linux/drivers/hwmon/occ/common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2// Copyright IBM Corp 2019
   3
   4#include <linux/device.h>
   5#include <linux/export.h>
   6#include <linux/hwmon.h>
   7#include <linux/hwmon-sysfs.h>
   8#include <linux/jiffies.h>
   9#include <linux/kernel.h>
  10#include <linux/math64.h>
  11#include <linux/module.h>
  12#include <linux/mutex.h>
  13#include <linux/sysfs.h>
  14#include <asm/unaligned.h>
  15
  16#include "common.h"
  17
  18#define EXTN_FLAG_SENSOR_ID             BIT(7)
  19
  20#define OCC_ERROR_COUNT_THRESHOLD       2       /* required by OCC spec */
  21
  22#define OCC_STATE_SAFE                  4
  23#define OCC_SAFE_TIMEOUT                msecs_to_jiffies(60000) /* 1 min */
  24
  25#define OCC_UPDATE_FREQUENCY            msecs_to_jiffies(1000)
  26
  27#define OCC_TEMP_SENSOR_FAULT           0xFF
  28
  29#define OCC_FRU_TYPE_VRM                3
  30
  31/* OCC sensor type and version definitions */
  32
  33struct temp_sensor_1 {
  34        u16 sensor_id;
  35        u16 value;
  36} __packed;
  37
  38struct temp_sensor_2 {
  39        u32 sensor_id;
  40        u8 fru_type;
  41        u8 value;
  42} __packed;
  43
  44struct temp_sensor_10 {
  45        u32 sensor_id;
  46        u8 fru_type;
  47        u8 value;
  48        u8 throttle;
  49        u8 reserved;
  50} __packed;
  51
  52struct freq_sensor_1 {
  53        u16 sensor_id;
  54        u16 value;
  55} __packed;
  56
  57struct freq_sensor_2 {
  58        u32 sensor_id;
  59        u16 value;
  60} __packed;
  61
  62struct power_sensor_1 {
  63        u16 sensor_id;
  64        u32 update_tag;
  65        u32 accumulator;
  66        u16 value;
  67} __packed;
  68
  69struct power_sensor_2 {
  70        u32 sensor_id;
  71        u8 function_id;
  72        u8 apss_channel;
  73        u16 reserved;
  74        u32 update_tag;
  75        u64 accumulator;
  76        u16 value;
  77} __packed;
  78
  79struct power_sensor_data {
  80        u16 value;
  81        u32 update_tag;
  82        u64 accumulator;
  83} __packed;
  84
  85struct power_sensor_data_and_time {
  86        u16 update_time;
  87        u16 value;
  88        u32 update_tag;
  89        u64 accumulator;
  90} __packed;
  91
  92struct power_sensor_a0 {
  93        u32 sensor_id;
  94        struct power_sensor_data_and_time system;
  95        u32 reserved;
  96        struct power_sensor_data_and_time proc;
  97        struct power_sensor_data vdd;
  98        struct power_sensor_data vdn;
  99} __packed;
 100
 101struct caps_sensor_2 {
 102        u16 cap;
 103        u16 system_power;
 104        u16 n_cap;
 105        u16 max;
 106        u16 min;
 107        u16 user;
 108        u8 user_source;
 109} __packed;
 110
 111struct caps_sensor_3 {
 112        u16 cap;
 113        u16 system_power;
 114        u16 n_cap;
 115        u16 max;
 116        u16 hard_min;
 117        u16 soft_min;
 118        u16 user;
 119        u8 user_source;
 120} __packed;
 121
 122struct extended_sensor {
 123        union {
 124                u8 name[4];
 125                u32 sensor_id;
 126        };
 127        u8 flags;
 128        u8 reserved;
 129        u8 data[6];
 130} __packed;
 131
 132static int occ_poll(struct occ *occ)
 133{
 134        int rc;
 135        u16 checksum = occ->poll_cmd_data + occ->seq_no + 1;
 136        u8 cmd[8];
 137        struct occ_poll_response_header *header;
 138
 139        /* big endian */
 140        cmd[0] = occ->seq_no++;         /* sequence number */
 141        cmd[1] = 0;                     /* cmd type */
 142        cmd[2] = 0;                     /* data length msb */
 143        cmd[3] = 1;                     /* data length lsb */
 144        cmd[4] = occ->poll_cmd_data;    /* data */
 145        cmd[5] = checksum >> 8;         /* checksum msb */
 146        cmd[6] = checksum & 0xFF;       /* checksum lsb */
 147        cmd[7] = 0;
 148
 149        /* mutex should already be locked if necessary */
 150        rc = occ->send_cmd(occ, cmd);
 151        if (rc) {
 152                occ->last_error = rc;
 153                if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
 154                        occ->error = rc;
 155
 156                goto done;
 157        }
 158
 159        /* clear error since communication was successful */
 160        occ->error_count = 0;
 161        occ->last_error = 0;
 162        occ->error = 0;
 163
 164        /* check for safe state */
 165        header = (struct occ_poll_response_header *)occ->resp.data;
 166        if (header->occ_state == OCC_STATE_SAFE) {
 167                if (occ->last_safe) {
 168                        if (time_after(jiffies,
 169                                       occ->last_safe + OCC_SAFE_TIMEOUT))
 170                                occ->error = -EHOSTDOWN;
 171                } else {
 172                        occ->last_safe = jiffies;
 173                }
 174        } else {
 175                occ->last_safe = 0;
 176        }
 177
 178done:
 179        occ_sysfs_poll_done(occ);
 180        return rc;
 181}
 182
 183static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
 184{
 185        int rc;
 186        u8 cmd[8];
 187        u16 checksum = 0x24;
 188        __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
 189
 190        cmd[0] = 0;
 191        cmd[1] = 0x22;
 192        cmd[2] = 0;
 193        cmd[3] = 2;
 194
 195        memcpy(&cmd[4], &user_power_cap_be, 2);
 196
 197        checksum += cmd[4] + cmd[5];
 198        cmd[6] = checksum >> 8;
 199        cmd[7] = checksum & 0xFF;
 200
 201        rc = mutex_lock_interruptible(&occ->lock);
 202        if (rc)
 203                return rc;
 204
 205        rc = occ->send_cmd(occ, cmd);
 206
 207        mutex_unlock(&occ->lock);
 208
 209        return rc;
 210}
 211
 212int occ_update_response(struct occ *occ)
 213{
 214        int rc = mutex_lock_interruptible(&occ->lock);
 215
 216        if (rc)
 217                return rc;
 218
 219        /* limit the maximum rate of polling the OCC */
 220        if (time_after(jiffies, occ->next_update)) {
 221                rc = occ_poll(occ);
 222                occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
 223        } else {
 224                rc = occ->last_error;
 225        }
 226
 227        mutex_unlock(&occ->lock);
 228        return rc;
 229}
 230
 231static ssize_t occ_show_temp_1(struct device *dev,
 232                               struct device_attribute *attr, char *buf)
 233{
 234        int rc;
 235        u32 val = 0;
 236        struct temp_sensor_1 *temp;
 237        struct occ *occ = dev_get_drvdata(dev);
 238        struct occ_sensors *sensors = &occ->sensors;
 239        struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
 240
 241        rc = occ_update_response(occ);
 242        if (rc)
 243                return rc;
 244
 245        temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
 246
 247        switch (sattr->nr) {
 248        case 0:
 249                val = get_unaligned_be16(&temp->sensor_id);
 250                break;
 251        case 1:
 252                /*
 253                 * If a sensor reading has expired and couldn't be refreshed,
 254                 * OCC returns 0xFFFF for that sensor.
 255                 */
 256                if (temp->value == 0xFFFF)
 257                        return -EREMOTEIO;
 258                val = get_unaligned_be16(&temp->value) * 1000;
 259                break;
 260        default:
 261                return -EINVAL;
 262        }
 263
 264        return sysfs_emit(buf, "%u\n", val);
 265}
 266
 267static ssize_t occ_show_temp_2(struct device *dev,
 268                               struct device_attribute *attr, char *buf)
 269{
 270        int rc;
 271        u32 val = 0;
 272        struct temp_sensor_2 *temp;
 273        struct occ *occ = dev_get_drvdata(dev);
 274        struct occ_sensors *sensors = &occ->sensors;
 275        struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
 276
 277        rc = occ_update_response(occ);
 278        if (rc)
 279                return rc;
 280
 281        temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
 282
 283        switch (sattr->nr) {
 284        case 0:
 285                val = get_unaligned_be32(&temp->sensor_id);
 286                break;
 287        case 1:
 288                val = temp->value;
 289                if (val == OCC_TEMP_SENSOR_FAULT)
 290                        return -EREMOTEIO;
 291
 292                /*
 293                 * VRM doesn't return temperature, only alarm bit. This
 294                 * attribute maps to tempX_alarm instead of tempX_input for
 295                 * VRM
 296                 */
 297                if (temp->fru_type != OCC_FRU_TYPE_VRM) {
 298                        /* sensor not ready */
 299                        if (val == 0)
 300                                return -EAGAIN;
 301
 302                        val *= 1000;
 303                }
 304                break;
 305        case 2:
 306                val = temp->fru_type;
 307                break;
 308        case 3:
 309                val = temp->value == OCC_TEMP_SENSOR_FAULT;
 310                break;
 311        default:
 312                return -EINVAL;
 313        }
 314
 315        return sysfs_emit(buf, "%u\n", val);
 316}
 317
 318static ssize_t occ_show_temp_10(struct device *dev,
 319                                struct device_attribute *attr, char *buf)
 320{
 321        int rc;
 322        u32 val = 0;
 323        struct temp_sensor_10 *temp;
 324        struct occ *occ = dev_get_drvdata(dev);
 325        struct occ_sensors *sensors = &occ->sensors;
 326        struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
 327
 328        rc = occ_update_response(occ);
 329        if (rc)
 330                return rc;
 331
 332        temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index;
 333
 334        switch (sattr->nr) {
 335        case 0:
 336                val = get_unaligned_be32(&temp->sensor_id);
 337                break;
 338        case 1:
 339                val = temp->value;
 340                if (val == OCC_TEMP_SENSOR_FAULT)
 341                        return -EREMOTEIO;
 342
 343                /*
 344                 * VRM doesn't return temperature, only alarm bit. This
 345                 * attribute maps to tempX_alarm instead of tempX_input for
 346                 * VRM
 347                 */
 348                if (temp->fru_type != OCC_FRU_TYPE_VRM) {
 349                        /* sensor not ready */
 350                        if (val == 0)
 351                                return -EAGAIN;
 352
 353                        val *= 1000;
 354                }
 355                break;
 356        case 2:
 357                val = temp->fru_type;
 358                break;
 359        case 3:
 360                val = temp->value == OCC_TEMP_SENSOR_FAULT;
 361                break;
 362        case 4:
 363                val = temp->throttle * 1000;
 364                break;
 365        default:
 366                return -EINVAL;
 367        }
 368
 369        return sysfs_emit(buf, "%u\n", val);
 370}
 371
 372static ssize_t occ_show_freq_1(struct device *dev,
 373                               struct device_attribute *attr, char *buf)
 374{
 375        int rc;
 376        u16 val = 0;
 377        struct freq_sensor_1 *freq;
 378        struct occ *occ = dev_get_drvdata(dev);
 379        struct occ_sensors *sensors = &occ->sensors;
 380        struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
 381
 382        rc = occ_update_response(occ);
 383        if (rc)
 384                return rc;
 385
 386        freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
 387
 388        switch (sattr->nr) {
 389        case 0:
 390                val = get_unaligned_be16(&freq->sensor_id);
 391                break;
 392        case 1:
 393                val = get_unaligned_be16(&freq->value);
 394                break;
 395        default:
 396                return -EINVAL;
 397        }
 398
 399        return sysfs_emit(buf, "%u\n", val);
 400}
 401
 402static ssize_t occ_show_freq_2(struct device *dev,
 403                               struct device_attribute *attr, char *buf)
 404{
 405        int rc;
 406        u32 val = 0;
 407        struct freq_sensor_2 *freq;
 408        struct occ *occ = dev_get_drvdata(dev);
 409        struct occ_sensors *sensors = &occ->sensors;
 410        struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
 411
 412        rc = occ_update_response(occ);
 413        if (rc)
 414                return rc;
 415
 416        freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
 417
 418        switch (sattr->nr) {
 419        case 0:
 420                val = get_unaligned_be32(&freq->sensor_id);
 421                break;
 422        case 1:
 423                val = get_unaligned_be16(&freq->value);
 424                break;
 425        default:
 426                return -EINVAL;
 427        }
 428
 429        return sysfs_emit(buf, "%u\n", val);
 430}
 431
 432static ssize_t occ_show_power_1(struct device *dev,
 433                                struct device_attribute *attr, char *buf)
 434{
 435        int rc;
 436        u64 val = 0;
 437        struct power_sensor_1 *power;
 438        struct occ *occ = dev_get_drvdata(dev);
 439        struct occ_sensors *sensors = &occ->sensors;
 440        struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
 441
 442        rc = occ_update_response(occ);
 443        if (rc)
 444                return rc;
 445
 446        power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
 447
 448        switch (sattr->nr) {
 449        case 0:
 450                val = get_unaligned_be16(&power->sensor_id);
 451                break;
 452        case 1:
 453                val = get_unaligned_be32(&power->accumulator) /
 454                        get_unaligned_be32(&power->update_tag);
 455                val *= 1000000ULL;
 456                break;
 457        case 2:
 458                val = (u64)get_unaligned_be32(&power->update_tag) *
 459                           occ->powr_sample_time_us;
 460                break;
 461        case 3:
 462                val = get_unaligned_be16(&power->value) * 1000000ULL;
 463                break;
 464        default:
 465                return -EINVAL;
 466        }
 467
 468        return sysfs_emit(buf, "%llu\n", val);
 469}
 470
 471static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
 472{
 473        u64 divisor = get_unaligned_be32(samples);
 474
 475        return (divisor == 0) ? 0 :
 476                div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
 477}
 478
 479static ssize_t occ_show_power_2(struct device *dev,
 480                                struct device_attribute *attr, char *buf)
 481{
 482        int rc;
 483        u64 val = 0;
 484        struct power_sensor_2 *power;
 485        struct occ *occ = dev_get_drvdata(dev);
 486        struct occ_sensors *sensors = &occ->sensors;
 487        struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
 488
 489        rc = occ_update_response(occ);
 490        if (rc)
 491                return rc;
 492
 493        power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
 494
 495        switch (sattr->nr) {
 496        case 0:
 497                return sysfs_emit(buf, "%u_%u_%u\n",
 498                                  get_unaligned_be32(&power->sensor_id),
 499                                  power->function_id, power->apss_channel);
 500        case 1:
 501                val = occ_get_powr_avg(&power->accumulator,
 502                                       &power->update_tag);
 503                break;
 504        case 2:
 505                val = (u64)get_unaligned_be32(&power->update_tag) *
 506                           occ->powr_sample_time_us;
 507                break;
 508        case 3:
 509                val = get_unaligned_be16(&power->value) * 1000000ULL;
 510                break;
 511        default:
 512                return -EINVAL;
 513        }
 514
 515        return sysfs_emit(buf, "%llu\n", val);
 516}
 517
 518static ssize_t occ_show_power_a0(struct device *dev,
 519                                 struct device_attribute *attr, char *buf)
 520{
 521        int rc;
 522        u64 val = 0;
 523        struct power_sensor_a0 *power;
 524        struct occ *occ = dev_get_drvdata(dev);
 525        struct occ_sensors *sensors = &occ->sensors;
 526        struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
 527
 528        rc = occ_update_response(occ);
 529        if (rc)
 530                return rc;
 531
 532        power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
 533
 534        switch (sattr->nr) {
 535        case 0:
 536                return sysfs_emit(buf, "%u_system\n",
 537                                  get_unaligned_be32(&power->sensor_id));
 538        case 1:
 539                val = occ_get_powr_avg(&power->system.accumulator,
 540                                       &power->system.update_tag);
 541                break;
 542        case 2:
 543                val = (u64)get_unaligned_be32(&power->system.update_tag) *
 544                           occ->powr_sample_time_us;
 545                break;
 546        case 3:
 547                val = get_unaligned_be16(&power->system.value) * 1000000ULL;
 548                break;
 549        case 4:
 550                return sysfs_emit(buf, "%u_proc\n",
 551                                  get_unaligned_be32(&power->sensor_id));
 552        case 5:
 553                val = occ_get_powr_avg(&power->proc.accumulator,
 554                                       &power->proc.update_tag);
 555                break;
 556        case 6:
 557                val = (u64)get_unaligned_be32(&power->proc.update_tag) *
 558                           occ->powr_sample_time_us;
 559                break;
 560        case 7:
 561                val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
 562                break;
 563        case 8:
 564                return sysfs_emit(buf, "%u_vdd\n",
 565                                  get_unaligned_be32(&power->sensor_id));
 566        case 9:
 567                val = occ_get_powr_avg(&power->vdd.accumulator,
 568                                       &power->vdd.update_tag);
 569                break;
 570        case 10:
 571                val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
 572                           occ->powr_sample_time_us;
 573                break;
 574        case 11:
 575                val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
 576                break;
 577        case 12:
 578                return sysfs_emit(buf, "%u_vdn\n",
 579                                  get_unaligned_be32(&power->sensor_id));
 580        case 13:
 581                val = occ_get_powr_avg(&power->vdn.accumulator,
 582                                       &power->vdn.update_tag);
 583                break;
 584        case 14:
 585                val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
 586                           occ->powr_sample_time_us;
 587                break;
 588        case 15:
 589                val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
 590                break;
 591        default:
 592                return -EINVAL;
 593        }
 594
 595        return sysfs_emit(buf, "%llu\n", val);
 596}
 597
 598static ssize_t occ_show_caps_1_2(struct device *dev,
 599                                 struct device_attribute *attr, char *buf)
 600{
 601        int rc;
 602        u64 val = 0;
 603        struct caps_sensor_2 *caps;
 604        struct occ *occ = dev_get_drvdata(dev);
 605        struct occ_sensors *sensors = &occ->sensors;
 606        struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
 607
 608        rc = occ_update_response(occ);
 609        if (rc)
 610                return rc;
 611
 612        caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
 613
 614        switch (sattr->nr) {
 615        case 0:
 616                return sysfs_emit(buf, "system\n");
 617        case 1:
 618                val = get_unaligned_be16(&caps->cap) * 1000000ULL;
 619                break;
 620        case 2:
 621                val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
 622                break;
 623        case 3:
 624                val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
 625                break;
 626        case 4:
 627                val = get_unaligned_be16(&caps->max) * 1000000ULL;
 628                break;
 629        case 5:
 630                val = get_unaligned_be16(&caps->min) * 1000000ULL;
 631                break;
 632        case 6:
 633                val = get_unaligned_be16(&caps->user) * 1000000ULL;
 634                break;
 635        case 7:
 636                if (occ->sensors.caps.version == 1)
 637                        return -EINVAL;
 638
 639                val = caps->user_source;
 640                break;
 641        default:
 642                return -EINVAL;
 643        }
 644
 645        return sysfs_emit(buf, "%llu\n", val);
 646}
 647
 648static ssize_t occ_show_caps_3(struct device *dev,
 649                               struct device_attribute *attr, char *buf)
 650{
 651        int rc;
 652        u64 val = 0;
 653        struct caps_sensor_3 *caps;
 654        struct occ *occ = dev_get_drvdata(dev);
 655        struct occ_sensors *sensors = &occ->sensors;
 656        struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
 657
 658        rc = occ_update_response(occ);
 659        if (rc)
 660                return rc;
 661
 662        caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
 663
 664        switch (sattr->nr) {
 665        case 0:
 666                return sysfs_emit(buf, "system\n");
 667        case 1:
 668                val = get_unaligned_be16(&caps->cap) * 1000000ULL;
 669                break;
 670        case 2:
 671                val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
 672                break;
 673        case 3:
 674                val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
 675                break;
 676        case 4:
 677                val = get_unaligned_be16(&caps->max) * 1000000ULL;
 678                break;
 679        case 5:
 680                val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
 681                break;
 682        case 6:
 683                val = get_unaligned_be16(&caps->user) * 1000000ULL;
 684                break;
 685        case 7:
 686                val = caps->user_source;
 687                break;
 688        default:
 689                return -EINVAL;
 690        }
 691
 692        return sysfs_emit(buf, "%llu\n", val);
 693}
 694
 695static ssize_t occ_store_caps_user(struct device *dev,
 696                                   struct device_attribute *attr,
 697                                   const char *buf, size_t count)
 698{
 699        int rc;
 700        u16 user_power_cap;
 701        unsigned long long value;
 702        struct occ *occ = dev_get_drvdata(dev);
 703
 704        rc = kstrtoull(buf, 0, &value);
 705        if (rc)
 706                return rc;
 707
 708        user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
 709
 710        rc = occ_set_user_power_cap(occ, user_power_cap);
 711        if (rc)
 712                return rc;
 713
 714        return count;
 715}
 716
 717static ssize_t occ_show_extended(struct device *dev,
 718                                 struct device_attribute *attr, char *buf)
 719{
 720        int rc;
 721        struct extended_sensor *extn;
 722        struct occ *occ = dev_get_drvdata(dev);
 723        struct occ_sensors *sensors = &occ->sensors;
 724        struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
 725
 726        rc = occ_update_response(occ);
 727        if (rc)
 728                return rc;
 729
 730        extn = ((struct extended_sensor *)sensors->extended.data) +
 731                sattr->index;
 732
 733        switch (sattr->nr) {
 734        case 0:
 735                if (extn->flags & EXTN_FLAG_SENSOR_ID) {
 736                        rc = sysfs_emit(buf, "%u",
 737                                        get_unaligned_be32(&extn->sensor_id));
 738                } else {
 739                        rc = sysfs_emit(buf, "%02x%02x%02x%02x\n",
 740                                        extn->name[0], extn->name[1],
 741                                        extn->name[2], extn->name[3]);
 742                }
 743                break;
 744        case 1:
 745                rc = sysfs_emit(buf, "%02x\n", extn->flags);
 746                break;
 747        case 2:
 748                rc = sysfs_emit(buf, "%02x%02x%02x%02x%02x%02x\n",
 749                                extn->data[0], extn->data[1], extn->data[2],
 750                                extn->data[3], extn->data[4], extn->data[5]);
 751                break;
 752        default:
 753                return -EINVAL;
 754        }
 755
 756        return rc;
 757}
 758
 759/*
 760 * Some helper macros to make it easier to define an occ_attribute. Since these
 761 * are dynamically allocated, we shouldn't use the existing kernel macros which
 762 * stringify the name argument.
 763 */
 764#define ATTR_OCC(_name, _mode, _show, _store) {                         \
 765        .attr   = {                                                     \
 766                .name = _name,                                          \
 767                .mode = VERIFY_OCTAL_PERMISSIONS(_mode),                \
 768        },                                                              \
 769        .show   = _show,                                                \
 770        .store  = _store,                                               \
 771}
 772
 773#define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) {     \
 774        .dev_attr       = ATTR_OCC(_name, _mode, _show, _store),        \
 775        .index          = _index,                                       \
 776        .nr             = _nr,                                          \
 777}
 778
 779#define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index)         \
 780        ((struct sensor_device_attribute_2)                             \
 781                SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
 782
 783/*
 784 * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
 785 * use our own instead of the built-in hwmon attribute types.
 786 */
 787static int occ_setup_sensor_attrs(struct occ *occ)
 788{
 789        unsigned int i, s, num_attrs = 0;
 790        struct device *dev = occ->bus_dev;
 791        struct occ_sensors *sensors = &occ->sensors;
 792        struct occ_attribute *attr;
 793        struct temp_sensor_2 *temp;
 794        ssize_t (*show_temp)(struct device *, struct device_attribute *,
 795                             char *) = occ_show_temp_1;
 796        ssize_t (*show_freq)(struct device *, struct device_attribute *,
 797                             char *) = occ_show_freq_1;
 798        ssize_t (*show_power)(struct device *, struct device_attribute *,
 799                              char *) = occ_show_power_1;
 800        ssize_t (*show_caps)(struct device *, struct device_attribute *,
 801                             char *) = occ_show_caps_1_2;
 802
 803        switch (sensors->temp.version) {
 804        case 1:
 805                num_attrs += (sensors->temp.num_sensors * 2);
 806                break;
 807        case 2:
 808                num_attrs += (sensors->temp.num_sensors * 4);
 809                show_temp = occ_show_temp_2;
 810                break;
 811        case 0x10:
 812                num_attrs += (sensors->temp.num_sensors * 5);
 813                show_temp = occ_show_temp_10;
 814                break;
 815        default:
 816                sensors->temp.num_sensors = 0;
 817        }
 818
 819        switch (sensors->freq.version) {
 820        case 2:
 821                show_freq = occ_show_freq_2;
 822                fallthrough;
 823        case 1:
 824                num_attrs += (sensors->freq.num_sensors * 2);
 825                break;
 826        default:
 827                sensors->freq.num_sensors = 0;
 828        }
 829
 830        switch (sensors->power.version) {
 831        case 2:
 832                show_power = occ_show_power_2;
 833                fallthrough;
 834        case 1:
 835                num_attrs += (sensors->power.num_sensors * 4);
 836                break;
 837        case 0xA0:
 838                num_attrs += (sensors->power.num_sensors * 16);
 839                show_power = occ_show_power_a0;
 840                break;
 841        default:
 842                sensors->power.num_sensors = 0;
 843        }
 844
 845        switch (sensors->caps.version) {
 846        case 1:
 847                num_attrs += (sensors->caps.num_sensors * 7);
 848                break;
 849        case 3:
 850                show_caps = occ_show_caps_3;
 851                fallthrough;
 852        case 2:
 853                num_attrs += (sensors->caps.num_sensors * 8);
 854                break;
 855        default:
 856                sensors->caps.num_sensors = 0;
 857        }
 858
 859        switch (sensors->extended.version) {
 860        case 1:
 861                num_attrs += (sensors->extended.num_sensors * 3);
 862                break;
 863        default:
 864                sensors->extended.num_sensors = 0;
 865        }
 866
 867        occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
 868                                  GFP_KERNEL);
 869        if (!occ->attrs)
 870                return -ENOMEM;
 871
 872        /* null-terminated list */
 873        occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
 874                                        num_attrs + 1, GFP_KERNEL);
 875        if (!occ->group.attrs)
 876                return -ENOMEM;
 877
 878        attr = occ->attrs;
 879
 880        for (i = 0; i < sensors->temp.num_sensors; ++i) {
 881                s = i + 1;
 882                temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
 883
 884                snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
 885                attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
 886                                             0, i);
 887                attr++;
 888
 889                if (sensors->temp.version > 1 &&
 890                    temp->fru_type == OCC_FRU_TYPE_VRM) {
 891                        snprintf(attr->name, sizeof(attr->name),
 892                                 "temp%d_alarm", s);
 893                } else {
 894                        snprintf(attr->name, sizeof(attr->name),
 895                                 "temp%d_input", s);
 896                }
 897
 898                attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
 899                                             1, i);
 900                attr++;
 901
 902                if (sensors->temp.version > 1) {
 903                        snprintf(attr->name, sizeof(attr->name),
 904                                 "temp%d_fru_type", s);
 905                        attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
 906                                                     show_temp, NULL, 2, i);
 907                        attr++;
 908
 909                        snprintf(attr->name, sizeof(attr->name),
 910                                 "temp%d_fault", s);
 911                        attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
 912                                                     show_temp, NULL, 3, i);
 913                        attr++;
 914
 915                        if (sensors->temp.version == 0x10) {
 916                                snprintf(attr->name, sizeof(attr->name),
 917                                         "temp%d_max", s);
 918                                attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
 919                                                             show_temp, NULL,
 920                                                             4, i);
 921                                attr++;
 922                        }
 923                }
 924        }
 925
 926        for (i = 0; i < sensors->freq.num_sensors; ++i) {
 927                s = i + 1;
 928
 929                snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
 930                attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
 931                                             0, i);
 932                attr++;
 933
 934                snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
 935                attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
 936                                             1, i);
 937                attr++;
 938        }
 939
 940        if (sensors->power.version == 0xA0) {
 941                /*
 942                 * Special case for many-attribute power sensor. Split it into
 943                 * a sensor number per power type, emulating several sensors.
 944                 */
 945                for (i = 0; i < sensors->power.num_sensors; ++i) {
 946                        unsigned int j;
 947                        unsigned int nr = 0;
 948
 949                        s = (i * 4) + 1;
 950
 951                        for (j = 0; j < 4; ++j) {
 952                                snprintf(attr->name, sizeof(attr->name),
 953                                         "power%d_label", s);
 954                                attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
 955                                                             show_power, NULL,
 956                                                             nr++, i);
 957                                attr++;
 958
 959                                snprintf(attr->name, sizeof(attr->name),
 960                                         "power%d_average", s);
 961                                attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
 962                                                             show_power, NULL,
 963                                                             nr++, i);
 964                                attr++;
 965
 966                                snprintf(attr->name, sizeof(attr->name),
 967                                         "power%d_average_interval", s);
 968                                attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
 969                                                             show_power, NULL,
 970                                                             nr++, i);
 971                                attr++;
 972
 973                                snprintf(attr->name, sizeof(attr->name),
 974                                         "power%d_input", s);
 975                                attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
 976                                                             show_power, NULL,
 977                                                             nr++, i);
 978                                attr++;
 979
 980                                s++;
 981                        }
 982                }
 983
 984                s = (sensors->power.num_sensors * 4) + 1;
 985        } else {
 986                for (i = 0; i < sensors->power.num_sensors; ++i) {
 987                        s = i + 1;
 988
 989                        snprintf(attr->name, sizeof(attr->name),
 990                                 "power%d_label", s);
 991                        attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
 992                                                     show_power, NULL, 0, i);
 993                        attr++;
 994
 995                        snprintf(attr->name, sizeof(attr->name),
 996                                 "power%d_average", s);
 997                        attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
 998                                                     show_power, NULL, 1, i);
 999                        attr++;
1000
1001                        snprintf(attr->name, sizeof(attr->name),
1002                                 "power%d_average_interval", s);
1003                        attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1004                                                     show_power, NULL, 2, i);
1005                        attr++;
1006
1007                        snprintf(attr->name, sizeof(attr->name),
1008                                 "power%d_input", s);
1009                        attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1010                                                     show_power, NULL, 3, i);
1011                        attr++;
1012                }
1013
1014                s = sensors->power.num_sensors + 1;
1015        }
1016
1017        if (sensors->caps.num_sensors >= 1) {
1018                snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
1019                attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1020                                             0, 0);
1021                attr++;
1022
1023                snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
1024                attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1025                                             1, 0);
1026                attr++;
1027
1028                snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
1029                attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1030                                             2, 0);
1031                attr++;
1032
1033                snprintf(attr->name, sizeof(attr->name),
1034                         "power%d_cap_not_redundant", s);
1035                attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1036                                             3, 0);
1037                attr++;
1038
1039                snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
1040                attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1041                                             4, 0);
1042                attr++;
1043
1044                snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
1045                attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1046                                             5, 0);
1047                attr++;
1048
1049                snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
1050                         s);
1051                attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
1052                                             occ_store_caps_user, 6, 0);
1053                attr++;
1054
1055                if (sensors->caps.version > 1) {
1056                        snprintf(attr->name, sizeof(attr->name),
1057                                 "power%d_cap_user_source", s);
1058                        attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1059                                                     show_caps, NULL, 7, 0);
1060                        attr++;
1061                }
1062        }
1063
1064        for (i = 0; i < sensors->extended.num_sensors; ++i) {
1065                s = i + 1;
1066
1067                snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
1068                attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1069                                             occ_show_extended, NULL, 0, i);
1070                attr++;
1071
1072                snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
1073                attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1074                                             occ_show_extended, NULL, 1, i);
1075                attr++;
1076
1077                snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1078                attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1079                                             occ_show_extended, NULL, 2, i);
1080                attr++;
1081        }
1082
1083        /* put the sensors in the group */
1084        for (i = 0; i < num_attrs; ++i) {
1085                sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1086                occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1087        }
1088
1089        return 0;
1090}
1091
1092/* only need to do this once at startup, as OCC won't change sensors on us */
1093static void occ_parse_poll_response(struct occ *occ)
1094{
1095        unsigned int i, old_offset, offset = 0, size = 0;
1096        struct occ_sensor *sensor;
1097        struct occ_sensors *sensors = &occ->sensors;
1098        struct occ_response *resp = &occ->resp;
1099        struct occ_poll_response *poll =
1100                (struct occ_poll_response *)&resp->data[0];
1101        struct occ_poll_response_header *header = &poll->header;
1102        struct occ_sensor_data_block *block = &poll->block;
1103
1104        dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1105                 header->occ_code_level);
1106
1107        for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1108                block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1109                old_offset = offset;
1110                offset = (block->header.num_sensors *
1111                          block->header.sensor_length) + sizeof(block->header);
1112                size += offset;
1113
1114                /* validate all the length/size fields */
1115                if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1116                        dev_warn(occ->bus_dev, "exceeded response buffer\n");
1117                        return;
1118                }
1119
1120                dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1121                        old_offset, offset - 1, block->header.eye_catcher,
1122                        block->header.num_sensors);
1123
1124                /* match sensor block type */
1125                if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1126                        sensor = &sensors->temp;
1127                else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1128                        sensor = &sensors->freq;
1129                else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1130                        sensor = &sensors->power;
1131                else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1132                        sensor = &sensors->caps;
1133                else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1134                        sensor = &sensors->extended;
1135                else {
1136                        dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1137                                 block->header.eye_catcher);
1138                        continue;
1139                }
1140
1141                sensor->num_sensors = block->header.num_sensors;
1142                sensor->version = block->header.sensor_format;
1143                sensor->data = &block->data;
1144        }
1145
1146        dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1147                sizeof(*header), size + sizeof(*header));
1148}
1149
1150int occ_setup(struct occ *occ, const char *name)
1151{
1152        int rc;
1153
1154        /* start with 1 to avoid false match with zero-initialized SRAM buffer */
1155        occ->seq_no = 1;
1156        mutex_init(&occ->lock);
1157        occ->groups[0] = &occ->group;
1158
1159        /* no need to lock */
1160        rc = occ_poll(occ);
1161        if (rc == -ESHUTDOWN) {
1162                dev_info(occ->bus_dev, "host is not ready\n");
1163                return rc;
1164        } else if (rc < 0) {
1165                dev_err(occ->bus_dev,
1166                        "failed to get OCC poll response=%02x: %d\n",
1167                        occ->resp.return_status, rc);
1168                return rc;
1169        }
1170
1171        occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
1172        occ_parse_poll_response(occ);
1173
1174        rc = occ_setup_sensor_attrs(occ);
1175        if (rc) {
1176                dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1177                        rc);
1178                return rc;
1179        }
1180
1181        occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1182                                                            occ, occ->groups);
1183        if (IS_ERR(occ->hwmon)) {
1184                rc = PTR_ERR(occ->hwmon);
1185                dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1186                        rc);
1187                return rc;
1188        }
1189
1190        rc = occ_setup_sysfs(occ);
1191        if (rc)
1192                dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1193
1194        return rc;
1195}
1196EXPORT_SYMBOL_GPL(occ_setup);
1197
1198MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
1199MODULE_DESCRIPTION("Common OCC hwmon code");
1200MODULE_LICENSE("GPL");
1201