linux/drivers/gpu/drm/amd/display/dc/dcn10/dcn10_optc.c
<<
>>
Prefs
   1/*
   2 * Copyright 2012-15 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 * Authors: AMD
  23 *
  24 */
  25
  26
  27#include "reg_helper.h"
  28#include "dcn10_optc.h"
  29#include "dc.h"
  30
  31#define REG(reg)\
  32        optc1->tg_regs->reg
  33
  34#define CTX \
  35        optc1->base.ctx
  36
  37#undef FN
  38#define FN(reg_name, field_name) \
  39        optc1->tg_shift->field_name, optc1->tg_mask->field_name
  40
  41#define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
  42
  43/**
  44* apply_front_porch_workaround  TODO FPGA still need?
  45*
  46* This is a workaround for a bug that has existed since R5xx and has not been
  47* fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
  48*/
  49static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
  50{
  51        if (timing->flags.INTERLACE == 1) {
  52                if (timing->v_front_porch < 2)
  53                        timing->v_front_porch = 2;
  54        } else {
  55                if (timing->v_front_porch < 1)
  56                        timing->v_front_porch = 1;
  57        }
  58}
  59
  60void optc1_program_global_sync(
  61                struct timing_generator *optc,
  62                int vready_offset,
  63                int vstartup_start,
  64                int vupdate_offset,
  65                int vupdate_width)
  66{
  67        struct optc *optc1 = DCN10TG_FROM_TG(optc);
  68
  69        optc1->vready_offset = vready_offset;
  70        optc1->vstartup_start = vstartup_start;
  71        optc1->vupdate_offset = vupdate_offset;
  72        optc1->vupdate_width = vupdate_width;
  73
  74        if (optc1->vstartup_start == 0) {
  75                BREAK_TO_DEBUGGER();
  76                return;
  77        }
  78
  79        REG_SET(OTG_VSTARTUP_PARAM, 0,
  80                VSTARTUP_START, optc1->vstartup_start);
  81
  82        REG_SET_2(OTG_VUPDATE_PARAM, 0,
  83                        VUPDATE_OFFSET, optc1->vupdate_offset,
  84                        VUPDATE_WIDTH, optc1->vupdate_width);
  85
  86        REG_SET(OTG_VREADY_PARAM, 0,
  87                        VREADY_OFFSET, optc1->vready_offset);
  88}
  89
  90static void optc1_disable_stereo(struct timing_generator *optc)
  91{
  92        struct optc *optc1 = DCN10TG_FROM_TG(optc);
  93
  94        REG_SET(OTG_STEREO_CONTROL, 0,
  95                OTG_STEREO_EN, 0);
  96
  97        REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
  98                OTG_3D_STRUCTURE_EN, 0,
  99                OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
 100}
 101
 102void optc1_setup_vertical_interrupt0(
 103                struct timing_generator *optc,
 104                uint32_t start_line,
 105                uint32_t end_line)
 106{
 107        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 108
 109        REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
 110                        OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
 111                        OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
 112}
 113
 114void optc1_setup_vertical_interrupt1(
 115                struct timing_generator *optc,
 116                uint32_t start_line)
 117{
 118        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 119
 120        REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
 121                                OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
 122}
 123
 124void optc1_setup_vertical_interrupt2(
 125                struct timing_generator *optc,
 126                uint32_t start_line)
 127{
 128        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 129
 130        REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
 131                        OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
 132}
 133
 134/**
 135 * Vupdate keepout can be set to a window to block the update lock for that pipe from changing.
 136 * Start offset begins with vstartup and goes for x number of clocks,
 137 * end offset starts from end of vupdate to x number of clocks.
 138 */
 139void optc1_set_vupdate_keepout(struct timing_generator *optc,
 140                               struct vupdate_keepout_params *params)
 141{
 142        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 143
 144        REG_SET_3(OTG_VUPDATE_KEEPOUT, 0,
 145                  MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_START_OFFSET, params->start_offset,
 146                  MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_END_OFFSET, params->end_offset,
 147                  OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, params->enable);
 148}
 149
 150/**
 151 * program_timing_generator   used by mode timing set
 152 * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
 153 * Including SYNC. Call BIOS command table to program Timings.
 154 */
 155void optc1_program_timing(
 156        struct timing_generator *optc,
 157        const struct dc_crtc_timing *dc_crtc_timing,
 158        int vready_offset,
 159        int vstartup_start,
 160        int vupdate_offset,
 161        int vupdate_width,
 162        const enum signal_type signal,
 163        bool use_vbios)
 164{
 165        struct dc_crtc_timing patched_crtc_timing;
 166        uint32_t asic_blank_end;
 167        uint32_t asic_blank_start;
 168        uint32_t v_total;
 169        uint32_t v_sync_end;
 170        uint32_t h_sync_polarity, v_sync_polarity;
 171        uint32_t start_point = 0;
 172        uint32_t field_num = 0;
 173        enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
 174
 175        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 176
 177        optc1->signal = signal;
 178        optc1->vready_offset = vready_offset;
 179        optc1->vstartup_start = vstartup_start;
 180        optc1->vupdate_offset = vupdate_offset;
 181        optc1->vupdate_width = vupdate_width;
 182        patched_crtc_timing = *dc_crtc_timing;
 183        apply_front_porch_workaround(&patched_crtc_timing);
 184
 185        /* Load horizontal timing */
 186
 187        /* CRTC_H_TOTAL = vesa.h_total - 1 */
 188        REG_SET(OTG_H_TOTAL, 0,
 189                        OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
 190
 191        /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
 192        REG_UPDATE_2(OTG_H_SYNC_A,
 193                        OTG_H_SYNC_A_START, 0,
 194                        OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
 195
 196        /* blank_start = line end - front porch */
 197        asic_blank_start = patched_crtc_timing.h_total -
 198                        patched_crtc_timing.h_front_porch;
 199
 200        /* blank_end = blank_start - active */
 201        asic_blank_end = asic_blank_start -
 202                        patched_crtc_timing.h_border_right -
 203                        patched_crtc_timing.h_addressable -
 204                        patched_crtc_timing.h_border_left;
 205
 206        REG_UPDATE_2(OTG_H_BLANK_START_END,
 207                        OTG_H_BLANK_START, asic_blank_start,
 208                        OTG_H_BLANK_END, asic_blank_end);
 209
 210        /* h_sync polarity */
 211        h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
 212                        0 : 1;
 213
 214        REG_UPDATE(OTG_H_SYNC_A_CNTL,
 215                        OTG_H_SYNC_A_POL, h_sync_polarity);
 216
 217        v_total = patched_crtc_timing.v_total - 1;
 218
 219        REG_SET(OTG_V_TOTAL, 0,
 220                        OTG_V_TOTAL, v_total);
 221
 222        /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
 223         * OTG_V_TOTAL_MIN are equal to V_TOTAL.
 224         */
 225        REG_SET(OTG_V_TOTAL_MAX, 0,
 226                OTG_V_TOTAL_MAX, v_total);
 227        REG_SET(OTG_V_TOTAL_MIN, 0,
 228                OTG_V_TOTAL_MIN, v_total);
 229
 230        /* v_sync_start = 0, v_sync_end = v_sync_width */
 231        v_sync_end = patched_crtc_timing.v_sync_width;
 232
 233        REG_UPDATE_2(OTG_V_SYNC_A,
 234                        OTG_V_SYNC_A_START, 0,
 235                        OTG_V_SYNC_A_END, v_sync_end);
 236
 237        /* blank_start = frame end - front porch */
 238        asic_blank_start = patched_crtc_timing.v_total -
 239                        patched_crtc_timing.v_front_porch;
 240
 241        /* blank_end = blank_start - active */
 242        asic_blank_end = asic_blank_start -
 243                        patched_crtc_timing.v_border_bottom -
 244                        patched_crtc_timing.v_addressable -
 245                        patched_crtc_timing.v_border_top;
 246
 247        REG_UPDATE_2(OTG_V_BLANK_START_END,
 248                        OTG_V_BLANK_START, asic_blank_start,
 249                        OTG_V_BLANK_END, asic_blank_end);
 250
 251        /* v_sync polarity */
 252        v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
 253                        0 : 1;
 254
 255        REG_UPDATE(OTG_V_SYNC_A_CNTL,
 256                OTG_V_SYNC_A_POL, v_sync_polarity);
 257
 258        if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
 259                        optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
 260                        optc1->signal == SIGNAL_TYPE_EDP) {
 261                start_point = 1;
 262                if (patched_crtc_timing.flags.INTERLACE == 1)
 263                        field_num = 1;
 264        }
 265
 266        /* Interlace */
 267        if (REG(OTG_INTERLACE_CONTROL)) {
 268                if (patched_crtc_timing.flags.INTERLACE == 1)
 269                        REG_UPDATE(OTG_INTERLACE_CONTROL,
 270                                        OTG_INTERLACE_ENABLE, 1);
 271                else
 272                        REG_UPDATE(OTG_INTERLACE_CONTROL,
 273                                        OTG_INTERLACE_ENABLE, 0);
 274        }
 275
 276        /* VTG enable set to 0 first VInit */
 277        REG_UPDATE(CONTROL,
 278                        VTG0_ENABLE, 0);
 279
 280        /* original code is using VTG offset to address OTG reg, seems wrong */
 281        REG_UPDATE_2(OTG_CONTROL,
 282                        OTG_START_POINT_CNTL, start_point,
 283                        OTG_FIELD_NUMBER_CNTL, field_num);
 284
 285        optc->funcs->program_global_sync(optc,
 286                        vready_offset,
 287                        vstartup_start,
 288                        vupdate_offset,
 289                        vupdate_width);
 290
 291        optc->funcs->set_vtg_params(optc, dc_crtc_timing, true);
 292
 293        /* TODO
 294         * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
 295         * program_horz_count_by_2
 296         * for DVI 30bpp mode, 0 otherwise
 297         * program_horz_count_by_2(optc, &patched_crtc_timing);
 298         */
 299
 300        /* Enable stereo - only when we need to pack 3D frame. Other types
 301         * of stereo handled in explicit call
 302         */
 303
 304        if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
 305                h_div = H_TIMING_DIV_BY2;
 306
 307        if (REG(OPTC_DATA_FORMAT_CONTROL)) {
 308                uint32_t data_fmt = 0;
 309
 310                if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
 311                        data_fmt = 1;
 312                else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
 313                        data_fmt = 2;
 314
 315                REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt);
 316        }
 317
 318        if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) {
 319                if (optc1->opp_count == 4)
 320                        h_div = H_TIMING_DIV_BY4;
 321
 322                REG_UPDATE(OTG_H_TIMING_CNTL,
 323                OTG_H_TIMING_DIV_MODE, h_div);
 324        } else {
 325                REG_UPDATE(OTG_H_TIMING_CNTL,
 326                OTG_H_TIMING_DIV_BY2, h_div);
 327        }
 328}
 329
 330void optc1_set_vtg_params(struct timing_generator *optc,
 331                const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2)
 332{
 333        struct dc_crtc_timing patched_crtc_timing;
 334        uint32_t asic_blank_end;
 335        uint32_t v_init;
 336        uint32_t v_fp2 = 0;
 337        int32_t vertical_line_start;
 338
 339        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 340
 341        patched_crtc_timing = *dc_crtc_timing;
 342        apply_front_porch_workaround(&patched_crtc_timing);
 343
 344        /* VCOUNT_INIT is the start of blank */
 345        v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
 346
 347        /* end of blank = v_init - active */
 348        asic_blank_end = v_init -
 349                        patched_crtc_timing.v_border_bottom -
 350                        patched_crtc_timing.v_addressable -
 351                        patched_crtc_timing.v_border_top;
 352
 353        /* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
 354        vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
 355        if (vertical_line_start < 0)
 356                v_fp2 = -vertical_line_start;
 357
 358        /* Interlace */
 359        if (REG(OTG_INTERLACE_CONTROL)) {
 360                if (patched_crtc_timing.flags.INTERLACE == 1) {
 361                        v_init = v_init / 2;
 362                        if ((optc1->vstartup_start/2)*2 > asic_blank_end)
 363                                v_fp2 = v_fp2 / 2;
 364                }
 365        }
 366
 367        if (program_fp2)
 368                REG_UPDATE_2(CONTROL,
 369                                VTG0_FP2, v_fp2,
 370                                VTG0_VCOUNT_INIT, v_init);
 371        else
 372                REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init);
 373}
 374
 375void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
 376{
 377        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 378
 379        uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
 380
 381        REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
 382                        OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
 383}
 384
 385/**
 386 * optc1_set_timing_double_buffer() - DRR double buffering control
 387 *
 388 * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN,
 389 * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers.
 390 *
 391 * Options: any time,  start of frame, dp start of frame (range timing)
 392 */
 393void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable)
 394{
 395        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 396        uint32_t mode = enable ? 2 : 0;
 397
 398        REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
 399                   OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode);
 400}
 401
 402/**
 403 * unblank_crtc
 404 * Call ASIC Control Object to UnBlank CRTC.
 405 */
 406static void optc1_unblank_crtc(struct timing_generator *optc)
 407{
 408        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 409
 410        REG_UPDATE_2(OTG_BLANK_CONTROL,
 411                        OTG_BLANK_DATA_EN, 0,
 412                        OTG_BLANK_DE_MODE, 0);
 413
 414        /* W/A for automated testing
 415         * Automated testing will fail underflow test as there
 416         * sporadic underflows which occur during the optc blank
 417         * sequence.  As a w/a, clear underflow on unblank.
 418         * This prevents the failure, but will not mask actual
 419         * underflow that affect real use cases.
 420         */
 421        optc1_clear_optc_underflow(optc);
 422}
 423
 424/**
 425 * blank_crtc
 426 * Call ASIC Control Object to Blank CRTC.
 427 */
 428
 429static void optc1_blank_crtc(struct timing_generator *optc)
 430{
 431        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 432
 433        REG_UPDATE_2(OTG_BLANK_CONTROL,
 434                        OTG_BLANK_DATA_EN, 1,
 435                        OTG_BLANK_DE_MODE, 0);
 436
 437        optc1_set_blank_data_double_buffer(optc, false);
 438}
 439
 440void optc1_set_blank(struct timing_generator *optc,
 441                bool enable_blanking)
 442{
 443        if (enable_blanking)
 444                optc1_blank_crtc(optc);
 445        else
 446                optc1_unblank_crtc(optc);
 447}
 448
 449bool optc1_is_blanked(struct timing_generator *optc)
 450{
 451        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 452        uint32_t blank_en;
 453        uint32_t blank_state;
 454
 455        REG_GET_2(OTG_BLANK_CONTROL,
 456                        OTG_BLANK_DATA_EN, &blank_en,
 457                        OTG_CURRENT_BLANK_STATE, &blank_state);
 458
 459        return blank_en && blank_state;
 460}
 461
 462void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
 463{
 464        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 465
 466        if (enable) {
 467                REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
 468                                OPTC_INPUT_CLK_EN, 1,
 469                                OPTC_INPUT_CLK_GATE_DIS, 1);
 470
 471                REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
 472                                OPTC_INPUT_CLK_ON, 1,
 473                                1, 1000);
 474
 475                /* Enable clock */
 476                REG_UPDATE_2(OTG_CLOCK_CONTROL,
 477                                OTG_CLOCK_EN, 1,
 478                                OTG_CLOCK_GATE_DIS, 1);
 479                REG_WAIT(OTG_CLOCK_CONTROL,
 480                                OTG_CLOCK_ON, 1,
 481                                1, 1000);
 482        } else  {
 483                REG_UPDATE_2(OTG_CLOCK_CONTROL,
 484                                OTG_CLOCK_GATE_DIS, 0,
 485                                OTG_CLOCK_EN, 0);
 486
 487                REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
 488                                OPTC_INPUT_CLK_GATE_DIS, 0,
 489                                OPTC_INPUT_CLK_EN, 0);
 490        }
 491}
 492
 493/**
 494 * Enable CRTC
 495 * Enable CRTC - call ASIC Control Object to enable Timing generator.
 496 */
 497static bool optc1_enable_crtc(struct timing_generator *optc)
 498{
 499        /* TODO FPGA wait for answer
 500         * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
 501         * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
 502         */
 503        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 504
 505        /* opp instance for OTG. For DCN1.0, ODM is remoed.
 506         * OPP and OPTC should 1:1 mapping
 507         */
 508        REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
 509                        OPTC_SRC_SEL, optc->inst);
 510
 511        /* VTG enable first is for HW workaround */
 512        REG_UPDATE(CONTROL,
 513                        VTG0_ENABLE, 1);
 514
 515        REG_SEQ_START();
 516
 517        /* Enable CRTC */
 518        REG_UPDATE_2(OTG_CONTROL,
 519                        OTG_DISABLE_POINT_CNTL, 3,
 520                        OTG_MASTER_EN, 1);
 521
 522        REG_SEQ_SUBMIT();
 523        REG_SEQ_WAIT_DONE();
 524
 525        return true;
 526}
 527
 528/* disable_crtc - call ASIC Control Object to disable Timing generator. */
 529bool optc1_disable_crtc(struct timing_generator *optc)
 530{
 531        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 532
 533        /* disable otg request until end of the first line
 534         * in the vertical blank region
 535         */
 536        REG_UPDATE_2(OTG_CONTROL,
 537                        OTG_DISABLE_POINT_CNTL, 3,
 538                        OTG_MASTER_EN, 0);
 539
 540        REG_UPDATE(CONTROL,
 541                        VTG0_ENABLE, 0);
 542
 543        /* CRTC disabled, so disable  clock. */
 544        REG_WAIT(OTG_CLOCK_CONTROL,
 545                        OTG_BUSY, 0,
 546                        1, 100000);
 547
 548        return true;
 549}
 550
 551
 552void optc1_program_blank_color(
 553                struct timing_generator *optc,
 554                const struct tg_color *black_color)
 555{
 556        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 557
 558        REG_SET_3(OTG_BLACK_COLOR, 0,
 559                        OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
 560                        OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
 561                        OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
 562}
 563
 564bool optc1_validate_timing(
 565        struct timing_generator *optc,
 566        const struct dc_crtc_timing *timing)
 567{
 568        uint32_t v_blank;
 569        uint32_t h_blank;
 570        uint32_t min_v_blank;
 571        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 572
 573        ASSERT(timing != NULL);
 574
 575        v_blank = (timing->v_total - timing->v_addressable -
 576                                        timing->v_border_top - timing->v_border_bottom);
 577
 578        h_blank = (timing->h_total - timing->h_addressable -
 579                timing->h_border_right -
 580                timing->h_border_left);
 581
 582        if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
 583                timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
 584                timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
 585                timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
 586                timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
 587                timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
 588                return false;
 589
 590        /* Temporarily blocking interlacing mode until it's supported */
 591        if (timing->flags.INTERLACE == 1)
 592                return false;
 593
 594        /* Check maximum number of pixels supported by Timing Generator
 595         * (Currently will never fail, in order to fail needs display which
 596         * needs more than 8192 horizontal and
 597         * more than 8192 vertical total pixels)
 598         */
 599        if (timing->h_total > optc1->max_h_total ||
 600                timing->v_total > optc1->max_v_total)
 601                return false;
 602
 603
 604        if (h_blank < optc1->min_h_blank)
 605                return false;
 606
 607        if (timing->h_sync_width  < optc1->min_h_sync_width ||
 608                 timing->v_sync_width  < optc1->min_v_sync_width)
 609                return false;
 610
 611        min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
 612
 613        if (v_blank < min_v_blank)
 614                return false;
 615
 616        return true;
 617
 618}
 619
 620/*
 621 * get_vblank_counter
 622 *
 623 * @brief
 624 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
 625 * holds the counter of frames.
 626 *
 627 * @param
 628 * struct timing_generator *optc - [in] timing generator which controls the
 629 * desired CRTC
 630 *
 631 * @return
 632 * Counter of frames, which should equal to number of vblanks.
 633 */
 634uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
 635{
 636        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 637        uint32_t frame_count;
 638
 639        REG_GET(OTG_STATUS_FRAME_COUNT,
 640                OTG_FRAME_COUNT, &frame_count);
 641
 642        return frame_count;
 643}
 644
 645void optc1_lock(struct timing_generator *optc)
 646{
 647        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 648        uint32_t regval = 0;
 649
 650        regval = REG_READ(OTG_CONTROL);
 651
 652        /* otg is not running, do not need to be locked */
 653        if ((regval & 0x1) == 0x0)
 654                return;
 655
 656        REG_SET(OTG_GLOBAL_CONTROL0, 0,
 657                        OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
 658        REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
 659                        OTG_MASTER_UPDATE_LOCK, 1);
 660
 661        /* Should be fast, status does not update on maximus */
 662        if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) {
 663
 664                REG_WAIT(OTG_MASTER_UPDATE_LOCK,
 665                                UPDATE_LOCK_STATUS, 1,
 666                                1, 10);
 667        }
 668}
 669
 670void optc1_unlock(struct timing_generator *optc)
 671{
 672        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 673
 674        REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
 675                        OTG_MASTER_UPDATE_LOCK, 0);
 676}
 677
 678bool optc1_is_locked(struct timing_generator *optc)
 679{
 680        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 681        uint32_t locked;
 682
 683        REG_GET(OTG_MASTER_UPDATE_LOCK, UPDATE_LOCK_STATUS, &locked);
 684
 685        return (locked == 1);
 686}
 687
 688void optc1_get_position(struct timing_generator *optc,
 689                struct crtc_position *position)
 690{
 691        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 692
 693        REG_GET_2(OTG_STATUS_POSITION,
 694                        OTG_HORZ_COUNT, &position->horizontal_count,
 695                        OTG_VERT_COUNT, &position->vertical_count);
 696
 697        REG_GET(OTG_NOM_VERT_POSITION,
 698                        OTG_VERT_COUNT_NOM, &position->nominal_vcount);
 699}
 700
 701bool optc1_is_counter_moving(struct timing_generator *optc)
 702{
 703        struct crtc_position position1, position2;
 704
 705        optc->funcs->get_position(optc, &position1);
 706        optc->funcs->get_position(optc, &position2);
 707
 708        if (position1.horizontal_count == position2.horizontal_count &&
 709                position1.vertical_count == position2.vertical_count)
 710                return false;
 711        else
 712                return true;
 713}
 714
 715bool optc1_did_triggered_reset_occur(
 716        struct timing_generator *optc)
 717{
 718        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 719        uint32_t occurred_force, occurred_vsync;
 720
 721        REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
 722                OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
 723
 724        REG_GET(OTG_VERT_SYNC_CONTROL,
 725                OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
 726
 727        return occurred_vsync != 0 || occurred_force != 0;
 728}
 729
 730void optc1_disable_reset_trigger(struct timing_generator *optc)
 731{
 732        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 733
 734        REG_WRITE(OTG_TRIGA_CNTL, 0);
 735
 736        REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
 737                OTG_FORCE_COUNT_NOW_CLEAR, 1);
 738
 739        REG_SET(OTG_VERT_SYNC_CONTROL, 0,
 740                OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
 741}
 742
 743void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
 744{
 745        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 746        uint32_t falling_edge;
 747
 748        REG_GET(OTG_V_SYNC_A_CNTL,
 749                        OTG_V_SYNC_A_POL, &falling_edge);
 750
 751        if (falling_edge)
 752                REG_SET_3(OTG_TRIGA_CNTL, 0,
 753                                /* vsync signal from selected OTG pipe based
 754                                 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
 755                                 */
 756                                OTG_TRIGA_SOURCE_SELECT, 20,
 757                                OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
 758                                /* always detect falling edge */
 759                                OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
 760        else
 761                REG_SET_3(OTG_TRIGA_CNTL, 0,
 762                                /* vsync signal from selected OTG pipe based
 763                                 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
 764                                 */
 765                                OTG_TRIGA_SOURCE_SELECT, 20,
 766                                OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
 767                                /* always detect rising edge */
 768                                OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
 769
 770        REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
 771                        /* force H count to H_TOTAL and V count to V_TOTAL in
 772                         * progressive mode and V_TOTAL-1 in interlaced mode
 773                         */
 774                        OTG_FORCE_COUNT_NOW_MODE, 2);
 775}
 776
 777void optc1_enable_crtc_reset(
 778                struct timing_generator *optc,
 779                int source_tg_inst,
 780                struct crtc_trigger_info *crtc_tp)
 781{
 782        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 783        uint32_t falling_edge = 0;
 784        uint32_t rising_edge = 0;
 785
 786        switch (crtc_tp->event) {
 787
 788        case CRTC_EVENT_VSYNC_RISING:
 789                rising_edge = 1;
 790                break;
 791
 792        case CRTC_EVENT_VSYNC_FALLING:
 793                falling_edge = 1;
 794                break;
 795        }
 796
 797        REG_SET_4(OTG_TRIGA_CNTL, 0,
 798                 /* vsync signal from selected OTG pipe based
 799                  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
 800                  */
 801                  OTG_TRIGA_SOURCE_SELECT, 20,
 802                  OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
 803                  /* always detect falling edge */
 804                  OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
 805                  OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
 806
 807        switch (crtc_tp->delay) {
 808        case TRIGGER_DELAY_NEXT_LINE:
 809                REG_SET(OTG_VERT_SYNC_CONTROL, 0,
 810                                OTG_AUTO_FORCE_VSYNC_MODE, 1);
 811                break;
 812        case TRIGGER_DELAY_NEXT_PIXEL:
 813                REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
 814                        /* force H count to H_TOTAL and V count to V_TOTAL in
 815                         * progressive mode and V_TOTAL-1 in interlaced mode
 816                         */
 817                        OTG_FORCE_COUNT_NOW_MODE, 2);
 818                break;
 819        }
 820}
 821
 822void optc1_wait_for_state(struct timing_generator *optc,
 823                enum crtc_state state)
 824{
 825        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 826
 827        switch (state) {
 828        case CRTC_STATE_VBLANK:
 829                REG_WAIT(OTG_STATUS,
 830                                OTG_V_BLANK, 1,
 831                                1, 100000); /* 1 vupdate at 10hz */
 832                break;
 833
 834        case CRTC_STATE_VACTIVE:
 835                REG_WAIT(OTG_STATUS,
 836                                OTG_V_ACTIVE_DISP, 1,
 837                                1, 100000); /* 1 vupdate at 10hz */
 838                break;
 839
 840        default:
 841                break;
 842        }
 843}
 844
 845void optc1_set_early_control(
 846        struct timing_generator *optc,
 847        uint32_t early_cntl)
 848{
 849        /* asic design change, do not need this control
 850         * empty for share caller logic
 851         */
 852}
 853
 854
 855void optc1_set_static_screen_control(
 856        struct timing_generator *optc,
 857        uint32_t event_triggers,
 858        uint32_t num_frames)
 859{
 860        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 861
 862        // By register spec, it only takes 8 bit value
 863        if (num_frames > 0xFF)
 864                num_frames = 0xFF;
 865
 866        /* Bit 8 is no longer applicable in RV for PSR case,
 867         * set bit 8 to 0 if given
 868         */
 869        if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
 870                        != 0)
 871                event_triggers = event_triggers &
 872                ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
 873
 874        REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
 875                        OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
 876                        OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
 877}
 878
 879void optc1_setup_manual_trigger(struct timing_generator *optc)
 880{
 881        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 882
 883        REG_SET(OTG_GLOBAL_CONTROL2, 0,
 884                        MANUAL_FLOW_CONTROL_SEL, optc->inst);
 885
 886        REG_SET_8(OTG_TRIGA_CNTL, 0,
 887                        OTG_TRIGA_SOURCE_SELECT, 22,
 888                        OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
 889                        OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
 890                        OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
 891                        OTG_TRIGA_POLARITY_SELECT, 0,
 892                        OTG_TRIGA_FREQUENCY_SELECT, 0,
 893                        OTG_TRIGA_DELAY, 0,
 894                        OTG_TRIGA_CLEAR, 1);
 895}
 896
 897void optc1_program_manual_trigger(struct timing_generator *optc)
 898{
 899        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 900
 901        REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
 902                        MANUAL_FLOW_CONTROL, 1);
 903
 904        REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
 905                        MANUAL_FLOW_CONTROL, 0);
 906}
 907
 908
 909/**
 910 *****************************************************************************
 911 *  Function: set_drr
 912 *
 913 *  @brief
 914 *     Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
 915 *
 916 *****************************************************************************
 917 */
 918void optc1_set_drr(
 919        struct timing_generator *optc,
 920        const struct drr_params *params)
 921{
 922        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 923
 924        if (params != NULL &&
 925                params->vertical_total_max > 0 &&
 926                params->vertical_total_min > 0) {
 927
 928                if (params->vertical_total_mid != 0) {
 929
 930                        REG_SET(OTG_V_TOTAL_MID, 0,
 931                                OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
 932
 933                        REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
 934                                        OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
 935                                        OTG_VTOTAL_MID_FRAME_NUM,
 936                                        (uint8_t)params->vertical_total_mid_frame_num);
 937
 938                }
 939
 940                REG_SET(OTG_V_TOTAL_MAX, 0,
 941                        OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
 942
 943                REG_SET(OTG_V_TOTAL_MIN, 0,
 944                        OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
 945
 946                REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
 947                                OTG_V_TOTAL_MIN_SEL, 1,
 948                                OTG_V_TOTAL_MAX_SEL, 1,
 949                                OTG_FORCE_LOCK_ON_EVENT, 0,
 950                                OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
 951                                OTG_SET_V_TOTAL_MIN_MASK, 0);
 952
 953                // Setup manual flow control for EOF via TRIG_A
 954                optc->funcs->setup_manual_trigger(optc);
 955
 956        } else {
 957                REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
 958                                OTG_SET_V_TOTAL_MIN_MASK, 0,
 959                                OTG_V_TOTAL_MIN_SEL, 0,
 960                                OTG_V_TOTAL_MAX_SEL, 0,
 961                                OTG_FORCE_LOCK_ON_EVENT, 0);
 962
 963                REG_SET(OTG_V_TOTAL_MIN, 0,
 964                        OTG_V_TOTAL_MIN, 0);
 965
 966                REG_SET(OTG_V_TOTAL_MAX, 0,
 967                        OTG_V_TOTAL_MAX, 0);
 968        }
 969}
 970
 971void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
 972{
 973        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 974
 975        REG_SET(OTG_V_TOTAL_MAX, 0,
 976                OTG_V_TOTAL_MAX, vtotal_max);
 977
 978        REG_SET(OTG_V_TOTAL_MIN, 0,
 979                OTG_V_TOTAL_MIN, vtotal_min);
 980}
 981
 982static void optc1_set_test_pattern(
 983        struct timing_generator *optc,
 984        /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
 985         * because this is not DP-specific (which is probably somewhere in DP
 986         * encoder) */
 987        enum controller_dp_test_pattern test_pattern,
 988        enum dc_color_depth color_depth)
 989{
 990        struct optc *optc1 = DCN10TG_FROM_TG(optc);
 991        enum test_pattern_color_format bit_depth;
 992        enum test_pattern_dyn_range dyn_range;
 993        enum test_pattern_mode mode;
 994        uint32_t pattern_mask;
 995        uint32_t pattern_data;
 996        /* color ramp generator mixes 16-bits color */
 997        uint32_t src_bpc = 16;
 998        /* requested bpc */
 999        uint32_t dst_bpc;
1000        uint32_t index;
1001        /* RGB values of the color bars.
1002         * Produce two RGB colors: RGB0 - white (all Fs)
1003         * and RGB1 - black (all 0s)
1004         * (three RGB components for two colors)
1005         */
1006        uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
1007                                                0x0000, 0x0000};
1008        /* dest color (converted to the specified color format) */
1009        uint16_t dst_color[6];
1010        uint32_t inc_base;
1011
1012        /* translate to bit depth */
1013        switch (color_depth) {
1014        case COLOR_DEPTH_666:
1015                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
1016        break;
1017        case COLOR_DEPTH_888:
1018                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1019        break;
1020        case COLOR_DEPTH_101010:
1021                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
1022        break;
1023        case COLOR_DEPTH_121212:
1024                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
1025        break;
1026        default:
1027                bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1028        break;
1029        }
1030
1031        switch (test_pattern) {
1032        case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
1033        case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
1034        {
1035                dyn_range = (test_pattern ==
1036                                CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
1037                                TEST_PATTERN_DYN_RANGE_CEA :
1038                                TEST_PATTERN_DYN_RANGE_VESA);
1039                mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
1040
1041                REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
1042                                OTG_TEST_PATTERN_VRES, 6,
1043                                OTG_TEST_PATTERN_HRES, 6);
1044
1045                REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1046                                OTG_TEST_PATTERN_EN, 1,
1047                                OTG_TEST_PATTERN_MODE, mode,
1048                                OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
1049                                OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1050        }
1051        break;
1052
1053        case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
1054        case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
1055        {
1056                mode = (test_pattern ==
1057                        CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
1058                        TEST_PATTERN_MODE_VERTICALBARS :
1059                        TEST_PATTERN_MODE_HORIZONTALBARS);
1060
1061                switch (bit_depth) {
1062                case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1063                        dst_bpc = 6;
1064                break;
1065                case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1066                        dst_bpc = 8;
1067                break;
1068                case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1069                        dst_bpc = 10;
1070                break;
1071                default:
1072                        dst_bpc = 8;
1073                break;
1074                }
1075
1076                /* adjust color to the required colorFormat */
1077                for (index = 0; index < 6; index++) {
1078                        /* dst = 2^dstBpc * src / 2^srcBpc = src >>
1079                         * (srcBpc - dstBpc);
1080                         */
1081                        dst_color[index] =
1082                                src_color[index] >> (src_bpc - dst_bpc);
1083                /* CRTC_TEST_PATTERN_DATA has 16 bits,
1084                 * lowest 6 are hardwired to ZERO
1085                 * color bits should be left aligned aligned to MSB
1086                 * XXXXXXXXXX000000 for 10 bit,
1087                 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1088                 */
1089                        dst_color[index] <<= (16 - dst_bpc);
1090                }
1091
1092                REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1093
1094                /* We have to write the mask before data, similar to pipeline.
1095                 * For example, for 8 bpc, if we want RGB0 to be magenta,
1096                 * and RGB1 to be cyan,
1097                 * we need to make 7 writes:
1098                 * MASK   DATA
1099                 * 000001 00000000 00000000                     set mask to R0
1100                 * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
1101                 * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
1102                 * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
1103                 * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
1104                 * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
1105                 * 100000 11111111 00000000     B1 255, 0xFF00
1106                 *
1107                 * we will make a loop of 6 in which we prepare the mask,
1108                 * then write, then prepare the color for next write.
1109                 * first iteration will write mask only,
1110                 * but each next iteration color prepared in
1111                 * previous iteration will be written within new mask,
1112                 * the last component will written separately,
1113                 * mask is not changing between 6th and 7th write
1114                 * and color will be prepared by last iteration
1115                 */
1116
1117                /* write color, color values mask in CRTC_TEST_PATTERN_MASK
1118                 * is B1, G1, R1, B0, G0, R0
1119                 */
1120                pattern_data = 0;
1121                for (index = 0; index < 6; index++) {
1122                        /* prepare color mask, first write PATTERN_DATA
1123                         * will have all zeros
1124                         */
1125                        pattern_mask = (1 << index);
1126
1127                        /* write color component */
1128                        REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1129                                        OTG_TEST_PATTERN_MASK, pattern_mask,
1130                                        OTG_TEST_PATTERN_DATA, pattern_data);
1131
1132                        /* prepare next color component,
1133                         * will be written in the next iteration
1134                         */
1135                        pattern_data = dst_color[index];
1136                }
1137                /* write last color component,
1138                 * it's been already prepared in the loop
1139                 */
1140                REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1141                                OTG_TEST_PATTERN_MASK, pattern_mask,
1142                                OTG_TEST_PATTERN_DATA, pattern_data);
1143
1144                /* enable test pattern */
1145                REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1146                                OTG_TEST_PATTERN_EN, 1,
1147                                OTG_TEST_PATTERN_MODE, mode,
1148                                OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1149                                OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1150        }
1151        break;
1152
1153        case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1154        {
1155                mode = (bit_depth ==
1156                        TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1157                        TEST_PATTERN_MODE_DUALRAMP_RGB :
1158                        TEST_PATTERN_MODE_SINGLERAMP_RGB);
1159
1160                switch (bit_depth) {
1161                case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1162                        dst_bpc = 6;
1163                break;
1164                case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1165                        dst_bpc = 8;
1166                break;
1167                case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1168                        dst_bpc = 10;
1169                break;
1170                default:
1171                        dst_bpc = 8;
1172                break;
1173                }
1174
1175                /* increment for the first ramp for one color gradation
1176                 * 1 gradation for 6-bit color is 2^10
1177                 * gradations in 16-bit color
1178                 */
1179                inc_base = (src_bpc - dst_bpc);
1180
1181                switch (bit_depth) {
1182                case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1183                {
1184                        REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1185                                        OTG_TEST_PATTERN_INC0, inc_base,
1186                                        OTG_TEST_PATTERN_INC1, 0,
1187                                        OTG_TEST_PATTERN_HRES, 6,
1188                                        OTG_TEST_PATTERN_VRES, 6,
1189                                        OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1190                }
1191                break;
1192                case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1193                {
1194                        REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1195                                        OTG_TEST_PATTERN_INC0, inc_base,
1196                                        OTG_TEST_PATTERN_INC1, 0,
1197                                        OTG_TEST_PATTERN_HRES, 8,
1198                                        OTG_TEST_PATTERN_VRES, 6,
1199                                        OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1200                }
1201                break;
1202                case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1203                {
1204                        REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1205                                        OTG_TEST_PATTERN_INC0, inc_base,
1206                                        OTG_TEST_PATTERN_INC1, inc_base + 2,
1207                                        OTG_TEST_PATTERN_HRES, 8,
1208                                        OTG_TEST_PATTERN_VRES, 5,
1209                                        OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1210                }
1211                break;
1212                default:
1213                break;
1214                }
1215
1216                REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1217
1218                /* enable test pattern */
1219                REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1220
1221                REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1222                                OTG_TEST_PATTERN_EN, 1,
1223                                OTG_TEST_PATTERN_MODE, mode,
1224                                OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1225                                OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1226        }
1227        break;
1228        case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1229        {
1230                REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1231                REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1232                REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1233        }
1234        break;
1235        default:
1236                break;
1237
1238        }
1239}
1240
1241void optc1_get_crtc_scanoutpos(
1242        struct timing_generator *optc,
1243        uint32_t *v_blank_start,
1244        uint32_t *v_blank_end,
1245        uint32_t *h_position,
1246        uint32_t *v_position)
1247{
1248        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1249        struct crtc_position position;
1250
1251        REG_GET_2(OTG_V_BLANK_START_END,
1252                        OTG_V_BLANK_START, v_blank_start,
1253                        OTG_V_BLANK_END, v_blank_end);
1254
1255        optc1_get_position(optc, &position);
1256
1257        *h_position = position.horizontal_count;
1258        *v_position = position.vertical_count;
1259}
1260
1261static void optc1_enable_stereo(struct timing_generator *optc,
1262        const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1263{
1264        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1265
1266        if (flags) {
1267                uint32_t stereo_en;
1268                stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1269
1270                if (flags->PROGRAM_STEREO)
1271                        REG_UPDATE_3(OTG_STEREO_CONTROL,
1272                                OTG_STEREO_EN, stereo_en,
1273                                OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1274                                OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1275
1276                if (flags->PROGRAM_POLARITY)
1277                        REG_UPDATE(OTG_STEREO_CONTROL,
1278                                OTG_STEREO_EYE_FLAG_POLARITY,
1279                                flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1280
1281                if (flags->DISABLE_STEREO_DP_SYNC)
1282                        REG_UPDATE(OTG_STEREO_CONTROL,
1283                                OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1284
1285                if (flags->PROGRAM_STEREO)
1286                        REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1287                                OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1288                                OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1289
1290        }
1291}
1292
1293void optc1_program_stereo(struct timing_generator *optc,
1294        const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1295{
1296        if (flags->PROGRAM_STEREO)
1297                optc1_enable_stereo(optc, timing, flags);
1298        else
1299                optc1_disable_stereo(optc);
1300}
1301
1302
1303bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1304{
1305        bool ret = false;
1306        uint32_t left_eye = 0;
1307        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1308
1309        REG_GET(OTG_STEREO_STATUS,
1310                OTG_STEREO_CURRENT_EYE, &left_eye);
1311        if (left_eye == 1)
1312                ret = true;
1313        else
1314                ret = false;
1315
1316        return ret;
1317}
1318
1319bool optc1_get_hw_timing(struct timing_generator *tg,
1320                struct dc_crtc_timing *hw_crtc_timing)
1321{
1322        struct dcn_otg_state s = {0};
1323
1324        if (tg == NULL || hw_crtc_timing == NULL)
1325                return false;
1326
1327        optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1328
1329        hw_crtc_timing->h_total = s.h_total + 1;
1330        hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1331        hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1332        hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1333
1334        hw_crtc_timing->v_total = s.v_total + 1;
1335        hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1336        hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1337        hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1338
1339        return true;
1340}
1341
1342
1343void optc1_read_otg_state(struct optc *optc1,
1344                struct dcn_otg_state *s)
1345{
1346        REG_GET(OTG_CONTROL,
1347                        OTG_MASTER_EN, &s->otg_enabled);
1348
1349        REG_GET_2(OTG_V_BLANK_START_END,
1350                        OTG_V_BLANK_START, &s->v_blank_start,
1351                        OTG_V_BLANK_END, &s->v_blank_end);
1352
1353        REG_GET(OTG_V_SYNC_A_CNTL,
1354                        OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1355
1356        REG_GET(OTG_V_TOTAL,
1357                        OTG_V_TOTAL, &s->v_total);
1358
1359        REG_GET(OTG_V_TOTAL_MAX,
1360                        OTG_V_TOTAL_MAX, &s->v_total_max);
1361
1362        REG_GET(OTG_V_TOTAL_MIN,
1363                        OTG_V_TOTAL_MIN, &s->v_total_min);
1364
1365        REG_GET(OTG_V_TOTAL_CONTROL,
1366                        OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1367
1368        REG_GET(OTG_V_TOTAL_CONTROL,
1369                        OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1370
1371        REG_GET_2(OTG_V_SYNC_A,
1372                        OTG_V_SYNC_A_START, &s->v_sync_a_start,
1373                        OTG_V_SYNC_A_END, &s->v_sync_a_end);
1374
1375        REG_GET_2(OTG_H_BLANK_START_END,
1376                        OTG_H_BLANK_START, &s->h_blank_start,
1377                        OTG_H_BLANK_END, &s->h_blank_end);
1378
1379        REG_GET_2(OTG_H_SYNC_A,
1380                        OTG_H_SYNC_A_START, &s->h_sync_a_start,
1381                        OTG_H_SYNC_A_END, &s->h_sync_a_end);
1382
1383        REG_GET(OTG_H_SYNC_A_CNTL,
1384                        OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1385
1386        REG_GET(OTG_H_TOTAL,
1387                        OTG_H_TOTAL, &s->h_total);
1388
1389        REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1390                        OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1391}
1392
1393bool optc1_get_otg_active_size(struct timing_generator *optc,
1394                uint32_t *otg_active_width,
1395                uint32_t *otg_active_height)
1396{
1397        uint32_t otg_enabled;
1398        uint32_t v_blank_start;
1399        uint32_t v_blank_end;
1400        uint32_t h_blank_start;
1401        uint32_t h_blank_end;
1402        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1403
1404
1405        REG_GET(OTG_CONTROL,
1406                        OTG_MASTER_EN, &otg_enabled);
1407
1408        if (otg_enabled == 0)
1409                return false;
1410
1411        REG_GET_2(OTG_V_BLANK_START_END,
1412                        OTG_V_BLANK_START, &v_blank_start,
1413                        OTG_V_BLANK_END, &v_blank_end);
1414
1415        REG_GET_2(OTG_H_BLANK_START_END,
1416                        OTG_H_BLANK_START, &h_blank_start,
1417                        OTG_H_BLANK_END, &h_blank_end);
1418
1419        *otg_active_width = v_blank_start - v_blank_end;
1420        *otg_active_height = h_blank_start - h_blank_end;
1421        return true;
1422}
1423
1424void optc1_clear_optc_underflow(struct timing_generator *optc)
1425{
1426        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1427
1428        REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1429}
1430
1431void optc1_tg_init(struct timing_generator *optc)
1432{
1433        optc1_set_blank_data_double_buffer(optc, true);
1434        optc1_set_timing_double_buffer(optc, true);
1435        optc1_clear_optc_underflow(optc);
1436}
1437
1438bool optc1_is_tg_enabled(struct timing_generator *optc)
1439{
1440        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1441        uint32_t otg_enabled = 0;
1442
1443        REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1444
1445        return (otg_enabled != 0);
1446
1447}
1448
1449bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1450{
1451        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1452        uint32_t underflow_occurred = 0;
1453
1454        REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1455                        OPTC_UNDERFLOW_OCCURRED_STATUS,
1456                        &underflow_occurred);
1457
1458        return (underflow_occurred == 1);
1459}
1460
1461bool optc1_configure_crc(struct timing_generator *optc,
1462                          const struct crc_params *params)
1463{
1464        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1465
1466        /* Cannot configure crc on a CRTC that is disabled */
1467        if (!optc1_is_tg_enabled(optc))
1468                return false;
1469
1470        REG_WRITE(OTG_CRC_CNTL, 0);
1471
1472        if (!params->enable)
1473                return true;
1474
1475        /* Program frame boundaries */
1476        /* Window A x axis start and end. */
1477        REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1478                        OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1479                        OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1480
1481        /* Window A y axis start and end. */
1482        REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1483                        OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1484                        OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1485
1486        /* Window B x axis start and end. */
1487        REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1488                        OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1489                        OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1490
1491        /* Window B y axis start and end. */
1492        REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1493                        OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1494                        OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1495
1496        /* Set crc mode and selection, and enable. Only using CRC0*/
1497        REG_UPDATE_3(OTG_CRC_CNTL,
1498                        OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1499                        OTG_CRC0_SELECT, params->selection,
1500                        OTG_CRC_EN, 1);
1501
1502        return true;
1503}
1504
1505bool optc1_get_crc(struct timing_generator *optc,
1506                    uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1507{
1508        uint32_t field = 0;
1509        struct optc *optc1 = DCN10TG_FROM_TG(optc);
1510
1511        REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1512
1513        /* Early return if CRC is not enabled for this CRTC */
1514        if (!field)
1515                return false;
1516
1517        REG_GET_2(OTG_CRC0_DATA_RG,
1518                        CRC0_R_CR, r_cr,
1519                        CRC0_G_Y, g_y);
1520
1521        REG_GET(OTG_CRC0_DATA_B,
1522                        CRC0_B_CB, b_cb);
1523
1524        return true;
1525}
1526
1527static const struct timing_generator_funcs dcn10_tg_funcs = {
1528                .validate_timing = optc1_validate_timing,
1529                .program_timing = optc1_program_timing,
1530                .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1531                .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1532                .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1533                .program_global_sync = optc1_program_global_sync,
1534                .enable_crtc = optc1_enable_crtc,
1535                .disable_crtc = optc1_disable_crtc,
1536                /* used by enable_timing_synchronization. Not need for FPGA */
1537                .is_counter_moving = optc1_is_counter_moving,
1538                .get_position = optc1_get_position,
1539                .get_frame_count = optc1_get_vblank_counter,
1540                .get_scanoutpos = optc1_get_crtc_scanoutpos,
1541                .get_otg_active_size = optc1_get_otg_active_size,
1542                .set_early_control = optc1_set_early_control,
1543                /* used by enable_timing_synchronization. Not need for FPGA */
1544                .wait_for_state = optc1_wait_for_state,
1545                .set_blank = optc1_set_blank,
1546                .is_blanked = optc1_is_blanked,
1547                .set_blank_color = optc1_program_blank_color,
1548                .did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1549                .enable_reset_trigger = optc1_enable_reset_trigger,
1550                .enable_crtc_reset = optc1_enable_crtc_reset,
1551                .disable_reset_trigger = optc1_disable_reset_trigger,
1552                .lock = optc1_lock,
1553                .is_locked = optc1_is_locked,
1554                .unlock = optc1_unlock,
1555                .enable_optc_clock = optc1_enable_optc_clock,
1556                .set_drr = optc1_set_drr,
1557                .get_last_used_drr_vtotal = NULL,
1558                .set_static_screen_control = optc1_set_static_screen_control,
1559                .set_test_pattern = optc1_set_test_pattern,
1560                .program_stereo = optc1_program_stereo,
1561                .is_stereo_left_eye = optc1_is_stereo_left_eye,
1562                .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1563                .tg_init = optc1_tg_init,
1564                .is_tg_enabled = optc1_is_tg_enabled,
1565                .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1566                .clear_optc_underflow = optc1_clear_optc_underflow,
1567                .get_crc = optc1_get_crc,
1568                .configure_crc = optc1_configure_crc,
1569                .set_vtg_params = optc1_set_vtg_params,
1570                .program_manual_trigger = optc1_program_manual_trigger,
1571                .setup_manual_trigger = optc1_setup_manual_trigger,
1572                .get_hw_timing = optc1_get_hw_timing,
1573};
1574
1575void dcn10_timing_generator_init(struct optc *optc1)
1576{
1577        optc1->base.funcs = &dcn10_tg_funcs;
1578
1579        optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1580        optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1581
1582        optc1->min_h_blank = 32;
1583        optc1->min_v_blank = 3;
1584        optc1->min_v_blank_interlace = 5;
1585        optc1->min_h_sync_width = 4;
1586        optc1->min_v_sync_width = 1;
1587}
1588
1589/* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1590 *
1591 * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1592 *   containter rate.
1593 *
1594 * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1595 *   halved to maintain the correct pixel rate.
1596 *
1597 * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1598 *   to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1599 *
1600 */
1601bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1602{
1603        bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1604
1605        two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1606                        && !timing->dsc_cfg.ycbcr422_simple);
1607        return two_pix;
1608}
1609
1610