linux/drivers/net/ethernet/mellanox/mlxsw/cmd.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
   2/* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */
   3
   4#ifndef _MLXSW_CMD_H
   5#define _MLXSW_CMD_H
   6
   7#include "item.h"
   8
   9#define MLXSW_CMD_MBOX_SIZE     4096
  10
  11static inline char *mlxsw_cmd_mbox_alloc(void)
  12{
  13        return kzalloc(MLXSW_CMD_MBOX_SIZE, GFP_KERNEL);
  14}
  15
  16static inline void mlxsw_cmd_mbox_free(char *mbox)
  17{
  18        kfree(mbox);
  19}
  20
  21static inline void mlxsw_cmd_mbox_zero(char *mbox)
  22{
  23        memset(mbox, 0, MLXSW_CMD_MBOX_SIZE);
  24}
  25
  26struct mlxsw_core;
  27
  28int mlxsw_cmd_exec(struct mlxsw_core *mlxsw_core, u16 opcode, u8 opcode_mod,
  29                   u32 in_mod, bool out_mbox_direct, bool reset_ok,
  30                   char *in_mbox, size_t in_mbox_size,
  31                   char *out_mbox, size_t out_mbox_size);
  32
  33static inline int mlxsw_cmd_exec_in(struct mlxsw_core *mlxsw_core, u16 opcode,
  34                                    u8 opcode_mod, u32 in_mod, char *in_mbox,
  35                                    size_t in_mbox_size)
  36{
  37        return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
  38                              false, in_mbox, in_mbox_size, NULL, 0);
  39}
  40
  41static inline int mlxsw_cmd_exec_out(struct mlxsw_core *mlxsw_core, u16 opcode,
  42                                     u8 opcode_mod, u32 in_mod,
  43                                     bool out_mbox_direct,
  44                                     char *out_mbox, size_t out_mbox_size)
  45{
  46        return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod,
  47                              out_mbox_direct, false, NULL, 0,
  48                              out_mbox, out_mbox_size);
  49}
  50
  51static inline int mlxsw_cmd_exec_none(struct mlxsw_core *mlxsw_core, u16 opcode,
  52                                      u8 opcode_mod, u32 in_mod)
  53{
  54        return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
  55                              false, NULL, 0, NULL, 0);
  56}
  57
  58enum mlxsw_cmd_opcode {
  59        MLXSW_CMD_OPCODE_QUERY_FW               = 0x004,
  60        MLXSW_CMD_OPCODE_QUERY_BOARDINFO        = 0x006,
  61        MLXSW_CMD_OPCODE_QUERY_AQ_CAP           = 0x003,
  62        MLXSW_CMD_OPCODE_MAP_FA                 = 0xFFF,
  63        MLXSW_CMD_OPCODE_UNMAP_FA               = 0xFFE,
  64        MLXSW_CMD_OPCODE_CONFIG_PROFILE         = 0x100,
  65        MLXSW_CMD_OPCODE_ACCESS_REG             = 0x040,
  66        MLXSW_CMD_OPCODE_SW2HW_DQ               = 0x201,
  67        MLXSW_CMD_OPCODE_HW2SW_DQ               = 0x202,
  68        MLXSW_CMD_OPCODE_2ERR_DQ                = 0x01E,
  69        MLXSW_CMD_OPCODE_QUERY_DQ               = 0x022,
  70        MLXSW_CMD_OPCODE_SW2HW_CQ               = 0x016,
  71        MLXSW_CMD_OPCODE_HW2SW_CQ               = 0x017,
  72        MLXSW_CMD_OPCODE_QUERY_CQ               = 0x018,
  73        MLXSW_CMD_OPCODE_SW2HW_EQ               = 0x013,
  74        MLXSW_CMD_OPCODE_HW2SW_EQ               = 0x014,
  75        MLXSW_CMD_OPCODE_QUERY_EQ               = 0x015,
  76        MLXSW_CMD_OPCODE_QUERY_RESOURCES        = 0x101,
  77};
  78
  79static inline const char *mlxsw_cmd_opcode_str(u16 opcode)
  80{
  81        switch (opcode) {
  82        case MLXSW_CMD_OPCODE_QUERY_FW:
  83                return "QUERY_FW";
  84        case MLXSW_CMD_OPCODE_QUERY_BOARDINFO:
  85                return "QUERY_BOARDINFO";
  86        case MLXSW_CMD_OPCODE_QUERY_AQ_CAP:
  87                return "QUERY_AQ_CAP";
  88        case MLXSW_CMD_OPCODE_MAP_FA:
  89                return "MAP_FA";
  90        case MLXSW_CMD_OPCODE_UNMAP_FA:
  91                return "UNMAP_FA";
  92        case MLXSW_CMD_OPCODE_CONFIG_PROFILE:
  93                return "CONFIG_PROFILE";
  94        case MLXSW_CMD_OPCODE_ACCESS_REG:
  95                return "ACCESS_REG";
  96        case MLXSW_CMD_OPCODE_SW2HW_DQ:
  97                return "SW2HW_DQ";
  98        case MLXSW_CMD_OPCODE_HW2SW_DQ:
  99                return "HW2SW_DQ";
 100        case MLXSW_CMD_OPCODE_2ERR_DQ:
 101                return "2ERR_DQ";
 102        case MLXSW_CMD_OPCODE_QUERY_DQ:
 103                return "QUERY_DQ";
 104        case MLXSW_CMD_OPCODE_SW2HW_CQ:
 105                return "SW2HW_CQ";
 106        case MLXSW_CMD_OPCODE_HW2SW_CQ:
 107                return "HW2SW_CQ";
 108        case MLXSW_CMD_OPCODE_QUERY_CQ:
 109                return "QUERY_CQ";
 110        case MLXSW_CMD_OPCODE_SW2HW_EQ:
 111                return "SW2HW_EQ";
 112        case MLXSW_CMD_OPCODE_HW2SW_EQ:
 113                return "HW2SW_EQ";
 114        case MLXSW_CMD_OPCODE_QUERY_EQ:
 115                return "QUERY_EQ";
 116        case MLXSW_CMD_OPCODE_QUERY_RESOURCES:
 117                return "QUERY_RESOURCES";
 118        default:
 119                return "*UNKNOWN*";
 120        }
 121}
 122
 123enum mlxsw_cmd_status {
 124        /* Command execution succeeded. */
 125        MLXSW_CMD_STATUS_OK             = 0x00,
 126        /* Internal error (e.g. bus error) occurred while processing command. */
 127        MLXSW_CMD_STATUS_INTERNAL_ERR   = 0x01,
 128        /* Operation/command not supported or opcode modifier not supported. */
 129        MLXSW_CMD_STATUS_BAD_OP         = 0x02,
 130        /* Parameter not supported, parameter out of range. */
 131        MLXSW_CMD_STATUS_BAD_PARAM      = 0x03,
 132        /* System was not enabled or bad system state. */
 133        MLXSW_CMD_STATUS_BAD_SYS_STATE  = 0x04,
 134        /* Attempt to access reserved or unallocated resource, or resource in
 135         * inappropriate ownership.
 136         */
 137        MLXSW_CMD_STATUS_BAD_RESOURCE   = 0x05,
 138        /* Requested resource is currently executing a command. */
 139        MLXSW_CMD_STATUS_RESOURCE_BUSY  = 0x06,
 140        /* Required capability exceeds device limits. */
 141        MLXSW_CMD_STATUS_EXCEED_LIM     = 0x08,
 142        /* Resource is not in the appropriate state or ownership. */
 143        MLXSW_CMD_STATUS_BAD_RES_STATE  = 0x09,
 144        /* Index out of range (might be beyond table size or attempt to
 145         * access a reserved resource).
 146         */
 147        MLXSW_CMD_STATUS_BAD_INDEX      = 0x0A,
 148        /* NVMEM checksum/CRC failed. */
 149        MLXSW_CMD_STATUS_BAD_NVMEM      = 0x0B,
 150        /* Device is currently running reset */
 151        MLXSW_CMD_STATUS_RUNNING_RESET  = 0x26,
 152        /* Bad management packet (silently discarded). */
 153        MLXSW_CMD_STATUS_BAD_PKT        = 0x30,
 154};
 155
 156static inline const char *mlxsw_cmd_status_str(u8 status)
 157{
 158        switch (status) {
 159        case MLXSW_CMD_STATUS_OK:
 160                return "OK";
 161        case MLXSW_CMD_STATUS_INTERNAL_ERR:
 162                return "INTERNAL_ERR";
 163        case MLXSW_CMD_STATUS_BAD_OP:
 164                return "BAD_OP";
 165        case MLXSW_CMD_STATUS_BAD_PARAM:
 166                return "BAD_PARAM";
 167        case MLXSW_CMD_STATUS_BAD_SYS_STATE:
 168                return "BAD_SYS_STATE";
 169        case MLXSW_CMD_STATUS_BAD_RESOURCE:
 170                return "BAD_RESOURCE";
 171        case MLXSW_CMD_STATUS_RESOURCE_BUSY:
 172                return "RESOURCE_BUSY";
 173        case MLXSW_CMD_STATUS_EXCEED_LIM:
 174                return "EXCEED_LIM";
 175        case MLXSW_CMD_STATUS_BAD_RES_STATE:
 176                return "BAD_RES_STATE";
 177        case MLXSW_CMD_STATUS_BAD_INDEX:
 178                return "BAD_INDEX";
 179        case MLXSW_CMD_STATUS_BAD_NVMEM:
 180                return "BAD_NVMEM";
 181        case MLXSW_CMD_STATUS_RUNNING_RESET:
 182                return "RUNNING_RESET";
 183        case MLXSW_CMD_STATUS_BAD_PKT:
 184                return "BAD_PKT";
 185        default:
 186                return "*UNKNOWN*";
 187        }
 188}
 189
 190/* QUERY_FW - Query Firmware
 191 * -------------------------
 192 * OpMod == 0, INMmod == 0
 193 * -----------------------
 194 * The QUERY_FW command retrieves information related to firmware, command
 195 * interface version and the amount of resources that should be allocated to
 196 * the firmware.
 197 */
 198
 199static inline int mlxsw_cmd_query_fw(struct mlxsw_core *mlxsw_core,
 200                                     char *out_mbox)
 201{
 202        return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_FW,
 203                                  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
 204}
 205
 206/* cmd_mbox_query_fw_fw_pages
 207 * Amount of physical memory to be allocatedfor firmware usage in 4KB pages.
 208 */
 209MLXSW_ITEM32(cmd_mbox, query_fw, fw_pages, 0x00, 16, 16);
 210
 211/* cmd_mbox_query_fw_fw_rev_major
 212 * Firmware Revision - Major
 213 */
 214MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_major, 0x00, 0, 16);
 215
 216/* cmd_mbox_query_fw_fw_rev_subminor
 217 * Firmware Sub-minor version (Patch level)
 218 */
 219MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_subminor, 0x04, 16, 16);
 220
 221/* cmd_mbox_query_fw_fw_rev_minor
 222 * Firmware Revision - Minor
 223 */
 224MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_minor, 0x04, 0, 16);
 225
 226/* cmd_mbox_query_fw_core_clk
 227 * Internal Clock Frequency (in MHz)
 228 */
 229MLXSW_ITEM32(cmd_mbox, query_fw, core_clk, 0x08, 16, 16);
 230
 231/* cmd_mbox_query_fw_cmd_interface_rev
 232 * Command Interface Interpreter Revision ID. This number is bumped up
 233 * every time a non-backward-compatible change is done for the command
 234 * interface. The current cmd_interface_rev is 1.
 235 */
 236MLXSW_ITEM32(cmd_mbox, query_fw, cmd_interface_rev, 0x08, 0, 16);
 237
 238/* cmd_mbox_query_fw_dt
 239 * If set, Debug Trace is supported
 240 */
 241MLXSW_ITEM32(cmd_mbox, query_fw, dt, 0x0C, 31, 1);
 242
 243/* cmd_mbox_query_fw_api_version
 244 * Indicates the version of the API, to enable software querying
 245 * for compatibility. The current api_version is 1.
 246 */
 247MLXSW_ITEM32(cmd_mbox, query_fw, api_version, 0x0C, 0, 16);
 248
 249/* cmd_mbox_query_fw_fw_hour
 250 * Firmware timestamp - hour
 251 */
 252MLXSW_ITEM32(cmd_mbox, query_fw, fw_hour, 0x10, 24, 8);
 253
 254/* cmd_mbox_query_fw_fw_minutes
 255 * Firmware timestamp - minutes
 256 */
 257MLXSW_ITEM32(cmd_mbox, query_fw, fw_minutes, 0x10, 16, 8);
 258
 259/* cmd_mbox_query_fw_fw_seconds
 260 * Firmware timestamp - seconds
 261 */
 262MLXSW_ITEM32(cmd_mbox, query_fw, fw_seconds, 0x10, 8, 8);
 263
 264/* cmd_mbox_query_fw_fw_year
 265 * Firmware timestamp - year
 266 */
 267MLXSW_ITEM32(cmd_mbox, query_fw, fw_year, 0x14, 16, 16);
 268
 269/* cmd_mbox_query_fw_fw_month
 270 * Firmware timestamp - month
 271 */
 272MLXSW_ITEM32(cmd_mbox, query_fw, fw_month, 0x14, 8, 8);
 273
 274/* cmd_mbox_query_fw_fw_day
 275 * Firmware timestamp - day
 276 */
 277MLXSW_ITEM32(cmd_mbox, query_fw, fw_day, 0x14, 0, 8);
 278
 279/* cmd_mbox_query_fw_clr_int_base_offset
 280 * Clear Interrupt register's offset from clr_int_bar register
 281 * in PCI address space.
 282 */
 283MLXSW_ITEM64(cmd_mbox, query_fw, clr_int_base_offset, 0x20, 0, 64);
 284
 285/* cmd_mbox_query_fw_clr_int_bar
 286 * PCI base address register (BAR) where clr_int register is located.
 287 * 00 - BAR 0-1 (64 bit BAR)
 288 */
 289MLXSW_ITEM32(cmd_mbox, query_fw, clr_int_bar, 0x28, 30, 2);
 290
 291/* cmd_mbox_query_fw_error_buf_offset
 292 * Read Only buffer for internal error reports of offset
 293 * from error_buf_bar register in PCI address space).
 294 */
 295MLXSW_ITEM64(cmd_mbox, query_fw, error_buf_offset, 0x30, 0, 64);
 296
 297/* cmd_mbox_query_fw_error_buf_size
 298 * Internal error buffer size in DWORDs
 299 */
 300MLXSW_ITEM32(cmd_mbox, query_fw, error_buf_size, 0x38, 0, 32);
 301
 302/* cmd_mbox_query_fw_error_int_bar
 303 * PCI base address register (BAR) where error buffer
 304 * register is located.
 305 * 00 - BAR 0-1 (64 bit BAR)
 306 */
 307MLXSW_ITEM32(cmd_mbox, query_fw, error_int_bar, 0x3C, 30, 2);
 308
 309/* cmd_mbox_query_fw_doorbell_page_offset
 310 * Offset of the doorbell page
 311 */
 312MLXSW_ITEM64(cmd_mbox, query_fw, doorbell_page_offset, 0x40, 0, 64);
 313
 314/* cmd_mbox_query_fw_doorbell_page_bar
 315 * PCI base address register (BAR) of the doorbell page
 316 * 00 - BAR 0-1 (64 bit BAR)
 317 */
 318MLXSW_ITEM32(cmd_mbox, query_fw, doorbell_page_bar, 0x48, 30, 2);
 319
 320/* cmd_mbox_query_fw_free_running_clock_offset
 321 * The offset of the free running clock page
 322 */
 323MLXSW_ITEM64(cmd_mbox, query_fw, free_running_clock_offset, 0x50, 0, 64);
 324
 325/* cmd_mbox_query_fw_fr_rn_clk_bar
 326 * PCI base address register (BAR) of the free running clock page
 327 * 0: BAR 0
 328 * 1: 64 bit BAR
 329 */
 330MLXSW_ITEM32(cmd_mbox, query_fw, fr_rn_clk_bar, 0x58, 30, 2);
 331
 332/* QUERY_BOARDINFO - Query Board Information
 333 * -----------------------------------------
 334 * OpMod == 0 (N/A), INMmod == 0 (N/A)
 335 * -----------------------------------
 336 * The QUERY_BOARDINFO command retrieves adapter specific parameters.
 337 */
 338
 339static inline int mlxsw_cmd_boardinfo(struct mlxsw_core *mlxsw_core,
 340                                      char *out_mbox)
 341{
 342        return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_BOARDINFO,
 343                                  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
 344}
 345
 346/* cmd_mbox_xm_num_local_ports
 347 * Number of local_ports connected to the xm.
 348 * Each local port is a 4x
 349 * Spectrum-2/3: 25G
 350 * Spectrum-4: 50G
 351 */
 352MLXSW_ITEM32(cmd_mbox, boardinfo, xm_num_local_ports, 0x00, 4, 3);
 353
 354/* cmd_mbox_xm_exists
 355 * An XM (eXtanded Mezanine, e.g. used for the XLT) is connected on the board.
 356 */
 357MLXSW_ITEM32(cmd_mbox, boardinfo, xm_exists, 0x00, 0, 1);
 358
 359/* cmd_mbox_xm_local_port_entry
 360 */
 361MLXSW_ITEM_BIT_ARRAY(cmd_mbox, boardinfo, xm_local_port_entry, 0x04, 4, 8);
 362
 363/* cmd_mbox_boardinfo_intapin
 364 * When PCIe interrupt messages are being used, this value is used for clearing
 365 * an interrupt. When using MSI-X, this register is not used.
 366 */
 367MLXSW_ITEM32(cmd_mbox, boardinfo, intapin, 0x10, 24, 8);
 368
 369/* cmd_mbox_boardinfo_vsd_vendor_id
 370 * PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the vendor
 371 * specifying/formatting the VSD. The vsd_vendor_id identifies the management
 372 * domain of the VSD/PSID data. Different vendors may choose different VSD/PSID
 373 * format and encoding as long as they use their assigned vsd_vendor_id.
 374 */
 375MLXSW_ITEM32(cmd_mbox, boardinfo, vsd_vendor_id, 0x1C, 0, 16);
 376
 377/* cmd_mbox_boardinfo_vsd
 378 * Vendor Specific Data. The VSD string that is burnt to the Flash
 379 * with the firmware.
 380 */
 381#define MLXSW_CMD_BOARDINFO_VSD_LEN 208
 382MLXSW_ITEM_BUF(cmd_mbox, boardinfo, vsd, 0x20, MLXSW_CMD_BOARDINFO_VSD_LEN);
 383
 384/* cmd_mbox_boardinfo_psid
 385 * The PSID field is a 16-ascii (byte) character string which acts as
 386 * the board ID. The PSID format is used in conjunction with
 387 * Mellanox vsd_vendor_id (15B3h).
 388 */
 389#define MLXSW_CMD_BOARDINFO_PSID_LEN 16
 390MLXSW_ITEM_BUF(cmd_mbox, boardinfo, psid, 0xF0, MLXSW_CMD_BOARDINFO_PSID_LEN);
 391
 392/* QUERY_AQ_CAP - Query Asynchronous Queues Capabilities
 393 * -----------------------------------------------------
 394 * OpMod == 0 (N/A), INMmod == 0 (N/A)
 395 * -----------------------------------
 396 * The QUERY_AQ_CAP command returns the device asynchronous queues
 397 * capabilities supported.
 398 */
 399
 400static inline int mlxsw_cmd_query_aq_cap(struct mlxsw_core *mlxsw_core,
 401                                         char *out_mbox)
 402{
 403        return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_AQ_CAP,
 404                                  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
 405}
 406
 407/* cmd_mbox_query_aq_cap_log_max_sdq_sz
 408 * Log (base 2) of max WQEs allowed on SDQ.
 409 */
 410MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_sdq_sz, 0x00, 24, 8);
 411
 412/* cmd_mbox_query_aq_cap_max_num_sdqs
 413 * Maximum number of SDQs.
 414 */
 415MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_sdqs, 0x00, 0, 8);
 416
 417/* cmd_mbox_query_aq_cap_log_max_rdq_sz
 418 * Log (base 2) of max WQEs allowed on RDQ.
 419 */
 420MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_rdq_sz, 0x04, 24, 8);
 421
 422/* cmd_mbox_query_aq_cap_max_num_rdqs
 423 * Maximum number of RDQs.
 424 */
 425MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_rdqs, 0x04, 0, 8);
 426
 427/* cmd_mbox_query_aq_cap_log_max_cq_sz
 428 * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv0 and CQEv1.
 429 */
 430MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cq_sz, 0x08, 24, 8);
 431
 432/* cmd_mbox_query_aq_cap_log_max_cqv2_sz
 433 * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv2.
 434 */
 435MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cqv2_sz, 0x08, 16, 8);
 436
 437/* cmd_mbox_query_aq_cap_max_num_cqs
 438 * Maximum number of CQs.
 439 */
 440MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_cqs, 0x08, 0, 8);
 441
 442/* cmd_mbox_query_aq_cap_log_max_eq_sz
 443 * Log (base 2) of max EQEs allowed on EQ.
 444 */
 445MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_eq_sz, 0x0C, 24, 8);
 446
 447/* cmd_mbox_query_aq_cap_max_num_eqs
 448 * Maximum number of EQs.
 449 */
 450MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_eqs, 0x0C, 0, 8);
 451
 452/* cmd_mbox_query_aq_cap_max_sg_sq
 453 * The maximum S/G list elements in an DSQ. DSQ must not contain
 454 * more S/G entries than indicated here.
 455 */
 456MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_sq, 0x10, 8, 8);
 457
 458/* cmd_mbox_query_aq_cap_
 459 * The maximum S/G list elements in an DRQ. DRQ must not contain
 460 * more S/G entries than indicated here.
 461 */
 462MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_rq, 0x10, 0, 8);
 463
 464/* MAP_FA - Map Firmware Area
 465 * --------------------------
 466 * OpMod == 0 (N/A), INMmod == Number of VPM entries
 467 * -------------------------------------------------
 468 * The MAP_FA command passes physical pages to the switch. These pages
 469 * are used to store the device firmware. MAP_FA can be executed multiple
 470 * times until all the firmware area is mapped (the size that should be
 471 * mapped is retrieved through the QUERY_FW command). All required pages
 472 * must be mapped to finish the initialization phase. Physical memory
 473 * passed in this command must be pinned.
 474 */
 475
 476#define MLXSW_CMD_MAP_FA_VPM_ENTRIES_MAX 32
 477
 478static inline int mlxsw_cmd_map_fa(struct mlxsw_core *mlxsw_core,
 479                                   char *in_mbox, u32 vpm_entries_count)
 480{
 481        return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_MAP_FA,
 482                                 0, vpm_entries_count,
 483                                 in_mbox, MLXSW_CMD_MBOX_SIZE);
 484}
 485
 486/* cmd_mbox_map_fa_pa
 487 * Physical Address.
 488 */
 489MLXSW_ITEM64_INDEXED(cmd_mbox, map_fa, pa, 0x00, 12, 52, 0x08, 0x00, true);
 490
 491/* cmd_mbox_map_fa_log2size
 492 * Log (base 2) of the size in 4KB pages of the physical and contiguous memory
 493 * that starts at PA_L/H.
 494 */
 495MLXSW_ITEM32_INDEXED(cmd_mbox, map_fa, log2size, 0x00, 0, 5, 0x08, 0x04, false);
 496
 497/* UNMAP_FA - Unmap Firmware Area
 498 * ------------------------------
 499 * OpMod == 0 (N/A), INMmod == 0 (N/A)
 500 * -----------------------------------
 501 * The UNMAP_FA command unload the firmware and unmaps all the
 502 * firmware area. After this command is completed the device will not access
 503 * the pages that were mapped to the firmware area. After executing UNMAP_FA
 504 * command, software reset must be done prior to execution of MAP_FW command.
 505 */
 506
 507static inline int mlxsw_cmd_unmap_fa(struct mlxsw_core *mlxsw_core)
 508{
 509        return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_UNMAP_FA, 0, 0);
 510}
 511
 512/* QUERY_RESOURCES - Query chip resources
 513 * --------------------------------------
 514 * OpMod == 0 (N/A) , INMmod is index
 515 * ----------------------------------
 516 * The QUERY_RESOURCES command retrieves information related to chip resources
 517 * by resource ID. Every command returns 32 entries. INmod is being use as base.
 518 * for example, index 1 will return entries 32-63. When the tables end and there
 519 * are no more sources in the table, will return resource id 0xFFF to indicate
 520 * it.
 521 */
 522
 523#define MLXSW_CMD_QUERY_RESOURCES_TABLE_END_ID 0xffff
 524#define MLXSW_CMD_QUERY_RESOURCES_MAX_QUERIES 100
 525#define MLXSW_CMD_QUERY_RESOURCES_PER_QUERY 32
 526
 527static inline int mlxsw_cmd_query_resources(struct mlxsw_core *mlxsw_core,
 528                                            char *out_mbox, int index)
 529{
 530        return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_RESOURCES,
 531                                  0, index, false, out_mbox,
 532                                  MLXSW_CMD_MBOX_SIZE);
 533}
 534
 535/* cmd_mbox_query_resource_id
 536 * The resource id. 0xFFFF indicates table's end.
 537 */
 538MLXSW_ITEM32_INDEXED(cmd_mbox, query_resource, id, 0x00, 16, 16, 0x8, 0, false);
 539
 540/* cmd_mbox_query_resource_data
 541 * The resource
 542 */
 543MLXSW_ITEM64_INDEXED(cmd_mbox, query_resource, data,
 544                     0x00, 0, 40, 0x8, 0, false);
 545
 546/* CONFIG_PROFILE (Set) - Configure Switch Profile
 547 * ------------------------------
 548 * OpMod == 1 (Set), INMmod == 0 (N/A)
 549 * -----------------------------------
 550 * The CONFIG_PROFILE command sets the switch profile. The command can be
 551 * executed on the device only once at startup in order to allocate and
 552 * configure all switch resources and prepare it for operational mode.
 553 * It is not possible to change the device profile after the chip is
 554 * in operational mode.
 555 * Failure of the CONFIG_PROFILE command leaves the hardware in an indeterminate
 556 * state therefore it is required to perform software reset to the device
 557 * following an unsuccessful completion of the command. It is required
 558 * to perform software reset to the device to change an existing profile.
 559 */
 560
 561static inline int mlxsw_cmd_config_profile_set(struct mlxsw_core *mlxsw_core,
 562                                               char *in_mbox)
 563{
 564        return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_CONFIG_PROFILE,
 565                                 1, 0, in_mbox, MLXSW_CMD_MBOX_SIZE);
 566}
 567
 568/* cmd_mbox_config_profile_set_max_vepa_channels
 569 * Capability bit. Setting a bit to 1 configures the profile
 570 * according to the mailbox contents.
 571 */
 572MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vepa_channels, 0x0C, 0, 1);
 573
 574/* cmd_mbox_config_profile_set_max_lag
 575 * Capability bit. Setting a bit to 1 configures the profile
 576 * according to the mailbox contents.
 577 */
 578MLXSW_ITEM32(cmd_mbox, config_profile, set_max_lag, 0x0C, 1, 1);
 579
 580/* cmd_mbox_config_profile_set_max_port_per_lag
 581 * Capability bit. Setting a bit to 1 configures the profile
 582 * according to the mailbox contents.
 583 */
 584MLXSW_ITEM32(cmd_mbox, config_profile, set_max_port_per_lag, 0x0C, 2, 1);
 585
 586/* cmd_mbox_config_profile_set_max_mid
 587 * Capability bit. Setting a bit to 1 configures the profile
 588 * according to the mailbox contents.
 589 */
 590MLXSW_ITEM32(cmd_mbox, config_profile, set_max_mid, 0x0C, 3, 1);
 591
 592/* cmd_mbox_config_profile_set_max_pgt
 593 * Capability bit. Setting a bit to 1 configures the profile
 594 * according to the mailbox contents.
 595 */
 596MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pgt, 0x0C, 4, 1);
 597
 598/* cmd_mbox_config_profile_set_max_system_port
 599 * Capability bit. Setting a bit to 1 configures the profile
 600 * according to the mailbox contents.
 601 */
 602MLXSW_ITEM32(cmd_mbox, config_profile, set_max_system_port, 0x0C, 5, 1);
 603
 604/* cmd_mbox_config_profile_set_max_vlan_groups
 605 * Capability bit. Setting a bit to 1 configures the profile
 606 * according to the mailbox contents.
 607 */
 608MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vlan_groups, 0x0C, 6, 1);
 609
 610/* cmd_mbox_config_profile_set_max_regions
 611 * Capability bit. Setting a bit to 1 configures the profile
 612 * according to the mailbox contents.
 613 */
 614MLXSW_ITEM32(cmd_mbox, config_profile, set_max_regions, 0x0C, 7, 1);
 615
 616/* cmd_mbox_config_profile_set_flood_mode
 617 * Capability bit. Setting a bit to 1 configures the profile
 618 * according to the mailbox contents.
 619 */
 620MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_mode, 0x0C, 8, 1);
 621
 622/* cmd_mbox_config_profile_set_max_flood_tables
 623 * Capability bit. Setting a bit to 1 configures the profile
 624 * according to the mailbox contents.
 625 */
 626MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_tables, 0x0C, 9, 1);
 627
 628/* cmd_mbox_config_profile_set_max_ib_mc
 629 * Capability bit. Setting a bit to 1 configures the profile
 630 * according to the mailbox contents.
 631 */
 632MLXSW_ITEM32(cmd_mbox, config_profile, set_max_ib_mc, 0x0C, 12, 1);
 633
 634/* cmd_mbox_config_profile_set_max_pkey
 635 * Capability bit. Setting a bit to 1 configures the profile
 636 * according to the mailbox contents.
 637 */
 638MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pkey, 0x0C, 13, 1);
 639
 640/* cmd_mbox_config_profile_set_adaptive_routing_group_cap
 641 * Capability bit. Setting a bit to 1 configures the profile
 642 * according to the mailbox contents.
 643 */
 644MLXSW_ITEM32(cmd_mbox, config_profile,
 645             set_adaptive_routing_group_cap, 0x0C, 14, 1);
 646
 647/* cmd_mbox_config_profile_set_ar_sec
 648 * Capability bit. Setting a bit to 1 configures the profile
 649 * according to the mailbox contents.
 650 */
 651MLXSW_ITEM32(cmd_mbox, config_profile, set_ar_sec, 0x0C, 15, 1);
 652
 653/* cmd_mbox_config_set_kvd_linear_size
 654 * Capability bit. Setting a bit to 1 configures the profile
 655 * according to the mailbox contents.
 656 */
 657MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_linear_size, 0x0C, 24, 1);
 658
 659/* cmd_mbox_config_set_kvd_hash_single_size
 660 * Capability bit. Setting a bit to 1 configures the profile
 661 * according to the mailbox contents.
 662 */
 663MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_single_size, 0x0C, 25, 1);
 664
 665/* cmd_mbox_config_set_kvd_hash_double_size
 666 * Capability bit. Setting a bit to 1 configures the profile
 667 * according to the mailbox contents.
 668 */
 669MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_double_size, 0x0C, 26, 1);
 670
 671/* cmd_mbox_config_set_cqe_version
 672 * Capability bit. Setting a bit to 1 configures the profile
 673 * according to the mailbox contents.
 674 */
 675MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_version, 0x08, 0, 1);
 676
 677/* cmd_mbox_config_set_kvh_xlt_cache_mode
 678 * Capability bit. Setting a bit to 1 configures the profile
 679 * according to the mailbox contents.
 680 */
 681MLXSW_ITEM32(cmd_mbox, config_profile, set_kvh_xlt_cache_mode, 0x08, 3, 1);
 682
 683/* cmd_mbox_config_profile_max_vepa_channels
 684 * Maximum number of VEPA channels per port (0 through 16)
 685 * 0 - multi-channel VEPA is disabled
 686 */
 687MLXSW_ITEM32(cmd_mbox, config_profile, max_vepa_channels, 0x10, 0, 8);
 688
 689/* cmd_mbox_config_profile_max_lag
 690 * Maximum number of LAG IDs requested.
 691 */
 692MLXSW_ITEM32(cmd_mbox, config_profile, max_lag, 0x14, 0, 16);
 693
 694/* cmd_mbox_config_profile_max_port_per_lag
 695 * Maximum number of ports per LAG requested.
 696 */
 697MLXSW_ITEM32(cmd_mbox, config_profile, max_port_per_lag, 0x18, 0, 16);
 698
 699/* cmd_mbox_config_profile_max_mid
 700 * Maximum Multicast IDs.
 701 * Multicast IDs are allocated from 0 to max_mid-1
 702 */
 703MLXSW_ITEM32(cmd_mbox, config_profile, max_mid, 0x1C, 0, 16);
 704
 705/* cmd_mbox_config_profile_max_pgt
 706 * Maximum records in the Port Group Table per Switch Partition.
 707 * Port Group Table indexes are from 0 to max_pgt-1
 708 */
 709MLXSW_ITEM32(cmd_mbox, config_profile, max_pgt, 0x20, 0, 16);
 710
 711/* cmd_mbox_config_profile_max_system_port
 712 * The maximum number of system ports that can be allocated.
 713 */
 714MLXSW_ITEM32(cmd_mbox, config_profile, max_system_port, 0x24, 0, 16);
 715
 716/* cmd_mbox_config_profile_max_vlan_groups
 717 * Maximum number VLAN Groups for VLAN binding.
 718 */
 719MLXSW_ITEM32(cmd_mbox, config_profile, max_vlan_groups, 0x28, 0, 12);
 720
 721/* cmd_mbox_config_profile_max_regions
 722 * Maximum number of TCAM Regions.
 723 */
 724MLXSW_ITEM32(cmd_mbox, config_profile, max_regions, 0x2C, 0, 16);
 725
 726/* cmd_mbox_config_profile_max_flood_tables
 727 * Maximum number of single-entry flooding tables. Different flooding tables
 728 * can be associated with different packet types.
 729 */
 730MLXSW_ITEM32(cmd_mbox, config_profile, max_flood_tables, 0x30, 16, 4);
 731
 732/* cmd_mbox_config_profile_max_vid_flood_tables
 733 * Maximum number of per-vid flooding tables. Flooding tables are associated
 734 * to the different packet types for the different switch partitions.
 735 * Table size is 4K entries covering all VID space.
 736 */
 737MLXSW_ITEM32(cmd_mbox, config_profile, max_vid_flood_tables, 0x30, 8, 4);
 738
 739/* cmd_mbox_config_profile_flood_mode
 740 * Flooding mode to use.
 741 * 0-2 - Backward compatible modes for SwitchX devices.
 742 * 3 - Mixed mode, where:
 743 * max_flood_tables indicates the number of single-entry tables.
 744 * max_vid_flood_tables indicates the number of per-VID tables.
 745 * max_fid_offset_flood_tables indicates the number of FID-offset tables.
 746 * max_fid_flood_tables indicates the number of per-FID tables.
 747 */
 748MLXSW_ITEM32(cmd_mbox, config_profile, flood_mode, 0x30, 0, 2);
 749
 750/* cmd_mbox_config_profile_max_fid_offset_flood_tables
 751 * Maximum number of FID-offset flooding tables.
 752 */
 753MLXSW_ITEM32(cmd_mbox, config_profile,
 754             max_fid_offset_flood_tables, 0x34, 24, 4);
 755
 756/* cmd_mbox_config_profile_fid_offset_flood_table_size
 757 * The size (number of entries) of each FID-offset flood table.
 758 */
 759MLXSW_ITEM32(cmd_mbox, config_profile,
 760             fid_offset_flood_table_size, 0x34, 0, 16);
 761
 762/* cmd_mbox_config_profile_max_fid_flood_tables
 763 * Maximum number of per-FID flooding tables.
 764 *
 765 * Note: This flooding tables cover special FIDs only (vFIDs), starting at
 766 * FID value 4K and higher.
 767 */
 768MLXSW_ITEM32(cmd_mbox, config_profile, max_fid_flood_tables, 0x38, 24, 4);
 769
 770/* cmd_mbox_config_profile_fid_flood_table_size
 771 * The size (number of entries) of each per-FID table.
 772 */
 773MLXSW_ITEM32(cmd_mbox, config_profile, fid_flood_table_size, 0x38, 0, 16);
 774
 775/* cmd_mbox_config_profile_max_ib_mc
 776 * Maximum number of multicast FDB records for InfiniBand
 777 * FDB (in 512 chunks) per InfiniBand switch partition.
 778 */
 779MLXSW_ITEM32(cmd_mbox, config_profile, max_ib_mc, 0x40, 0, 15);
 780
 781/* cmd_mbox_config_profile_max_pkey
 782 * Maximum per port PKEY table size (for PKEY enforcement)
 783 */
 784MLXSW_ITEM32(cmd_mbox, config_profile, max_pkey, 0x44, 0, 15);
 785
 786/* cmd_mbox_config_profile_ar_sec
 787 * Primary/secondary capability
 788 * Describes the number of adaptive routing sub-groups
 789 * 0 - disable primary/secondary (single group)
 790 * 1 - enable primary/secondary (2 sub-groups)
 791 * 2 - 3 sub-groups: Not supported in SwitchX, SwitchX-2
 792 * 3 - 4 sub-groups: Not supported in SwitchX, SwitchX-2
 793 */
 794MLXSW_ITEM32(cmd_mbox, config_profile, ar_sec, 0x4C, 24, 2);
 795
 796/* cmd_mbox_config_profile_adaptive_routing_group_cap
 797 * Adaptive Routing Group Capability. Indicates the number of AR groups
 798 * supported. Note that when Primary/secondary is enabled, each
 799 * primary/secondary couple consumes 2 adaptive routing entries.
 800 */
 801MLXSW_ITEM32(cmd_mbox, config_profile, adaptive_routing_group_cap, 0x4C, 0, 16);
 802
 803/* cmd_mbox_config_profile_arn
 804 * Adaptive Routing Notification Enable
 805 * Not supported in SwitchX, SwitchX-2
 806 */
 807MLXSW_ITEM32(cmd_mbox, config_profile, arn, 0x50, 31, 1);
 808
 809/* cmd_mbox_config_profile_kvh_xlt_cache_mode
 810 * KVH XLT cache mode:
 811 * 0 - XLT can use all KVH as best-effort
 812 * 1 - XLT cache uses 1/2 KVH
 813 */
 814MLXSW_ITEM32(cmd_mbox, config_profile, kvh_xlt_cache_mode, 0x50, 8, 4);
 815
 816/* cmd_mbox_config_kvd_linear_size
 817 * KVD Linear Size
 818 * Valid for Spectrum only
 819 * Allowed values are 128*N where N=0 or higher
 820 */
 821MLXSW_ITEM32(cmd_mbox, config_profile, kvd_linear_size, 0x54, 0, 24);
 822
 823/* cmd_mbox_config_kvd_hash_single_size
 824 * KVD Hash single-entries size
 825 * Valid for Spectrum only
 826 * Allowed values are 128*N where N=0 or higher
 827 * Must be greater or equal to cap_min_kvd_hash_single_size
 828 * Must be smaller or equal to cap_kvd_size - kvd_linear_size
 829 */
 830MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_single_size, 0x58, 0, 24);
 831
 832/* cmd_mbox_config_kvd_hash_double_size
 833 * KVD Hash double-entries size (units of single-size entries)
 834 * Valid for Spectrum only
 835 * Allowed values are 128*N where N=0 or higher
 836 * Must be either 0 or greater or equal to cap_min_kvd_hash_double_size
 837 * Must be smaller or equal to cap_kvd_size - kvd_linear_size
 838 */
 839MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_double_size, 0x5C, 0, 24);
 840
 841/* cmd_mbox_config_profile_swid_config_mask
 842 * Modify Switch Partition Configuration mask. When set, the configu-
 843 * ration value for the Switch Partition are taken from the mailbox.
 844 * When clear, the current configuration values are used.
 845 * Bit 0 - set type
 846 * Bit 1 - properties
 847 * Other - reserved
 848 */
 849MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_mask,
 850                     0x60, 24, 8, 0x08, 0x00, false);
 851
 852/* cmd_mbox_config_profile_swid_config_type
 853 * Switch Partition type.
 854 * 0000 - disabled (Switch Partition does not exist)
 855 * 0001 - InfiniBand
 856 * 0010 - Ethernet
 857 * 1000 - router port (SwitchX-2 only)
 858 * Other - reserved
 859 */
 860MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_type,
 861                     0x60, 20, 4, 0x08, 0x00, false);
 862
 863/* cmd_mbox_config_profile_swid_config_properties
 864 * Switch Partition properties.
 865 */
 866MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_properties,
 867                     0x60, 0, 8, 0x08, 0x00, false);
 868
 869/* cmd_mbox_config_profile_cqe_version
 870 * CQE version:
 871 * 0: CQE version is 0
 872 * 1: CQE version is either 1 or 2
 873 * CQE ver 1 or 2 is configured by Completion Queue Context field cqe_ver.
 874 */
 875MLXSW_ITEM32(cmd_mbox, config_profile, cqe_version, 0xB0, 0, 8);
 876
 877/* ACCESS_REG - Access EMAD Supported Register
 878 * ----------------------------------
 879 * OpMod == 0 (N/A), INMmod == 0 (N/A)
 880 * -------------------------------------
 881 * The ACCESS_REG command supports accessing device registers. This access
 882 * is mainly used for bootstrapping.
 883 */
 884
 885static inline int mlxsw_cmd_access_reg(struct mlxsw_core *mlxsw_core,
 886                                       bool reset_ok,
 887                                       char *in_mbox, char *out_mbox)
 888{
 889        return mlxsw_cmd_exec(mlxsw_core, MLXSW_CMD_OPCODE_ACCESS_REG,
 890                              0, 0, false, reset_ok,
 891                              in_mbox, MLXSW_CMD_MBOX_SIZE,
 892                              out_mbox, MLXSW_CMD_MBOX_SIZE);
 893}
 894
 895/* SW2HW_DQ - Software to Hardware DQ
 896 * ----------------------------------
 897 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
 898 * INMmod == DQ number
 899 * ----------------------------------------------
 900 * The SW2HW_DQ command transitions a descriptor queue from software to
 901 * hardware ownership. The command enables posting WQEs and ringing DoorBells
 902 * on the descriptor queue.
 903 */
 904
 905static inline int __mlxsw_cmd_sw2hw_dq(struct mlxsw_core *mlxsw_core,
 906                                       char *in_mbox, u32 dq_number,
 907                                       u8 opcode_mod)
 908{
 909        return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_DQ,
 910                                 opcode_mod, dq_number,
 911                                 in_mbox, MLXSW_CMD_MBOX_SIZE);
 912}
 913
 914enum {
 915        MLXSW_CMD_OPCODE_MOD_SDQ = 0,
 916        MLXSW_CMD_OPCODE_MOD_RDQ = 1,
 917};
 918
 919static inline int mlxsw_cmd_sw2hw_sdq(struct mlxsw_core *mlxsw_core,
 920                                      char *in_mbox, u32 dq_number)
 921{
 922        return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
 923                                    MLXSW_CMD_OPCODE_MOD_SDQ);
 924}
 925
 926static inline int mlxsw_cmd_sw2hw_rdq(struct mlxsw_core *mlxsw_core,
 927                                      char *in_mbox, u32 dq_number)
 928{
 929        return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
 930                                    MLXSW_CMD_OPCODE_MOD_RDQ);
 931}
 932
 933/* cmd_mbox_sw2hw_dq_cq
 934 * Number of the CQ that this Descriptor Queue reports completions to.
 935 */
 936MLXSW_ITEM32(cmd_mbox, sw2hw_dq, cq, 0x00, 24, 8);
 937
 938/* cmd_mbox_sw2hw_dq_sdq_tclass
 939 * SDQ: CPU Egress TClass
 940 * RDQ: Reserved
 941 */
 942MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_tclass, 0x00, 16, 6);
 943
 944/* cmd_mbox_sw2hw_dq_log2_dq_sz
 945 * Log (base 2) of the Descriptor Queue size in 4KB pages.
 946 */
 947MLXSW_ITEM32(cmd_mbox, sw2hw_dq, log2_dq_sz, 0x00, 0, 6);
 948
 949/* cmd_mbox_sw2hw_dq_pa
 950 * Physical Address.
 951 */
 952MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_dq, pa, 0x10, 12, 52, 0x08, 0x00, true);
 953
 954/* HW2SW_DQ - Hardware to Software DQ
 955 * ----------------------------------
 956 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
 957 * INMmod == DQ number
 958 * ----------------------------------------------
 959 * The HW2SW_DQ command transitions a descriptor queue from hardware to
 960 * software ownership. Incoming packets on the DQ are silently discarded,
 961 * SW should not post descriptors on nonoperational DQs.
 962 */
 963
 964static inline int __mlxsw_cmd_hw2sw_dq(struct mlxsw_core *mlxsw_core,
 965                                       u32 dq_number, u8 opcode_mod)
 966{
 967        return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_DQ,
 968                                   opcode_mod, dq_number);
 969}
 970
 971static inline int mlxsw_cmd_hw2sw_sdq(struct mlxsw_core *mlxsw_core,
 972                                      u32 dq_number)
 973{
 974        return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
 975                                    MLXSW_CMD_OPCODE_MOD_SDQ);
 976}
 977
 978static inline int mlxsw_cmd_hw2sw_rdq(struct mlxsw_core *mlxsw_core,
 979                                      u32 dq_number)
 980{
 981        return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
 982                                    MLXSW_CMD_OPCODE_MOD_RDQ);
 983}
 984
 985/* 2ERR_DQ - To Error DQ
 986 * ---------------------
 987 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
 988 * INMmod == DQ number
 989 * ----------------------------------------------
 990 * The 2ERR_DQ command transitions the DQ into the error state from the state
 991 * in which it has been. While the command is executed, some in-process
 992 * descriptors may complete. Once the DQ transitions into the error state,
 993 * if there are posted descriptors on the RDQ/SDQ, the hardware writes
 994 * a completion with error (flushed) for all descriptors posted in the RDQ/SDQ.
 995 * When the command is completed successfully, the DQ is already in
 996 * the error state.
 997 */
 998
 999static inline int __mlxsw_cmd_2err_dq(struct mlxsw_core *mlxsw_core,
1000                                      u32 dq_number, u8 opcode_mod)
1001{
1002        return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1003                                   opcode_mod, dq_number);
1004}
1005
1006static inline int mlxsw_cmd_2err_sdq(struct mlxsw_core *mlxsw_core,
1007                                     u32 dq_number)
1008{
1009        return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
1010                                   MLXSW_CMD_OPCODE_MOD_SDQ);
1011}
1012
1013static inline int mlxsw_cmd_2err_rdq(struct mlxsw_core *mlxsw_core,
1014                                     u32 dq_number)
1015{
1016        return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
1017                                   MLXSW_CMD_OPCODE_MOD_RDQ);
1018}
1019
1020/* QUERY_DQ - Query DQ
1021 * ---------------------
1022 * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1023 * INMmod == DQ number
1024 * ----------------------------------------------
1025 * The QUERY_DQ command retrieves a snapshot of DQ parameters from the hardware.
1026 *
1027 * Note: Output mailbox has the same format as SW2HW_DQ.
1028 */
1029
1030static inline int __mlxsw_cmd_query_dq(struct mlxsw_core *mlxsw_core,
1031                                       char *out_mbox, u32 dq_number,
1032                                       u8 opcode_mod)
1033{
1034        return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1035                                  opcode_mod, dq_number, false,
1036                                  out_mbox, MLXSW_CMD_MBOX_SIZE);
1037}
1038
1039static inline int mlxsw_cmd_query_sdq(struct mlxsw_core *mlxsw_core,
1040                                      char *out_mbox, u32 dq_number)
1041{
1042        return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1043                                    MLXSW_CMD_OPCODE_MOD_SDQ);
1044}
1045
1046static inline int mlxsw_cmd_query_rdq(struct mlxsw_core *mlxsw_core,
1047                                      char *out_mbox, u32 dq_number)
1048{
1049        return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1050                                    MLXSW_CMD_OPCODE_MOD_RDQ);
1051}
1052
1053/* SW2HW_CQ - Software to Hardware CQ
1054 * ----------------------------------
1055 * OpMod == 0 (N/A), INMmod == CQ number
1056 * -------------------------------------
1057 * The SW2HW_CQ command transfers ownership of a CQ context entry from software
1058 * to hardware. The command takes the CQ context entry from the input mailbox
1059 * and stores it in the CQC in the ownership of the hardware. The command fails
1060 * if the requested CQC entry is already in the ownership of the hardware.
1061 */
1062
1063static inline int mlxsw_cmd_sw2hw_cq(struct mlxsw_core *mlxsw_core,
1064                                     char *in_mbox, u32 cq_number)
1065{
1066        return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_CQ,
1067                                 0, cq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1068}
1069
1070enum mlxsw_cmd_mbox_sw2hw_cq_cqe_ver {
1071        MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_1,
1072        MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_2,
1073};
1074
1075/* cmd_mbox_sw2hw_cq_cqe_ver
1076 * CQE Version.
1077 */
1078MLXSW_ITEM32(cmd_mbox, sw2hw_cq, cqe_ver, 0x00, 28, 4);
1079
1080/* cmd_mbox_sw2hw_cq_c_eqn
1081 * Event Queue this CQ reports completion events to.
1082 */
1083MLXSW_ITEM32(cmd_mbox, sw2hw_cq, c_eqn, 0x00, 24, 1);
1084
1085/* cmd_mbox_sw2hw_cq_st
1086 * Event delivery state machine
1087 * 0x0 - FIRED
1088 * 0x1 - ARMED (Request for Notification)
1089 */
1090MLXSW_ITEM32(cmd_mbox, sw2hw_cq, st, 0x00, 8, 1);
1091
1092/* cmd_mbox_sw2hw_cq_log_cq_size
1093 * Log (base 2) of the CQ size (in entries).
1094 */
1095MLXSW_ITEM32(cmd_mbox, sw2hw_cq, log_cq_size, 0x00, 0, 4);
1096
1097/* cmd_mbox_sw2hw_cq_producer_counter
1098 * Producer Counter. The counter is incremented for each CQE that is
1099 * written by the HW to the CQ.
1100 * Maintained by HW (valid for the QUERY_CQ command only)
1101 */
1102MLXSW_ITEM32(cmd_mbox, sw2hw_cq, producer_counter, 0x04, 0, 16);
1103
1104/* cmd_mbox_sw2hw_cq_pa
1105 * Physical Address.
1106 */
1107MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_cq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1108
1109/* HW2SW_CQ - Hardware to Software CQ
1110 * ----------------------------------
1111 * OpMod == 0 (N/A), INMmod == CQ number
1112 * -------------------------------------
1113 * The HW2SW_CQ command transfers ownership of a CQ context entry from hardware
1114 * to software. The CQC entry is invalidated as a result of this command.
1115 */
1116
1117static inline int mlxsw_cmd_hw2sw_cq(struct mlxsw_core *mlxsw_core,
1118                                     u32 cq_number)
1119{
1120        return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_CQ,
1121                                   0, cq_number);
1122}
1123
1124/* QUERY_CQ - Query CQ
1125 * ----------------------------------
1126 * OpMod == 0 (N/A), INMmod == CQ number
1127 * -------------------------------------
1128 * The QUERY_CQ command retrieves a snapshot of the current CQ context entry.
1129 * The command stores the snapshot in the output mailbox in the software format.
1130 * Note that the CQ context state and values are not affected by the QUERY_CQ
1131 * command. The QUERY_CQ command is for debug purposes only.
1132 *
1133 * Note: Output mailbox has the same format as SW2HW_CQ.
1134 */
1135
1136static inline int mlxsw_cmd_query_cq(struct mlxsw_core *mlxsw_core,
1137                                     char *out_mbox, u32 cq_number)
1138{
1139        return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_CQ,
1140                                  0, cq_number, false,
1141                                  out_mbox, MLXSW_CMD_MBOX_SIZE);
1142}
1143
1144/* SW2HW_EQ - Software to Hardware EQ
1145 * ----------------------------------
1146 * OpMod == 0 (N/A), INMmod == EQ number
1147 * -------------------------------------
1148 * The SW2HW_EQ command transfers ownership of an EQ context entry from software
1149 * to hardware. The command takes the EQ context entry from the input mailbox
1150 * and stores it in the EQC in the ownership of the hardware. The command fails
1151 * if the requested EQC entry is already in the ownership of the hardware.
1152 */
1153
1154static inline int mlxsw_cmd_sw2hw_eq(struct mlxsw_core *mlxsw_core,
1155                                     char *in_mbox, u32 eq_number)
1156{
1157        return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_EQ,
1158                                 0, eq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1159}
1160
1161/* cmd_mbox_sw2hw_eq_int_msix
1162 * When set, MSI-X cycles will be generated by this EQ.
1163 * When cleared, an interrupt will be generated by this EQ.
1164 */
1165MLXSW_ITEM32(cmd_mbox, sw2hw_eq, int_msix, 0x00, 24, 1);
1166
1167/* cmd_mbox_sw2hw_eq_st
1168 * Event delivery state machine
1169 * 0x0 - FIRED
1170 * 0x1 - ARMED (Request for Notification)
1171 * 0x11 - Always ARMED
1172 * other - reserved
1173 */
1174MLXSW_ITEM32(cmd_mbox, sw2hw_eq, st, 0x00, 8, 2);
1175
1176/* cmd_mbox_sw2hw_eq_log_eq_size
1177 * Log (base 2) of the EQ size (in entries).
1178 */
1179MLXSW_ITEM32(cmd_mbox, sw2hw_eq, log_eq_size, 0x00, 0, 4);
1180
1181/* cmd_mbox_sw2hw_eq_producer_counter
1182 * Producer Counter. The counter is incremented for each EQE that is written
1183 * by the HW to the EQ.
1184 * Maintained by HW (valid for the QUERY_EQ command only)
1185 */
1186MLXSW_ITEM32(cmd_mbox, sw2hw_eq, producer_counter, 0x04, 0, 16);
1187
1188/* cmd_mbox_sw2hw_eq_pa
1189 * Physical Address.
1190 */
1191MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_eq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1192
1193/* HW2SW_EQ - Hardware to Software EQ
1194 * ----------------------------------
1195 * OpMod == 0 (N/A), INMmod == EQ number
1196 * -------------------------------------
1197 */
1198
1199static inline int mlxsw_cmd_hw2sw_eq(struct mlxsw_core *mlxsw_core,
1200                                     u32 eq_number)
1201{
1202        return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_EQ,
1203                                   0, eq_number);
1204}
1205
1206/* QUERY_EQ - Query EQ
1207 * ----------------------------------
1208 * OpMod == 0 (N/A), INMmod == EQ number
1209 * -------------------------------------
1210 *
1211 * Note: Output mailbox has the same format as SW2HW_EQ.
1212 */
1213
1214static inline int mlxsw_cmd_query_eq(struct mlxsw_core *mlxsw_core,
1215                                     char *out_mbox, u32 eq_number)
1216{
1217        return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_EQ,
1218                                  0, eq_number, false,
1219                                  out_mbox, MLXSW_CMD_MBOX_SIZE);
1220}
1221
1222#endif
1223