linux/drivers/net/ethernet/intel/ice/ice_flex_pipe.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_flex_pipe.h"
   6#include "ice_flow.h"
   7
   8/* To support tunneling entries by PF, the package will append the PF number to
   9 * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
  10 */
  11static const struct ice_tunnel_type_scan tnls[] = {
  12        { TNL_VXLAN,            "TNL_VXLAN_PF" },
  13        { TNL_GENEVE,           "TNL_GENEVE_PF" },
  14        { TNL_LAST,             "" }
  15};
  16
  17static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
  18        /* SWITCH */
  19        {
  20                ICE_SID_XLT0_SW,
  21                ICE_SID_XLT_KEY_BUILDER_SW,
  22                ICE_SID_XLT1_SW,
  23                ICE_SID_XLT2_SW,
  24                ICE_SID_PROFID_TCAM_SW,
  25                ICE_SID_PROFID_REDIR_SW,
  26                ICE_SID_FLD_VEC_SW,
  27                ICE_SID_CDID_KEY_BUILDER_SW,
  28                ICE_SID_CDID_REDIR_SW
  29        },
  30
  31        /* ACL */
  32        {
  33                ICE_SID_XLT0_ACL,
  34                ICE_SID_XLT_KEY_BUILDER_ACL,
  35                ICE_SID_XLT1_ACL,
  36                ICE_SID_XLT2_ACL,
  37                ICE_SID_PROFID_TCAM_ACL,
  38                ICE_SID_PROFID_REDIR_ACL,
  39                ICE_SID_FLD_VEC_ACL,
  40                ICE_SID_CDID_KEY_BUILDER_ACL,
  41                ICE_SID_CDID_REDIR_ACL
  42        },
  43
  44        /* FD */
  45        {
  46                ICE_SID_XLT0_FD,
  47                ICE_SID_XLT_KEY_BUILDER_FD,
  48                ICE_SID_XLT1_FD,
  49                ICE_SID_XLT2_FD,
  50                ICE_SID_PROFID_TCAM_FD,
  51                ICE_SID_PROFID_REDIR_FD,
  52                ICE_SID_FLD_VEC_FD,
  53                ICE_SID_CDID_KEY_BUILDER_FD,
  54                ICE_SID_CDID_REDIR_FD
  55        },
  56
  57        /* RSS */
  58        {
  59                ICE_SID_XLT0_RSS,
  60                ICE_SID_XLT_KEY_BUILDER_RSS,
  61                ICE_SID_XLT1_RSS,
  62                ICE_SID_XLT2_RSS,
  63                ICE_SID_PROFID_TCAM_RSS,
  64                ICE_SID_PROFID_REDIR_RSS,
  65                ICE_SID_FLD_VEC_RSS,
  66                ICE_SID_CDID_KEY_BUILDER_RSS,
  67                ICE_SID_CDID_REDIR_RSS
  68        },
  69
  70        /* PE */
  71        {
  72                ICE_SID_XLT0_PE,
  73                ICE_SID_XLT_KEY_BUILDER_PE,
  74                ICE_SID_XLT1_PE,
  75                ICE_SID_XLT2_PE,
  76                ICE_SID_PROFID_TCAM_PE,
  77                ICE_SID_PROFID_REDIR_PE,
  78                ICE_SID_FLD_VEC_PE,
  79                ICE_SID_CDID_KEY_BUILDER_PE,
  80                ICE_SID_CDID_REDIR_PE
  81        }
  82};
  83
  84/**
  85 * ice_sect_id - returns section ID
  86 * @blk: block type
  87 * @sect: section type
  88 *
  89 * This helper function returns the proper section ID given a block type and a
  90 * section type.
  91 */
  92static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
  93{
  94        return ice_sect_lkup[blk][sect];
  95}
  96
  97/**
  98 * ice_pkg_val_buf
  99 * @buf: pointer to the ice buffer
 100 *
 101 * This helper function validates a buffer's header.
 102 */
 103static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
 104{
 105        struct ice_buf_hdr *hdr;
 106        u16 section_count;
 107        u16 data_end;
 108
 109        hdr = (struct ice_buf_hdr *)buf->buf;
 110        /* verify data */
 111        section_count = le16_to_cpu(hdr->section_count);
 112        if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
 113                return NULL;
 114
 115        data_end = le16_to_cpu(hdr->data_end);
 116        if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
 117                return NULL;
 118
 119        return hdr;
 120}
 121
 122/**
 123 * ice_find_buf_table
 124 * @ice_seg: pointer to the ice segment
 125 *
 126 * Returns the address of the buffer table within the ice segment.
 127 */
 128static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
 129{
 130        struct ice_nvm_table *nvms;
 131
 132        nvms = (struct ice_nvm_table *)
 133                (ice_seg->device_table +
 134                 le32_to_cpu(ice_seg->device_table_count));
 135
 136        return (__force struct ice_buf_table *)
 137                (nvms->vers + le32_to_cpu(nvms->table_count));
 138}
 139
 140/**
 141 * ice_pkg_enum_buf
 142 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
 143 * @state: pointer to the enum state
 144 *
 145 * This function will enumerate all the buffers in the ice segment. The first
 146 * call is made with the ice_seg parameter non-NULL; on subsequent calls,
 147 * ice_seg is set to NULL which continues the enumeration. When the function
 148 * returns a NULL pointer, then the end of the buffers has been reached, or an
 149 * unexpected value has been detected (for example an invalid section count or
 150 * an invalid buffer end value).
 151 */
 152static struct ice_buf_hdr *
 153ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
 154{
 155        if (ice_seg) {
 156                state->buf_table = ice_find_buf_table(ice_seg);
 157                if (!state->buf_table)
 158                        return NULL;
 159
 160                state->buf_idx = 0;
 161                return ice_pkg_val_buf(state->buf_table->buf_array);
 162        }
 163
 164        if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
 165                return ice_pkg_val_buf(state->buf_table->buf_array +
 166                                       state->buf_idx);
 167        else
 168                return NULL;
 169}
 170
 171/**
 172 * ice_pkg_advance_sect
 173 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
 174 * @state: pointer to the enum state
 175 *
 176 * This helper function will advance the section within the ice segment,
 177 * also advancing the buffer if needed.
 178 */
 179static bool
 180ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
 181{
 182        if (!ice_seg && !state->buf)
 183                return false;
 184
 185        if (!ice_seg && state->buf)
 186                if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
 187                        return true;
 188
 189        state->buf = ice_pkg_enum_buf(ice_seg, state);
 190        if (!state->buf)
 191                return false;
 192
 193        /* start of new buffer, reset section index */
 194        state->sect_idx = 0;
 195        return true;
 196}
 197
 198/**
 199 * ice_pkg_enum_section
 200 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
 201 * @state: pointer to the enum state
 202 * @sect_type: section type to enumerate
 203 *
 204 * This function will enumerate all the sections of a particular type in the
 205 * ice segment. The first call is made with the ice_seg parameter non-NULL;
 206 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
 207 * When the function returns a NULL pointer, then the end of the matching
 208 * sections has been reached.
 209 */
 210static void *
 211ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
 212                     u32 sect_type)
 213{
 214        u16 offset, size;
 215
 216        if (ice_seg)
 217                state->type = sect_type;
 218
 219        if (!ice_pkg_advance_sect(ice_seg, state))
 220                return NULL;
 221
 222        /* scan for next matching section */
 223        while (state->buf->section_entry[state->sect_idx].type !=
 224               cpu_to_le32(state->type))
 225                if (!ice_pkg_advance_sect(NULL, state))
 226                        return NULL;
 227
 228        /* validate section */
 229        offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
 230        if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
 231                return NULL;
 232
 233        size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
 234        if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
 235                return NULL;
 236
 237        /* make sure the section fits in the buffer */
 238        if (offset + size > ICE_PKG_BUF_SIZE)
 239                return NULL;
 240
 241        state->sect_type =
 242                le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
 243
 244        /* calc pointer to this section */
 245        state->sect = ((u8 *)state->buf) +
 246                le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
 247
 248        return state->sect;
 249}
 250
 251/**
 252 * ice_pkg_enum_entry
 253 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
 254 * @state: pointer to the enum state
 255 * @sect_type: section type to enumerate
 256 * @offset: pointer to variable that receives the offset in the table (optional)
 257 * @handler: function that handles access to the entries into the section type
 258 *
 259 * This function will enumerate all the entries in particular section type in
 260 * the ice segment. The first call is made with the ice_seg parameter non-NULL;
 261 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
 262 * When the function returns a NULL pointer, then the end of the entries has
 263 * been reached.
 264 *
 265 * Since each section may have a different header and entry size, the handler
 266 * function is needed to determine the number and location entries in each
 267 * section.
 268 *
 269 * The offset parameter is optional, but should be used for sections that
 270 * contain an offset for each section table. For such cases, the section handler
 271 * function must return the appropriate offset + index to give the absolution
 272 * offset for each entry. For example, if the base for a section's header
 273 * indicates a base offset of 10, and the index for the entry is 2, then
 274 * section handler function should set the offset to 10 + 2 = 12.
 275 */
 276static void *
 277ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
 278                   u32 sect_type, u32 *offset,
 279                   void *(*handler)(u32 sect_type, void *section,
 280                                    u32 index, u32 *offset))
 281{
 282        void *entry;
 283
 284        if (ice_seg) {
 285                if (!handler)
 286                        return NULL;
 287
 288                if (!ice_pkg_enum_section(ice_seg, state, sect_type))
 289                        return NULL;
 290
 291                state->entry_idx = 0;
 292                state->handler = handler;
 293        } else {
 294                state->entry_idx++;
 295        }
 296
 297        if (!state->handler)
 298                return NULL;
 299
 300        /* get entry */
 301        entry = state->handler(state->sect_type, state->sect, state->entry_idx,
 302                               offset);
 303        if (!entry) {
 304                /* end of a section, look for another section of this type */
 305                if (!ice_pkg_enum_section(NULL, state, 0))
 306                        return NULL;
 307
 308                state->entry_idx = 0;
 309                entry = state->handler(state->sect_type, state->sect,
 310                                       state->entry_idx, offset);
 311        }
 312
 313        return entry;
 314}
 315
 316/**
 317 * ice_boost_tcam_handler
 318 * @sect_type: section type
 319 * @section: pointer to section
 320 * @index: index of the boost TCAM entry to be returned
 321 * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
 322 *
 323 * This is a callback function that can be passed to ice_pkg_enum_entry.
 324 * Handles enumeration of individual boost TCAM entries.
 325 */
 326static void *
 327ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
 328{
 329        struct ice_boost_tcam_section *boost;
 330
 331        if (!section)
 332                return NULL;
 333
 334        if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
 335                return NULL;
 336
 337        /* cppcheck-suppress nullPointer */
 338        if (index > ICE_MAX_BST_TCAMS_IN_BUF)
 339                return NULL;
 340
 341        if (offset)
 342                *offset = 0;
 343
 344        boost = section;
 345        if (index >= le16_to_cpu(boost->count))
 346                return NULL;
 347
 348        return boost->tcam + index;
 349}
 350
 351/**
 352 * ice_find_boost_entry
 353 * @ice_seg: pointer to the ice segment (non-NULL)
 354 * @addr: Boost TCAM address of entry to search for
 355 * @entry: returns pointer to the entry
 356 *
 357 * Finds a particular Boost TCAM entry and returns a pointer to that entry
 358 * if it is found. The ice_seg parameter must not be NULL since the first call
 359 * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
 360 */
 361static enum ice_status
 362ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
 363                     struct ice_boost_tcam_entry **entry)
 364{
 365        struct ice_boost_tcam_entry *tcam;
 366        struct ice_pkg_enum state;
 367
 368        memset(&state, 0, sizeof(state));
 369
 370        if (!ice_seg)
 371                return ICE_ERR_PARAM;
 372
 373        do {
 374                tcam = ice_pkg_enum_entry(ice_seg, &state,
 375                                          ICE_SID_RXPARSER_BOOST_TCAM, NULL,
 376                                          ice_boost_tcam_handler);
 377                if (tcam && le16_to_cpu(tcam->addr) == addr) {
 378                        *entry = tcam;
 379                        return 0;
 380                }
 381
 382                ice_seg = NULL;
 383        } while (tcam);
 384
 385        *entry = NULL;
 386        return ICE_ERR_CFG;
 387}
 388
 389/**
 390 * ice_label_enum_handler
 391 * @sect_type: section type
 392 * @section: pointer to section
 393 * @index: index of the label entry to be returned
 394 * @offset: pointer to receive absolute offset, always zero for label sections
 395 *
 396 * This is a callback function that can be passed to ice_pkg_enum_entry.
 397 * Handles enumeration of individual label entries.
 398 */
 399static void *
 400ice_label_enum_handler(u32 __always_unused sect_type, void *section, u32 index,
 401                       u32 *offset)
 402{
 403        struct ice_label_section *labels;
 404
 405        if (!section)
 406                return NULL;
 407
 408        /* cppcheck-suppress nullPointer */
 409        if (index > ICE_MAX_LABELS_IN_BUF)
 410                return NULL;
 411
 412        if (offset)
 413                *offset = 0;
 414
 415        labels = section;
 416        if (index >= le16_to_cpu(labels->count))
 417                return NULL;
 418
 419        return labels->label + index;
 420}
 421
 422/**
 423 * ice_enum_labels
 424 * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
 425 * @type: the section type that will contain the label (0 on subsequent calls)
 426 * @state: ice_pkg_enum structure that will hold the state of the enumeration
 427 * @value: pointer to a value that will return the label's value if found
 428 *
 429 * Enumerates a list of labels in the package. The caller will call
 430 * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
 431 * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
 432 * the end of the list has been reached.
 433 */
 434static char *
 435ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
 436                u16 *value)
 437{
 438        struct ice_label *label;
 439
 440        /* Check for valid label section on first call */
 441        if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
 442                return NULL;
 443
 444        label = ice_pkg_enum_entry(ice_seg, state, type, NULL,
 445                                   ice_label_enum_handler);
 446        if (!label)
 447                return NULL;
 448
 449        *value = le16_to_cpu(label->value);
 450        return label->name;
 451}
 452
 453/**
 454 * ice_init_pkg_hints
 455 * @hw: pointer to the HW structure
 456 * @ice_seg: pointer to the segment of the package scan (non-NULL)
 457 *
 458 * This function will scan the package and save off relevant information
 459 * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
 460 * since the first call to ice_enum_labels requires a pointer to an actual
 461 * ice_seg structure.
 462 */
 463static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
 464{
 465        struct ice_pkg_enum state;
 466        char *label_name;
 467        u16 val;
 468        int i;
 469
 470        memset(&hw->tnl, 0, sizeof(hw->tnl));
 471        memset(&state, 0, sizeof(state));
 472
 473        if (!ice_seg)
 474                return;
 475
 476        label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
 477                                     &val);
 478
 479        while (label_name && hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
 480                for (i = 0; tnls[i].type != TNL_LAST; i++) {
 481                        size_t len = strlen(tnls[i].label_prefix);
 482
 483                        /* Look for matching label start, before continuing */
 484                        if (strncmp(label_name, tnls[i].label_prefix, len))
 485                                continue;
 486
 487                        /* Make sure this label matches our PF. Note that the PF
 488                         * character ('0' - '7') will be located where our
 489                         * prefix string's null terminator is located.
 490                         */
 491                        if ((label_name[len] - '0') == hw->pf_id) {
 492                                hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
 493                                hw->tnl.tbl[hw->tnl.count].valid = false;
 494                                hw->tnl.tbl[hw->tnl.count].boost_addr = val;
 495                                hw->tnl.tbl[hw->tnl.count].port = 0;
 496                                hw->tnl.count++;
 497                                break;
 498                        }
 499                }
 500
 501                label_name = ice_enum_labels(NULL, 0, &state, &val);
 502        }
 503
 504        /* Cache the appropriate boost TCAM entry pointers */
 505        for (i = 0; i < hw->tnl.count; i++) {
 506                ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
 507                                     &hw->tnl.tbl[i].boost_entry);
 508                if (hw->tnl.tbl[i].boost_entry) {
 509                        hw->tnl.tbl[i].valid = true;
 510                        if (hw->tnl.tbl[i].type < __TNL_TYPE_CNT)
 511                                hw->tnl.valid_count[hw->tnl.tbl[i].type]++;
 512                }
 513        }
 514}
 515
 516/* Key creation */
 517
 518#define ICE_DC_KEY      0x1     /* don't care */
 519#define ICE_DC_KEYINV   0x1
 520#define ICE_NM_KEY      0x0     /* never match */
 521#define ICE_NM_KEYINV   0x0
 522#define ICE_0_KEY       0x1     /* match 0 */
 523#define ICE_0_KEYINV    0x0
 524#define ICE_1_KEY       0x0     /* match 1 */
 525#define ICE_1_KEYINV    0x1
 526
 527/**
 528 * ice_gen_key_word - generate 16-bits of a key/mask word
 529 * @val: the value
 530 * @valid: valid bits mask (change only the valid bits)
 531 * @dont_care: don't care mask
 532 * @nvr_mtch: never match mask
 533 * @key: pointer to an array of where the resulting key portion
 534 * @key_inv: pointer to an array of where the resulting key invert portion
 535 *
 536 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
 537 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
 538 * of key and 8 bits of key invert.
 539 *
 540 *     '0' =    b01, always match a 0 bit
 541 *     '1' =    b10, always match a 1 bit
 542 *     '?' =    b11, don't care bit (always matches)
 543 *     '~' =    b00, never match bit
 544 *
 545 * Input:
 546 *          val:         b0  1  0  1  0  1
 547 *          dont_care:   b0  0  1  1  0  0
 548 *          never_mtch:  b0  0  0  0  1  1
 549 *          ------------------------------
 550 * Result:  key:        b01 10 11 11 00 00
 551 */
 552static enum ice_status
 553ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
 554                 u8 *key_inv)
 555{
 556        u8 in_key = *key, in_key_inv = *key_inv;
 557        u8 i;
 558
 559        /* 'dont_care' and 'nvr_mtch' masks cannot overlap */
 560        if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
 561                return ICE_ERR_CFG;
 562
 563        *key = 0;
 564        *key_inv = 0;
 565
 566        /* encode the 8 bits into 8-bit key and 8-bit key invert */
 567        for (i = 0; i < 8; i++) {
 568                *key >>= 1;
 569                *key_inv >>= 1;
 570
 571                if (!(valid & 0x1)) { /* change only valid bits */
 572                        *key |= (in_key & 0x1) << 7;
 573                        *key_inv |= (in_key_inv & 0x1) << 7;
 574                } else if (dont_care & 0x1) { /* don't care bit */
 575                        *key |= ICE_DC_KEY << 7;
 576                        *key_inv |= ICE_DC_KEYINV << 7;
 577                } else if (nvr_mtch & 0x1) { /* never match bit */
 578                        *key |= ICE_NM_KEY << 7;
 579                        *key_inv |= ICE_NM_KEYINV << 7;
 580                } else if (val & 0x01) { /* exact 1 match */
 581                        *key |= ICE_1_KEY << 7;
 582                        *key_inv |= ICE_1_KEYINV << 7;
 583                } else { /* exact 0 match */
 584                        *key |= ICE_0_KEY << 7;
 585                        *key_inv |= ICE_0_KEYINV << 7;
 586                }
 587
 588                dont_care >>= 1;
 589                nvr_mtch >>= 1;
 590                valid >>= 1;
 591                val >>= 1;
 592                in_key >>= 1;
 593                in_key_inv >>= 1;
 594        }
 595
 596        return 0;
 597}
 598
 599/**
 600 * ice_bits_max_set - determine if the number of bits set is within a maximum
 601 * @mask: pointer to the byte array which is the mask
 602 * @size: the number of bytes in the mask
 603 * @max: the max number of set bits
 604 *
 605 * This function determines if there are at most 'max' number of bits set in an
 606 * array. Returns true if the number for bits set is <= max or will return false
 607 * otherwise.
 608 */
 609static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
 610{
 611        u16 count = 0;
 612        u16 i;
 613
 614        /* check each byte */
 615        for (i = 0; i < size; i++) {
 616                /* if 0, go to next byte */
 617                if (!mask[i])
 618                        continue;
 619
 620                /* We know there is at least one set bit in this byte because of
 621                 * the above check; if we already have found 'max' number of
 622                 * bits set, then we can return failure now.
 623                 */
 624                if (count == max)
 625                        return false;
 626
 627                /* count the bits in this byte, checking threshold */
 628                count += hweight8(mask[i]);
 629                if (count > max)
 630                        return false;
 631        }
 632
 633        return true;
 634}
 635
 636/**
 637 * ice_set_key - generate a variable sized key with multiples of 16-bits
 638 * @key: pointer to where the key will be stored
 639 * @size: the size of the complete key in bytes (must be even)
 640 * @val: array of 8-bit values that makes up the value portion of the key
 641 * @upd: array of 8-bit masks that determine what key portion to update
 642 * @dc: array of 8-bit masks that make up the don't care mask
 643 * @nm: array of 8-bit masks that make up the never match mask
 644 * @off: the offset of the first byte in the key to update
 645 * @len: the number of bytes in the key update
 646 *
 647 * This function generates a key from a value, a don't care mask and a never
 648 * match mask.
 649 * upd, dc, and nm are optional parameters, and can be NULL:
 650 *      upd == NULL --> upd mask is all 1's (update all bits)
 651 *      dc == NULL --> dc mask is all 0's (no don't care bits)
 652 *      nm == NULL --> nm mask is all 0's (no never match bits)
 653 */
 654static enum ice_status
 655ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
 656            u16 len)
 657{
 658        u16 half_size;
 659        u16 i;
 660
 661        /* size must be a multiple of 2 bytes. */
 662        if (size % 2)
 663                return ICE_ERR_CFG;
 664
 665        half_size = size / 2;
 666        if (off + len > half_size)
 667                return ICE_ERR_CFG;
 668
 669        /* Make sure at most one bit is set in the never match mask. Having more
 670         * than one never match mask bit set will cause HW to consume excessive
 671         * power otherwise; this is a power management efficiency check.
 672         */
 673#define ICE_NVR_MTCH_BITS_MAX   1
 674        if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
 675                return ICE_ERR_CFG;
 676
 677        for (i = 0; i < len; i++)
 678                if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
 679                                     dc ? dc[i] : 0, nm ? nm[i] : 0,
 680                                     key + off + i, key + half_size + off + i))
 681                        return ICE_ERR_CFG;
 682
 683        return 0;
 684}
 685
 686/**
 687 * ice_acquire_global_cfg_lock
 688 * @hw: pointer to the HW structure
 689 * @access: access type (read or write)
 690 *
 691 * This function will request ownership of the global config lock for reading
 692 * or writing of the package. When attempting to obtain write access, the
 693 * caller must check for the following two return values:
 694 *
 695 * ICE_SUCCESS        - Means the caller has acquired the global config lock
 696 *                      and can perform writing of the package.
 697 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
 698 *                      package or has found that no update was necessary; in
 699 *                      this case, the caller can just skip performing any
 700 *                      update of the package.
 701 */
 702static enum ice_status
 703ice_acquire_global_cfg_lock(struct ice_hw *hw,
 704                            enum ice_aq_res_access_type access)
 705{
 706        enum ice_status status;
 707
 708        status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
 709                                 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
 710
 711        if (!status)
 712                mutex_lock(&ice_global_cfg_lock_sw);
 713        else if (status == ICE_ERR_AQ_NO_WORK)
 714                ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
 715
 716        return status;
 717}
 718
 719/**
 720 * ice_release_global_cfg_lock
 721 * @hw: pointer to the HW structure
 722 *
 723 * This function will release the global config lock.
 724 */
 725static void ice_release_global_cfg_lock(struct ice_hw *hw)
 726{
 727        mutex_unlock(&ice_global_cfg_lock_sw);
 728        ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
 729}
 730
 731/**
 732 * ice_acquire_change_lock
 733 * @hw: pointer to the HW structure
 734 * @access: access type (read or write)
 735 *
 736 * This function will request ownership of the change lock.
 737 */
 738static enum ice_status
 739ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
 740{
 741        return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
 742                               ICE_CHANGE_LOCK_TIMEOUT);
 743}
 744
 745/**
 746 * ice_release_change_lock
 747 * @hw: pointer to the HW structure
 748 *
 749 * This function will release the change lock using the proper Admin Command.
 750 */
 751static void ice_release_change_lock(struct ice_hw *hw)
 752{
 753        ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
 754}
 755
 756/**
 757 * ice_aq_download_pkg
 758 * @hw: pointer to the hardware structure
 759 * @pkg_buf: the package buffer to transfer
 760 * @buf_size: the size of the package buffer
 761 * @last_buf: last buffer indicator
 762 * @error_offset: returns error offset
 763 * @error_info: returns error information
 764 * @cd: pointer to command details structure or NULL
 765 *
 766 * Download Package (0x0C40)
 767 */
 768static enum ice_status
 769ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
 770                    u16 buf_size, bool last_buf, u32 *error_offset,
 771                    u32 *error_info, struct ice_sq_cd *cd)
 772{
 773        struct ice_aqc_download_pkg *cmd;
 774        struct ice_aq_desc desc;
 775        enum ice_status status;
 776
 777        if (error_offset)
 778                *error_offset = 0;
 779        if (error_info)
 780                *error_info = 0;
 781
 782        cmd = &desc.params.download_pkg;
 783        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
 784        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 785
 786        if (last_buf)
 787                cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
 788
 789        status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
 790        if (status == ICE_ERR_AQ_ERROR) {
 791                /* Read error from buffer only when the FW returned an error */
 792                struct ice_aqc_download_pkg_resp *resp;
 793
 794                resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
 795                if (error_offset)
 796                        *error_offset = le32_to_cpu(resp->error_offset);
 797                if (error_info)
 798                        *error_info = le32_to_cpu(resp->error_info);
 799        }
 800
 801        return status;
 802}
 803
 804/**
 805 * ice_aq_update_pkg
 806 * @hw: pointer to the hardware structure
 807 * @pkg_buf: the package cmd buffer
 808 * @buf_size: the size of the package cmd buffer
 809 * @last_buf: last buffer indicator
 810 * @error_offset: returns error offset
 811 * @error_info: returns error information
 812 * @cd: pointer to command details structure or NULL
 813 *
 814 * Update Package (0x0C42)
 815 */
 816static enum ice_status
 817ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
 818                  bool last_buf, u32 *error_offset, u32 *error_info,
 819                  struct ice_sq_cd *cd)
 820{
 821        struct ice_aqc_download_pkg *cmd;
 822        struct ice_aq_desc desc;
 823        enum ice_status status;
 824
 825        if (error_offset)
 826                *error_offset = 0;
 827        if (error_info)
 828                *error_info = 0;
 829
 830        cmd = &desc.params.download_pkg;
 831        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
 832        desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 833
 834        if (last_buf)
 835                cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
 836
 837        status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
 838        if (status == ICE_ERR_AQ_ERROR) {
 839                /* Read error from buffer only when the FW returned an error */
 840                struct ice_aqc_download_pkg_resp *resp;
 841
 842                resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
 843                if (error_offset)
 844                        *error_offset = le32_to_cpu(resp->error_offset);
 845                if (error_info)
 846                        *error_info = le32_to_cpu(resp->error_info);
 847        }
 848
 849        return status;
 850}
 851
 852/**
 853 * ice_find_seg_in_pkg
 854 * @hw: pointer to the hardware structure
 855 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
 856 * @pkg_hdr: pointer to the package header to be searched
 857 *
 858 * This function searches a package file for a particular segment type. On
 859 * success it returns a pointer to the segment header, otherwise it will
 860 * return NULL.
 861 */
 862static struct ice_generic_seg_hdr *
 863ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
 864                    struct ice_pkg_hdr *pkg_hdr)
 865{
 866        u32 i;
 867
 868        ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
 869                  pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
 870                  pkg_hdr->pkg_format_ver.update,
 871                  pkg_hdr->pkg_format_ver.draft);
 872
 873        /* Search all package segments for the requested segment type */
 874        for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
 875                struct ice_generic_seg_hdr *seg;
 876
 877                seg = (struct ice_generic_seg_hdr *)
 878                        ((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
 879
 880                if (le32_to_cpu(seg->seg_type) == seg_type)
 881                        return seg;
 882        }
 883
 884        return NULL;
 885}
 886
 887/**
 888 * ice_update_pkg
 889 * @hw: pointer to the hardware structure
 890 * @bufs: pointer to an array of buffers
 891 * @count: the number of buffers in the array
 892 *
 893 * Obtains change lock and updates package.
 894 */
 895static enum ice_status
 896ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
 897{
 898        enum ice_status status;
 899        u32 offset, info, i;
 900
 901        status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
 902        if (status)
 903                return status;
 904
 905        for (i = 0; i < count; i++) {
 906                struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
 907                bool last = ((i + 1) == count);
 908
 909                status = ice_aq_update_pkg(hw, bh, le16_to_cpu(bh->data_end),
 910                                           last, &offset, &info, NULL);
 911
 912                if (status) {
 913                        ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
 914                                  status, offset, info);
 915                        break;
 916                }
 917        }
 918
 919        ice_release_change_lock(hw);
 920
 921        return status;
 922}
 923
 924/**
 925 * ice_dwnld_cfg_bufs
 926 * @hw: pointer to the hardware structure
 927 * @bufs: pointer to an array of buffers
 928 * @count: the number of buffers in the array
 929 *
 930 * Obtains global config lock and downloads the package configuration buffers
 931 * to the firmware. Metadata buffers are skipped, and the first metadata buffer
 932 * found indicates that the rest of the buffers are all metadata buffers.
 933 */
 934static enum ice_status
 935ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
 936{
 937        enum ice_status status;
 938        struct ice_buf_hdr *bh;
 939        u32 offset, info, i;
 940
 941        if (!bufs || !count)
 942                return ICE_ERR_PARAM;
 943
 944        /* If the first buffer's first section has its metadata bit set
 945         * then there are no buffers to be downloaded, and the operation is
 946         * considered a success.
 947         */
 948        bh = (struct ice_buf_hdr *)bufs;
 949        if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
 950                return 0;
 951
 952        /* reset pkg_dwnld_status in case this function is called in the
 953         * reset/rebuild flow
 954         */
 955        hw->pkg_dwnld_status = ICE_AQ_RC_OK;
 956
 957        status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
 958        if (status) {
 959                if (status == ICE_ERR_AQ_NO_WORK)
 960                        hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
 961                else
 962                        hw->pkg_dwnld_status = hw->adminq.sq_last_status;
 963                return status;
 964        }
 965
 966        for (i = 0; i < count; i++) {
 967                bool last = ((i + 1) == count);
 968
 969                if (!last) {
 970                        /* check next buffer for metadata flag */
 971                        bh = (struct ice_buf_hdr *)(bufs + i + 1);
 972
 973                        /* A set metadata flag in the next buffer will signal
 974                         * that the current buffer will be the last buffer
 975                         * downloaded
 976                         */
 977                        if (le16_to_cpu(bh->section_count))
 978                                if (le32_to_cpu(bh->section_entry[0].type) &
 979                                    ICE_METADATA_BUF)
 980                                        last = true;
 981                }
 982
 983                bh = (struct ice_buf_hdr *)(bufs + i);
 984
 985                status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
 986                                             &offset, &info, NULL);
 987
 988                /* Save AQ status from download package */
 989                hw->pkg_dwnld_status = hw->adminq.sq_last_status;
 990                if (status) {
 991                        ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
 992                                  status, offset, info);
 993
 994                        break;
 995                }
 996
 997                if (last)
 998                        break;
 999        }
1000
1001        ice_release_global_cfg_lock(hw);
1002
1003        return status;
1004}
1005
1006/**
1007 * ice_aq_get_pkg_info_list
1008 * @hw: pointer to the hardware structure
1009 * @pkg_info: the buffer which will receive the information list
1010 * @buf_size: the size of the pkg_info information buffer
1011 * @cd: pointer to command details structure or NULL
1012 *
1013 * Get Package Info List (0x0C43)
1014 */
1015static enum ice_status
1016ice_aq_get_pkg_info_list(struct ice_hw *hw,
1017                         struct ice_aqc_get_pkg_info_resp *pkg_info,
1018                         u16 buf_size, struct ice_sq_cd *cd)
1019{
1020        struct ice_aq_desc desc;
1021
1022        ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1023
1024        return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1025}
1026
1027/**
1028 * ice_download_pkg
1029 * @hw: pointer to the hardware structure
1030 * @ice_seg: pointer to the segment of the package to be downloaded
1031 *
1032 * Handles the download of a complete package.
1033 */
1034static enum ice_status
1035ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1036{
1037        struct ice_buf_table *ice_buf_tbl;
1038
1039        ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1040                  ice_seg->hdr.seg_format_ver.major,
1041                  ice_seg->hdr.seg_format_ver.minor,
1042                  ice_seg->hdr.seg_format_ver.update,
1043                  ice_seg->hdr.seg_format_ver.draft);
1044
1045        ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1046                  le32_to_cpu(ice_seg->hdr.seg_type),
1047                  le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1048
1049        ice_buf_tbl = ice_find_buf_table(ice_seg);
1050
1051        ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1052                  le32_to_cpu(ice_buf_tbl->buf_count));
1053
1054        return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1055                                  le32_to_cpu(ice_buf_tbl->buf_count));
1056}
1057
1058/**
1059 * ice_init_pkg_info
1060 * @hw: pointer to the hardware structure
1061 * @pkg_hdr: pointer to the driver's package hdr
1062 *
1063 * Saves off the package details into the HW structure.
1064 */
1065static enum ice_status
1066ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1067{
1068        struct ice_generic_seg_hdr *seg_hdr;
1069
1070        if (!pkg_hdr)
1071                return ICE_ERR_PARAM;
1072
1073        seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
1074        if (seg_hdr) {
1075                struct ice_meta_sect *meta;
1076                struct ice_pkg_enum state;
1077
1078                memset(&state, 0, sizeof(state));
1079
1080                /* Get package information from the Metadata Section */
1081                meta = ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
1082                                            ICE_SID_METADATA);
1083                if (!meta) {
1084                        ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
1085                        return ICE_ERR_CFG;
1086                }
1087
1088                hw->pkg_ver = meta->ver;
1089                memcpy(hw->pkg_name, meta->name, sizeof(meta->name));
1090
1091                ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1092                          meta->ver.major, meta->ver.minor, meta->ver.update,
1093                          meta->ver.draft, meta->name);
1094
1095                hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
1096                memcpy(hw->ice_seg_id, seg_hdr->seg_id,
1097                       sizeof(hw->ice_seg_id));
1098
1099                ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1100                          seg_hdr->seg_format_ver.major,
1101                          seg_hdr->seg_format_ver.minor,
1102                          seg_hdr->seg_format_ver.update,
1103                          seg_hdr->seg_format_ver.draft,
1104                          seg_hdr->seg_id);
1105        } else {
1106                ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
1107                return ICE_ERR_CFG;
1108        }
1109
1110        return 0;
1111}
1112
1113/**
1114 * ice_get_pkg_info
1115 * @hw: pointer to the hardware structure
1116 *
1117 * Store details of the package currently loaded in HW into the HW structure.
1118 */
1119static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
1120{
1121        struct ice_aqc_get_pkg_info_resp *pkg_info;
1122        enum ice_status status;
1123        u16 size;
1124        u32 i;
1125
1126        size = struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1127        pkg_info = kzalloc(size, GFP_KERNEL);
1128        if (!pkg_info)
1129                return ICE_ERR_NO_MEMORY;
1130
1131        status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
1132        if (status)
1133                goto init_pkg_free_alloc;
1134
1135        for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
1136#define ICE_PKG_FLAG_COUNT      4
1137                char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1138                u8 place = 0;
1139
1140                if (pkg_info->pkg_info[i].is_active) {
1141                        flags[place++] = 'A';
1142                        hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1143                        hw->active_track_id =
1144                                le32_to_cpu(pkg_info->pkg_info[i].track_id);
1145                        memcpy(hw->active_pkg_name,
1146                               pkg_info->pkg_info[i].name,
1147                               sizeof(pkg_info->pkg_info[i].name));
1148                        hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1149                }
1150                if (pkg_info->pkg_info[i].is_active_at_boot)
1151                        flags[place++] = 'B';
1152                if (pkg_info->pkg_info[i].is_modified)
1153                        flags[place++] = 'M';
1154                if (pkg_info->pkg_info[i].is_in_nvm)
1155                        flags[place++] = 'N';
1156
1157                ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1158                          i, pkg_info->pkg_info[i].ver.major,
1159                          pkg_info->pkg_info[i].ver.minor,
1160                          pkg_info->pkg_info[i].ver.update,
1161                          pkg_info->pkg_info[i].ver.draft,
1162                          pkg_info->pkg_info[i].name, flags);
1163        }
1164
1165init_pkg_free_alloc:
1166        kfree(pkg_info);
1167
1168        return status;
1169}
1170
1171/**
1172 * ice_verify_pkg - verify package
1173 * @pkg: pointer to the package buffer
1174 * @len: size of the package buffer
1175 *
1176 * Verifies various attributes of the package file, including length, format
1177 * version, and the requirement of at least one segment.
1178 */
1179static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1180{
1181        u32 seg_count;
1182        u32 i;
1183
1184        if (len < struct_size(pkg, seg_offset, 1))
1185                return ICE_ERR_BUF_TOO_SHORT;
1186
1187        if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1188            pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1189            pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1190            pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1191                return ICE_ERR_CFG;
1192
1193        /* pkg must have at least one segment */
1194        seg_count = le32_to_cpu(pkg->seg_count);
1195        if (seg_count < 1)
1196                return ICE_ERR_CFG;
1197
1198        /* make sure segment array fits in package length */
1199        if (len < struct_size(pkg, seg_offset, seg_count))
1200                return ICE_ERR_BUF_TOO_SHORT;
1201
1202        /* all segments must fit within length */
1203        for (i = 0; i < seg_count; i++) {
1204                u32 off = le32_to_cpu(pkg->seg_offset[i]);
1205                struct ice_generic_seg_hdr *seg;
1206
1207                /* segment header must fit */
1208                if (len < off + sizeof(*seg))
1209                        return ICE_ERR_BUF_TOO_SHORT;
1210
1211                seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1212
1213                /* segment body must fit */
1214                if (len < off + le32_to_cpu(seg->seg_size))
1215                        return ICE_ERR_BUF_TOO_SHORT;
1216        }
1217
1218        return 0;
1219}
1220
1221/**
1222 * ice_free_seg - free package segment pointer
1223 * @hw: pointer to the hardware structure
1224 *
1225 * Frees the package segment pointer in the proper manner, depending on if the
1226 * segment was allocated or just the passed in pointer was stored.
1227 */
1228void ice_free_seg(struct ice_hw *hw)
1229{
1230        if (hw->pkg_copy) {
1231                devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
1232                hw->pkg_copy = NULL;
1233                hw->pkg_size = 0;
1234        }
1235        hw->seg = NULL;
1236}
1237
1238/**
1239 * ice_init_pkg_regs - initialize additional package registers
1240 * @hw: pointer to the hardware structure
1241 */
1242static void ice_init_pkg_regs(struct ice_hw *hw)
1243{
1244#define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1245#define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1246#define ICE_SW_BLK_IDX  0
1247
1248        /* setup Switch block input mask, which is 48-bits in two parts */
1249        wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1250        wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1251}
1252
1253/**
1254 * ice_chk_pkg_version - check package version for compatibility with driver
1255 * @pkg_ver: pointer to a version structure to check
1256 *
1257 * Check to make sure that the package about to be downloaded is compatible with
1258 * the driver. To be compatible, the major and minor components of the package
1259 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1260 * definitions.
1261 */
1262static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1263{
1264        if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
1265            pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
1266                return ICE_ERR_NOT_SUPPORTED;
1267
1268        return 0;
1269}
1270
1271/**
1272 * ice_chk_pkg_compat
1273 * @hw: pointer to the hardware structure
1274 * @ospkg: pointer to the package hdr
1275 * @seg: pointer to the package segment hdr
1276 *
1277 * This function checks the package version compatibility with driver and NVM
1278 */
1279static enum ice_status
1280ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1281                   struct ice_seg **seg)
1282{
1283        struct ice_aqc_get_pkg_info_resp *pkg;
1284        enum ice_status status;
1285        u16 size;
1286        u32 i;
1287
1288        /* Check package version compatibility */
1289        status = ice_chk_pkg_version(&hw->pkg_ver);
1290        if (status) {
1291                ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1292                return status;
1293        }
1294
1295        /* find ICE segment in given package */
1296        *seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE,
1297                                                     ospkg);
1298        if (!*seg) {
1299                ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1300                return ICE_ERR_CFG;
1301        }
1302
1303        /* Check if FW is compatible with the OS package */
1304        size = struct_size(pkg, pkg_info, ICE_PKG_CNT);
1305        pkg = kzalloc(size, GFP_KERNEL);
1306        if (!pkg)
1307                return ICE_ERR_NO_MEMORY;
1308
1309        status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL);
1310        if (status)
1311                goto fw_ddp_compat_free_alloc;
1312
1313        for (i = 0; i < le32_to_cpu(pkg->count); i++) {
1314                /* loop till we find the NVM package */
1315                if (!pkg->pkg_info[i].is_in_nvm)
1316                        continue;
1317                if ((*seg)->hdr.seg_format_ver.major !=
1318                        pkg->pkg_info[i].ver.major ||
1319                    (*seg)->hdr.seg_format_ver.minor >
1320                        pkg->pkg_info[i].ver.minor) {
1321                        status = ICE_ERR_FW_DDP_MISMATCH;
1322                        ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
1323                }
1324                /* done processing NVM package so break */
1325                break;
1326        }
1327fw_ddp_compat_free_alloc:
1328        kfree(pkg);
1329        return status;
1330}
1331
1332/**
1333 * ice_init_pkg - initialize/download package
1334 * @hw: pointer to the hardware structure
1335 * @buf: pointer to the package buffer
1336 * @len: size of the package buffer
1337 *
1338 * This function initializes a package. The package contains HW tables
1339 * required to do packet processing. First, the function extracts package
1340 * information such as version. Then it finds the ice configuration segment
1341 * within the package; this function then saves a copy of the segment pointer
1342 * within the supplied package buffer. Next, the function will cache any hints
1343 * from the package, followed by downloading the package itself. Note, that if
1344 * a previous PF driver has already downloaded the package successfully, then
1345 * the current driver will not have to download the package again.
1346 *
1347 * The local package contents will be used to query default behavior and to
1348 * update specific sections of the HW's version of the package (e.g. to update
1349 * the parse graph to understand new protocols).
1350 *
1351 * This function stores a pointer to the package buffer memory, and it is
1352 * expected that the supplied buffer will not be freed immediately. If the
1353 * package buffer needs to be freed, such as when read from a file, use
1354 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1355 * case.
1356 */
1357enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1358{
1359        struct ice_pkg_hdr *pkg;
1360        enum ice_status status;
1361        struct ice_seg *seg;
1362
1363        if (!buf || !len)
1364                return ICE_ERR_PARAM;
1365
1366        pkg = (struct ice_pkg_hdr *)buf;
1367        status = ice_verify_pkg(pkg, len);
1368        if (status) {
1369                ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1370                          status);
1371                return status;
1372        }
1373
1374        /* initialize package info */
1375        status = ice_init_pkg_info(hw, pkg);
1376        if (status)
1377                return status;
1378
1379        /* before downloading the package, check package version for
1380         * compatibility with driver
1381         */
1382        status = ice_chk_pkg_compat(hw, pkg, &seg);
1383        if (status)
1384                return status;
1385
1386        /* initialize package hints and then download package */
1387        ice_init_pkg_hints(hw, seg);
1388        status = ice_download_pkg(hw, seg);
1389        if (status == ICE_ERR_AQ_NO_WORK) {
1390                ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
1391                status = 0;
1392        }
1393
1394        /* Get information on the package currently loaded in HW, then make sure
1395         * the driver is compatible with this version.
1396         */
1397        if (!status) {
1398                status = ice_get_pkg_info(hw);
1399                if (!status)
1400                        status = ice_chk_pkg_version(&hw->active_pkg_ver);
1401        }
1402
1403        if (!status) {
1404                hw->seg = seg;
1405                /* on successful package download update other required
1406                 * registers to support the package and fill HW tables
1407                 * with package content.
1408                 */
1409                ice_init_pkg_regs(hw);
1410                ice_fill_blk_tbls(hw);
1411        } else {
1412                ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1413                          status);
1414        }
1415
1416        return status;
1417}
1418
1419/**
1420 * ice_copy_and_init_pkg - initialize/download a copy of the package
1421 * @hw: pointer to the hardware structure
1422 * @buf: pointer to the package buffer
1423 * @len: size of the package buffer
1424 *
1425 * This function copies the package buffer, and then calls ice_init_pkg() to
1426 * initialize the copied package contents.
1427 *
1428 * The copying is necessary if the package buffer supplied is constant, or if
1429 * the memory may disappear shortly after calling this function.
1430 *
1431 * If the package buffer resides in the data segment and can be modified, the
1432 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1433 *
1434 * However, if the package buffer needs to be copied first, such as when being
1435 * read from a file, the caller should use ice_copy_and_init_pkg().
1436 *
1437 * This function will first copy the package buffer, before calling
1438 * ice_init_pkg(). The caller is free to immediately destroy the original
1439 * package buffer, as the new copy will be managed by this function and
1440 * related routines.
1441 */
1442enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1443{
1444        enum ice_status status;
1445        u8 *buf_copy;
1446
1447        if (!buf || !len)
1448                return ICE_ERR_PARAM;
1449
1450        buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
1451
1452        status = ice_init_pkg(hw, buf_copy, len);
1453        if (status) {
1454                /* Free the copy, since we failed to initialize the package */
1455                devm_kfree(ice_hw_to_dev(hw), buf_copy);
1456        } else {
1457                /* Track the copied pkg so we can free it later */
1458                hw->pkg_copy = buf_copy;
1459                hw->pkg_size = len;
1460        }
1461
1462        return status;
1463}
1464
1465/**
1466 * ice_pkg_buf_alloc
1467 * @hw: pointer to the HW structure
1468 *
1469 * Allocates a package buffer and returns a pointer to the buffer header.
1470 * Note: all package contents must be in Little Endian form.
1471 */
1472static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1473{
1474        struct ice_buf_build *bld;
1475        struct ice_buf_hdr *buf;
1476
1477        bld = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*bld), GFP_KERNEL);
1478        if (!bld)
1479                return NULL;
1480
1481        buf = (struct ice_buf_hdr *)bld;
1482        buf->data_end = cpu_to_le16(offsetof(struct ice_buf_hdr,
1483                                             section_entry));
1484        return bld;
1485}
1486
1487/**
1488 * ice_pkg_buf_free
1489 * @hw: pointer to the HW structure
1490 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1491 *
1492 * Frees a package buffer
1493 */
1494static void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
1495{
1496        devm_kfree(ice_hw_to_dev(hw), bld);
1497}
1498
1499/**
1500 * ice_pkg_buf_reserve_section
1501 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1502 * @count: the number of sections to reserve
1503 *
1504 * Reserves one or more section table entries in a package buffer. This routine
1505 * can be called multiple times as long as they are made before calling
1506 * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
1507 * is called once, the number of sections that can be allocated will not be able
1508 * to be increased; not using all reserved sections is fine, but this will
1509 * result in some wasted space in the buffer.
1510 * Note: all package contents must be in Little Endian form.
1511 */
1512static enum ice_status
1513ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
1514{
1515        struct ice_buf_hdr *buf;
1516        u16 section_count;
1517        u16 data_end;
1518
1519        if (!bld)
1520                return ICE_ERR_PARAM;
1521
1522        buf = (struct ice_buf_hdr *)&bld->buf;
1523
1524        /* already an active section, can't increase table size */
1525        section_count = le16_to_cpu(buf->section_count);
1526        if (section_count > 0)
1527                return ICE_ERR_CFG;
1528
1529        if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
1530                return ICE_ERR_CFG;
1531        bld->reserved_section_table_entries += count;
1532
1533        data_end = le16_to_cpu(buf->data_end) +
1534                flex_array_size(buf, section_entry, count);
1535        buf->data_end = cpu_to_le16(data_end);
1536
1537        return 0;
1538}
1539
1540/**
1541 * ice_pkg_buf_alloc_section
1542 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1543 * @type: the section type value
1544 * @size: the size of the section to reserve (in bytes)
1545 *
1546 * Reserves memory in the buffer for a section's content and updates the
1547 * buffers' status accordingly. This routine returns a pointer to the first
1548 * byte of the section start within the buffer, which is used to fill in the
1549 * section contents.
1550 * Note: all package contents must be in Little Endian form.
1551 */
1552static void *
1553ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
1554{
1555        struct ice_buf_hdr *buf;
1556        u16 sect_count;
1557        u16 data_end;
1558
1559        if (!bld || !type || !size)
1560                return NULL;
1561
1562        buf = (struct ice_buf_hdr *)&bld->buf;
1563
1564        /* check for enough space left in buffer */
1565        data_end = le16_to_cpu(buf->data_end);
1566
1567        /* section start must align on 4 byte boundary */
1568        data_end = ALIGN(data_end, 4);
1569
1570        if ((data_end + size) > ICE_MAX_S_DATA_END)
1571                return NULL;
1572
1573        /* check for more available section table entries */
1574        sect_count = le16_to_cpu(buf->section_count);
1575        if (sect_count < bld->reserved_section_table_entries) {
1576                void *section_ptr = ((u8 *)buf) + data_end;
1577
1578                buf->section_entry[sect_count].offset = cpu_to_le16(data_end);
1579                buf->section_entry[sect_count].size = cpu_to_le16(size);
1580                buf->section_entry[sect_count].type = cpu_to_le32(type);
1581
1582                data_end += size;
1583                buf->data_end = cpu_to_le16(data_end);
1584
1585                buf->section_count = cpu_to_le16(sect_count + 1);
1586                return section_ptr;
1587        }
1588
1589        /* no free section table entries */
1590        return NULL;
1591}
1592
1593/**
1594 * ice_pkg_buf_get_active_sections
1595 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1596 *
1597 * Returns the number of active sections. Before using the package buffer
1598 * in an update package command, the caller should make sure that there is at
1599 * least one active section - otherwise, the buffer is not legal and should
1600 * not be used.
1601 * Note: all package contents must be in Little Endian form.
1602 */
1603static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
1604{
1605        struct ice_buf_hdr *buf;
1606
1607        if (!bld)
1608                return 0;
1609
1610        buf = (struct ice_buf_hdr *)&bld->buf;
1611        return le16_to_cpu(buf->section_count);
1612}
1613
1614/**
1615 * ice_pkg_buf
1616 * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1617 *
1618 * Return a pointer to the buffer's header
1619 */
1620static struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
1621{
1622        if (!bld)
1623                return NULL;
1624
1625        return &bld->buf;
1626}
1627
1628/**
1629 * ice_get_open_tunnel_port - retrieve an open tunnel port
1630 * @hw: pointer to the HW structure
1631 * @port: returns open port
1632 */
1633bool
1634ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port)
1635{
1636        bool res = false;
1637        u16 i;
1638
1639        mutex_lock(&hw->tnl_lock);
1640
1641        for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1642                if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port) {
1643                        *port = hw->tnl.tbl[i].port;
1644                        res = true;
1645                        break;
1646                }
1647
1648        mutex_unlock(&hw->tnl_lock);
1649
1650        return res;
1651}
1652
1653/**
1654 * ice_tunnel_idx_to_entry - convert linear index to the sparse one
1655 * @hw: pointer to the HW structure
1656 * @type: type of tunnel
1657 * @idx: linear index
1658 *
1659 * Stack assumes we have 2 linear tables with indexes [0, count_valid),
1660 * but really the port table may be sprase, and types are mixed, so convert
1661 * the stack index into the device index.
1662 */
1663static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
1664                                   u16 idx)
1665{
1666        u16 i;
1667
1668        for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
1669                if (hw->tnl.tbl[i].valid &&
1670                    hw->tnl.tbl[i].type == type &&
1671                    idx--)
1672                        return i;
1673
1674        WARN_ON_ONCE(1);
1675        return 0;
1676}
1677
1678/**
1679 * ice_create_tunnel
1680 * @hw: pointer to the HW structure
1681 * @index: device table entry
1682 * @type: type of tunnel
1683 * @port: port of tunnel to create
1684 *
1685 * Create a tunnel by updating the parse graph in the parser. We do that by
1686 * creating a package buffer with the tunnel info and issuing an update package
1687 * command.
1688 */
1689static enum ice_status
1690ice_create_tunnel(struct ice_hw *hw, u16 index,
1691                  enum ice_tunnel_type type, u16 port)
1692{
1693        struct ice_boost_tcam_section *sect_rx, *sect_tx;
1694        enum ice_status status = ICE_ERR_MAX_LIMIT;
1695        struct ice_buf_build *bld;
1696
1697        mutex_lock(&hw->tnl_lock);
1698
1699        bld = ice_pkg_buf_alloc(hw);
1700        if (!bld) {
1701                status = ICE_ERR_NO_MEMORY;
1702                goto ice_create_tunnel_end;
1703        }
1704
1705        /* allocate 2 sections, one for Rx parser, one for Tx parser */
1706        if (ice_pkg_buf_reserve_section(bld, 2))
1707                goto ice_create_tunnel_err;
1708
1709        sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
1710                                            struct_size(sect_rx, tcam, 1));
1711        if (!sect_rx)
1712                goto ice_create_tunnel_err;
1713        sect_rx->count = cpu_to_le16(1);
1714
1715        sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
1716                                            struct_size(sect_tx, tcam, 1));
1717        if (!sect_tx)
1718                goto ice_create_tunnel_err;
1719        sect_tx->count = cpu_to_le16(1);
1720
1721        /* copy original boost entry to update package buffer */
1722        memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
1723               sizeof(*sect_rx->tcam));
1724
1725        /* over-write the never-match dest port key bits with the encoded port
1726         * bits
1727         */
1728        ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
1729                    (u8 *)&port, NULL, NULL, NULL,
1730                    (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
1731                    sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
1732
1733        /* exact copy of entry to Tx section entry */
1734        memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
1735
1736        status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
1737        if (!status)
1738                hw->tnl.tbl[index].port = port;
1739
1740ice_create_tunnel_err:
1741        ice_pkg_buf_free(hw, bld);
1742
1743ice_create_tunnel_end:
1744        mutex_unlock(&hw->tnl_lock);
1745
1746        return status;
1747}
1748
1749/**
1750 * ice_destroy_tunnel
1751 * @hw: pointer to the HW structure
1752 * @index: device table entry
1753 * @type: type of tunnel
1754 * @port: port of tunnel to destroy (ignored if the all parameter is true)
1755 *
1756 * Destroys a tunnel or all tunnels by creating an update package buffer
1757 * targeting the specific updates requested and then performing an update
1758 * package.
1759 */
1760static enum ice_status
1761ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
1762                   u16 port)
1763{
1764        struct ice_boost_tcam_section *sect_rx, *sect_tx;
1765        enum ice_status status = ICE_ERR_MAX_LIMIT;
1766        struct ice_buf_build *bld;
1767
1768        mutex_lock(&hw->tnl_lock);
1769
1770        if (WARN_ON(!hw->tnl.tbl[index].valid ||
1771                    hw->tnl.tbl[index].type != type ||
1772                    hw->tnl.tbl[index].port != port)) {
1773                status = ICE_ERR_OUT_OF_RANGE;
1774                goto ice_destroy_tunnel_end;
1775        }
1776
1777        bld = ice_pkg_buf_alloc(hw);
1778        if (!bld) {
1779                status = ICE_ERR_NO_MEMORY;
1780                goto ice_destroy_tunnel_end;
1781        }
1782
1783        /* allocate 2 sections, one for Rx parser, one for Tx parser */
1784        if (ice_pkg_buf_reserve_section(bld, 2))
1785                goto ice_destroy_tunnel_err;
1786
1787        sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
1788                                            struct_size(sect_rx, tcam, 1));
1789        if (!sect_rx)
1790                goto ice_destroy_tunnel_err;
1791        sect_rx->count = cpu_to_le16(1);
1792
1793        sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
1794                                            struct_size(sect_tx, tcam, 1));
1795        if (!sect_tx)
1796                goto ice_destroy_tunnel_err;
1797        sect_tx->count = cpu_to_le16(1);
1798
1799        /* copy original boost entry to update package buffer, one copy to Rx
1800         * section, another copy to the Tx section
1801         */
1802        memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
1803               sizeof(*sect_rx->tcam));
1804        memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
1805               sizeof(*sect_tx->tcam));
1806
1807        status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
1808        if (!status)
1809                hw->tnl.tbl[index].port = 0;
1810
1811ice_destroy_tunnel_err:
1812        ice_pkg_buf_free(hw, bld);
1813
1814ice_destroy_tunnel_end:
1815        mutex_unlock(&hw->tnl_lock);
1816
1817        return status;
1818}
1819
1820int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
1821                            unsigned int idx, struct udp_tunnel_info *ti)
1822{
1823        struct ice_netdev_priv *np = netdev_priv(netdev);
1824        struct ice_vsi *vsi = np->vsi;
1825        struct ice_pf *pf = vsi->back;
1826        enum ice_tunnel_type tnl_type;
1827        enum ice_status status;
1828        u16 index;
1829
1830        tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
1831        index = ice_tunnel_idx_to_entry(&pf->hw, idx, tnl_type);
1832
1833        status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
1834        if (status) {
1835                netdev_err(netdev, "Error adding UDP tunnel - %s\n",
1836                           ice_stat_str(status));
1837                return -EIO;
1838        }
1839
1840        udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
1841        return 0;
1842}
1843
1844int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
1845                              unsigned int idx, struct udp_tunnel_info *ti)
1846{
1847        struct ice_netdev_priv *np = netdev_priv(netdev);
1848        struct ice_vsi *vsi = np->vsi;
1849        struct ice_pf *pf = vsi->back;
1850        enum ice_tunnel_type tnl_type;
1851        enum ice_status status;
1852
1853        tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
1854
1855        status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
1856                                    ntohs(ti->port));
1857        if (status) {
1858                netdev_err(netdev, "Error removing UDP tunnel - %s\n",
1859                           ice_stat_str(status));
1860                return -EIO;
1861        }
1862
1863        return 0;
1864}
1865
1866/* PTG Management */
1867
1868/**
1869 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
1870 * @hw: pointer to the hardware structure
1871 * @blk: HW block
1872 * @ptype: the ptype to search for
1873 * @ptg: pointer to variable that receives the PTG
1874 *
1875 * This function will search the PTGs for a particular ptype, returning the
1876 * PTG ID that contains it through the PTG parameter, with the value of
1877 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
1878 */
1879static enum ice_status
1880ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
1881{
1882        if (ptype >= ICE_XLT1_CNT || !ptg)
1883                return ICE_ERR_PARAM;
1884
1885        *ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
1886        return 0;
1887}
1888
1889/**
1890 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
1891 * @hw: pointer to the hardware structure
1892 * @blk: HW block
1893 * @ptg: the PTG to allocate
1894 *
1895 * This function allocates a given packet type group ID specified by the PTG
1896 * parameter.
1897 */
1898static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
1899{
1900        hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
1901}
1902
1903/**
1904 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
1905 * @hw: pointer to the hardware structure
1906 * @blk: HW block
1907 * @ptype: the ptype to remove
1908 * @ptg: the PTG to remove the ptype from
1909 *
1910 * This function will remove the ptype from the specific PTG, and move it to
1911 * the default PTG (ICE_DEFAULT_PTG).
1912 */
1913static enum ice_status
1914ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
1915{
1916        struct ice_ptg_ptype **ch;
1917        struct ice_ptg_ptype *p;
1918
1919        if (ptype > ICE_XLT1_CNT - 1)
1920                return ICE_ERR_PARAM;
1921
1922        if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
1923                return ICE_ERR_DOES_NOT_EXIST;
1924
1925        /* Should not happen if .in_use is set, bad config */
1926        if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
1927                return ICE_ERR_CFG;
1928
1929        /* find the ptype within this PTG, and bypass the link over it */
1930        p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1931        ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1932        while (p) {
1933                if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
1934                        *ch = p->next_ptype;
1935                        break;
1936                }
1937
1938                ch = &p->next_ptype;
1939                p = p->next_ptype;
1940        }
1941
1942        hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
1943        hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
1944
1945        return 0;
1946}
1947
1948/**
1949 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
1950 * @hw: pointer to the hardware structure
1951 * @blk: HW block
1952 * @ptype: the ptype to add or move
1953 * @ptg: the PTG to add or move the ptype to
1954 *
1955 * This function will either add or move a ptype to a particular PTG depending
1956 * on if the ptype is already part of another group. Note that using a
1957 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
1958 * default PTG.
1959 */
1960static enum ice_status
1961ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
1962{
1963        enum ice_status status;
1964        u8 original_ptg;
1965
1966        if (ptype > ICE_XLT1_CNT - 1)
1967                return ICE_ERR_PARAM;
1968
1969        if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
1970                return ICE_ERR_DOES_NOT_EXIST;
1971
1972        status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
1973        if (status)
1974                return status;
1975
1976        /* Is ptype already in the correct PTG? */
1977        if (original_ptg == ptg)
1978                return 0;
1979
1980        /* Remove from original PTG and move back to the default PTG */
1981        if (original_ptg != ICE_DEFAULT_PTG)
1982                ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
1983
1984        /* Moving to default PTG? Then we're done with this request */
1985        if (ptg == ICE_DEFAULT_PTG)
1986                return 0;
1987
1988        /* Add ptype to PTG at beginning of list */
1989        hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
1990                hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
1991        hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
1992                &hw->blk[blk].xlt1.ptypes[ptype];
1993
1994        hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
1995        hw->blk[blk].xlt1.t[ptype] = ptg;
1996
1997        return 0;
1998}
1999
2000/* Block / table size info */
2001struct ice_blk_size_details {
2002        u16 xlt1;                       /* # XLT1 entries */
2003        u16 xlt2;                       /* # XLT2 entries */
2004        u16 prof_tcam;                  /* # profile ID TCAM entries */
2005        u16 prof_id;                    /* # profile IDs */
2006        u8 prof_cdid_bits;              /* # CDID one-hot bits used in key */
2007        u16 prof_redir;                 /* # profile redirection entries */
2008        u16 es;                         /* # extraction sequence entries */
2009        u16 fvw;                        /* # field vector words */
2010        u8 overwrite;                   /* overwrite existing entries allowed */
2011        u8 reverse;                     /* reverse FV order */
2012};
2013
2014static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2015        /**
2016         * Table Definitions
2017         * XLT1 - Number of entries in XLT1 table
2018         * XLT2 - Number of entries in XLT2 table
2019         * TCAM - Number of entries Profile ID TCAM table
2020         * CDID - Control Domain ID of the hardware block
2021         * PRED - Number of entries in the Profile Redirection Table
2022         * FV   - Number of entries in the Field Vector
2023         * FVW  - Width (in WORDs) of the Field Vector
2024         * OVR  - Overwrite existing table entries
2025         * REV  - Reverse FV
2026         */
2027        /*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
2028        /*          Overwrite   , Reverse FV */
2029        /* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
2030                    false, false },
2031        /* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
2032                    false, false },
2033        /* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2034                    false, true  },
2035        /* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2036                    true,  true  },
2037        /* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
2038                    false, false },
2039};
2040
2041enum ice_sid_all {
2042        ICE_SID_XLT1_OFF = 0,
2043        ICE_SID_XLT2_OFF,
2044        ICE_SID_PR_OFF,
2045        ICE_SID_PR_REDIR_OFF,
2046        ICE_SID_ES_OFF,
2047        ICE_SID_OFF_COUNT,
2048};
2049
2050/* Characteristic handling */
2051
2052/**
2053 * ice_match_prop_lst - determine if properties of two lists match
2054 * @list1: first properties list
2055 * @list2: second properties list
2056 *
2057 * Count, cookies and the order must match in order to be considered equivalent.
2058 */
2059static bool
2060ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
2061{
2062        struct ice_vsig_prof *tmp1;
2063        struct ice_vsig_prof *tmp2;
2064        u16 chk_count = 0;
2065        u16 count = 0;
2066
2067        /* compare counts */
2068        list_for_each_entry(tmp1, list1, list)
2069                count++;
2070        list_for_each_entry(tmp2, list2, list)
2071                chk_count++;
2072        /* cppcheck-suppress knownConditionTrueFalse */
2073        if (!count || count != chk_count)
2074                return false;
2075
2076        tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
2077        tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
2078
2079        /* profile cookies must compare, and in the exact same order to take
2080         * into account priority
2081         */
2082        while (count--) {
2083                if (tmp2->profile_cookie != tmp1->profile_cookie)
2084                        return false;
2085
2086                tmp1 = list_next_entry(tmp1, list);
2087                tmp2 = list_next_entry(tmp2, list);
2088        }
2089
2090        return true;
2091}
2092
2093/* VSIG Management */
2094
2095/**
2096 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2097 * @hw: pointer to the hardware structure
2098 * @blk: HW block
2099 * @vsi: VSI of interest
2100 * @vsig: pointer to receive the VSI group
2101 *
2102 * This function will lookup the VSI entry in the XLT2 list and return
2103 * the VSI group its associated with.
2104 */
2105static enum ice_status
2106ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2107{
2108        if (!vsig || vsi >= ICE_MAX_VSI)
2109                return ICE_ERR_PARAM;
2110
2111        /* As long as there's a default or valid VSIG associated with the input
2112         * VSI, the functions returns a success. Any handling of VSIG will be
2113         * done by the following add, update or remove functions.
2114         */
2115        *vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2116
2117        return 0;
2118}
2119
2120/**
2121 * ice_vsig_alloc_val - allocate a new VSIG by value
2122 * @hw: pointer to the hardware structure
2123 * @blk: HW block
2124 * @vsig: the VSIG to allocate
2125 *
2126 * This function will allocate a given VSIG specified by the VSIG parameter.
2127 */
2128static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2129{
2130        u16 idx = vsig & ICE_VSIG_IDX_M;
2131
2132        if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2133                INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2134                hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2135        }
2136
2137        return ICE_VSIG_VALUE(idx, hw->pf_id);
2138}
2139
2140/**
2141 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2142 * @hw: pointer to the hardware structure
2143 * @blk: HW block
2144 *
2145 * This function will iterate through the VSIG list and mark the first
2146 * unused entry for the new VSIG entry as used and return that value.
2147 */
2148static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2149{
2150        u16 i;
2151
2152        for (i = 1; i < ICE_MAX_VSIGS; i++)
2153                if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2154                        return ice_vsig_alloc_val(hw, blk, i);
2155
2156        return ICE_DEFAULT_VSIG;
2157}
2158
2159/**
2160 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2161 * @hw: pointer to the hardware structure
2162 * @blk: HW block
2163 * @chs: characteristic list
2164 * @vsig: returns the VSIG with the matching profiles, if found
2165 *
2166 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2167 * a group have the same characteristic set. To check if there exists a VSIG
2168 * which has the same characteristics as the input characteristics; this
2169 * function will iterate through the XLT2 list and return the VSIG that has a
2170 * matching configuration. In order to make sure that priorities are accounted
2171 * for, the list must match exactly, including the order in which the
2172 * characteristics are listed.
2173 */
2174static enum ice_status
2175ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2176                        struct list_head *chs, u16 *vsig)
2177{
2178        struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2179        u16 i;
2180
2181        for (i = 0; i < xlt2->count; i++)
2182                if (xlt2->vsig_tbl[i].in_use &&
2183                    ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2184                        *vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2185                        return 0;
2186                }
2187
2188        return ICE_ERR_DOES_NOT_EXIST;
2189}
2190
2191/**
2192 * ice_vsig_free - free VSI group
2193 * @hw: pointer to the hardware structure
2194 * @blk: HW block
2195 * @vsig: VSIG to remove
2196 *
2197 * The function will remove all VSIs associated with the input VSIG and move
2198 * them to the DEFAULT_VSIG and mark the VSIG available.
2199 */
2200static enum ice_status
2201ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2202{
2203        struct ice_vsig_prof *dtmp, *del;
2204        struct ice_vsig_vsi *vsi_cur;
2205        u16 idx;
2206
2207        idx = vsig & ICE_VSIG_IDX_M;
2208        if (idx >= ICE_MAX_VSIGS)
2209                return ICE_ERR_PARAM;
2210
2211        if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2212                return ICE_ERR_DOES_NOT_EXIST;
2213
2214        hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2215
2216        vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2217        /* If the VSIG has at least 1 VSI then iterate through the
2218         * list and remove the VSIs before deleting the group.
2219         */
2220        if (vsi_cur) {
2221                /* remove all vsis associated with this VSIG XLT2 entry */
2222                do {
2223                        struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2224
2225                        vsi_cur->vsig = ICE_DEFAULT_VSIG;
2226                        vsi_cur->changed = 1;
2227                        vsi_cur->next_vsi = NULL;
2228                        vsi_cur = tmp;
2229                } while (vsi_cur);
2230
2231                /* NULL terminate head of VSI list */
2232                hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2233        }
2234
2235        /* free characteristic list */
2236        list_for_each_entry_safe(del, dtmp,
2237                                 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2238                                 list) {
2239                list_del(&del->list);
2240                devm_kfree(ice_hw_to_dev(hw), del);
2241        }
2242
2243        /* if VSIG characteristic list was cleared for reset
2244         * re-initialize the list head
2245         */
2246        INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2247
2248        return 0;
2249}
2250
2251/**
2252 * ice_vsig_remove_vsi - remove VSI from VSIG
2253 * @hw: pointer to the hardware structure
2254 * @blk: HW block
2255 * @vsi: VSI to remove
2256 * @vsig: VSI group to remove from
2257 *
2258 * The function will remove the input VSI from its VSI group and move it
2259 * to the DEFAULT_VSIG.
2260 */
2261static enum ice_status
2262ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2263{
2264        struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
2265        u16 idx;
2266
2267        idx = vsig & ICE_VSIG_IDX_M;
2268
2269        if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2270                return ICE_ERR_PARAM;
2271
2272        if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2273                return ICE_ERR_DOES_NOT_EXIST;
2274
2275        /* entry already in default VSIG, don't have to remove */
2276        if (idx == ICE_DEFAULT_VSIG)
2277                return 0;
2278
2279        vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2280        if (!(*vsi_head))
2281                return ICE_ERR_CFG;
2282
2283        vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
2284        vsi_cur = (*vsi_head);
2285
2286        /* iterate the VSI list, skip over the entry to be removed */
2287        while (vsi_cur) {
2288                if (vsi_tgt == vsi_cur) {
2289                        (*vsi_head) = vsi_cur->next_vsi;
2290                        break;
2291                }
2292                vsi_head = &vsi_cur->next_vsi;
2293                vsi_cur = vsi_cur->next_vsi;
2294        }
2295
2296        /* verify if VSI was removed from group list */
2297        if (!vsi_cur)
2298                return ICE_ERR_DOES_NOT_EXIST;
2299
2300        vsi_cur->vsig = ICE_DEFAULT_VSIG;
2301        vsi_cur->changed = 1;
2302        vsi_cur->next_vsi = NULL;
2303
2304        return 0;
2305}
2306
2307/**
2308 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
2309 * @hw: pointer to the hardware structure
2310 * @blk: HW block
2311 * @vsi: VSI to move
2312 * @vsig: destination VSI group
2313 *
2314 * This function will move or add the input VSI to the target VSIG.
2315 * The function will find the original VSIG the VSI belongs to and
2316 * move the entry to the DEFAULT_VSIG, update the original VSIG and
2317 * then move entry to the new VSIG.
2318 */
2319static enum ice_status
2320ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2321{
2322        struct ice_vsig_vsi *tmp;
2323        enum ice_status status;
2324        u16 orig_vsig, idx;
2325
2326        idx = vsig & ICE_VSIG_IDX_M;
2327
2328        if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2329                return ICE_ERR_PARAM;
2330
2331        /* if VSIG not in use and VSIG is not default type this VSIG
2332         * doesn't exist.
2333         */
2334        if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
2335            vsig != ICE_DEFAULT_VSIG)
2336                return ICE_ERR_DOES_NOT_EXIST;
2337
2338        status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
2339        if (status)
2340                return status;
2341
2342        /* no update required if vsigs match */
2343        if (orig_vsig == vsig)
2344                return 0;
2345
2346        if (orig_vsig != ICE_DEFAULT_VSIG) {
2347                /* remove entry from orig_vsig and add to default VSIG */
2348                status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
2349                if (status)
2350                        return status;
2351        }
2352
2353        if (idx == ICE_DEFAULT_VSIG)
2354                return 0;
2355
2356        /* Create VSI entry and add VSIG and prop_mask values */
2357        hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
2358        hw->blk[blk].xlt2.vsis[vsi].changed = 1;
2359
2360        /* Add new entry to the head of the VSIG list */
2361        tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2362        hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
2363                &hw->blk[blk].xlt2.vsis[vsi];
2364        hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
2365        hw->blk[blk].xlt2.t[vsi] = vsig;
2366
2367        return 0;
2368}
2369
2370/**
2371 * ice_prof_has_mask_idx - determine if profile index masking is identical
2372 * @hw: pointer to the hardware structure
2373 * @blk: HW block
2374 * @prof: profile to check
2375 * @idx: profile index to check
2376 * @mask: mask to match
2377 */
2378static bool
2379ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
2380                      u16 mask)
2381{
2382        bool expect_no_mask = false;
2383        bool found = false;
2384        bool match = false;
2385        u16 i;
2386
2387        /* If mask is 0x0000 or 0xffff, then there is no masking */
2388        if (mask == 0 || mask == 0xffff)
2389                expect_no_mask = true;
2390
2391        /* Scan the enabled masks on this profile, for the specified idx */
2392        for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
2393             hw->blk[blk].masks.count; i++)
2394                if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
2395                        if (hw->blk[blk].masks.masks[i].in_use &&
2396                            hw->blk[blk].masks.masks[i].idx == idx) {
2397                                found = true;
2398                                if (hw->blk[blk].masks.masks[i].mask == mask)
2399                                        match = true;
2400                                break;
2401                        }
2402
2403        if (expect_no_mask) {
2404                if (found)
2405                        return false;
2406        } else {
2407                if (!match)
2408                        return false;
2409        }
2410
2411        return true;
2412}
2413
2414/**
2415 * ice_prof_has_mask - determine if profile masking is identical
2416 * @hw: pointer to the hardware structure
2417 * @blk: HW block
2418 * @prof: profile to check
2419 * @masks: masks to match
2420 */
2421static bool
2422ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
2423{
2424        u16 i;
2425
2426        /* es->mask_ena[prof] will have the mask */
2427        for (i = 0; i < hw->blk[blk].es.fvw; i++)
2428                if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
2429                        return false;
2430
2431        return true;
2432}
2433
2434/**
2435 * ice_find_prof_id_with_mask - find profile ID for a given field vector
2436 * @hw: pointer to the hardware structure
2437 * @blk: HW block
2438 * @fv: field vector to search for
2439 * @masks: masks for FV
2440 * @prof_id: receives the profile ID
2441 */
2442static enum ice_status
2443ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
2444                           struct ice_fv_word *fv, u16 *masks, u8 *prof_id)
2445{
2446        struct ice_es *es = &hw->blk[blk].es;
2447        u8 i;
2448
2449        /* For FD, we don't want to re-use a existed profile with the same
2450         * field vector and mask. This will cause rule interference.
2451         */
2452        if (blk == ICE_BLK_FD)
2453                return ICE_ERR_DOES_NOT_EXIST;
2454
2455        for (i = 0; i < (u8)es->count; i++) {
2456                u16 off = i * es->fvw;
2457
2458                if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
2459                        continue;
2460
2461                /* check if masks settings are the same for this profile */
2462                if (masks && !ice_prof_has_mask(hw, blk, i, masks))
2463                        continue;
2464
2465                *prof_id = i;
2466                return 0;
2467        }
2468
2469        return ICE_ERR_DOES_NOT_EXIST;
2470}
2471
2472/**
2473 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
2474 * @blk: the block type
2475 * @rsrc_type: pointer to variable to receive the resource type
2476 */
2477static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
2478{
2479        switch (blk) {
2480        case ICE_BLK_FD:
2481                *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
2482                break;
2483        case ICE_BLK_RSS:
2484                *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
2485                break;
2486        default:
2487                return false;
2488        }
2489        return true;
2490}
2491
2492/**
2493 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
2494 * @blk: the block type
2495 * @rsrc_type: pointer to variable to receive the resource type
2496 */
2497static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
2498{
2499        switch (blk) {
2500        case ICE_BLK_FD:
2501                *rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
2502                break;
2503        case ICE_BLK_RSS:
2504                *rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
2505                break;
2506        default:
2507                return false;
2508        }
2509        return true;
2510}
2511
2512/**
2513 * ice_alloc_tcam_ent - allocate hardware TCAM entry
2514 * @hw: pointer to the HW struct
2515 * @blk: the block to allocate the TCAM for
2516 * @btm: true to allocate from bottom of table, false to allocate from top
2517 * @tcam_idx: pointer to variable to receive the TCAM entry
2518 *
2519 * This function allocates a new entry in a Profile ID TCAM for a specific
2520 * block.
2521 */
2522static enum ice_status
2523ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
2524                   u16 *tcam_idx)
2525{
2526        u16 res_type;
2527
2528        if (!ice_tcam_ent_rsrc_type(blk, &res_type))
2529                return ICE_ERR_PARAM;
2530
2531        return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
2532}
2533
2534/**
2535 * ice_free_tcam_ent - free hardware TCAM entry
2536 * @hw: pointer to the HW struct
2537 * @blk: the block from which to free the TCAM entry
2538 * @tcam_idx: the TCAM entry to free
2539 *
2540 * This function frees an entry in a Profile ID TCAM for a specific block.
2541 */
2542static enum ice_status
2543ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
2544{
2545        u16 res_type;
2546
2547        if (!ice_tcam_ent_rsrc_type(blk, &res_type))
2548                return ICE_ERR_PARAM;
2549
2550        return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
2551}
2552
2553/**
2554 * ice_alloc_prof_id - allocate profile ID
2555 * @hw: pointer to the HW struct
2556 * @blk: the block to allocate the profile ID for
2557 * @prof_id: pointer to variable to receive the profile ID
2558 *
2559 * This function allocates a new profile ID, which also corresponds to a Field
2560 * Vector (Extraction Sequence) entry.
2561 */
2562static enum ice_status
2563ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
2564{
2565        enum ice_status status;
2566        u16 res_type;
2567        u16 get_prof;
2568
2569        if (!ice_prof_id_rsrc_type(blk, &res_type))
2570                return ICE_ERR_PARAM;
2571
2572        status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
2573        if (!status)
2574                *prof_id = (u8)get_prof;
2575
2576        return status;
2577}
2578
2579/**
2580 * ice_free_prof_id - free profile ID
2581 * @hw: pointer to the HW struct
2582 * @blk: the block from which to free the profile ID
2583 * @prof_id: the profile ID to free
2584 *
2585 * This function frees a profile ID, which also corresponds to a Field Vector.
2586 */
2587static enum ice_status
2588ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2589{
2590        u16 tmp_prof_id = (u16)prof_id;
2591        u16 res_type;
2592
2593        if (!ice_prof_id_rsrc_type(blk, &res_type))
2594                return ICE_ERR_PARAM;
2595
2596        return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
2597}
2598
2599/**
2600 * ice_prof_inc_ref - increment reference count for profile
2601 * @hw: pointer to the HW struct
2602 * @blk: the block from which to free the profile ID
2603 * @prof_id: the profile ID for which to increment the reference count
2604 */
2605static enum ice_status
2606ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2607{
2608        if (prof_id > hw->blk[blk].es.count)
2609                return ICE_ERR_PARAM;
2610
2611        hw->blk[blk].es.ref_count[prof_id]++;
2612
2613        return 0;
2614}
2615
2616/**
2617 * ice_write_prof_mask_reg - write profile mask register
2618 * @hw: pointer to the HW struct
2619 * @blk: hardware block
2620 * @mask_idx: mask index
2621 * @idx: index of the FV which will use the mask
2622 * @mask: the 16-bit mask
2623 */
2624static void
2625ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
2626                        u16 idx, u16 mask)
2627{
2628        u32 offset;
2629        u32 val;
2630
2631        switch (blk) {
2632        case ICE_BLK_RSS:
2633                offset = GLQF_HMASK(mask_idx);
2634                val = (idx << GLQF_HMASK_MSK_INDEX_S) & GLQF_HMASK_MSK_INDEX_M;
2635                val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M;
2636                break;
2637        case ICE_BLK_FD:
2638                offset = GLQF_FDMASK(mask_idx);
2639                val = (idx << GLQF_FDMASK_MSK_INDEX_S) & GLQF_FDMASK_MSK_INDEX_M;
2640                val |= (mask << GLQF_FDMASK_MASK_S) & GLQF_FDMASK_MASK_M;
2641                break;
2642        default:
2643                ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
2644                          blk);
2645                return;
2646        }
2647
2648        wr32(hw, offset, val);
2649        ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
2650                  blk, idx, offset, val);
2651}
2652
2653/**
2654 * ice_write_prof_mask_enable_res - write profile mask enable register
2655 * @hw: pointer to the HW struct
2656 * @blk: hardware block
2657 * @prof_id: profile ID
2658 * @enable_mask: enable mask
2659 */
2660static void
2661ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
2662                               u16 prof_id, u32 enable_mask)
2663{
2664        u32 offset;
2665
2666        switch (blk) {
2667        case ICE_BLK_RSS:
2668                offset = GLQF_HMASK_SEL(prof_id);
2669                break;
2670        case ICE_BLK_FD:
2671                offset = GLQF_FDMASK_SEL(prof_id);
2672                break;
2673        default:
2674                ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
2675                          blk);
2676                return;
2677        }
2678
2679        wr32(hw, offset, enable_mask);
2680        ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
2681                  blk, prof_id, offset, enable_mask);
2682}
2683
2684/**
2685 * ice_init_prof_masks - initial prof masks
2686 * @hw: pointer to the HW struct
2687 * @blk: hardware block
2688 */
2689static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
2690{
2691        u16 per_pf;
2692        u16 i;
2693
2694        mutex_init(&hw->blk[blk].masks.lock);
2695
2696        per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
2697
2698        hw->blk[blk].masks.count = per_pf;
2699        hw->blk[blk].masks.first = hw->pf_id * per_pf;
2700
2701        memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
2702
2703        for (i = hw->blk[blk].masks.first;
2704             i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
2705                ice_write_prof_mask_reg(hw, blk, i, 0, 0);
2706}
2707
2708/**
2709 * ice_init_all_prof_masks - initialize all prof masks
2710 * @hw: pointer to the HW struct
2711 */
2712static void ice_init_all_prof_masks(struct ice_hw *hw)
2713{
2714        ice_init_prof_masks(hw, ICE_BLK_RSS);
2715        ice_init_prof_masks(hw, ICE_BLK_FD);
2716}
2717
2718/**
2719 * ice_alloc_prof_mask - allocate profile mask
2720 * @hw: pointer to the HW struct
2721 * @blk: hardware block
2722 * @idx: index of FV which will use the mask
2723 * @mask: the 16-bit mask
2724 * @mask_idx: variable to receive the mask index
2725 */
2726static enum ice_status
2727ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
2728                    u16 *mask_idx)
2729{
2730        bool found_unused = false, found_copy = false;
2731        enum ice_status status = ICE_ERR_MAX_LIMIT;
2732        u16 unused_idx = 0, copy_idx = 0;
2733        u16 i;
2734
2735        if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
2736                return ICE_ERR_PARAM;
2737
2738        mutex_lock(&hw->blk[blk].masks.lock);
2739
2740        for (i = hw->blk[blk].masks.first;
2741             i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
2742                if (hw->blk[blk].masks.masks[i].in_use) {
2743                        /* if mask is in use and it exactly duplicates the
2744                         * desired mask and index, then in can be reused
2745                         */
2746                        if (hw->blk[blk].masks.masks[i].mask == mask &&
2747                            hw->blk[blk].masks.masks[i].idx == idx) {
2748                                found_copy = true;
2749                                copy_idx = i;
2750                                break;
2751                        }
2752                } else {
2753                        /* save off unused index, but keep searching in case
2754                         * there is an exact match later on
2755                         */
2756                        if (!found_unused) {
2757                                found_unused = true;
2758                                unused_idx = i;
2759                        }
2760                }
2761
2762        if (found_copy)
2763                i = copy_idx;
2764        else if (found_unused)
2765                i = unused_idx;
2766        else
2767                goto err_ice_alloc_prof_mask;
2768
2769        /* update mask for a new entry */
2770        if (found_unused) {
2771                hw->blk[blk].masks.masks[i].in_use = true;
2772                hw->blk[blk].masks.masks[i].mask = mask;
2773                hw->blk[blk].masks.masks[i].idx = idx;
2774                hw->blk[blk].masks.masks[i].ref = 0;
2775                ice_write_prof_mask_reg(hw, blk, i, idx, mask);
2776        }
2777
2778        hw->blk[blk].masks.masks[i].ref++;
2779        *mask_idx = i;
2780        status = 0;
2781
2782err_ice_alloc_prof_mask:
2783        mutex_unlock(&hw->blk[blk].masks.lock);
2784
2785        return status;
2786}
2787
2788/**
2789 * ice_free_prof_mask - free profile mask
2790 * @hw: pointer to the HW struct
2791 * @blk: hardware block
2792 * @mask_idx: index of mask
2793 */
2794static enum ice_status
2795ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
2796{
2797        if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
2798                return ICE_ERR_PARAM;
2799
2800        if (!(mask_idx >= hw->blk[blk].masks.first &&
2801              mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
2802                return ICE_ERR_DOES_NOT_EXIST;
2803
2804        mutex_lock(&hw->blk[blk].masks.lock);
2805
2806        if (!hw->blk[blk].masks.masks[mask_idx].in_use)
2807                goto exit_ice_free_prof_mask;
2808
2809        if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
2810                hw->blk[blk].masks.masks[mask_idx].ref--;
2811                goto exit_ice_free_prof_mask;
2812        }
2813
2814        /* remove mask */
2815        hw->blk[blk].masks.masks[mask_idx].in_use = false;
2816        hw->blk[blk].masks.masks[mask_idx].mask = 0;
2817        hw->blk[blk].masks.masks[mask_idx].idx = 0;
2818
2819        /* update mask as unused entry */
2820        ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
2821                  mask_idx);
2822        ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
2823
2824exit_ice_free_prof_mask:
2825        mutex_unlock(&hw->blk[blk].masks.lock);
2826
2827        return 0;
2828}
2829
2830/**
2831 * ice_free_prof_masks - free all profile masks for a profile
2832 * @hw: pointer to the HW struct
2833 * @blk: hardware block
2834 * @prof_id: profile ID
2835 */
2836static enum ice_status
2837ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
2838{
2839        u32 mask_bm;
2840        u16 i;
2841
2842        if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
2843                return ICE_ERR_PARAM;
2844
2845        mask_bm = hw->blk[blk].es.mask_ena[prof_id];
2846        for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
2847                if (mask_bm & BIT(i))
2848                        ice_free_prof_mask(hw, blk, i);
2849
2850        return 0;
2851}
2852
2853/**
2854 * ice_shutdown_prof_masks - releases lock for masking
2855 * @hw: pointer to the HW struct
2856 * @blk: hardware block
2857 *
2858 * This should be called before unloading the driver
2859 */
2860static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
2861{
2862        u16 i;
2863
2864        mutex_lock(&hw->blk[blk].masks.lock);
2865
2866        for (i = hw->blk[blk].masks.first;
2867             i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
2868                ice_write_prof_mask_reg(hw, blk, i, 0, 0);
2869
2870                hw->blk[blk].masks.masks[i].in_use = false;
2871                hw->blk[blk].masks.masks[i].idx = 0;
2872                hw->blk[blk].masks.masks[i].mask = 0;
2873        }
2874
2875        mutex_unlock(&hw->blk[blk].masks.lock);
2876        mutex_destroy(&hw->blk[blk].masks.lock);
2877}
2878
2879/**
2880 * ice_shutdown_all_prof_masks - releases all locks for masking
2881 * @hw: pointer to the HW struct
2882 *
2883 * This should be called before unloading the driver
2884 */
2885static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
2886{
2887        ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
2888        ice_shutdown_prof_masks(hw, ICE_BLK_FD);
2889}
2890
2891/**
2892 * ice_update_prof_masking - set registers according to masking
2893 * @hw: pointer to the HW struct
2894 * @blk: hardware block
2895 * @prof_id: profile ID
2896 * @masks: masks
2897 */
2898static enum ice_status
2899ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
2900                        u16 *masks)
2901{
2902        bool err = false;
2903        u32 ena_mask = 0;
2904        u16 idx;
2905        u16 i;
2906
2907        /* Only support FD and RSS masking, otherwise nothing to be done */
2908        if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
2909                return 0;
2910
2911        for (i = 0; i < hw->blk[blk].es.fvw; i++)
2912                if (masks[i] && masks[i] != 0xFFFF) {
2913                        if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
2914                                ena_mask |= BIT(idx);
2915                        } else {
2916                                /* not enough bitmaps */
2917                                err = true;
2918                                break;
2919                        }
2920                }
2921
2922        if (err) {
2923                /* free any bitmaps we have allocated */
2924                for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
2925                        if (ena_mask & BIT(i))
2926                                ice_free_prof_mask(hw, blk, i);
2927
2928                return ICE_ERR_OUT_OF_RANGE;
2929        }
2930
2931        /* enable the masks for this profile */
2932        ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
2933
2934        /* store enabled masks with profile so that they can be freed later */
2935        hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
2936
2937        return 0;
2938}
2939
2940/**
2941 * ice_write_es - write an extraction sequence to hardware
2942 * @hw: pointer to the HW struct
2943 * @blk: the block in which to write the extraction sequence
2944 * @prof_id: the profile ID to write
2945 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
2946 */
2947static void
2948ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
2949             struct ice_fv_word *fv)
2950{
2951        u16 off;
2952
2953        off = prof_id * hw->blk[blk].es.fvw;
2954        if (!fv) {
2955                memset(&hw->blk[blk].es.t[off], 0,
2956                       hw->blk[blk].es.fvw * sizeof(*fv));
2957                hw->blk[blk].es.written[prof_id] = false;
2958        } else {
2959                memcpy(&hw->blk[blk].es.t[off], fv,
2960                       hw->blk[blk].es.fvw * sizeof(*fv));
2961        }
2962}
2963
2964/**
2965 * ice_prof_dec_ref - decrement reference count for profile
2966 * @hw: pointer to the HW struct
2967 * @blk: the block from which to free the profile ID
2968 * @prof_id: the profile ID for which to decrement the reference count
2969 */
2970static enum ice_status
2971ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
2972{
2973        if (prof_id > hw->blk[blk].es.count)
2974                return ICE_ERR_PARAM;
2975
2976        if (hw->blk[blk].es.ref_count[prof_id] > 0) {
2977                if (!--hw->blk[blk].es.ref_count[prof_id]) {
2978                        ice_write_es(hw, blk, prof_id, NULL);
2979                        ice_free_prof_masks(hw, blk, prof_id);
2980                        return ice_free_prof_id(hw, blk, prof_id);
2981                }
2982        }
2983
2984        return 0;
2985}
2986
2987/* Block / table section IDs */
2988static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
2989        /* SWITCH */
2990        {       ICE_SID_XLT1_SW,
2991                ICE_SID_XLT2_SW,
2992                ICE_SID_PROFID_TCAM_SW,
2993                ICE_SID_PROFID_REDIR_SW,
2994                ICE_SID_FLD_VEC_SW
2995        },
2996
2997        /* ACL */
2998        {       ICE_SID_XLT1_ACL,
2999                ICE_SID_XLT2_ACL,
3000                ICE_SID_PROFID_TCAM_ACL,
3001                ICE_SID_PROFID_REDIR_ACL,
3002                ICE_SID_FLD_VEC_ACL
3003        },
3004
3005        /* FD */
3006        {       ICE_SID_XLT1_FD,
3007                ICE_SID_XLT2_FD,
3008                ICE_SID_PROFID_TCAM_FD,
3009                ICE_SID_PROFID_REDIR_FD,
3010                ICE_SID_FLD_VEC_FD
3011        },
3012
3013        /* RSS */
3014        {       ICE_SID_XLT1_RSS,
3015                ICE_SID_XLT2_RSS,
3016                ICE_SID_PROFID_TCAM_RSS,
3017                ICE_SID_PROFID_REDIR_RSS,
3018                ICE_SID_FLD_VEC_RSS
3019        },
3020
3021        /* PE */
3022        {       ICE_SID_XLT1_PE,
3023                ICE_SID_XLT2_PE,
3024                ICE_SID_PROFID_TCAM_PE,
3025                ICE_SID_PROFID_REDIR_PE,
3026                ICE_SID_FLD_VEC_PE
3027        }
3028};
3029
3030/**
3031 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
3032 * @hw: pointer to the hardware structure
3033 * @blk: the HW block to initialize
3034 */
3035static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
3036{
3037        u16 pt;
3038
3039        for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
3040                u8 ptg;
3041
3042                ptg = hw->blk[blk].xlt1.t[pt];
3043                if (ptg != ICE_DEFAULT_PTG) {
3044                        ice_ptg_alloc_val(hw, blk, ptg);
3045                        ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
3046                }
3047        }
3048}
3049
3050/**
3051 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
3052 * @hw: pointer to the hardware structure
3053 * @blk: the HW block to initialize
3054 */
3055static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
3056{
3057        u16 vsi;
3058
3059        for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
3060                u16 vsig;
3061
3062                vsig = hw->blk[blk].xlt2.t[vsi];
3063                if (vsig) {
3064                        ice_vsig_alloc_val(hw, blk, vsig);
3065                        ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3066                        /* no changes at this time, since this has been
3067                         * initialized from the original package
3068                         */
3069                        hw->blk[blk].xlt2.vsis[vsi].changed = 0;
3070                }
3071        }
3072}
3073
3074/**
3075 * ice_init_sw_db - init software database from HW tables
3076 * @hw: pointer to the hardware structure
3077 */
3078static void ice_init_sw_db(struct ice_hw *hw)
3079{
3080        u16 i;
3081
3082        for (i = 0; i < ICE_BLK_COUNT; i++) {
3083                ice_init_sw_xlt1_db(hw, (enum ice_block)i);
3084                ice_init_sw_xlt2_db(hw, (enum ice_block)i);
3085        }
3086}
3087
3088/**
3089 * ice_fill_tbl - Reads content of a single table type into database
3090 * @hw: pointer to the hardware structure
3091 * @block_id: Block ID of the table to copy
3092 * @sid: Section ID of the table to copy
3093 *
3094 * Will attempt to read the entire content of a given table of a single block
3095 * into the driver database. We assume that the buffer will always
3096 * be as large or larger than the data contained in the package. If
3097 * this condition is not met, there is most likely an error in the package
3098 * contents.
3099 */
3100static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
3101{
3102        u32 dst_len, sect_len, offset = 0;
3103        struct ice_prof_redir_section *pr;
3104        struct ice_prof_id_section *pid;
3105        struct ice_xlt1_section *xlt1;
3106        struct ice_xlt2_section *xlt2;
3107        struct ice_sw_fv_section *es;
3108        struct ice_pkg_enum state;
3109        u8 *src, *dst;
3110        void *sect;
3111
3112        /* if the HW segment pointer is null then the first iteration of
3113         * ice_pkg_enum_section() will fail. In this case the HW tables will
3114         * not be filled and return success.
3115         */
3116        if (!hw->seg) {
3117                ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
3118                return;
3119        }
3120
3121        memset(&state, 0, sizeof(state));
3122
3123        sect = ice_pkg_enum_section(hw->seg, &state, sid);
3124
3125        while (sect) {
3126                switch (sid) {
3127                case ICE_SID_XLT1_SW:
3128                case ICE_SID_XLT1_FD:
3129                case ICE_SID_XLT1_RSS:
3130                case ICE_SID_XLT1_ACL:
3131                case ICE_SID_XLT1_PE:
3132                        xlt1 = sect;
3133                        src = xlt1->value;
3134                        sect_len = le16_to_cpu(xlt1->count) *
3135                                sizeof(*hw->blk[block_id].xlt1.t);
3136                        dst = hw->blk[block_id].xlt1.t;
3137                        dst_len = hw->blk[block_id].xlt1.count *
3138                                sizeof(*hw->blk[block_id].xlt1.t);
3139                        break;
3140                case ICE_SID_XLT2_SW:
3141                case ICE_SID_XLT2_FD:
3142                case ICE_SID_XLT2_RSS:
3143                case ICE_SID_XLT2_ACL:
3144                case ICE_SID_XLT2_PE:
3145                        xlt2 = sect;
3146                        src = (__force u8 *)xlt2->value;
3147                        sect_len = le16_to_cpu(xlt2->count) *
3148                                sizeof(*hw->blk[block_id].xlt2.t);
3149                        dst = (u8 *)hw->blk[block_id].xlt2.t;
3150                        dst_len = hw->blk[block_id].xlt2.count *
3151                                sizeof(*hw->blk[block_id].xlt2.t);
3152                        break;
3153                case ICE_SID_PROFID_TCAM_SW:
3154                case ICE_SID_PROFID_TCAM_FD:
3155                case ICE_SID_PROFID_TCAM_RSS:
3156                case ICE_SID_PROFID_TCAM_ACL:
3157                case ICE_SID_PROFID_TCAM_PE:
3158                        pid = sect;
3159                        src = (u8 *)pid->entry;
3160                        sect_len = le16_to_cpu(pid->count) *
3161                                sizeof(*hw->blk[block_id].prof.t);
3162                        dst = (u8 *)hw->blk[block_id].prof.t;
3163                        dst_len = hw->blk[block_id].prof.count *
3164                                sizeof(*hw->blk[block_id].prof.t);
3165                        break;
3166                case ICE_SID_PROFID_REDIR_SW:
3167                case ICE_SID_PROFID_REDIR_FD:
3168                case ICE_SID_PROFID_REDIR_RSS:
3169                case ICE_SID_PROFID_REDIR_ACL:
3170                case ICE_SID_PROFID_REDIR_PE:
3171                        pr = sect;
3172                        src = pr->redir_value;
3173                        sect_len = le16_to_cpu(pr->count) *
3174                                sizeof(*hw->blk[block_id].prof_redir.t);
3175                        dst = hw->blk[block_id].prof_redir.t;
3176                        dst_len = hw->blk[block_id].prof_redir.count *
3177                                sizeof(*hw->blk[block_id].prof_redir.t);
3178                        break;
3179                case ICE_SID_FLD_VEC_SW:
3180                case ICE_SID_FLD_VEC_FD:
3181                case ICE_SID_FLD_VEC_RSS:
3182                case ICE_SID_FLD_VEC_ACL:
3183                case ICE_SID_FLD_VEC_PE:
3184                        es = sect;
3185                        src = (u8 *)es->fv;
3186                        sect_len = (u32)(le16_to_cpu(es->count) *
3187                                         hw->blk[block_id].es.fvw) *
3188                                sizeof(*hw->blk[block_id].es.t);
3189                        dst = (u8 *)hw->blk[block_id].es.t;
3190                        dst_len = (u32)(hw->blk[block_id].es.count *
3191                                        hw->blk[block_id].es.fvw) *
3192                                sizeof(*hw->blk[block_id].es.t);
3193                        break;
3194                default:
3195                        return;
3196                }
3197
3198                /* if the section offset exceeds destination length, terminate
3199                 * table fill.
3200                 */
3201                if (offset > dst_len)
3202                        return;
3203
3204                /* if the sum of section size and offset exceed destination size
3205                 * then we are out of bounds of the HW table size for that PF.
3206                 * Changing section length to fill the remaining table space
3207                 * of that PF.
3208                 */
3209                if ((offset + sect_len) > dst_len)
3210                        sect_len = dst_len - offset;
3211
3212                memcpy(dst + offset, src, sect_len);
3213                offset += sect_len;
3214                sect = ice_pkg_enum_section(NULL, &state, sid);
3215        }
3216}
3217
3218/**
3219 * ice_fill_blk_tbls - Read package context for tables
3220 * @hw: pointer to the hardware structure
3221 *
3222 * Reads the current package contents and populates the driver
3223 * database with the data iteratively for all advanced feature
3224 * blocks. Assume that the HW tables have been allocated.
3225 */
3226void ice_fill_blk_tbls(struct ice_hw *hw)
3227{
3228        u8 i;
3229
3230        for (i = 0; i < ICE_BLK_COUNT; i++) {
3231                enum ice_block blk_id = (enum ice_block)i;
3232
3233                ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
3234                ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
3235                ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
3236                ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
3237                ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
3238        }
3239
3240        ice_init_sw_db(hw);
3241}
3242
3243/**
3244 * ice_free_prof_map - free profile map
3245 * @hw: pointer to the hardware structure
3246 * @blk_idx: HW block index
3247 */
3248static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
3249{
3250        struct ice_es *es = &hw->blk[blk_idx].es;
3251        struct ice_prof_map *del, *tmp;
3252
3253        mutex_lock(&es->prof_map_lock);
3254        list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
3255                list_del(&del->list);
3256                devm_kfree(ice_hw_to_dev(hw), del);
3257        }
3258        INIT_LIST_HEAD(&es->prof_map);
3259        mutex_unlock(&es->prof_map_lock);
3260}
3261
3262/**
3263 * ice_free_flow_profs - free flow profile entries
3264 * @hw: pointer to the hardware structure
3265 * @blk_idx: HW block index
3266 */
3267static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
3268{
3269        struct ice_flow_prof *p, *tmp;
3270
3271        mutex_lock(&hw->fl_profs_locks[blk_idx]);
3272        list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
3273                struct ice_flow_entry *e, *t;
3274
3275                list_for_each_entry_safe(e, t, &p->entries, l_entry)
3276                        ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
3277                                           ICE_FLOW_ENTRY_HNDL(e));
3278
3279                list_del(&p->l_entry);
3280
3281                mutex_destroy(&p->entries_lock);
3282                devm_kfree(ice_hw_to_dev(hw), p);
3283        }
3284        mutex_unlock(&hw->fl_profs_locks[blk_idx]);
3285
3286        /* if driver is in reset and tables are being cleared
3287         * re-initialize the flow profile list heads
3288         */
3289        INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3290}
3291
3292/**
3293 * ice_free_vsig_tbl - free complete VSIG table entries
3294 * @hw: pointer to the hardware structure
3295 * @blk: the HW block on which to free the VSIG table entries
3296 */
3297static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
3298{
3299        u16 i;
3300
3301        if (!hw->blk[blk].xlt2.vsig_tbl)
3302                return;
3303
3304        for (i = 1; i < ICE_MAX_VSIGS; i++)
3305                if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
3306                        ice_vsig_free(hw, blk, i);
3307}
3308
3309/**
3310 * ice_free_hw_tbls - free hardware table memory
3311 * @hw: pointer to the hardware structure
3312 */
3313void ice_free_hw_tbls(struct ice_hw *hw)
3314{
3315        struct ice_rss_cfg *r, *rt;
3316        u8 i;
3317
3318        for (i = 0; i < ICE_BLK_COUNT; i++) {
3319                if (hw->blk[i].is_list_init) {
3320                        struct ice_es *es = &hw->blk[i].es;
3321
3322                        ice_free_prof_map(hw, i);
3323                        mutex_destroy(&es->prof_map_lock);
3324
3325                        ice_free_flow_profs(hw, i);
3326                        mutex_destroy(&hw->fl_profs_locks[i]);
3327
3328                        hw->blk[i].is_list_init = false;
3329                }
3330                ice_free_vsig_tbl(hw, (enum ice_block)i);
3331                devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
3332                devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
3333                devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
3334                devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
3335                devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
3336                devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
3337                devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
3338                devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
3339                devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
3340                devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
3341                devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
3342                devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
3343        }
3344
3345        list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
3346                list_del(&r->l_entry);
3347                devm_kfree(ice_hw_to_dev(hw), r);
3348        }
3349        mutex_destroy(&hw->rss_locks);
3350        ice_shutdown_all_prof_masks(hw);
3351        memset(hw->blk, 0, sizeof(hw->blk));
3352}
3353
3354/**
3355 * ice_init_flow_profs - init flow profile locks and list heads
3356 * @hw: pointer to the hardware structure
3357 * @blk_idx: HW block index
3358 */
3359static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
3360{
3361        mutex_init(&hw->fl_profs_locks[blk_idx]);
3362        INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
3363}
3364
3365/**
3366 * ice_clear_hw_tbls - clear HW tables and flow profiles
3367 * @hw: pointer to the hardware structure
3368 */
3369void ice_clear_hw_tbls(struct ice_hw *hw)
3370{
3371        u8 i;
3372
3373        for (i = 0; i < ICE_BLK_COUNT; i++) {
3374                struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3375                struct ice_prof_tcam *prof = &hw->blk[i].prof;
3376                struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3377                struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3378                struct ice_es *es = &hw->blk[i].es;
3379
3380                if (hw->blk[i].is_list_init) {
3381                        ice_free_prof_map(hw, i);
3382                        ice_free_flow_profs(hw, i);
3383                }
3384
3385                ice_free_vsig_tbl(hw, (enum ice_block)i);
3386
3387                memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
3388                memset(xlt1->ptg_tbl, 0,
3389                       ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
3390                memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
3391
3392                memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
3393                memset(xlt2->vsig_tbl, 0,
3394                       xlt2->count * sizeof(*xlt2->vsig_tbl));
3395                memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
3396
3397                memset(prof->t, 0, prof->count * sizeof(*prof->t));
3398                memset(prof_redir->t, 0,
3399                       prof_redir->count * sizeof(*prof_redir->t));
3400
3401                memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
3402                memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
3403                memset(es->written, 0, es->count * sizeof(*es->written));
3404                memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
3405        }
3406}
3407
3408/**
3409 * ice_init_hw_tbls - init hardware table memory
3410 * @hw: pointer to the hardware structure
3411 */
3412enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
3413{
3414        u8 i;
3415
3416        mutex_init(&hw->rss_locks);
3417        INIT_LIST_HEAD(&hw->rss_list_head);
3418        ice_init_all_prof_masks(hw);
3419        for (i = 0; i < ICE_BLK_COUNT; i++) {
3420                struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
3421                struct ice_prof_tcam *prof = &hw->blk[i].prof;
3422                struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
3423                struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
3424                struct ice_es *es = &hw->blk[i].es;
3425                u16 j;
3426
3427                if (hw->blk[i].is_list_init)
3428                        continue;
3429
3430                ice_init_flow_profs(hw, i);
3431                mutex_init(&es->prof_map_lock);
3432                INIT_LIST_HEAD(&es->prof_map);
3433                hw->blk[i].is_list_init = true;
3434
3435                hw->blk[i].overwrite = blk_sizes[i].overwrite;
3436                es->reverse = blk_sizes[i].reverse;
3437
3438                xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
3439                xlt1->count = blk_sizes[i].xlt1;
3440
3441                xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
3442                                            sizeof(*xlt1->ptypes), GFP_KERNEL);
3443
3444                if (!xlt1->ptypes)
3445                        goto err;
3446
3447                xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
3448                                             sizeof(*xlt1->ptg_tbl),
3449                                             GFP_KERNEL);
3450
3451                if (!xlt1->ptg_tbl)
3452                        goto err;
3453
3454                xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
3455                                       sizeof(*xlt1->t), GFP_KERNEL);
3456                if (!xlt1->t)
3457                        goto err;
3458
3459                xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
3460                xlt2->count = blk_sizes[i].xlt2;
3461
3462                xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
3463                                          sizeof(*xlt2->vsis), GFP_KERNEL);
3464
3465                if (!xlt2->vsis)
3466                        goto err;
3467
3468                xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
3469                                              sizeof(*xlt2->vsig_tbl),
3470                                              GFP_KERNEL);
3471                if (!xlt2->vsig_tbl)
3472                        goto err;
3473
3474                for (j = 0; j < xlt2->count; j++)
3475                        INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
3476
3477                xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
3478                                       sizeof(*xlt2->t), GFP_KERNEL);
3479                if (!xlt2->t)
3480                        goto err;
3481
3482                prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
3483                prof->count = blk_sizes[i].prof_tcam;
3484                prof->max_prof_id = blk_sizes[i].prof_id;
3485                prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
3486                prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
3487                                       sizeof(*prof->t), GFP_KERNEL);
3488
3489                if (!prof->t)
3490                        goto err;
3491
3492                prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
3493                prof_redir->count = blk_sizes[i].prof_redir;
3494                prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
3495                                             prof_redir->count,
3496                                             sizeof(*prof_redir->t),
3497                                             GFP_KERNEL);
3498
3499                if (!prof_redir->t)
3500                        goto err;
3501
3502                es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
3503                es->count = blk_sizes[i].es;
3504                es->fvw = blk_sizes[i].fvw;
3505                es->t = devm_kcalloc(ice_hw_to_dev(hw),
3506                                     (u32)(es->count * es->fvw),
3507                                     sizeof(*es->t), GFP_KERNEL);
3508                if (!es->t)
3509                        goto err;
3510
3511                es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
3512                                             sizeof(*es->ref_count),
3513                                             GFP_KERNEL);
3514                if (!es->ref_count)
3515                        goto err;
3516
3517                es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
3518                                           sizeof(*es->written), GFP_KERNEL);
3519                if (!es->written)
3520                        goto err;
3521
3522                es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
3523                                            sizeof(*es->mask_ena), GFP_KERNEL);
3524                if (!es->mask_ena)
3525                        goto err;
3526        }
3527        return 0;
3528
3529err:
3530        ice_free_hw_tbls(hw);
3531        return ICE_ERR_NO_MEMORY;
3532}
3533
3534/**
3535 * ice_prof_gen_key - generate profile ID key
3536 * @hw: pointer to the HW struct
3537 * @blk: the block in which to write profile ID to
3538 * @ptg: packet type group (PTG) portion of key
3539 * @vsig: VSIG portion of key
3540 * @cdid: CDID portion of key
3541 * @flags: flag portion of key
3542 * @vl_msk: valid mask
3543 * @dc_msk: don't care mask
3544 * @nm_msk: never match mask
3545 * @key: output of profile ID key
3546 */
3547static enum ice_status
3548ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
3549                 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3550                 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
3551                 u8 key[ICE_TCAM_KEY_SZ])
3552{
3553        struct ice_prof_id_key inkey;
3554
3555        inkey.xlt1 = ptg;
3556        inkey.xlt2_cdid = cpu_to_le16(vsig);
3557        inkey.flags = cpu_to_le16(flags);
3558
3559        switch (hw->blk[blk].prof.cdid_bits) {
3560        case 0:
3561                break;
3562        case 2:
3563#define ICE_CD_2_M 0xC000U
3564#define ICE_CD_2_S 14
3565                inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
3566                inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
3567                break;
3568        case 4:
3569#define ICE_CD_4_M 0xF000U
3570#define ICE_CD_4_S 12
3571                inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
3572                inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
3573                break;
3574        case 8:
3575#define ICE_CD_8_M 0xFF00U
3576#define ICE_CD_8_S 16
3577                inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
3578                inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
3579                break;
3580        default:
3581                ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
3582                break;
3583        }
3584
3585        return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
3586                           nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
3587}
3588
3589/**
3590 * ice_tcam_write_entry - write TCAM entry
3591 * @hw: pointer to the HW struct
3592 * @blk: the block in which to write profile ID to
3593 * @idx: the entry index to write to
3594 * @prof_id: profile ID
3595 * @ptg: packet type group (PTG) portion of key
3596 * @vsig: VSIG portion of key
3597 * @cdid: CDID portion of key
3598 * @flags: flag portion of key
3599 * @vl_msk: valid mask
3600 * @dc_msk: don't care mask
3601 * @nm_msk: never match mask
3602 */
3603static enum ice_status
3604ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
3605                     u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
3606                     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
3607                     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
3608                     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
3609{
3610        struct ice_prof_tcam_entry;
3611        enum ice_status status;
3612
3613        status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
3614                                  dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
3615        if (!status) {
3616                hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
3617                hw->blk[blk].prof.t[idx].prof_id = prof_id;
3618        }
3619
3620        return status;
3621}
3622
3623/**
3624 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
3625 * @hw: pointer to the hardware structure
3626 * @blk: HW block
3627 * @vsig: VSIG to query
3628 * @refs: pointer to variable to receive the reference count
3629 */
3630static enum ice_status
3631ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
3632{
3633        u16 idx = vsig & ICE_VSIG_IDX_M;
3634        struct ice_vsig_vsi *ptr;
3635
3636        *refs = 0;
3637
3638        if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
3639                return ICE_ERR_DOES_NOT_EXIST;
3640
3641        ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3642        while (ptr) {
3643                (*refs)++;
3644                ptr = ptr->next_vsi;
3645        }
3646
3647        return 0;
3648}
3649
3650/**
3651 * ice_has_prof_vsig - check to see if VSIG has a specific profile
3652 * @hw: pointer to the hardware structure
3653 * @blk: HW block
3654 * @vsig: VSIG to check against
3655 * @hdl: profile handle
3656 */
3657static bool
3658ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
3659{
3660        u16 idx = vsig & ICE_VSIG_IDX_M;
3661        struct ice_vsig_prof *ent;
3662
3663        list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3664                            list)
3665                if (ent->profile_cookie == hdl)
3666                        return true;
3667
3668        ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
3669                  vsig);
3670        return false;
3671}
3672
3673/**
3674 * ice_prof_bld_es - build profile ID extraction sequence changes
3675 * @hw: pointer to the HW struct
3676 * @blk: hardware block
3677 * @bld: the update package buffer build to add to
3678 * @chgs: the list of changes to make in hardware
3679 */
3680static enum ice_status
3681ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
3682                struct ice_buf_build *bld, struct list_head *chgs)
3683{
3684        u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
3685        struct ice_chs_chg *tmp;
3686
3687        list_for_each_entry(tmp, chgs, list_entry)
3688                if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
3689                        u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
3690                        struct ice_pkg_es *p;
3691                        u32 id;
3692
3693                        id = ice_sect_id(blk, ICE_VEC_TBL);
3694                        p = ice_pkg_buf_alloc_section(bld, id,
3695                                                      struct_size(p, es, 1) +
3696                                                      vec_size -
3697                                                      sizeof(p->es[0]));
3698
3699                        if (!p)
3700                                return ICE_ERR_MAX_LIMIT;
3701
3702                        p->count = cpu_to_le16(1);
3703                        p->offset = cpu_to_le16(tmp->prof_id);
3704
3705                        memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
3706                }
3707
3708        return 0;
3709}
3710
3711/**
3712 * ice_prof_bld_tcam - build profile ID TCAM changes
3713 * @hw: pointer to the HW struct
3714 * @blk: hardware block
3715 * @bld: the update package buffer build to add to
3716 * @chgs: the list of changes to make in hardware
3717 */
3718static enum ice_status
3719ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
3720                  struct ice_buf_build *bld, struct list_head *chgs)
3721{
3722        struct ice_chs_chg *tmp;
3723
3724        list_for_each_entry(tmp, chgs, list_entry)
3725                if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
3726                        struct ice_prof_id_section *p;
3727                        u32 id;
3728
3729                        id = ice_sect_id(blk, ICE_PROF_TCAM);
3730                        p = ice_pkg_buf_alloc_section(bld, id,
3731                                                      struct_size(p, entry, 1));
3732
3733                        if (!p)
3734                                return ICE_ERR_MAX_LIMIT;
3735
3736                        p->count = cpu_to_le16(1);
3737                        p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
3738                        p->entry[0].prof_id = tmp->prof_id;
3739
3740                        memcpy(p->entry[0].key,
3741                               &hw->blk[blk].prof.t[tmp->tcam_idx].key,
3742                               sizeof(hw->blk[blk].prof.t->key));
3743                }
3744
3745        return 0;
3746}
3747
3748/**
3749 * ice_prof_bld_xlt1 - build XLT1 changes
3750 * @blk: hardware block
3751 * @bld: the update package buffer build to add to
3752 * @chgs: the list of changes to make in hardware
3753 */
3754static enum ice_status
3755ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
3756                  struct list_head *chgs)
3757{
3758        struct ice_chs_chg *tmp;
3759
3760        list_for_each_entry(tmp, chgs, list_entry)
3761                if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
3762                        struct ice_xlt1_section *p;
3763                        u32 id;
3764
3765                        id = ice_sect_id(blk, ICE_XLT1);
3766                        p = ice_pkg_buf_alloc_section(bld, id,
3767                                                      struct_size(p, value, 1));
3768
3769                        if (!p)
3770                                return ICE_ERR_MAX_LIMIT;
3771
3772                        p->count = cpu_to_le16(1);
3773                        p->offset = cpu_to_le16(tmp->ptype);
3774                        p->value[0] = tmp->ptg;
3775                }
3776
3777        return 0;
3778}
3779
3780/**
3781 * ice_prof_bld_xlt2 - build XLT2 changes
3782 * @blk: hardware block
3783 * @bld: the update package buffer build to add to
3784 * @chgs: the list of changes to make in hardware
3785 */
3786static enum ice_status
3787ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
3788                  struct list_head *chgs)
3789{
3790        struct ice_chs_chg *tmp;
3791
3792        list_for_each_entry(tmp, chgs, list_entry) {
3793                struct ice_xlt2_section *p;
3794                u32 id;
3795
3796                switch (tmp->type) {
3797                case ICE_VSIG_ADD:
3798                case ICE_VSI_MOVE:
3799                case ICE_VSIG_REM:
3800                        id = ice_sect_id(blk, ICE_XLT2);
3801                        p = ice_pkg_buf_alloc_section(bld, id,
3802                                                      struct_size(p, value, 1));
3803
3804                        if (!p)
3805                                return ICE_ERR_MAX_LIMIT;
3806
3807                        p->count = cpu_to_le16(1);
3808                        p->offset = cpu_to_le16(tmp->vsi);
3809                        p->value[0] = cpu_to_le16(tmp->vsig);
3810                        break;
3811                default:
3812                        break;
3813                }
3814        }
3815
3816        return 0;
3817}
3818
3819/**
3820 * ice_upd_prof_hw - update hardware using the change list
3821 * @hw: pointer to the HW struct
3822 * @blk: hardware block
3823 * @chgs: the list of changes to make in hardware
3824 */
3825static enum ice_status
3826ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
3827                struct list_head *chgs)
3828{
3829        struct ice_buf_build *b;
3830        struct ice_chs_chg *tmp;
3831        enum ice_status status;
3832        u16 pkg_sects;
3833        u16 xlt1 = 0;
3834        u16 xlt2 = 0;
3835        u16 tcam = 0;
3836        u16 es = 0;
3837        u16 sects;
3838
3839        /* count number of sections we need */
3840        list_for_each_entry(tmp, chgs, list_entry) {
3841                switch (tmp->type) {
3842                case ICE_PTG_ES_ADD:
3843                        if (tmp->add_ptg)
3844                                xlt1++;
3845                        if (tmp->add_prof)
3846                                es++;
3847                        break;
3848                case ICE_TCAM_ADD:
3849                        tcam++;
3850                        break;
3851                case ICE_VSIG_ADD:
3852                case ICE_VSI_MOVE:
3853                case ICE_VSIG_REM:
3854                        xlt2++;
3855                        break;
3856                default:
3857                        break;
3858                }
3859        }
3860        sects = xlt1 + xlt2 + tcam + es;
3861
3862        if (!sects)
3863                return 0;
3864
3865        /* Build update package buffer */
3866        b = ice_pkg_buf_alloc(hw);
3867        if (!b)
3868                return ICE_ERR_NO_MEMORY;
3869
3870        status = ice_pkg_buf_reserve_section(b, sects);
3871        if (status)
3872                goto error_tmp;
3873
3874        /* Preserve order of table update: ES, TCAM, PTG, VSIG */
3875        if (es) {
3876                status = ice_prof_bld_es(hw, blk, b, chgs);
3877                if (status)
3878                        goto error_tmp;
3879        }
3880
3881        if (tcam) {
3882                status = ice_prof_bld_tcam(hw, blk, b, chgs);
3883                if (status)
3884                        goto error_tmp;
3885        }
3886
3887        if (xlt1) {
3888                status = ice_prof_bld_xlt1(blk, b, chgs);
3889                if (status)
3890                        goto error_tmp;
3891        }
3892
3893        if (xlt2) {
3894                status = ice_prof_bld_xlt2(blk, b, chgs);
3895                if (status)
3896                        goto error_tmp;
3897        }
3898
3899        /* After package buffer build check if the section count in buffer is
3900         * non-zero and matches the number of sections detected for package
3901         * update.
3902         */
3903        pkg_sects = ice_pkg_buf_get_active_sections(b);
3904        if (!pkg_sects || pkg_sects != sects) {
3905                status = ICE_ERR_INVAL_SIZE;
3906                goto error_tmp;
3907        }
3908
3909        /* update package */
3910        status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
3911        if (status == ICE_ERR_AQ_ERROR)
3912                ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
3913
3914error_tmp:
3915        ice_pkg_buf_free(hw, b);
3916        return status;
3917}
3918
3919/**
3920 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
3921 * @hw: pointer to the HW struct
3922 * @prof_id: profile ID
3923 * @mask_sel: mask select
3924 *
3925 * This function enable any of the masks selected by the mask select parameter
3926 * for the profile specified.
3927 */
3928static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
3929{
3930        wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
3931
3932        ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
3933                  GLQF_FDMASK_SEL(prof_id), mask_sel);
3934}
3935
3936struct ice_fd_src_dst_pair {
3937        u8 prot_id;
3938        u8 count;
3939        u16 off;
3940};
3941
3942static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
3943        /* These are defined in pairs */
3944        { ICE_PROT_IPV4_OF_OR_S, 2, 12 },
3945        { ICE_PROT_IPV4_OF_OR_S, 2, 16 },
3946
3947        { ICE_PROT_IPV4_IL, 2, 12 },
3948        { ICE_PROT_IPV4_IL, 2, 16 },
3949
3950        { ICE_PROT_IPV6_OF_OR_S, 8, 8 },
3951        { ICE_PROT_IPV6_OF_OR_S, 8, 24 },
3952
3953        { ICE_PROT_IPV6_IL, 8, 8 },
3954        { ICE_PROT_IPV6_IL, 8, 24 },
3955
3956        { ICE_PROT_TCP_IL, 1, 0 },
3957        { ICE_PROT_TCP_IL, 1, 2 },
3958
3959        { ICE_PROT_UDP_OF, 1, 0 },
3960        { ICE_PROT_UDP_OF, 1, 2 },
3961
3962        { ICE_PROT_UDP_IL_OR_S, 1, 0 },
3963        { ICE_PROT_UDP_IL_OR_S, 1, 2 },
3964
3965        { ICE_PROT_SCTP_IL, 1, 0 },
3966        { ICE_PROT_SCTP_IL, 1, 2 }
3967};
3968
3969#define ICE_FD_SRC_DST_PAIR_COUNT       ARRAY_SIZE(ice_fd_pairs)
3970
3971/**
3972 * ice_update_fd_swap - set register appropriately for a FD FV extraction
3973 * @hw: pointer to the HW struct
3974 * @prof_id: profile ID
3975 * @es: extraction sequence (length of array is determined by the block)
3976 */
3977static enum ice_status
3978ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
3979{
3980        DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
3981        u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
3982#define ICE_FD_FV_NOT_FOUND (-2)
3983        s8 first_free = ICE_FD_FV_NOT_FOUND;
3984        u8 used[ICE_MAX_FV_WORDS] = { 0 };
3985        s8 orig_free, si;
3986        u32 mask_sel = 0;
3987        u8 i, j, k;
3988
3989        bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
3990
3991        /* This code assumes that the Flow Director field vectors are assigned
3992         * from the end of the FV indexes working towards the zero index, that
3993         * only complete fields will be included and will be consecutive, and
3994         * that there are no gaps between valid indexes.
3995         */
3996
3997        /* Determine swap fields present */
3998        for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
3999                /* Find the first free entry, assuming right to left population.
4000                 * This is where we can start adding additional pairs if needed.
4001                 */
4002                if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
4003                    ICE_PROT_INVALID)
4004                        first_free = i - 1;
4005
4006                for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4007                        if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
4008                            es[i].off == ice_fd_pairs[j].off) {
4009                                set_bit(j, pair_list);
4010                                pair_start[j] = i;
4011                        }
4012        }
4013
4014        orig_free = first_free;
4015
4016        /* determine missing swap fields that need to be added */
4017        for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
4018                u8 bit1 = test_bit(i + 1, pair_list);
4019                u8 bit0 = test_bit(i, pair_list);
4020
4021                if (bit0 ^ bit1) {
4022                        u8 index;
4023
4024                        /* add the appropriate 'paired' entry */
4025                        if (!bit0)
4026                                index = i;
4027                        else
4028                                index = i + 1;
4029
4030                        /* check for room */
4031                        if (first_free + 1 < (s8)ice_fd_pairs[index].count)
4032                                return ICE_ERR_MAX_LIMIT;
4033
4034                        /* place in extraction sequence */
4035                        for (k = 0; k < ice_fd_pairs[index].count; k++) {
4036                                es[first_free - k].