1
2
3
4#include <linux/device.h>
5#include <linux/export.h>
6#include <linux/hwmon.h>
7#include <linux/hwmon-sysfs.h>
8#include <linux/jiffies.h>
9#include <linux/kernel.h>
10#include <linux/math64.h>
11#include <linux/module.h>
12#include <linux/mutex.h>
13#include <linux/sysfs.h>
14#include <asm/unaligned.h>
15
16#include "common.h"
17
18#define EXTN_FLAG_SENSOR_ID BIT(7)
19
20#define OCC_ERROR_COUNT_THRESHOLD 2
21
22#define OCC_STATE_SAFE 4
23#define OCC_SAFE_TIMEOUT msecs_to_jiffies(60000)
24
25#define OCC_UPDATE_FREQUENCY msecs_to_jiffies(1000)
26
27#define OCC_TEMP_SENSOR_FAULT 0xFF
28
29#define OCC_FRU_TYPE_VRM 3
30
31
32
33struct temp_sensor_1 {
34 u16 sensor_id;
35 u16 value;
36} __packed;
37
38struct temp_sensor_2 {
39 u32 sensor_id;
40 u8 fru_type;
41 u8 value;
42} __packed;
43
44struct temp_sensor_10 {
45 u32 sensor_id;
46 u8 fru_type;
47 u8 value;
48 u8 throttle;
49 u8 reserved;
50} __packed;
51
52struct freq_sensor_1 {
53 u16 sensor_id;
54 u16 value;
55} __packed;
56
57struct freq_sensor_2 {
58 u32 sensor_id;
59 u16 value;
60} __packed;
61
62struct power_sensor_1 {
63 u16 sensor_id;
64 u32 update_tag;
65 u32 accumulator;
66 u16 value;
67} __packed;
68
69struct power_sensor_2 {
70 u32 sensor_id;
71 u8 function_id;
72 u8 apss_channel;
73 u16 reserved;
74 u32 update_tag;
75 u64 accumulator;
76 u16 value;
77} __packed;
78
79struct power_sensor_data {
80 u16 value;
81 u32 update_tag;
82 u64 accumulator;
83} __packed;
84
85struct power_sensor_data_and_time {
86 u16 update_time;
87 u16 value;
88 u32 update_tag;
89 u64 accumulator;
90} __packed;
91
92struct power_sensor_a0 {
93 u32 sensor_id;
94 struct power_sensor_data_and_time system;
95 u32 reserved;
96 struct power_sensor_data_and_time proc;
97 struct power_sensor_data vdd;
98 struct power_sensor_data vdn;
99} __packed;
100
101struct caps_sensor_2 {
102 u16 cap;
103 u16 system_power;
104 u16 n_cap;
105 u16 max;
106 u16 min;
107 u16 user;
108 u8 user_source;
109} __packed;
110
111struct caps_sensor_3 {
112 u16 cap;
113 u16 system_power;
114 u16 n_cap;
115 u16 max;
116 u16 hard_min;
117 u16 soft_min;
118 u16 user;
119 u8 user_source;
120} __packed;
121
122struct extended_sensor {
123 union {
124 u8 name[4];
125 u32 sensor_id;
126 };
127 u8 flags;
128 u8 reserved;
129 u8 data[6];
130} __packed;
131
132static int occ_poll(struct occ *occ)
133{
134 int rc;
135 u16 checksum = occ->poll_cmd_data + occ->seq_no + 1;
136 u8 cmd[8];
137 struct occ_poll_response_header *header;
138
139
140 cmd[0] = occ->seq_no++;
141 cmd[1] = 0;
142 cmd[2] = 0;
143 cmd[3] = 1;
144 cmd[4] = occ->poll_cmd_data;
145 cmd[5] = checksum >> 8;
146 cmd[6] = checksum & 0xFF;
147 cmd[7] = 0;
148
149
150 rc = occ->send_cmd(occ, cmd);
151 if (rc) {
152 occ->last_error = rc;
153 if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
154 occ->error = rc;
155
156 goto done;
157 }
158
159
160 occ->error_count = 0;
161 occ->last_error = 0;
162 occ->error = 0;
163
164
165 header = (struct occ_poll_response_header *)occ->resp.data;
166 if (header->occ_state == OCC_STATE_SAFE) {
167 if (occ->last_safe) {
168 if (time_after(jiffies,
169 occ->last_safe + OCC_SAFE_TIMEOUT))
170 occ->error = -EHOSTDOWN;
171 } else {
172 occ->last_safe = jiffies;
173 }
174 } else {
175 occ->last_safe = 0;
176 }
177
178done:
179 occ_sysfs_poll_done(occ);
180 return rc;
181}
182
183static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
184{
185 int rc;
186 u8 cmd[8];
187 u16 checksum = 0x24;
188 __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
189
190 cmd[0] = 0;
191 cmd[1] = 0x22;
192 cmd[2] = 0;
193 cmd[3] = 2;
194
195 memcpy(&cmd[4], &user_power_cap_be, 2);
196
197 checksum += cmd[4] + cmd[5];
198 cmd[6] = checksum >> 8;
199 cmd[7] = checksum & 0xFF;
200
201 rc = mutex_lock_interruptible(&occ->lock);
202 if (rc)
203 return rc;
204
205 rc = occ->send_cmd(occ, cmd);
206
207 mutex_unlock(&occ->lock);
208
209 return rc;
210}
211
212int occ_update_response(struct occ *occ)
213{
214 int rc = mutex_lock_interruptible(&occ->lock);
215
216 if (rc)
217 return rc;
218
219
220 if (time_after(jiffies, occ->next_update)) {
221 rc = occ_poll(occ);
222 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
223 } else {
224 rc = occ->last_error;
225 }
226
227 mutex_unlock(&occ->lock);
228 return rc;
229}
230
231static ssize_t occ_show_temp_1(struct device *dev,
232 struct device_attribute *attr, char *buf)
233{
234 int rc;
235 u32 val = 0;
236 struct temp_sensor_1 *temp;
237 struct occ *occ = dev_get_drvdata(dev);
238 struct occ_sensors *sensors = &occ->sensors;
239 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
240
241 rc = occ_update_response(occ);
242 if (rc)
243 return rc;
244
245 temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
246
247 switch (sattr->nr) {
248 case 0:
249 val = get_unaligned_be16(&temp->sensor_id);
250 break;
251 case 1:
252
253
254
255
256 if (temp->value == 0xFFFF)
257 return -EREMOTEIO;
258 val = get_unaligned_be16(&temp->value) * 1000;
259 break;
260 default:
261 return -EINVAL;
262 }
263
264 return sysfs_emit(buf, "%u\n", val);
265}
266
267static ssize_t occ_show_temp_2(struct device *dev,
268 struct device_attribute *attr, char *buf)
269{
270 int rc;
271 u32 val = 0;
272 struct temp_sensor_2 *temp;
273 struct occ *occ = dev_get_drvdata(dev);
274 struct occ_sensors *sensors = &occ->sensors;
275 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
276
277 rc = occ_update_response(occ);
278 if (rc)
279 return rc;
280
281 temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
282
283 switch (sattr->nr) {
284 case 0:
285 val = get_unaligned_be32(&temp->sensor_id);
286 break;
287 case 1:
288 val = temp->value;
289 if (val == OCC_TEMP_SENSOR_FAULT)
290 return -EREMOTEIO;
291
292
293
294
295
296
297 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
298
299 if (val == 0)
300 return -EAGAIN;
301
302 val *= 1000;
303 }
304 break;
305 case 2:
306 val = temp->fru_type;
307 break;
308 case 3:
309 val = temp->value == OCC_TEMP_SENSOR_FAULT;
310 break;
311 default:
312 return -EINVAL;
313 }
314
315 return sysfs_emit(buf, "%u\n", val);
316}
317
318static ssize_t occ_show_temp_10(struct device *dev,
319 struct device_attribute *attr, char *buf)
320{
321 int rc;
322 u32 val = 0;
323 struct temp_sensor_10 *temp;
324 struct occ *occ = dev_get_drvdata(dev);
325 struct occ_sensors *sensors = &occ->sensors;
326 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
327
328 rc = occ_update_response(occ);
329 if (rc)
330 return rc;
331
332 temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index;
333
334 switch (sattr->nr) {
335 case 0:
336 val = get_unaligned_be32(&temp->sensor_id);
337 break;
338 case 1:
339 val = temp->value;
340 if (val == OCC_TEMP_SENSOR_FAULT)
341 return -EREMOTEIO;
342
343
344
345
346
347
348 if (temp->fru_type != OCC_FRU_TYPE_VRM) {
349
350 if (val == 0)
351 return -EAGAIN;
352
353 val *= 1000;
354 }
355 break;
356 case 2:
357 val = temp->fru_type;
358 break;
359 case 3:
360 val = temp->value == OCC_TEMP_SENSOR_FAULT;
361 break;
362 case 4:
363 val = temp->throttle * 1000;
364 break;
365 default:
366 return -EINVAL;
367 }
368
369 return sysfs_emit(buf, "%u\n", val);
370}
371
372static ssize_t occ_show_freq_1(struct device *dev,
373 struct device_attribute *attr, char *buf)
374{
375 int rc;
376 u16 val = 0;
377 struct freq_sensor_1 *freq;
378 struct occ *occ = dev_get_drvdata(dev);
379 struct occ_sensors *sensors = &occ->sensors;
380 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
381
382 rc = occ_update_response(occ);
383 if (rc)
384 return rc;
385
386 freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
387
388 switch (sattr->nr) {
389 case 0:
390 val = get_unaligned_be16(&freq->sensor_id);
391 break;
392 case 1:
393 val = get_unaligned_be16(&freq->value);
394 break;
395 default:
396 return -EINVAL;
397 }
398
399 return sysfs_emit(buf, "%u\n", val);
400}
401
402static ssize_t occ_show_freq_2(struct device *dev,
403 struct device_attribute *attr, char *buf)
404{
405 int rc;
406 u32 val = 0;
407 struct freq_sensor_2 *freq;
408 struct occ *occ = dev_get_drvdata(dev);
409 struct occ_sensors *sensors = &occ->sensors;
410 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
411
412 rc = occ_update_response(occ);
413 if (rc)
414 return rc;
415
416 freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
417
418 switch (sattr->nr) {
419 case 0:
420 val = get_unaligned_be32(&freq->sensor_id);
421 break;
422 case 1:
423 val = get_unaligned_be16(&freq->value);
424 break;
425 default:
426 return -EINVAL;
427 }
428
429 return sysfs_emit(buf, "%u\n", val);
430}
431
432static ssize_t occ_show_power_1(struct device *dev,
433 struct device_attribute *attr, char *buf)
434{
435 int rc;
436 u64 val = 0;
437 struct power_sensor_1 *power;
438 struct occ *occ = dev_get_drvdata(dev);
439 struct occ_sensors *sensors = &occ->sensors;
440 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
441
442 rc = occ_update_response(occ);
443 if (rc)
444 return rc;
445
446 power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
447
448 switch (sattr->nr) {
449 case 0:
450 val = get_unaligned_be16(&power->sensor_id);
451 break;
452 case 1:
453 val = get_unaligned_be32(&power->accumulator) /
454 get_unaligned_be32(&power->update_tag);
455 val *= 1000000ULL;
456 break;
457 case 2:
458 val = (u64)get_unaligned_be32(&power->update_tag) *
459 occ->powr_sample_time_us;
460 break;
461 case 3:
462 val = get_unaligned_be16(&power->value) * 1000000ULL;
463 break;
464 default:
465 return -EINVAL;
466 }
467
468 return sysfs_emit(buf, "%llu\n", val);
469}
470
471static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
472{
473 u64 divisor = get_unaligned_be32(samples);
474
475 return (divisor == 0) ? 0 :
476 div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
477}
478
479static ssize_t occ_show_power_2(struct device *dev,
480 struct device_attribute *attr, char *buf)
481{
482 int rc;
483 u64 val = 0;
484 struct power_sensor_2 *power;
485 struct occ *occ = dev_get_drvdata(dev);
486 struct occ_sensors *sensors = &occ->sensors;
487 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
488
489 rc = occ_update_response(occ);
490 if (rc)
491 return rc;
492
493 power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
494
495 switch (sattr->nr) {
496 case 0:
497 return sysfs_emit(buf, "%u_%u_%u\n",
498 get_unaligned_be32(&power->sensor_id),
499 power->function_id, power->apss_channel);
500 case 1:
501 val = occ_get_powr_avg(&power->accumulator,
502 &power->update_tag);
503 break;
504 case 2:
505 val = (u64)get_unaligned_be32(&power->update_tag) *
506 occ->powr_sample_time_us;
507 break;
508 case 3:
509 val = get_unaligned_be16(&power->value) * 1000000ULL;
510 break;
511 default:
512 return -EINVAL;
513 }
514
515 return sysfs_emit(buf, "%llu\n", val);
516}
517
518static ssize_t occ_show_power_a0(struct device *dev,
519 struct device_attribute *attr, char *buf)
520{
521 int rc;
522 u64 val = 0;
523 struct power_sensor_a0 *power;
524 struct occ *occ = dev_get_drvdata(dev);
525 struct occ_sensors *sensors = &occ->sensors;
526 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
527
528 rc = occ_update_response(occ);
529 if (rc)
530 return rc;
531
532 power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
533
534 switch (sattr->nr) {
535 case 0:
536 return sysfs_emit(buf, "%u_system\n",
537 get_unaligned_be32(&power->sensor_id));
538 case 1:
539 val = occ_get_powr_avg(&power->system.accumulator,
540 &power->system.update_tag);
541 break;
542 case 2:
543 val = (u64)get_unaligned_be32(&power->system.update_tag) *
544 occ->powr_sample_time_us;
545 break;
546 case 3:
547 val = get_unaligned_be16(&power->system.value) * 1000000ULL;
548 break;
549 case 4:
550 return sysfs_emit(buf, "%u_proc\n",
551 get_unaligned_be32(&power->sensor_id));
552 case 5:
553 val = occ_get_powr_avg(&power->proc.accumulator,
554 &power->proc.update_tag);
555 break;
556 case 6:
557 val = (u64)get_unaligned_be32(&power->proc.update_tag) *
558 occ->powr_sample_time_us;
559 break;
560 case 7:
561 val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
562 break;
563 case 8:
564 return sysfs_emit(buf, "%u_vdd\n",
565 get_unaligned_be32(&power->sensor_id));
566 case 9:
567 val = occ_get_powr_avg(&power->vdd.accumulator,
568 &power->vdd.update_tag);
569 break;
570 case 10:
571 val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
572 occ->powr_sample_time_us;
573 break;
574 case 11:
575 val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
576 break;
577 case 12:
578 return sysfs_emit(buf, "%u_vdn\n",
579 get_unaligned_be32(&power->sensor_id));
580 case 13:
581 val = occ_get_powr_avg(&power->vdn.accumulator,
582 &power->vdn.update_tag);
583 break;
584 case 14:
585 val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
586 occ->powr_sample_time_us;
587 break;
588 case 15:
589 val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
590 break;
591 default:
592 return -EINVAL;
593 }
594
595 return sysfs_emit(buf, "%llu\n", val);
596}
597
598static ssize_t occ_show_caps_1_2(struct device *dev,
599 struct device_attribute *attr, char *buf)
600{
601 int rc;
602 u64 val = 0;
603 struct caps_sensor_2 *caps;
604 struct occ *occ = dev_get_drvdata(dev);
605 struct occ_sensors *sensors = &occ->sensors;
606 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
607
608 rc = occ_update_response(occ);
609 if (rc)
610 return rc;
611
612 caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
613
614 switch (sattr->nr) {
615 case 0:
616 return sysfs_emit(buf, "system\n");
617 case 1:
618 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
619 break;
620 case 2:
621 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
622 break;
623 case 3:
624 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
625 break;
626 case 4:
627 val = get_unaligned_be16(&caps->max) * 1000000ULL;
628 break;
629 case 5:
630 val = get_unaligned_be16(&caps->min) * 1000000ULL;
631 break;
632 case 6:
633 val = get_unaligned_be16(&caps->user) * 1000000ULL;
634 break;
635 case 7:
636 if (occ->sensors.caps.version == 1)
637 return -EINVAL;
638
639 val = caps->user_source;
640 break;
641 default:
642 return -EINVAL;
643 }
644
645 return sysfs_emit(buf, "%llu\n", val);
646}
647
648static ssize_t occ_show_caps_3(struct device *dev,
649 struct device_attribute *attr, char *buf)
650{
651 int rc;
652 u64 val = 0;
653 struct caps_sensor_3 *caps;
654 struct occ *occ = dev_get_drvdata(dev);
655 struct occ_sensors *sensors = &occ->sensors;
656 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
657
658 rc = occ_update_response(occ);
659 if (rc)
660 return rc;
661
662 caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
663
664 switch (sattr->nr) {
665 case 0:
666 return sysfs_emit(buf, "system\n");
667 case 1:
668 val = get_unaligned_be16(&caps->cap) * 1000000ULL;
669 break;
670 case 2:
671 val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
672 break;
673 case 3:
674 val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
675 break;
676 case 4:
677 val = get_unaligned_be16(&caps->max) * 1000000ULL;
678 break;
679 case 5:
680 val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
681 break;
682 case 6:
683 val = get_unaligned_be16(&caps->user) * 1000000ULL;
684 break;
685 case 7:
686 val = caps->user_source;
687 break;
688 default:
689 return -EINVAL;
690 }
691
692 return sysfs_emit(buf, "%llu\n", val);
693}
694
695static ssize_t occ_store_caps_user(struct device *dev,
696 struct device_attribute *attr,
697 const char *buf, size_t count)
698{
699 int rc;
700 u16 user_power_cap;
701 unsigned long long value;
702 struct occ *occ = dev_get_drvdata(dev);
703
704 rc = kstrtoull(buf, 0, &value);
705 if (rc)
706 return rc;
707
708 user_power_cap = div64_u64(value, 1000000ULL);
709
710 rc = occ_set_user_power_cap(occ, user_power_cap);
711 if (rc)
712 return rc;
713
714 return count;
715}
716
717static ssize_t occ_show_extended(struct device *dev,
718 struct device_attribute *attr, char *buf)
719{
720 int rc;
721 struct extended_sensor *extn;
722 struct occ *occ = dev_get_drvdata(dev);
723 struct occ_sensors *sensors = &occ->sensors;
724 struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
725
726 rc = occ_update_response(occ);
727 if (rc)
728 return rc;
729
730 extn = ((struct extended_sensor *)sensors->extended.data) +
731 sattr->index;
732
733 switch (sattr->nr) {
734 case 0:
735 if (extn->flags & EXTN_FLAG_SENSOR_ID) {
736 rc = sysfs_emit(buf, "%u",
737 get_unaligned_be32(&extn->sensor_id));
738 } else {
739 rc = sysfs_emit(buf, "%02x%02x%02x%02x\n",
740 extn->name[0], extn->name[1],
741 extn->name[2], extn->name[3]);
742 }
743 break;
744 case 1:
745 rc = sysfs_emit(buf, "%02x\n", extn->flags);
746 break;
747 case 2:
748 rc = sysfs_emit(buf, "%02x%02x%02x%02x%02x%02x\n",
749 extn->data[0], extn->data[1], extn->data[2],
750 extn->data[3], extn->data[4], extn->data[5]);
751 break;
752 default:
753 return -EINVAL;
754 }
755
756 return rc;
757}
758
759
760
761
762
763
764#define ATTR_OCC(_name, _mode, _show, _store) { \
765 .attr = { \
766 .name = _name, \
767 .mode = VERIFY_OCTAL_PERMISSIONS(_mode), \
768 }, \
769 .show = _show, \
770 .store = _store, \
771}
772
773#define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) { \
774 .dev_attr = ATTR_OCC(_name, _mode, _show, _store), \
775 .index = _index, \
776 .nr = _nr, \
777}
778
779#define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index) \
780 ((struct sensor_device_attribute_2) \
781 SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
782
783
784
785
786
787static int occ_setup_sensor_attrs(struct occ *occ)
788{
789 unsigned int i, s, num_attrs = 0;
790 struct device *dev = occ->bus_dev;
791 struct occ_sensors *sensors = &occ->sensors;
792 struct occ_attribute *attr;
793 struct temp_sensor_2 *temp;
794 ssize_t (*show_temp)(struct device *, struct device_attribute *,
795 char *) = occ_show_temp_1;
796 ssize_t (*show_freq)(struct device *, struct device_attribute *,
797 char *) = occ_show_freq_1;
798 ssize_t (*show_power)(struct device *, struct device_attribute *,
799 char *) = occ_show_power_1;
800 ssize_t (*show_caps)(struct device *, struct device_attribute *,
801 char *) = occ_show_caps_1_2;
802
803 switch (sensors->temp.version) {
804 case 1:
805 num_attrs += (sensors->temp.num_sensors * 2);
806 break;
807 case 2:
808 num_attrs += (sensors->temp.num_sensors * 4);
809 show_temp = occ_show_temp_2;
810 break;
811 case 0x10:
812 num_attrs += (sensors->temp.num_sensors * 5);
813 show_temp = occ_show_temp_10;
814 break;
815 default:
816 sensors->temp.num_sensors = 0;
817 }
818
819 switch (sensors->freq.version) {
820 case 2:
821 show_freq = occ_show_freq_2;
822 fallthrough;
823 case 1:
824 num_attrs += (sensors->freq.num_sensors * 2);
825 break;
826 default:
827 sensors->freq.num_sensors = 0;
828 }
829
830 switch (sensors->power.version) {
831 case 2:
832 show_power = occ_show_power_2;
833 fallthrough;
834 case 1:
835 num_attrs += (sensors->power.num_sensors * 4);
836 break;
837 case 0xA0:
838 num_attrs += (sensors->power.num_sensors * 16);
839 show_power = occ_show_power_a0;
840 break;
841 default:
842 sensors->power.num_sensors = 0;
843 }
844
845 switch (sensors->caps.version) {
846 case 1:
847 num_attrs += (sensors->caps.num_sensors * 7);
848 break;
849 case 3:
850 show_caps = occ_show_caps_3;
851 fallthrough;
852 case 2:
853 num_attrs += (sensors->caps.num_sensors * 8);
854 break;
855 default:
856 sensors->caps.num_sensors = 0;
857 }
858
859 switch (sensors->extended.version) {
860 case 1:
861 num_attrs += (sensors->extended.num_sensors * 3);
862 break;
863 default:
864 sensors->extended.num_sensors = 0;
865 }
866
867 occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
868 GFP_KERNEL);
869 if (!occ->attrs)
870 return -ENOMEM;
871
872
873 occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
874 num_attrs + 1, GFP_KERNEL);
875 if (!occ->group.attrs)
876 return -ENOMEM;
877
878 attr = occ->attrs;
879
880 for (i = 0; i < sensors->temp.num_sensors; ++i) {
881 s = i + 1;
882 temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
883
884 snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
885 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
886 0, i);
887 attr++;
888
889 if (sensors->temp.version > 1 &&
890 temp->fru_type == OCC_FRU_TYPE_VRM) {
891 snprintf(attr->name, sizeof(attr->name),
892 "temp%d_alarm", s);
893 } else {
894 snprintf(attr->name, sizeof(attr->name),
895 "temp%d_input", s);
896 }
897
898 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
899 1, i);
900 attr++;
901
902 if (sensors->temp.version > 1) {
903 snprintf(attr->name, sizeof(attr->name),
904 "temp%d_fru_type", s);
905 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
906 show_temp, NULL, 2, i);
907 attr++;
908
909 snprintf(attr->name, sizeof(attr->name),
910 "temp%d_fault", s);
911 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
912 show_temp, NULL, 3, i);
913 attr++;
914
915 if (sensors->temp.version == 0x10) {
916 snprintf(attr->name, sizeof(attr->name),
917 "temp%d_max", s);
918 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
919 show_temp, NULL,
920 4, i);
921 attr++;
922 }
923 }
924 }
925
926 for (i = 0; i < sensors->freq.num_sensors; ++i) {
927 s = i + 1;
928
929 snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
930 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
931 0, i);
932 attr++;
933
934 snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
935 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
936 1, i);
937 attr++;
938 }
939
940 if (sensors->power.version == 0xA0) {
941
942
943
944
945 for (i = 0; i < sensors->power.num_sensors; ++i) {
946 unsigned int j;
947 unsigned int nr = 0;
948
949 s = (i * 4) + 1;
950
951 for (j = 0; j < 4; ++j) {
952 snprintf(attr->name, sizeof(attr->name),
953 "power%d_label", s);
954 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
955 show_power, NULL,
956 nr++, i);
957 attr++;
958
959 snprintf(attr->name, sizeof(attr->name),
960 "power%d_average", s);
961 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
962 show_power, NULL,
963 nr++, i);
964 attr++;
965
966 snprintf(attr->name, sizeof(attr->name),
967 "power%d_average_interval", s);
968 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
969 show_power, NULL,
970 nr++, i);
971 attr++;
972
973 snprintf(attr->name, sizeof(attr->name),
974 "power%d_input", s);
975 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
976 show_power, NULL,
977 nr++, i);
978 attr++;
979
980 s++;
981 }
982 }
983
984 s = (sensors->power.num_sensors * 4) + 1;
985 } else {
986 for (i = 0; i < sensors->power.num_sensors; ++i) {
987 s = i + 1;
988
989 snprintf(attr->name, sizeof(attr->name),
990 "power%d_label", s);
991 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
992 show_power, NULL, 0, i);
993 attr++;
994
995 snprintf(attr->name, sizeof(attr->name),
996 "power%d_average", s);
997 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
998 show_power, NULL, 1, i);
999 attr++;
1000
1001 snprintf(attr->name, sizeof(attr->name),
1002 "power%d_average_interval", s);
1003 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1004 show_power, NULL, 2, i);
1005 attr++;
1006
1007 snprintf(attr->name, sizeof(attr->name),
1008 "power%d_input", s);
1009 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1010 show_power, NULL, 3, i);
1011 attr++;
1012 }
1013
1014 s = sensors->power.num_sensors + 1;
1015 }
1016
1017 if (sensors->caps.num_sensors >= 1) {
1018 snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
1019 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1020 0, 0);
1021 attr++;
1022
1023 snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
1024 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1025 1, 0);
1026 attr++;
1027
1028 snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
1029 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1030 2, 0);
1031 attr++;
1032
1033 snprintf(attr->name, sizeof(attr->name),
1034 "power%d_cap_not_redundant", s);
1035 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1036 3, 0);
1037 attr++;
1038
1039 snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
1040 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1041 4, 0);
1042 attr++;
1043
1044 snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
1045 attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
1046 5, 0);
1047 attr++;
1048
1049 snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
1050 s);
1051 attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
1052 occ_store_caps_user, 6, 0);
1053 attr++;
1054
1055 if (sensors->caps.version > 1) {
1056 snprintf(attr->name, sizeof(attr->name),
1057 "power%d_cap_user_source", s);
1058 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1059 show_caps, NULL, 7, 0);
1060 attr++;
1061 }
1062 }
1063
1064 for (i = 0; i < sensors->extended.num_sensors; ++i) {
1065 s = i + 1;
1066
1067 snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
1068 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1069 occ_show_extended, NULL, 0, i);
1070 attr++;
1071
1072 snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
1073 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1074 occ_show_extended, NULL, 1, i);
1075 attr++;
1076
1077 snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
1078 attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
1079 occ_show_extended, NULL, 2, i);
1080 attr++;
1081 }
1082
1083
1084 for (i = 0; i < num_attrs; ++i) {
1085 sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
1086 occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
1087 }
1088
1089 return 0;
1090}
1091
1092
1093static void occ_parse_poll_response(struct occ *occ)
1094{
1095 unsigned int i, old_offset, offset = 0, size = 0;
1096 struct occ_sensor *sensor;
1097 struct occ_sensors *sensors = &occ->sensors;
1098 struct occ_response *resp = &occ->resp;
1099 struct occ_poll_response *poll =
1100 (struct occ_poll_response *)&resp->data[0];
1101 struct occ_poll_response_header *header = &poll->header;
1102 struct occ_sensor_data_block *block = &poll->block;
1103
1104 dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
1105 header->occ_code_level);
1106
1107 for (i = 0; i < header->num_sensor_data_blocks; ++i) {
1108 block = (struct occ_sensor_data_block *)((u8 *)block + offset);
1109 old_offset = offset;
1110 offset = (block->header.num_sensors *
1111 block->header.sensor_length) + sizeof(block->header);
1112 size += offset;
1113
1114
1115 if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
1116 dev_warn(occ->bus_dev, "exceeded response buffer\n");
1117 return;
1118 }
1119
1120 dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
1121 old_offset, offset - 1, block->header.eye_catcher,
1122 block->header.num_sensors);
1123
1124
1125 if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
1126 sensor = &sensors->temp;
1127 else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
1128 sensor = &sensors->freq;
1129 else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
1130 sensor = &sensors->power;
1131 else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
1132 sensor = &sensors->caps;
1133 else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
1134 sensor = &sensors->extended;
1135 else {
1136 dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
1137 block->header.eye_catcher);
1138 continue;
1139 }
1140
1141 sensor->num_sensors = block->header.num_sensors;
1142 sensor->version = block->header.sensor_format;
1143 sensor->data = &block->data;
1144 }
1145
1146 dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
1147 sizeof(*header), size + sizeof(*header));
1148}
1149
1150int occ_setup(struct occ *occ, const char *name)
1151{
1152 int rc;
1153
1154
1155 occ->seq_no = 1;
1156 mutex_init(&occ->lock);
1157 occ->groups[0] = &occ->group;
1158
1159
1160 rc = occ_poll(occ);
1161 if (rc == -ESHUTDOWN) {
1162 dev_info(occ->bus_dev, "host is not ready\n");
1163 return rc;
1164 } else if (rc < 0) {
1165 dev_err(occ->bus_dev,
1166 "failed to get OCC poll response=%02x: %d\n",
1167 occ->resp.return_status, rc);
1168 return rc;
1169 }
1170
1171 occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
1172 occ_parse_poll_response(occ);
1173
1174 rc = occ_setup_sensor_attrs(occ);
1175 if (rc) {
1176 dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
1177 rc);
1178 return rc;
1179 }
1180
1181 occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
1182 occ, occ->groups);
1183 if (IS_ERR(occ->hwmon)) {
1184 rc = PTR_ERR(occ->hwmon);
1185 dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
1186 rc);
1187 return rc;
1188 }
1189
1190 rc = occ_setup_sysfs(occ);
1191 if (rc)
1192 dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
1193
1194 return rc;
1195}
1196EXPORT_SYMBOL_GPL(occ_setup);
1197
1198MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
1199MODULE_DESCRIPTION("Common OCC hwmon code");
1200MODULE_LICENSE("GPL");
1201