                return NOTIFY_DONE;
2355
2356        net_device_ctx = netdev_priv(ndev);
2357        netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2358        if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2359                return NOTIFY_DONE;
2360
2361        /* if synthetic interface is a different namespace,
2362         * then move the VF to that namespace; join will be
2363         * done again in that context.
2364         */
2365        if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2366                ret = dev_change_net_namespace(vf_netdev,
2367                                               dev_net(ndev), "eth%d");
2368                if (ret)
2369                        netdev_err(vf_netdev,
2370                                   "could not move to same namespace as %s: %d\n",
2371                                   ndev->name, ret);
2372                else
2373                        netdev_info(vf_netdev,
2374                                    "VF moved to namespace with: %s\n",
2375                                    ndev->name);
2376                return NOTIFY_DONE;
2377        }
2378
2379        netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2380
2381        if (netvsc_vf_join(vf_netdev, ndev) != 0)
2382                return NOTIFY_DONE;
2383
2384        dev_hold(vf_netdev);
2385        rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2386
2387        if (ndev->needed_headroom < vf_netdev->needed_headroom)
2388                ndev->needed_headroom = vf_netdev->needed_headroom;
2389
2390        vf_netdev->wanted_features = ndev->features;
2391        netdev_update_features(vf_netdev);
2392
2393        prog = netvsc_xdp_get(netvsc_dev);
2394        netvsc_vf_setxdp(vf_netdev, prog);
2395
2396        return NOTIFY_OK;
2397}
2398
2399/* Change the data path when VF UP/DOWN/CHANGE are detected.
2400 *
2401 * Typically a UP or DOWN event is followed by a CHANGE event, so
2402 * net_device_ctx->data_path_is_vf is used to cache the current data path
2403 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2404 * message.
2405 *
2406 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2407 * interface, there is only the CHANGE event and no UP or DOWN event.
2408 */
2409static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2410{
2411        struct net_device_context *net_device_ctx;
2412        struct netvsc_device *netvsc_dev;
2413        struct net_device *ndev;
2414        bool vf_is_up = false;
2415        int ret;
2416
2417        if (event != NETDEV_GOING_DOWN)
2418                vf_is_up = netif_running(vf_netdev);
2419
2420        ndev = get_netvsc_byref(vf_netdev);
2421        if (!ndev)
2422                return NOTIFY_DONE;
2423
2424        net_device_ctx = netdev_priv(ndev);
2425        netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2426        if (!netvsc_dev)
2427                return NOTIFY_DONE;
2428
2429        if (net_device_ctx->data_path_is_vf == vf_is_up)
2430                return NOTIFY_OK;
2431
2432        ret = netvsc_switch_datapath(ndev, vf_is_up);
2433
2434        if (ret) {
2435                netdev_err(ndev,
2436                           "Data path failed to switch %s VF: %s, err: %d\n",
2437                           vf_is_up ? "to" : "from", vf_netdev->name, ret);
2438                return NOTIFY_DONE;
2439        } else {
2440                netdev_info(ndev, "Data path switched %s VF: %s\n",
2441                            vf_is_up ? "to" : "from", vf_netdev->name);
2442        }
2443
2444        return NOTIFY_OK;
2445}
2446
2447static int netvsc_unregister_vf(struct net_device *vf_netdev)
2448{
2449        struct net_device *ndev;
2450        struct net_device_context *net_device_ctx;
2451
2452        ndev = get_netvsc_byref(vf_netdev);
2453        if (!ndev)
2454                return NOTIFY_DONE;
2455
2456        net_device_ctx = netdev_priv(ndev);
2457        cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2458
2459        netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2460
2461        netvsc_vf_setxdp(vf_netdev, NULL);
2462
2463        netdev_rx_handler_unregister(vf_netdev);
2464        netdev_upper_dev_unlink(vf_netdev, ndev);
2465        RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2466        dev_put(vf_netdev);
2467
2468        ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2469
2470        return NOTIFY_OK;
2471}
2472
2473static int netvsc_probe(struct hv_device *dev,
2474                        const struct hv_vmbus_device_id *dev_id)
2475{
2476        struct net_device *net = NULL;
2477        struct net_device_context *net_device_ctx;
2478        struct netvsc_device_info *device_info = NULL;
2479        struct netvsc_device *nvdev;
2480        int ret = -ENOMEM;
2481
2482        net = alloc_etherdev_mq(sizeof(struct net_device_context),
2483                                VRSS_CHANNEL_MAX);
2484        if (!net)
2485                goto no_net;
2486
2487        netif_carrier_off(net);
2488
2489        netvsc_init_settings(net);
2490
2491        net_device_ctx = netdev_priv(net);
2492        net_device_ctx->device_ctx = dev;
2493        net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2494        if (netif_msg_probe(net_device_ctx))
2495                netdev_dbg(net, "netvsc msg_enable: %d\n",
2496                           net_device_ctx->msg_enable);
2497
2498        hv_set_drvdata(dev, net);
2499
2500        INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2501
2502        spin_lock_init(&net_device_ctx->lock);
2503        INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2504        INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2505
2506        net_device_ctx->vf_stats
2507                = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2508        if (!net_device_ctx->vf_stats)
2509                goto no_stats;
2510
2511        net->netdev_ops = &device_ops;
2512        net->ethtool_ops = &ethtool_ops;
2513        SET_NETDEV_DEV(net, &dev->device);
2514
2515        /* We always need headroom for rndis header */
2516        net->needed_headroom = RNDIS_AND_PPI_SIZE;
2517
2518        /* Initialize the number of queues to be 1, we may change it if more
2519         * channels are offered later.
2520         */
2521        netif_set_real_num_tx_queues(net, 1);
2522        netif_set_real_num_rx_queues(net, 1);
2523
2524        /* Notify the netvsc driver of the new device */
2525        device_info = netvsc_devinfo_get(NULL);
2526
2527        if (!device_info) {
2528                ret = -ENOMEM;
2529                goto devinfo_failed;
2530        }
2531
2532        nvdev = rndis_filter_device_add(dev, device_info);
2533        if (IS_ERR(nvdev)) {
2534                ret = PTR_ERR(nvdev);
2535                netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2536                goto rndis_failed;
2537        }
2538
2539        memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2540
2541        /* We must get rtnl lock before scheduling nvdev->subchan_work,
2542         * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2543         * all subchannels to show up, but that may not happen because
2544         * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2545         * -> ... -> device_add() -> ... -> __device_attach() can't get
2546         * the device lock, so all the subchannels can't be processed --
2547         * finally netvsc_subchan_work() hangs forever.
2548         */
2549        rtnl_lock();
2550
2551        if (nvdev->num_chn > 1)
2552                schedule_work(&nvdev->subchan_work);
2553
2554        /* hw_features computed in rndis_netdev_set_hwcaps() */
2555        net->features = net->hw_features |
2556                NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2557                NETIF_F_HW_VLAN_CTAG_RX;
2558        net->vlan_features = net->features;
2559
2560        netdev_lockdep_set_classes(net);
2561
2562        /* MTU range: 68 - 1500 or 65521 */
2563        net->min_mtu = NETVSC_MTU_MIN;
2564        if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2565                net->max_mtu = NETVSC_MTU - ETH_HLEN;
2566        else
2567                net->max_mtu = ETH_DATA_LEN;
2568
2569        nvdev->tx_disable = false;
2570
2571        ret = register_netdevice(net);
2572        if (ret != 0) {
2573                pr_err("Unable to register netdev.\n");
2574                goto register_failed;
2575        }
2576
2577        list_add(&net_device_ctx->list, &netvsc_dev_list);
2578        rtnl_unlock();
2579
2580        netvsc_devinfo_put(device_info);
2581        return 0;
2582
2583register_failed:
2584        rtnl_unlock();
2585        rndis_filter_device_remove(dev, nvdev);
2586rndis_failed:
2587        netvsc_devinfo_put(device_info);
2588devinfo_failed:
2589        free_percpu(net_device_ctx->vf_stats);
2590no_stats:
2591        hv_set_drvdata(dev, NULL);
2592        free_netdev(net);
2593no_net:
2594        return ret;
2595}
2596
2597static int netvsc_remove(struct hv_device *dev)
2598{
2599        struct net_device_context *ndev_ctx;
2600        struct net_device *vf_netdev, *net;
2601        struct netvsc_device *nvdev;
2602
2603        net = hv_get_drvdata(dev);
2604        if (net == NULL) {
2605                dev_err(&dev->device, "No net device to remove\n");
2606                return 0;
2607        }
2608
2609        ndev_ctx = netdev_priv(net);
2610
2611        cancel_delayed_work_sync(&ndev_ctx->dwork);
2612
2613        rtnl_lock();
2614        nvdev = rtnl_dereference(ndev_ctx->nvdev);
2615        if (nvdev) {
2616                cancel_work_sync(&nvdev->subchan_work);
2617                netvsc_xdp_set(net, NULL, NULL, nvdev);
2618        }
2619
2620        /*
2621         * Call to the vsc driver to let it know that the device is being
2622         * removed. Also blocks mtu and channel changes.
2623         */
2624        vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2625        if (vf_netdev)
2626                netvsc_unregister_vf(vf_netdev);
2627
2628        if (nvdev)
2629                rndis_filter_device_remove(dev, nvdev);
2630
2631        unregister_netdevice(net);
2632        list_del(&ndev_ctx->list);
2633
2634        rtnl_unlock();
2635
2636        hv_set_drvdata(dev, NULL);
2637
2638        free_percpu(ndev_ctx->vf_stats);
2639        free_netdev(net);
2640        return 0;
2641}
2642
2643static int netvsc_suspend(struct hv_device *dev)
2644{
2645        struct net_device_context *ndev_ctx;
2646        struct netvsc_device *nvdev;
2647        struct net_device *net;
2648        int ret;
2649
2650        net = hv_get_drvdata(dev);
2651
2652        ndev_ctx = netdev_priv(net);
2653        cancel_delayed_work_sync(&ndev_ctx->dwork);
2654
2655        rtnl_lock();
2656
2657        nvdev = rtnl_dereference(ndev_ctx->nvdev);
2658        if (nvdev == NULL) {
2659                ret = -ENODEV;
2660                goto out;
2661        }
2662
2663        /* Save the current config info */
2664        ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2665
2666        ret = netvsc_detach(net, nvdev);
2667out:
2668        rtnl_unlock();
2669
2670        return ret;
2671}
2672
2673static int netvsc_resume(struct hv_device *dev)
2674{
2675        struct net_device *net = hv_get_drvdata(dev);
2676        struct net_device_context *net_device_ctx;
2677        struct netvsc_device_info *device_info;
2678        int ret;
2679
2680        rtnl_lock();
2681
2682        net_device_ctx = netdev_priv(net);
2683
2684        /* Reset the data path to the netvsc NIC before re-opening the vmbus
2685         * channel. Later netvsc_netdev_event() will switch the data path to
2686         * the VF upon the UP or CHANGE event.
2687         */
2688        net_device_ctx->data_path_is_vf = false;
2689        device_info = net_device_ctx->saved_netvsc_dev_info;
2690
2691        ret = netvsc_attach(net, device_info);
2692
2693        netvsc_devinfo_put(device_info);
2694        net_device_ctx->saved_netvsc_dev_info = NULL;
2695
2696        rtnl_unlock();
2697
2698        return ret;
2699}
2700static const struct hv_vmbus_device_id id_table[] = {
2701        /* Network guid */
2702        { HV_NIC_GUID, },
2703        { },
2704};
2705
2706MODULE_DEVICE_TABLE(vmbus, id_table);
2707
2708/* The one and only one */
2709static struct  hv_driver netvsc_drv = {
2710        .name = KBUILD_MODNAME,
2711        .id_table = id_table,
2712        .probe = netvsc_probe,
2713        .remove = netvsc_remove,
2714        .suspend = netvsc_suspend,
2715        .resume = netvsc_resume,
2716        .driver = {
2717                .probe_type = PROBE_FORCE_SYNCHRONOUS,
2718        },
2719};
2720
2721/*
2722 * On Hyper-V, every VF interface is matched with a corresponding
2723 * synthetic interface. The synthetic interface is presented first
2724 * to the guest. When the corresponding VF instance is registered,
2725 * we will take care of switching the data path.
2726 */
2727static int netvsc_netdev_event(struct notifier_block *this,
2728                               unsigned long event, void *ptr)
2729{
2730        struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2731
2732        /* Skip our own events */
2733        if (event_dev->netdev_ops == &device_ops)
2734                return NOTIFY_DONE;
2735
2736        /* Avoid non-Ethernet type devices */
2737        if (event_dev->type != ARPHRD_ETHER)
2738                return NOTIFY_DONE;
2739
2740        /* Avoid Vlan dev with same MAC registering as VF */
2741        if (is_vlan_dev(event_dev))
2742                return NOTIFY_DONE;
2743
2744        /* Avoid Bonding master dev with same MAC registering as VF */
2745        if ((event_dev->priv_flags & IFF_BONDING) &&
2746            (event_dev->flags & IFF_MASTER))
2747                return NOTIFY_DONE;
2748
2749        switch (event) {
2750        case NETDEV_REGISTER:
2751                return netvsc_register_vf(event_dev);
2752        case NETDEV_UNREGISTER:
2753                return netvsc_unregister_vf(event_dev);
2754        case NETDEV_UP:
2755        case NETDEV_DOWN:
2756        case NETDEV_CHANGE:
2757        case NETDEV_GOING_DOWN:
2758                return netvsc_vf_changed(event_dev, event);
2759        default:
2760                return NOTIFY_DONE;
2761        }
2762}
2763
2764static struct notifier_block netvsc_netdev_notifier = {
2765        .notifier_call = netvsc_netdev_event,
2766};
2767
2768static void __exit netvsc_drv_exit(void)
2769{
2770        unregister_netdevice_notifier(&netvsc_netdev_notifier);
2771        vmbus_driver_unregister(&netvsc_drv);
2772}
2773
2774static int __init netvsc_drv_init(void)
2775{
2776        int ret;
2777
2778        if (ring_size < RING_SIZE_MIN) {
2779                ring_size = RING_SIZE_MIN;
2780                pr_info("Increased ring_size to %u (min allowed)\n",
2781                        ring_size);
2782        }
2783        netvsc_ring_bytes = ring_size * PAGE_SIZE;
2784
2785        ret = vmbus_driver_register(&netvsc_drv);
2786        if (ret)
2787                return ret;
2788
2789        register_netdevice_notifier(&netvsc_netdev_notifier);
2790        return 0;
2791}
2792
2793MODULE_LICENSE("GPL");
2794MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2795
2796module_init(netvsc_drv_init);
2797module_exit(netvsc_drv_exit);
2798