linux/drivers/base/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
  29#include <linux/sched/mm.h>
  30#include <linux/sysfs.h>
  31#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  32
  33#include "base.h"
  34#include "power/power.h"
  35
  36#ifdef CONFIG_SYSFS_DEPRECATED
  37#ifdef CONFIG_SYSFS_DEPRECATED_V2
  38long sysfs_deprecated = 1;
  39#else
  40long sysfs_deprecated = 0;
  41#endif
  42static int __init sysfs_deprecated_setup(char *arg)
  43{
  44        return kstrtol(arg, 10, &sysfs_deprecated);
  45}
  46early_param("sysfs.deprecated", sysfs_deprecated_setup);
  47#endif
  48
  49/* Device links support. */
  50static LIST_HEAD(deferred_sync);
  51static unsigned int defer_sync_state_count = 1;
  52static DEFINE_MUTEX(fwnode_link_lock);
  53static bool fw_devlink_is_permissive(void);
  54static bool fw_devlink_drv_reg_done;
  55
  56/**
  57 * fwnode_link_add - Create a link between two fwnode_handles.
  58 * @con: Consumer end of the link.
  59 * @sup: Supplier end of the link.
  60 *
  61 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
  62 * represents the detail that the firmware lists @sup fwnode as supplying a
  63 * resource to @con.
  64 *
  65 * The driver core will use the fwnode link to create a device link between the
  66 * two device objects corresponding to @con and @sup when they are created. The
  67 * driver core will automatically delete the fwnode link between @con and @sup
  68 * after doing that.
  69 *
  70 * Attempts to create duplicate links between the same pair of fwnode handles
  71 * are ignored and there is no reference counting.
  72 */
  73int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
  74{
  75        struct fwnode_link *link;
  76        int ret = 0;
  77
  78        mutex_lock(&fwnode_link_lock);
  79
  80        list_for_each_entry(link, &sup->consumers, s_hook)
  81                if (link->consumer == con)
  82                        goto out;
  83
  84        link = kzalloc(sizeof(*link), GFP_KERNEL);
  85        if (!link) {
  86                ret = -ENOMEM;
  87                goto out;
  88        }
  89
  90        link->supplier = sup;
  91        INIT_LIST_HEAD(&link->s_hook);
  92        link->consumer = con;
  93        INIT_LIST_HEAD(&link->c_hook);
  94
  95        list_add(&link->s_hook, &sup->consumers);
  96        list_add(&link->c_hook, &con->suppliers);
  97out:
  98        mutex_unlock(&fwnode_link_lock);
  99
 100        return ret;
 101}
 102
 103/**
 104 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
 105 * @fwnode: fwnode whose supplier links need to be deleted
 106 *
 107 * Deletes all supplier links connecting directly to @fwnode.
 108 */
 109static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
 110{
 111        struct fwnode_link *link, *tmp;
 112
 113        mutex_lock(&fwnode_link_lock);
 114        list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
 115                list_del(&link->s_hook);
 116                list_del(&link->c_hook);
 117                kfree(link);
 118        }
 119        mutex_unlock(&fwnode_link_lock);
 120}
 121
 122/**
 123 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
 124 * @fwnode: fwnode whose consumer links need to be deleted
 125 *
 126 * Deletes all consumer links connecting directly to @fwnode.
 127 */
 128static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
 129{
 130        struct fwnode_link *link, *tmp;
 131
 132        mutex_lock(&fwnode_link_lock);
 133        list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
 134                list_del(&link->s_hook);
 135                list_del(&link->c_hook);
 136                kfree(link);
 137        }
 138        mutex_unlock(&fwnode_link_lock);
 139}
 140
 141/**
 142 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
 143 * @fwnode: fwnode whose links needs to be deleted
 144 *
 145 * Deletes all links connecting directly to a fwnode.
 146 */
 147void fwnode_links_purge(struct fwnode_handle *fwnode)
 148{
 149        fwnode_links_purge_suppliers(fwnode);
 150        fwnode_links_purge_consumers(fwnode);
 151}
 152
 153void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
 154{
 155        struct fwnode_handle *child;
 156
 157        /* Don't purge consumer links of an added child */
 158        if (fwnode->dev)
 159                return;
 160
 161        fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 162        fwnode_links_purge_consumers(fwnode);
 163
 164        fwnode_for_each_available_child_node(fwnode, child)
 165                fw_devlink_purge_absent_suppliers(child);
 166}
 167EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
 168
 169#ifdef CONFIG_SRCU
 170static DEFINE_MUTEX(device_links_lock);
 171DEFINE_STATIC_SRCU(device_links_srcu);
 172
 173static inline void device_links_write_lock(void)
 174{
 175        mutex_lock(&device_links_lock);
 176}
 177
 178static inline void device_links_write_unlock(void)
 179{
 180        mutex_unlock(&device_links_lock);
 181}
 182
 183int device_links_read_lock(void) __acquires(&device_links_srcu)
 184{
 185        return srcu_read_lock(&device_links_srcu);
 186}
 187
 188void device_links_read_unlock(int idx) __releases(&device_links_srcu)
 189{
 190        srcu_read_unlock(&device_links_srcu, idx);
 191}
 192
 193int device_links_read_lock_held(void)
 194{
 195        return srcu_read_lock_held(&device_links_srcu);
 196}
 197
 198static void device_link_synchronize_removal(void)
 199{
 200        synchronize_srcu(&device_links_srcu);
 201}
 202
 203static void device_link_remove_from_lists(struct device_link *link)
 204{
 205        list_del_rcu(&link->s_node);
 206        list_del_rcu(&link->c_node);
 207}
 208#else /* !CONFIG_SRCU */
 209static DECLARE_RWSEM(device_links_lock);
 210
 211static inline void device_links_write_lock(void)
 212{
 213        down_write(&device_links_lock);
 214}
 215
 216static inline void device_links_write_unlock(void)
 217{
 218        up_write(&device_links_lock);
 219}
 220
 221int device_links_read_lock(void)
 222{
 223        down_read(&device_links_lock);
 224        return 0;
 225}
 226
 227void device_links_read_unlock(int not_used)
 228{
 229        up_read(&device_links_lock);
 230}
 231
 232#ifdef CONFIG_DEBUG_LOCK_ALLOC
 233int device_links_read_lock_held(void)
 234{
 235        return lockdep_is_held(&device_links_lock);
 236}
 237#endif
 238
 239static inline void device_link_synchronize_removal(void)
 240{
 241}
 242
 243static void device_link_remove_from_lists(struct device_link *link)
 244{
 245        list_del(&link->s_node);
 246        list_del(&link->c_node);
 247}
 248#endif /* !CONFIG_SRCU */
 249
 250static bool device_is_ancestor(struct device *dev, struct device *target)
 251{
 252        while (target->parent) {
 253                target = target->parent;
 254                if (dev == target)
 255                        return true;
 256        }
 257        return false;
 258}
 259
 260/**
 261 * device_is_dependent - Check if one device depends on another one
 262 * @dev: Device to check dependencies for.
 263 * @target: Device to check against.
 264 *
 265 * Check if @target depends on @dev or any device dependent on it (its child or
 266 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 267 */
 268int device_is_dependent(struct device *dev, void *target)
 269{
 270        struct device_link *link;
 271        int ret;
 272
 273        /*
 274         * The "ancestors" check is needed to catch the case when the target
 275         * device has not been completely initialized yet and it is still
 276         * missing from the list of children of its parent device.
 277         */
 278        if (dev == target || device_is_ancestor(dev, target))
 279                return 1;
 280
 281        ret = device_for_each_child(dev, target, device_is_dependent);
 282        if (ret)
 283                return ret;
 284
 285        list_for_each_entry(link, &dev->links.consumers, s_node) {
 286                if ((link->flags & ~DL_FLAG_INFERRED) ==
 287                    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 288                        continue;
 289
 290                if (link->consumer == target)
 291                        return 1;
 292
 293                ret = device_is_dependent(link->consumer, target);
 294                if (ret)
 295                        break;
 296        }
 297        return ret;
 298}
 299
 300static void device_link_init_status(struct device_link *link,
 301                                    struct device *consumer,
 302                                    struct device *supplier)
 303{
 304        switch (supplier->links.status) {
 305        case DL_DEV_PROBING:
 306                switch (consumer->links.status) {
 307                case DL_DEV_PROBING:
 308                        /*
 309                         * A consumer driver can create a link to a supplier
 310                         * that has not completed its probing yet as long as it
 311                         * knows that the supplier is already functional (for
 312                         * example, it has just acquired some resources from the
 313                         * supplier).
 314                         */
 315                        link->status = DL_STATE_CONSUMER_PROBE;
 316                        break;
 317                default:
 318                        link->status = DL_STATE_DORMANT;
 319                        break;
 320                }
 321                break;
 322        case DL_DEV_DRIVER_BOUND:
 323                switch (consumer->links.status) {
 324                case DL_DEV_PROBING:
 325                        link->status = DL_STATE_CONSUMER_PROBE;
 326                        break;
 327                case DL_DEV_DRIVER_BOUND:
 328                        link->status = DL_STATE_ACTIVE;
 329                        break;
 330                default:
 331                        link->status = DL_STATE_AVAILABLE;
 332                        break;
 333                }
 334                break;
 335        case DL_DEV_UNBINDING:
 336                link->status = DL_STATE_SUPPLIER_UNBIND;
 337                break;
 338        default:
 339                link->status = DL_STATE_DORMANT;
 340                break;
 341        }
 342}
 343
 344static int device_reorder_to_tail(struct device *dev, void *not_used)
 345{
 346        struct device_link *link;
 347
 348        /*
 349         * Devices that have not been registered yet will be put to the ends
 350         * of the lists during the registration, so skip them here.
 351         */
 352        if (device_is_registered(dev))
 353                devices_kset_move_last(dev);
 354
 355        if (device_pm_initialized(dev))
 356                device_pm_move_last(dev);
 357
 358        device_for_each_child(dev, NULL, device_reorder_to_tail);
 359        list_for_each_entry(link, &dev->links.consumers, s_node) {
 360                if ((link->flags & ~DL_FLAG_INFERRED) ==
 361                    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 362                        continue;
 363                device_reorder_to_tail(link->consumer, NULL);
 364        }
 365
 366        return 0;
 367}
 368
 369/**
 370 * device_pm_move_to_tail - Move set of devices to the end of device lists
 371 * @dev: Device to move
 372 *
 373 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 374 *
 375 * It moves the @dev along with all of its children and all of its consumers
 376 * to the ends of the device_kset and dpm_list, recursively.
 377 */
 378void device_pm_move_to_tail(struct device *dev)
 379{
 380        int idx;
 381
 382        idx = device_links_read_lock();
 383        device_pm_lock();
 384        device_reorder_to_tail(dev, NULL);
 385        device_pm_unlock();
 386        device_links_read_unlock(idx);
 387}
 388
 389#define to_devlink(dev) container_of((dev), struct device_link, link_dev)
 390
 391static ssize_t status_show(struct device *dev,
 392                           struct device_attribute *attr, char *buf)
 393{
 394        const char *output;
 395
 396        switch (to_devlink(dev)->status) {
 397        case DL_STATE_NONE:
 398                output = "not tracked";
 399                break;
 400        case DL_STATE_DORMANT:
 401                output = "dormant";
 402                break;
 403        case DL_STATE_AVAILABLE:
 404                output = "available";
 405                break;
 406        case DL_STATE_CONSUMER_PROBE:
 407                output = "consumer probing";
 408                break;
 409        case DL_STATE_ACTIVE:
 410                output = "active";
 411                break;
 412        case DL_STATE_SUPPLIER_UNBIND:
 413                output = "supplier unbinding";
 414                break;
 415        default:
 416                output = "unknown";
 417                break;
 418        }
 419
 420        return sysfs_emit(buf, "%s\n", output);
 421}
 422static DEVICE_ATTR_RO(status);
 423
 424static ssize_t auto_remove_on_show(struct device *dev,
 425                                   struct device_attribute *attr, char *buf)
 426{
 427        struct device_link *link = to_devlink(dev);
 428        const char *output;
 429
 430        if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 431                output = "supplier unbind";
 432        else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 433                output = "consumer unbind";
 434        else
 435                output = "never";
 436
 437        return sysfs_emit(buf, "%s\n", output);
 438}
 439static DEVICE_ATTR_RO(auto_remove_on);
 440
 441static ssize_t runtime_pm_show(struct device *dev,
 442                               struct device_attribute *attr, char *buf)
 443{
 444        struct device_link *link = to_devlink(dev);
 445
 446        return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 447}
 448static DEVICE_ATTR_RO(runtime_pm);
 449
 450static ssize_t sync_state_only_show(struct device *dev,
 451                                    struct device_attribute *attr, char *buf)
 452{
 453        struct device_link *link = to_devlink(dev);
 454
 455        return sysfs_emit(buf, "%d\n",
 456                          !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 457}
 458static DEVICE_ATTR_RO(sync_state_only);
 459
 460static struct attribute *devlink_attrs[] = {
 461        &dev_attr_status.attr,
 462        &dev_attr_auto_remove_on.attr,
 463        &dev_attr_runtime_pm.attr,
 464        &dev_attr_sync_state_only.attr,
 465        NULL,
 466};
 467ATTRIBUTE_GROUPS(devlink);
 468
 469static void device_link_release_fn(struct work_struct *work)
 470{
 471        struct device_link *link = container_of(work, struct device_link, rm_work);
 472
 473        /* Ensure that all references to the link object have been dropped. */
 474        device_link_synchronize_removal();
 475
 476        while (refcount_dec_not_one(&link->rpm_active))
 477                pm_runtime_put(link->supplier);
 478
 479        put_device(link->consumer);
 480        put_device(link->supplier);
 481        kfree(link);
 482}
 483
 484static void devlink_dev_release(struct device *dev)
 485{
 486        struct device_link *link = to_devlink(dev);
 487
 488        INIT_WORK(&link->rm_work, device_link_release_fn);
 489        /*
 490         * It may take a while to complete this work because of the SRCU
 491         * synchronization in device_link_release_fn() and if the consumer or
 492         * supplier devices get deleted when it runs, so put it into the "long"
 493         * workqueue.
 494         */
 495        queue_work(system_long_wq, &link->rm_work);
 496}
 497
 498static struct class devlink_class = {
 499        .name = "devlink",
 500        .owner = THIS_MODULE,
 501        .dev_groups = devlink_groups,
 502        .dev_release = devlink_dev_release,
 503};
 504
 505static int devlink_add_symlinks(struct device *dev,
 506                                struct class_interface *class_intf)
 507{
 508        int ret;
 509        size_t len;
 510        struct device_link *link = to_devlink(dev);
 511        struct device *sup = link->supplier;
 512        struct device *con = link->consumer;
 513        char *buf;
 514
 515        len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 516                  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 517        len += strlen(":");
 518        len += strlen("supplier:") + 1;
 519        buf = kzalloc(len, GFP_KERNEL);
 520        if (!buf)
 521                return -ENOMEM;
 522
 523        ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 524        if (ret)
 525                goto out;
 526
 527        ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 528        if (ret)
 529                goto err_con;
 530
 531        snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 532        ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
 533        if (ret)
 534                goto err_con_dev;
 535
 536        snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 537        ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
 538        if (ret)
 539                goto err_sup_dev;
 540
 541        goto out;
 542
 543err_sup_dev:
 544        snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 545        sysfs_remove_link(&sup->kobj, buf);
 546err_con_dev:
 547        sysfs_remove_link(&link->link_dev.kobj, "consumer");
 548err_con:
 549        sysfs_remove_link(&link->link_dev.kobj, "supplier");
 550out:
 551        kfree(buf);
 552        return ret;
 553}
 554
 555static void devlink_remove_symlinks(struct device *dev,
 556                                   struct class_interface *class_intf)
 557{
 558        struct device_link *link = to_devlink(dev);
 559        size_t len;
 560        struct device *sup = link->supplier;
 561        struct device *con = link->consumer;
 562        char *buf;
 563
 564        sysfs_remove_link(&link->link_dev.kobj, "consumer");
 565        sysfs_remove_link(&link->link_dev.kobj, "supplier");
 566
 567        len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 568                  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 569        len += strlen(":");
 570        len += strlen("supplier:") + 1;
 571        buf = kzalloc(len, GFP_KERNEL);
 572        if (!buf) {
 573                WARN(1, "Unable to properly free device link symlinks!\n");
 574                return;
 575        }
 576
 577        if (device_is_registered(con)) {
 578                snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 579                sysfs_remove_link(&con->kobj, buf);
 580        }
 581        snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 582        sysfs_remove_link(&sup->kobj, buf);
 583        kfree(buf);
 584}
 585
 586static struct class_interface devlink_class_intf = {
 587        .class = &devlink_class,
 588        .add_dev = devlink_add_symlinks,
 589        .remove_dev = devlink_remove_symlinks,
 590};
 591
 592static int __init devlink_class_init(void)
 593{
 594        int ret;
 595
 596        ret = class_register(&devlink_class);
 597        if (ret)
 598                return ret;
 599
 600        ret = class_interface_register(&devlink_class_intf);
 601        if (ret)
 602                class_unregister(&devlink_class);
 603
 604        return ret;
 605}
 606postcore_initcall(devlink_class_init);
 607
 608#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 609                               DL_FLAG_AUTOREMOVE_SUPPLIER | \
 610                               DL_FLAG_AUTOPROBE_CONSUMER  | \
 611                               DL_FLAG_SYNC_STATE_ONLY | \
 612                               DL_FLAG_INFERRED)
 613
 614#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 615                            DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 616
 617/**
 618 * device_link_add - Create a link between two devices.
 619 * @consumer: Consumer end of the link.
 620 * @supplier: Supplier end of the link.
 621 * @flags: Link flags.
 622 *
 623 * The caller is responsible for the proper synchronization of the link creation
 624 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 625 * runtime PM framework to take the link into account.  Second, if the
 626 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 627 * be forced into the active meta state and reference-counted upon the creation
 628 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 629 * ignored.
 630 *
 631 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 632 * expected to release the link returned by it directly with the help of either
 633 * device_link_del() or device_link_remove().
 634 *
 635 * If that flag is not set, however, the caller of this function is handing the
 636 * management of the link over to the driver core entirely and its return value
 637 * can only be used to check whether or not the link is present.  In that case,
 638 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 639 * flags can be used to indicate to the driver core when the link can be safely
 640 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 641 * that the link is not going to be used (by the given caller of this function)
 642 * after unbinding the consumer or supplier driver, respectively, from its
 643 * device, so the link can be deleted at that point.  If none of them is set,
 644 * the link will be maintained until one of the devices pointed to by it (either
 645 * the consumer or the supplier) is unregistered.
 646 *
 647 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 648 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 649 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 650 * be used to request the driver core to automatically probe for a consumer
 651 * driver after successfully binding a driver to the supplier device.
 652 *
 653 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 654 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 655 * the same time is invalid and will cause NULL to be returned upfront.
 656 * However, if a device link between the given @consumer and @supplier pair
 657 * exists already when this function is called for them, the existing link will
 658 * be returned regardless of its current type and status (the link's flags may
 659 * be modified then).  The caller of this function is then expected to treat
 660 * the link as though it has just been created, so (in particular) if
 661 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 662 * explicitly when not needed any more (as stated above).
 663 *
 664 * A side effect of the link creation is re-ordering of dpm_list and the
 665 * devices_kset list by moving the consumer device and all devices depending
 666 * on it to the ends of these lists (that does not happen to devices that have
 667 * not been registered when this function is called).
 668 *
 669 * The supplier device is required to be registered when this function is called
 670 * and NULL will be returned if that is not the case.  The consumer device need
 671 * not be registered, however.
 672 */
 673struct device_link *device_link_add(struct device *consumer,
 674                                    struct device *supplier, u32 flags)
 675{
 676        struct device_link *link;
 677
 678        if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
 679            (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 680            (flags & DL_FLAG_SYNC_STATE_ONLY &&
 681             (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
 682            (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 683             flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 684                      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 685                return NULL;
 686
 687        if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 688                if (pm_runtime_get_sync(supplier) < 0) {
 689                        pm_runtime_put_noidle(supplier);
 690                        return NULL;
 691                }
 692        }
 693
 694        if (!(flags & DL_FLAG_STATELESS))
 695                flags |= DL_FLAG_MANAGED;
 696
 697        device_links_write_lock();
 698        device_pm_lock();
 699
 700        /*
 701         * If the supplier has not been fully registered yet or there is a
 702         * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 703         * the supplier already in the graph, return NULL. If the link is a
 704         * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 705         * because it only affects sync_state() callbacks.
 706         */
 707        if (!device_pm_initialized(supplier)
 708            || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 709                  device_is_dependent(consumer, supplier))) {
 710                link = NULL;
 711                goto out;
 712        }
 713
 714        /*
 715         * SYNC_STATE_ONLY links are useless once a consumer device has probed.
 716         * So, only create it if the consumer hasn't probed yet.
 717         */
 718        if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 719            consumer->links.status != DL_DEV_NO_DRIVER &&
 720            consumer->links.status != DL_DEV_PROBING) {
 721                link = NULL;
 722                goto out;
 723        }
 724
 725        /*
 726         * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 727         * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 728         * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 729         */
 730        if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 731                flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 732
 733        list_for_each_entry(link, &supplier->links.consumers, s_node) {
 734                if (link->consumer != consumer)
 735                        continue;
 736
 737                if (link->flags & DL_FLAG_INFERRED &&
 738                    !(flags & DL_FLAG_INFERRED))
 739                        link->flags &= ~DL_FLAG_INFERRED;
 740
 741                if (flags & DL_FLAG_PM_RUNTIME) {
 742                        if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 743                                pm_runtime_new_link(consumer);
 744                                link->flags |= DL_FLAG_PM_RUNTIME;
 745                        }
 746                        if (flags & DL_FLAG_RPM_ACTIVE)
 747                                refcount_inc(&link->rpm_active);
 748                }
 749
 750                if (flags & DL_FLAG_STATELESS) {
 751                        kref_get(&link->kref);
 752                        if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 753                            !(link->flags & DL_FLAG_STATELESS)) {
 754                                link->flags |= DL_FLAG_STATELESS;
 755                                goto reorder;
 756                        } else {
 757                                link->flags |= DL_FLAG_STATELESS;
 758                                goto out;
 759                        }
 760                }
 761
 762                /*
 763                 * If the life time of the link following from the new flags is
 764                 * longer than indicated by the flags of the existing link,
 765                 * update the existing link to stay around longer.
 766                 */
 767                if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 768                        if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 769                                link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 770                                link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 771                        }
 772                } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 773                        link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 774                                         DL_FLAG_AUTOREMOVE_SUPPLIER);
 775                }
 776                if (!(link->flags & DL_FLAG_MANAGED)) {
 777                        kref_get(&link->kref);
 778                        link->flags |= DL_FLAG_MANAGED;
 779                        device_link_init_status(link, consumer, supplier);
 780                }
 781                if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 782                    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 783                        link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 784                        goto reorder;
 785                }
 786
 787                goto out;
 788        }
 789
 790        link = kzalloc(sizeof(*link), GFP_KERNEL);
 791        if (!link)
 792                goto out;
 793
 794        refcount_set(&link->rpm_active, 1);
 795
 796        get_device(supplier);
 797        link->supplier = supplier;
 798        INIT_LIST_HEAD(&link->s_node);
 799        get_device(consumer);
 800        link->consumer = consumer;
 801        INIT_LIST_HEAD(&link->c_node);
 802        link->flags = flags;
 803        kref_init(&link->kref);
 804
 805        link->link_dev.class = &devlink_class;
 806        device_set_pm_not_required(&link->link_dev);
 807        dev_set_name(&link->link_dev, "%s:%s--%s:%s",
 808                     dev_bus_name(supplier), dev_name(supplier),
 809                     dev_bus_name(consumer), dev_name(consumer));
 810        if (device_register(&link->link_dev)) {
 811                put_device(consumer);
 812                put_device(supplier);
 813                kfree(link);
 814                link = NULL;
 815                goto out;
 816        }
 817
 818        if (flags & DL_FLAG_PM_RUNTIME) {
 819                if (flags & DL_FLAG_RPM_ACTIVE)
 820                        refcount_inc(&link->rpm_active);
 821
 822                pm_runtime_new_link(consumer);
 823        }
 824
 825        /* Determine the initial link state. */
 826        if (flags & DL_FLAG_STATELESS)
 827                link->status = DL_STATE_NONE;
 828        else
 829                device_link_init_status(link, consumer, supplier);
 830
 831        /*
 832         * Some callers expect the link creation during consumer driver probe to
 833         * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 834         */
 835        if (link->status == DL_STATE_CONSUMER_PROBE &&
 836            flags & DL_FLAG_PM_RUNTIME)
 837                pm_runtime_resume(supplier);
 838
 839        list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 840        list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 841
 842        if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 843                dev_dbg(consumer,
 844                        "Linked as a sync state only consumer to %s\n",
 845                        dev_name(supplier));
 846                goto out;
 847        }
 848
 849reorder:
 850        /*
 851         * Move the consumer and all of the devices depending on it to the end
 852         * of dpm_list and the devices_kset list.
 853         *
 854         * It is necessary to hold dpm_list locked throughout all that or else
 855         * we may end up suspending with a wrong ordering of it.
 856         */
 857        device_reorder_to_tail(consumer, NULL);
 858
 859        dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 860
 861out:
 862        device_pm_unlock();
 863        device_links_write_unlock();
 864
 865        if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 866                pm_runtime_put(supplier);
 867
 868        return link;
 869}
 870EXPORT_SYMBOL_GPL(device_link_add);
 871
 872static void __device_link_del(struct kref *kref)
 873{
 874        struct device_link *link = container_of(kref, struct device_link, kref);
 875
 876        dev_dbg(link->consumer, "Dropping the link to %s\n",
 877                dev_name(link->supplier));
 878
 879        pm_runtime_drop_link(link);
 880
 881        device_link_remove_from_lists(link);
 882        device_unregister(&link->link_dev);
 883}
 884
 885static void device_link_put_kref(struct device_link *link)
 886{
 887        if (link->flags & DL_FLAG_STATELESS)
 888                kref_put(&link->kref, __device_link_del);
 889        else
 890                WARN(1, "Unable to drop a managed device link reference\n");
 891}
 892
 893/**
 894 * device_link_del - Delete a stateless link between two devices.
 895 * @link: Device link to delete.
 896 *
 897 * The caller must ensure proper synchronization of this function with runtime
 898 * PM.  If the link was added multiple times, it needs to be deleted as often.
 899 * Care is required for hotplugged devices:  Their links are purged on removal
 900 * and calling device_link_del() is then no longer allowed.
 901 */
 902void device_link_del(struct device_link *link)
 903{
 904        device_links_write_lock();
 905        device_link_put_kref(link);
 906        device_links_write_unlock();
 907}
 908EXPORT_SYMBOL_GPL(device_link_del);
 909
 910/**
 911 * device_link_remove - Delete a stateless link between two devices.
 912 * @consumer: Consumer end of the link.
 913 * @supplier: Supplier end of the link.
 914 *
 915 * The caller must ensure proper synchronization of this function with runtime
 916 * PM.
 917 */
 918void device_link_remove(void *consumer, struct device *supplier)
 919{
 920        struct device_link *link;
 921
 922        if (WARN_ON(consumer == supplier))
 923                return;
 924
 925        device_links_write_lock();
 926
 927        list_for_each_entry(link, &supplier->links.consumers, s_node) {
 928                if (link->consumer == consumer) {
 929                        device_link_put_kref(link);
 930                        break;
 931                }
 932        }
 933
 934        device_links_write_unlock();
 935}
 936EXPORT_SYMBOL_GPL(device_link_remove);
 937
 938static void device_links_missing_supplier(struct device *dev)
 939{
 940        struct device_link *link;
 941
 942        list_for_each_entry(link, &dev->links.suppliers, c_node) {
 943                if (link->status != DL_STATE_CONSUMER_PROBE)
 944                        continue;
 945
 946                if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 947                        WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 948                } else {
 949                        WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 950                        WRITE_ONCE(link->status, DL_STATE_DORMANT);
 951                }
 952        }
 953}
 954
 955/**
 956 * device_links_check_suppliers - Check presence of supplier drivers.
 957 * @dev: Consumer device.
 958 *
 959 * Check links from this device to any suppliers.  Walk the list of the device's
 960 * links to suppliers and see if all of them are available.  If not, simply
 961 * return -EPROBE_DEFER.
 962 *
 963 * We need to guarantee that the supplier will not go away after the check has
 964 * been positive here.  It only can go away in __device_release_driver() and
 965 * that function  checks the device's links to consumers.  This means we need to
 966 * mark the link as "consumer probe in progress" to make the supplier removal
 967 * wait for us to complete (or bad things may happen).
 968 *
 969 * Links without the DL_FLAG_MANAGED flag set are ignored.
 970 */
 971int device_links_check_suppliers(struct device *dev)
 972{
 973        struct device_link *link;
 974        int ret = 0;
 975
 976        /*
 977         * Device waiting for supplier to become available is not allowed to
 978         * probe.
 979         */
 980        mutex_lock(&fwnode_link_lock);
 981        if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
 982            !fw_devlink_is_permissive()) {
 983                dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
 984                        list_first_entry(&dev->fwnode->suppliers,
 985                        struct fwnode_link,
 986                        c_hook)->supplier);
 987                mutex_unlock(&fwnode_link_lock);
 988                return -EPROBE_DEFER;
 989        }
 990        mutex_unlock(&fwnode_link_lock);
 991
 992        device_links_write_lock();
 993
 994        list_for_each_entry(link, &dev->links.suppliers, c_node) {
 995                if (!(link->flags & DL_FLAG_MANAGED))
 996                        continue;
 997
 998                if (link->status != DL_STATE_AVAILABLE &&
 999                    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1000                        device_links_missing_supplier(dev);
1001                        dev_dbg(dev, "probe deferral - supplier %s not ready\n",
1002                                dev_name(link->supplier));
1003                        ret = -EPROBE_DEFER;
1004                        break;
1005                }
1006                WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1007        }
1008        dev->links.status = DL_DEV_PROBING;
1009
1010        device_links_write_unlock();
1011        return ret;
1012}
1013
1014/**
1015 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1016 * @dev: Device to call sync_state() on
1017 * @list: List head to queue the @dev on
1018 *
1019 * Queues a device for a sync_state() callback when the device links write lock
1020 * isn't held. This allows the sync_state() execution flow to use device links
1021 * APIs.  The caller must ensure this function is called with
1022 * device_links_write_lock() held.
1023 *
1024 * This function does a get_device() to make sure the device is not freed while
1025 * on this list.
1026 *
1027 * So the caller must also ensure that device_links_flush_sync_list() is called
1028 * as soon as the caller releases device_links_write_lock().  This is necessary
1029 * to make sure the sync_state() is called in a timely fashion and the
1030 * put_device() is called on this device.
1031 */
1032static void __device_links_queue_sync_state(struct device *dev,
1033                                            struct list_head *list)
1034{
1035        struct device_link *link;
1036
1037        if (!dev_has_sync_state(dev))
1038                return;
1039        if (dev->state_synced)
1040                return;
1041
1042        list_for_each_entry(link, &dev->links.consumers, s_node) {
1043                if (!(link->flags & DL_FLAG_MANAGED))
1044                        continue;
1045                if (link->status != DL_STATE_ACTIVE)
1046                        return;
1047        }
1048
1049        /*
1050         * Set the flag here to avoid adding the same device to a list more
1051         * than once. This can happen if new consumers get added to the device
1052         * and probed before the list is flushed.
1053         */
1054        dev->state_synced = true;
1055
1056        if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1057                return;
1058
1059        get_device(dev);
1060        list_add_tail(&dev->links.defer_sync, list);
1061}
1062
1063/**
1064 * device_links_flush_sync_list - Call sync_state() on a list of devices
1065 * @list: List of devices to call sync_state() on
1066 * @dont_lock_dev: Device for which lock is already held by the caller
1067 *
1068 * Calls sync_state() on all the devices that have been queued for it. This
1069 * function is used in conjunction with __device_links_queue_sync_state(). The
1070 * @dont_lock_dev parameter is useful when this function is called from a
1071 * context where a device lock is already held.
1072 */
1073static void device_links_flush_sync_list(struct list_head *list,
1074                                         struct device *dont_lock_dev)
1075{
1076        struct device *dev, *tmp;
1077
1078        list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1079                list_del_init(&dev->links.defer_sync);
1080
1081                if (dev != dont_lock_dev)
1082                        device_lock(dev);
1083
1084                if (dev->bus->sync_state)
1085                        dev->bus->sync_state(dev);
1086                else if (dev->driver && dev->driver->sync_state)
1087                        dev->driver->sync_state(dev);
1088
1089                if (dev != dont_lock_dev)
1090                        device_unlock(dev);
1091
1092                put_device(dev);
1093        }
1094}
1095
1096void device_links_supplier_sync_state_pause(void)
1097{
1098        device_links_write_lock();
1099        defer_sync_state_count++;
1100        device_links_write_unlock();
1101}
1102
1103void device_links_supplier_sync_state_resume(void)
1104{
1105        struct device *dev, *tmp;
1106        LIST_HEAD(sync_list);
1107
1108        device_links_write_lock();
1109        if (!defer_sync_state_count) {
1110                WARN(true, "Unmatched sync_state pause/resume!");
1111                goto out;
1112        }
1113        defer_sync_state_count--;
1114        if (defer_sync_state_count)
1115                goto out;
1116
1117        list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1118                /*
1119                 * Delete from deferred_sync list before queuing it to
1120                 * sync_list because defer_sync is used for both lists.
1121                 */
1122                list_del_init(&dev->links.defer_sync);
1123                __device_links_queue_sync_state(dev, &sync_list);
1124        }
1125out:
1126        device_links_write_unlock();
1127
1128        device_links_flush_sync_list(&sync_list, NULL);
1129}
1130
1131static int sync_state_resume_initcall(void)
1132{
1133        device_links_supplier_sync_state_resume();
1134        return 0;
1135}
1136late_initcall(sync_state_resume_initcall);
1137
1138static void __device_links_supplier_defer_sync(struct device *sup)
1139{
1140        if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1141                list_add_tail(&sup->links.defer_sync, &deferred_sync);
1142}
1143
1144static void device_link_drop_managed(struct device_link *link)
1145{
1146        link->flags &= ~DL_FLAG_MANAGED;
1147        WRITE_ONCE(link->status, DL_STATE_NONE);
1148        kref_put(&link->kref, __device_link_del);
1149}
1150
1151static ssize_t waiting_for_supplier_show(struct device *dev,
1152                                         struct device_attribute *attr,
1153                                         char *buf)
1154{
1155        bool val;
1156
1157        device_lock(dev);
1158        val = !list_empty(&dev->fwnode->suppliers);
1159        device_unlock(dev);
1160        return sysfs_emit(buf, "%u\n", val);
1161}
1162static DEVICE_ATTR_RO(waiting_for_supplier);
1163
1164/**
1165 * device_links_force_bind - Prepares device to be force bound
1166 * @dev: Consumer device.
1167 *
1168 * device_bind_driver() force binds a device to a driver without calling any
1169 * driver probe functions. So the consumer really isn't going to wait for any
1170 * supplier before it's bound to the driver. We still want the device link
1171 * states to be sensible when this happens.
1172 *
1173 * In preparation for device_bind_driver(), this function goes through each
1174 * supplier device links and checks if the supplier is bound. If it is, then
1175 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1176 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1177 */
1178void device_links_force_bind(struct device *dev)
1179{
1180        struct device_link *link, *ln;
1181
1182        device_links_write_lock();
1183
1184        list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1185                if (!(link->flags & DL_FLAG_MANAGED))
1186                        continue;
1187
1188                if (link->status != DL_STATE_AVAILABLE) {
1189                        device_link_drop_managed(link);
1190                        continue;
1191                }
1192                WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1193        }
1194        dev->links.status = DL_DEV_PROBING;
1195
1196        device_links_write_unlock();
1197}
1198
1199/**
1200 * device_links_driver_bound - Update device links after probing its driver.
1201 * @dev: Device to update the links for.
1202 *
1203 * The probe has been successful, so update links from this device to any
1204 * consumers by changing their status to "available".
1205 *
1206 * Also change the status of @dev's links to suppliers to "active".
1207 *
1208 * Links without the DL_FLAG_MANAGED flag set are ignored.
1209 */
1210void device_links_driver_bound(struct device *dev)
1211{
1212        struct device_link *link, *ln;
1213        LIST_HEAD(sync_list);
1214
1215        /*
1216         * If a device binds successfully, it's expected to have created all
1217         * the device links it needs to or make new device links as it needs
1218         * them. So, fw_devlink no longer needs to create device links to any
1219         * of the device's suppliers.
1220         *
1221         * Also, if a child firmware node of this bound device is not added as
1222         * a device by now, assume it is never going to be added and make sure
1223         * other devices don't defer probe indefinitely by waiting for such a
1224         * child device.
1225         */
1226        if (dev->fwnode && dev->fwnode->dev == dev) {
1227                struct fwnode_handle *child;
1228                fwnode_links_purge_suppliers(dev->fwnode);
1229                fwnode_for_each_available_child_node(dev->fwnode, child)
1230                        fw_devlink_purge_absent_suppliers(child);
1231        }
1232        device_remove_file(dev, &dev_attr_waiting_for_supplier);
1233
1234        device_links_write_lock();
1235
1236        list_for_each_entry(link, &dev->links.consumers, s_node) {
1237                if (!(link->flags & DL_FLAG_MANAGED))
1238                        continue;
1239
1240                /*
1241                 * Links created during consumer probe may be in the "consumer
1242                 * probe" state to start with if the supplier is still probing
1243                 * when they are created and they may become "active" if the
1244                 * consumer probe returns first.  Skip them here.
1245                 */
1246                if (link->status == DL_STATE_CONSUMER_PROBE ||
1247                    link->status == DL_STATE_ACTIVE)
1248                        continue;
1249
1250                WARN_ON(link->status != DL_STATE_DORMANT);
1251                WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1252
1253                if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1254                        driver_deferred_probe_add(link->consumer);
1255        }
1256
1257        if (defer_sync_state_count)
1258                __device_links_supplier_defer_sync(dev);
1259        else
1260                __device_links_queue_sync_state(dev, &sync_list);
1261
1262        list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1263                struct device *supplier;
1264
1265                if (!(link->flags & DL_FLAG_MANAGED))
1266                        continue;
1267
1268                supplier = link->supplier;
1269                if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1270                        /*
1271                         * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1272                         * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1273                         * save to drop the managed link completely.
1274                         */
1275                        device_link_drop_managed(link);
1276                } else {
1277                        WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1278                        WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1279                }
1280
1281                /*
1282                 * This needs to be done even for the deleted
1283                 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1284                 * device link that was preventing the supplier from getting a
1285                 * sync_state() call.
1286                 */
1287                if (defer_sync_state_count)
1288                        __device_links_supplier_defer_sync(supplier);
1289                else
1290                        __device_links_queue_sync_state(supplier, &sync_list);
1291        }
1292
1293        dev->links.status = DL_DEV_DRIVER_BOUND;
1294
1295        device_links_write_unlock();
1296
1297        device_links_flush_sync_list(&sync_list, dev);
1298}
1299
1300/**
1301 * __device_links_no_driver - Update links of a device without a driver.
1302 * @dev: Device without a drvier.
1303 *
1304 * Delete all non-persistent links from this device to any suppliers.
1305 *
1306 * Persistent links stay around, but their status is changed to "available",
1307 * unless they already are in the "supplier unbind in progress" state in which
1308 * case they need not be updated.
1309 *
1310 * Links without the DL_FLAG_MANAGED flag set are ignored.
1311 */
1312static void __device_links_no_driver(struct device *dev)
1313{
1314        struct device_link *link, *ln;
1315
1316        list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1317                if (!(link->flags & DL_FLAG_MANAGED))
1318                        continue;
1319
1320                if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1321                        device_link_drop_managed(link);
1322                        continue;
1323                }
1324
1325                if (link->status != DL_STATE_CONSUMER_PROBE &&
1326                    link->status != DL_STATE_ACTIVE)
1327                        continue;
1328
1329                if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1330                        WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1331                } else {
1332                        WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1333                        WRITE_ONCE(link->status, DL_STATE_DORMANT);
1334                }
1335        }
1336
1337        dev->links.status = DL_DEV_NO_DRIVER;
1338}
1339
1340/**
1341 * device_links_no_driver - Update links after failing driver probe.
1342 * @dev: Device whose driver has just failed to probe.
1343 *
1344 * Clean up leftover links to consumers for @dev and invoke
1345 * %__device_links_no_driver() to update links to suppliers for it as
1346 * appropriate.
1347 *
1348 * Links without the DL_FLAG_MANAGED flag set are ignored.
1349 */
1350void device_links_no_driver(struct device *dev)
1351{
1352        struct device_link *link;
1353
1354        device_links_write_lock();
1355
1356        list_for_each_entry(link, &dev->links.consumers, s_node) {
1357                if (!(link->flags & DL_FLAG_MANAGED))
1358                        continue;
1359
1360                /*
1361                 * The probe has failed, so if the status of the link is
1362                 * "consumer probe" or "active", it must have been added by
1363                 * a probing consumer while this device was still probing.
1364                 * Change its state to "dormant", as it represents a valid
1365                 * relationship, but it is not functionally meaningful.
1366                 */
1367                if (link->status == DL_STATE_CONSUMER_PROBE ||
1368                    link->status == DL_STATE_ACTIVE)
1369                        WRITE_ONCE(link->status, DL_STATE_DORMANT);
1370        }
1371
1372        __device_links_no_driver(dev);
1373
1374        device_links_write_unlock();
1375}
1376
1377/**
1378 * device_links_driver_cleanup - Update links after driver removal.
1379 * @dev: Device whose driver has just gone away.
1380 *
1381 * Update links to consumers for @dev by changing their status to "dormant" and
1382 * invoke %__device_links_no_driver() to update links to suppliers for it as
1383 * appropriate.
1384 *
1385 * Links without the DL_FLAG_MANAGED flag set are ignored.
1386 */
1387void device_links_driver_cleanup(struct device *dev)
1388{
1389        struct device_link *link, *ln;
1390
1391        device_links_write_lock();
1392
1393        list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1394                if (!(link->flags & DL_FLAG_MANAGED))
1395                        continue;
1396
1397                WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1398                WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1399
1400                /*
1401                 * autoremove the links between this @dev and its consumer
1402                 * devices that are not active, i.e. where the link state
1403                 * has moved to DL_STATE_SUPPLIER_UNBIND.
1404                 */
1405                if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1406                    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1407                        device_link_drop_managed(link);
1408
1409                WRITE_ONCE(link->status, DL_STATE_DORMANT);
1410        }
1411
1412        list_del_init(&dev->links.defer_sync);
1413        __device_links_no_driver(dev);
1414
1415        device_links_write_unlock();
1416}
1417
1418/**
1419 * device_links_busy - Check if there are any busy links to consumers.
1420 * @dev: Device to check.
1421 *
1422 * Check each consumer of the device and return 'true' if its link's status
1423 * is one of "consumer probe" or "active" (meaning that the given consumer is
1424 * probing right now or its driver is present).  Otherwise, change the link
1425 * state to "supplier unbind" to prevent the consumer from being probed
1426 * successfully going forward.
1427 *
1428 * Return 'false' if there are no probing or active consumers.
1429 *
1430 * Links without the DL_FLAG_MANAGED flag set are ignored.
1431 */
1432bool device_links_busy(struct device *dev)
1433{
1434        struct device_link *link;
1435        bool ret = false;
1436
1437        device_links_write_lock();
1438
1439        list_for_each_entry(link, &dev->links.consumers, s_node) {
1440                if (!(link->flags & DL_FLAG_MANAGED))
1441                        continue;
1442
1443                if (link->status == DL_STATE_CONSUMER_PROBE
1444                    || link->status == DL_STATE_ACTIVE) {
1445                        ret = true;
1446                        break;
1447                }
1448                WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1449        }
1450
1451        dev->links.status = DL_DEV_UNBINDING;
1452
1453        device_links_write_unlock();
1454        return ret;
1455}
1456
1457/**
1458 * device_links_unbind_consumers - Force unbind consumers of the given device.
1459 * @dev: Device to unbind the consumers of.
1460 *
1461 * Walk the list of links to consumers for @dev and if any of them is in the
1462 * "consumer probe" state, wait for all device probes in progress to complete
1463 * and start over.
1464 *
1465 * If that's not the case, change the status of the link to "supplier unbind"
1466 * and check if the link was in the "active" state.  If so, force the consumer
1467 * driver to unbind and start over (the consumer will not re-probe as we have
1468 * changed the state of the link already).
1469 *
1470 * Links without the DL_FLAG_MANAGED flag set are ignored.
1471 */
1472void device_links_unbind_consumers(struct device *dev)
1473{
1474        struct device_link *link;
1475
1476 start:
1477        device_links_write_lock();
1478
1479        list_for_each_entry(link, &dev->links.consumers, s_node) {
1480                enum device_link_state status;
1481
1482                if (!(link->flags & DL_FLAG_MANAGED) ||
1483                    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1484                        continue;
1485
1486                status = link->status;
1487                if (status == DL_STATE_CONSUMER_PROBE) {
1488                        device_links_write_unlock();
1489
1490                        wait_for_device_probe();
1491                        goto start;
1492                }
1493                WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1494                if (status == DL_STATE_ACTIVE) {
1495                        struct device *consumer = link->consumer;
1496
1497                        get_device(consumer);
1498
1499                        device_links_write_unlock();
1500
1501                        device_release_driver_internal(consumer, NULL,
1502                                                       consumer->parent);
1503                        put_device(consumer);
1504                        goto start;
1505                }
1506        }
1507
1508        device_links_write_unlock();
1509}
1510
1511/**
1512 * device_links_purge - Delete existing links to other devices.
1513 * @dev: Target device.
1514 */
1515static void device_links_purge(struct device *dev)
1516{
1517        struct device_link *link, *ln;
1518
1519        if (dev->class == &devlink_class)
1520                return;
1521
1522        /*
1523         * Delete all of the remaining links from this device to any other
1524         * devices (either consumers or suppliers).
1525         */
1526        device_links_write_lock();
1527
1528        list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1529                WARN_ON(link->status == DL_STATE_ACTIVE);
1530                __device_link_del(&link->kref);
1531        }
1532
1533        list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1534                WARN_ON(link->status != DL_STATE_DORMANT &&
1535                        link->status != DL_STATE_NONE);
1536                __device_link_del(&link->kref);
1537        }
1538
1539        device_links_write_unlock();
1540}
1541
1542#define FW_DEVLINK_FLAGS_PERMISSIVE     (DL_FLAG_INFERRED | \
1543                                         DL_FLAG_SYNC_STATE_ONLY)
1544#define FW_DEVLINK_FLAGS_ON             (DL_FLAG_INFERRED | \
1545                                         DL_FLAG_AUTOPROBE_CONSUMER)
1546#define FW_DEVLINK_FLAGS_RPM            (FW_DEVLINK_FLAGS_ON | \
1547                                         DL_FLAG_PM_RUNTIME)
1548
1549static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1550static int __init fw_devlink_setup(char *arg)
1551{
1552        if (!arg)
1553                return -EINVAL;
1554
1555        if (strcmp(arg, "off") == 0) {
1556                fw_devlink_flags = 0;
1557        } else if (strcmp(arg, "permissive") == 0) {
1558                fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1559        } else if (strcmp(arg, "on") == 0) {
1560                fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1561        } else if (strcmp(arg, "rpm") == 0) {
1562                fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1563        }
1564        return 0;
1565}
1566early_param("fw_devlink", fw_devlink_setup);
1567
1568static bool fw_devlink_strict;
1569static int __init fw_devlink_strict_setup(char *arg)
1570{
1571        return strtobool(arg, &fw_devlink_strict);
1572}
1573early_param("fw_devlink.strict", fw_devlink_strict_setup);
1574
1575u32 fw_devlink_get_flags(void)
1576{
1577        return fw_devlink_flags;
1578}
1579
1580static bool fw_devlink_is_permissive(void)
1581{
1582        return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1583}
1584
1585bool fw_devlink_is_strict(void)
1586{
1587        return fw_devlink_strict && !fw_devlink_is_permissive();
1588}
1589
1590static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1591{
1592        if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1593                return;
1594
1595        fwnode_call_int_op(fwnode, add_links);
1596        fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1597}
1598
1599static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1600{
1601        struct fwnode_handle *child = NULL;
1602
1603        fw_devlink_parse_fwnode(fwnode);
1604
1605        while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1606                fw_devlink_parse_fwtree(child);
1607}
1608
1609static void fw_devlink_relax_link(struct device_link *link)
1610{
1611        if (!(link->flags & DL_FLAG_INFERRED))
1612                return;
1613
1614        if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1615                return;
1616
1617        pm_runtime_drop_link(link);
1618        link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1619        dev_dbg(link->consumer, "Relaxing link with %s\n",
1620                dev_name(link->supplier));
1621}
1622
1623static int fw_devlink_no_driver(struct device *dev, void *data)
1624{
1625        struct device_link *link = to_devlink(dev);
1626
1627        if (!link->supplier->can_match)
1628                fw_devlink_relax_link(link);
1629
1630        return 0;
1631}
1632
1633void fw_devlink_drivers_done(void)
1634{
1635        fw_devlink_drv_reg_done = true;
1636        device_links_write_lock();
1637        class_for_each_device(&devlink_class, NULL, NULL,
1638                              fw_devlink_no_driver);
1639        device_links_write_unlock();
1640}
1641
1642static void fw_devlink_unblock_consumers(struct device *dev)
1643{
1644        struct device_link *link;
1645
1646        if (!fw_devlink_flags || fw_devlink_is_permissive())
1647                return;
1648
1649        device_links_write_lock();
1650        list_for_each_entry(link, &dev->links.consumers, s_node)
1651                fw_devlink_relax_link(link);
1652        device_links_write_unlock();
1653}
1654
1655/**
1656 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1657 * @con: Device to check dependencies for.
1658 * @sup: Device to check against.
1659 *
1660 * Check if @sup depends on @con or any device dependent on it (its child or
1661 * its consumer etc).  When such a cyclic dependency is found, convert all
1662 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1663 * This is the equivalent of doing fw_devlink=permissive just between the
1664 * devices in the cycle. We need to do this because, at this point, fw_devlink
1665 * can't tell which of these dependencies is not a real dependency.
1666 *
1667 * Return 1 if a cycle is found. Otherwise, return 0.
1668 */
1669static int fw_devlink_relax_cycle(struct device *con, void *sup)
1670{
1671        struct device_link *link;
1672        int ret;
1673
1674        if (con == sup)
1675                return 1;
1676
1677        ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1678        if (ret)
1679                return ret;
1680
1681        list_for_each_entry(link, &con->links.consumers, s_node) {
1682                if ((link->flags & ~DL_FLAG_INFERRED) ==
1683                    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1684                        continue;
1685
1686                if (!fw_devlink_relax_cycle(link->consumer, sup))
1687                        continue;
1688
1689                ret = 1;
1690
1691                fw_devlink_relax_link(link);
1692        }
1693        return ret;
1694}
1695
1696/**
1697 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1698 * @con: consumer device for the device link
1699 * @sup_handle: fwnode handle of supplier
1700 * @flags: devlink flags
1701 *
1702 * This function will try to create a device link between the consumer device
1703 * @con and the supplier device represented by @sup_handle.
1704 *
1705 * The supplier has to be provided as a fwnode because incorrect cycles in
1706 * fwnode links can sometimes cause the supplier device to never be created.
1707 * This function detects such cases and returns an error if it cannot create a
1708 * device link from the consumer to a missing supplier.
1709 *
1710 * Returns,
1711 * 0 on successfully creating a device link
1712 * -EINVAL if the device link cannot be created as expected
1713 * -EAGAIN if the device link cannot be created right now, but it may be
1714 *  possible to do that in the future
1715 */
1716static int fw_devlink_create_devlink(struct device *con,
1717                                     struct fwnode_handle *sup_handle, u32 flags)
1718{
1719        struct device *sup_dev;
1720        int ret = 0;
1721
1722        sup_dev = get_dev_from_fwnode(sup_handle);
1723        if (sup_dev) {
1724                /*
1725                 * If it's one of those drivers that don't actually bind to
1726                 * their device using driver core, then don't wait on this
1727                 * supplier device indefinitely.
1728                 */
1729                if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1730                    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1731                        ret = -EINVAL;
1732                        goto out;
1733                }
1734
1735                /*
1736                 * If this fails, it is due to cycles in device links.  Just
1737                 * give up on this link and treat it as invalid.
1738                 */
1739                if (!device_link_add(con, sup_dev, flags) &&
1740                    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1741                        dev_info(con, "Fixing up cyclic dependency with %s\n",
1742                                 dev_name(sup_dev));
1743                        device_links_write_lock();
1744                        fw_devlink_relax_cycle(con, sup_dev);
1745                        device_links_write_unlock();
1746                        device_link_add(con, sup_dev,
1747                                        FW_DEVLINK_FLAGS_PERMISSIVE);
1748                        ret = -EINVAL;
1749                }
1750
1751                goto out;
1752        }
1753
1754        /* Supplier that's already initialized without a struct device. */
1755        if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1756                return -EINVAL;
1757
1758        /*
1759         * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1760         * cycles. So cycle detection isn't necessary and shouldn't be
1761         * done.
1762         */
1763        if (flags & DL_FLAG_SYNC_STATE_ONLY)
1764                return -EAGAIN;
1765
1766        /*
1767         * If we can't find the supplier device from its fwnode, it might be
1768         * due to a cyclic dependency between fwnodes. Some of these cycles can
1769         * be broken by applying logic. Check for these types of cycles and
1770         * break them so that devices in the cycle probe properly.
1771         *
1772         * If the supplier's parent is dependent on the consumer, then
1773         * the consumer-supplier dependency is a false dependency. So,
1774         * treat it as an invalid link.
1775         */
1776        sup_dev = fwnode_get_next_parent_dev(sup_handle);
1777        if (sup_dev && device_is_dependent(con, sup_dev)) {
1778                dev_dbg(con, "Not linking to %pfwP - False link\n",
1779                        sup_handle);
1780                ret = -EINVAL;
1781        } else {
1782                /*
1783                 * Can't check for cycles or no cycles. So let's try
1784                 * again later.
1785                 */
1786                ret = -EAGAIN;
1787        }
1788
1789out:
1790        put_device(sup_dev);
1791        return ret;
1792}
1793
1794/**
1795 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1796 * @dev: Device that needs to be linked to its consumers
1797 *
1798 * This function looks at all the consumer fwnodes of @dev and creates device
1799 * links between the consumer device and @dev (supplier).
1800 *
1801 * If the consumer device has not been added yet, then this function creates a
1802 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1803 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1804 * sync_state() callback before the real consumer device gets to be added and
1805 * then probed.
1806 *
1807 * Once device links are created from the real consumer to @dev (supplier), the
1808 * fwnode links are deleted.
1809 */
1810static void __fw_devlink_link_to_consumers(struct device *dev)
1811{
1812        struct fwnode_handle *fwnode = dev->fwnode;
1813        struct fwnode_link *link, *tmp;
1814
1815        list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1816                u32 dl_flags = fw_devlink_get_flags();
1817                struct device *con_dev;
1818                bool own_link = true;
1819                int ret;
1820
1821                con_dev = get_dev_from_fwnode(link->consumer);
1822                /*
1823                 * If consumer device is not available yet, make a "proxy"
1824                 * SYNC_STATE_ONLY link from the consumer's parent device to
1825                 * the supplier device. This is necessary to make sure the
1826                 * supplier doesn't get a sync_state() callback before the real
1827                 * consumer can create a device link to the supplier.
1828                 *
1829                 * This proxy link step is needed to handle the case where the
1830                 * consumer's parent device is added before the supplier.
1831                 */
1832                if (!con_dev) {
1833                        con_dev = fwnode_get_next_parent_dev(link->consumer);
1834                        /*
1835                         * However, if the consumer's parent device is also the
1836                         * parent of the supplier, don't create a
1837                         * consumer-supplier link from the parent to its child
1838                         * device. Such a dependency is impossible.
1839                         */
1840                        if (con_dev &&
1841                            fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1842                                put_device(con_dev);
1843                                con_dev = NULL;
1844                        } else {
1845                                own_link = false;
1846                                dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1847                        }
1848                }
1849
1850                if (!con_dev)
1851                        continue;
1852
1853                ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1854                put_device(con_dev);
1855                if (!own_link || ret == -EAGAIN)
1856                        continue;
1857
1858                list_del(&link->s_hook);
1859                list_del(&link->c_hook);
1860                kfree(link);
1861        }
1862}
1863
1864/**
1865 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1866 * @dev: The consumer device that needs to be linked to its suppliers
1867 * @fwnode: Root of the fwnode tree that is used to create device links
1868 *
1869 * This function looks at all the supplier fwnodes of fwnode tree rooted at
1870 * @fwnode and creates device links between @dev (consumer) and all the
1871 * supplier devices of the entire fwnode tree at @fwnode.
1872 *
1873 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1874 * and the real suppliers of @dev. Once these device links are created, the
1875 * fwnode links are deleted. When such device links are successfully created,
1876 * this function is called recursively on those supplier devices. This is
1877 * needed to detect and break some invalid cycles in fwnode links.  See
1878 * fw_devlink_create_devlink() for more details.
1879 *
1880 * In addition, it also looks at all the suppliers of the entire fwnode tree
1881 * because some of the child devices of @dev that have not been added yet
1882 * (because @dev hasn't probed) might already have their suppliers added to
1883 * driver core. So, this function creates SYNC_STATE_ONLY device links between
1884 * @dev (consumer) and these suppliers to make sure they don't execute their
1885 * sync_state() callbacks before these child devices have a chance to create
1886 * their device links. The fwnode links that correspond to the child devices
1887 * aren't delete because they are needed later to create the device links
1888 * between the real consumer and supplier devices.
1889 */
1890static void __fw_devlink_link_to_suppliers(struct device *dev,
1891                                           struct fwnode_handle *fwnode)
1892{
1893        bool own_link = (dev->fwnode == fwnode);
1894        struct fwnode_link *link, *tmp;
1895        struct fwnode_handle *child = NULL;
1896        u32 dl_flags;
1897
1898        if (own_link)
1899                dl_flags = fw_devlink_get_flags();
1900        else
1901                dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1902
1903        list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1904                int ret;
1905                struct device *sup_dev;
1906                struct fwnode_handle *sup = link->supplier;
1907
1908                ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1909                if (!own_link || ret == -EAGAIN)
1910                        continue;
1911
1912                list_del(&link->s_hook);
1913                list_del(&link->c_hook);
1914                kfree(link);
1915
1916                /* If no device link was created, nothing more to do. */
1917                if (ret)
1918                        continue;
1919
1920                /*
1921                 * If a device link was successfully created to a supplier, we
1922                 * now need to try and link the supplier to all its suppliers.
1923                 *
1924                 * This is needed to detect and delete false dependencies in
1925                 * fwnode links that haven't been converted to a device link
1926                 * yet. See comments in fw_devlink_create_devlink() for more
1927                 * details on the false dependency.
1928                 *
1929                 * Without deleting these false dependencies, some devices will
1930                 * never probe because they'll keep waiting for their false
1931                 * dependency fwnode links to be converted to device links.
1932                 */
1933                sup_dev = get_dev_from_fwnode(sup);
1934                __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1935                put_device(sup_dev);
1936        }
1937
1938        /*
1939         * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1940         * all the descendants. This proxy link step is needed to handle the
1941         * case where the supplier is added before the consumer's parent device
1942         * (@dev).
1943         */
1944        while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1945                __fw_devlink_link_to_suppliers(dev, child);
1946}
1947
1948static void fw_devlink_link_device(struct device *dev)
1949{
1950        struct fwnode_handle *fwnode = dev->fwnode;
1951
1952        if (!fw_devlink_flags)
1953                return;
1954
1955        fw_devlink_parse_fwtree(fwnode);
1956
1957        mutex_lock(&fwnode_link_lock);
1958        __fw_devlink_link_to_consumers(dev);
1959        __fw_devlink_link_to_suppliers(dev, fwnode);
1960        mutex_unlock(&fwnode_link_lock);
1961}
1962
1963/* Device links support end. */
1964
1965int (*platform_notify)(struct device *dev) = NULL;
1966int (*platform_notify_remove)(struct device *dev) = NULL;
1967static struct kobject *dev_kobj;
1968struct kobject *sysfs_dev_char_kobj;
1969struct kobject *sysfs_dev_block_kobj;
1970
1971static DEFINE_MUTEX(device_hotplug_lock);
1972
1973void lock_device_hotplug(void)
1974{
1975        mutex_lock(&device_hotplug_lock);
1976}
1977
1978void unlock_device_hotplug(void)
1979{
1980        mutex_unlock(&device_hotplug_lock);
1981}
1982
1983int lock_device_hotplug_sysfs(void)
1984{
1985        if (mutex_trylock(&device_hotplug_lock))
1986                return 0;
1987
1988        /* Avoid busy looping (5 ms of sleep should do). */
1989        msleep(5);
1990        return restart_syscall();
1991}
1992
1993#ifdef CONFIG_BLOCK
1994static inline int device_is_not_partition(struct device *dev)
1995{
1996        return !(dev->type == &part_type);
1997}
1998#else
1999static inline int device_is_not_partition(struct device *dev)
2000{
2001        return 1;
2002}
2003#endif
2004
2005static int
2006device_platform_notify(struct device *dev, enum kobject_action action)
2007{
2008        int ret;
2009
2010        ret = acpi_platform_notify(dev, action);
2011        if (ret)
2012                return ret;
2013
2014        ret = software_node_notify(dev, action);
2015        if (ret)
2016                return ret;
2017
2018        if (platform_notify && action == KOBJ_ADD)
2019                platform_notify(dev);
2020        else if (platform_notify_remove && action == KOBJ_REMOVE)
2021                platform_notify_remove(dev);
2022        return 0;
2023}
2024
2025/**
2026 * dev_driver_string - Return a device's driver name, if at all possible
2027 * @dev: struct device to get the name of
2028 *
2029 * Will return the device's driver's name if it is bound to a device.  If
2030 * the device is not bound to a driver, it will return the name of the bus
2031 * it is attached to.  If it is not attached to a bus either, an empty
2032 * string will be returned.
2033 */
2034const char *dev_driver_string(const struct device *dev)
2035{
2036        struct device_driver *drv;
2037
2038        /* dev->driver can change to NULL underneath us because of unbinding,
2039         * so be careful about accessing it.  dev->bus and dev->class should
2040         * never change once they are set, so they don't need special care.
2041         */
2042        drv = READ_ONCE(dev->driver);
2043        return drv ? drv->name : dev_bus_name(dev);
2044}
2045EXPORT_SYMBOL(dev_driver_string);
2046
2047#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2048
2049static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2050                             char *buf)
2051{
2052        struct device_attribute *dev_attr = to_dev_attr(attr);
2053        struct device *dev = kobj_to_dev(kobj);
2054        ssize_t ret = -EIO;
2055
2056        if (dev_attr->show)
2057                ret = dev_attr->show(dev, dev_attr, buf);
2058        if (ret >= (ssize_t)PAGE_SIZE) {
2059                printk("dev_attr_show: %pS returned bad count\n",
2060                                dev_attr->show);
2061        }
2062        return ret;
2063}
2064
2065static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2066                              const char *buf, size_t count)
2067{
2068        struct device_attribute *dev_attr = to_dev_attr(attr);
2069        struct device *dev = kobj_to_dev(kobj);
2070        ssize_t ret = -EIO;
2071
2072        if (dev_attr->store)
2073                ret = dev_attr->store(dev, dev_attr, buf, count);
2074        return ret;
2075}
2076
2077static const struct sysfs_ops dev_sysfs_ops = {
2078        .show   = dev_attr_show,
2079        .store  = dev_attr_store,
2080};
2081
2082#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2083
2084ssize_t device_store_ulong(struct device *dev,
2085                           struct device_attribute *attr,
2086                           const char *buf, size_t size)
2087{
2088        struct dev_ext_attribute *ea = to_ext_attr(attr);
2089        int ret;
2090        unsigned long new;
2091
2092        ret = kstrtoul(buf, 0, &new);
2093        if (ret)
2094                return ret;
2095        *(unsigned long *)(ea->var) = new;
2096        /* Always return full write size even if we didn't consume all */
2097        return size;
2098}
2099EXPORT_SYMBOL_GPL(device_store_ulong);
2100
2101ssize_t device_show_ulong(struct device *dev,
2102                          struct device_attribute *attr,
2103                          char *buf)
2104{
2105        struct dev_ext_attribute *ea = to_ext_attr(attr);
2106        return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2107}
2108EXPORT_SYMBOL_GPL(device_show_ulong);
2109
2110ssize_t device_store_int(struct device *dev,
2111                         struct device_attribute *attr,
2112                         const char *buf, size_t size)
2113{
2114        struct dev_ext_attribute *ea = to_ext_attr(attr);
2115        int ret;
2116        long new;
2117
2118        ret = kstrtol(buf, 0, &new);
2119        if (ret)
2120                return ret;
2121
2122        if (new > INT_MAX || new < INT_MIN)
2123                return -EINVAL;
2124        *(int *)(ea->var) = new;
2125        /* Always return full write size even if we didn't consume all */
2126        return size;
2127}
2128EXPORT_SYMBOL_GPL(device_store_int);
2129
2130ssize_t device_show_int(struct device *dev,
2131                        struct device_attribute *attr,
2132                        char *buf)
2133{
2134        struct dev_ext_attribute *ea = to_ext_attr(attr);
2135
2136        return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2137}
2138EXPORT_SYMBOL_GPL(device_show_int);
2139
2140ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2141                          const char *buf, size_t size)
2142{
2143        struct dev_ext_attribute *ea = to_ext_attr(attr);
2144
2145        if (strtobool(buf, ea->var) < 0)
2146                return -EINVAL;
2147
2148        return size;
2149}
2150EXPORT_SYMBOL_GPL(device_store_bool);
2151
2152ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2153                         char *buf)
2154{
2155        struct dev_ext_attribute *ea = to_ext_attr(attr);
2156
2157        return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2158}
2159EXPORT_SYMBOL_GPL(device_show_bool);
2160
2161/**
2162 * device_release - free device structure.
2163 * @kobj: device's kobject.
2164 *
2165 * This is called once the reference count for the object
2166 * reaches 0. We forward the call to the device's release
2167 * method, which should handle actually freeing the structure.
2168 */
2169static void device_release(struct kobject *kobj)
2170{
2171        struct device *dev = kobj_to_dev(kobj);
2172        struct device_private *p = dev->p;
2173
2174        /*
2175         * Some platform devices are driven without driver attached
2176         * and managed resources may have been acquired.  Make sure
2177         * all resources are released.
2178         *
2179         * Drivers still can add resources into device after device
2180         * is deleted but alive, so release devres here to avoid
2181         * possible memory leak.
2182         */
2183        devres_release_all(dev);
2184
2185        kfree(dev->dma_range_map);
2186
2187        if (dev->release)
2188                dev->release(dev);
2189        else if (dev->type && dev->type->release)
2190                dev->type->release(dev);
2191        else if (dev->class && dev->class->dev_release)
2192                dev->class->dev_release(dev);
2193        else
2194                WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2195                        dev_name(dev));
2196        kfree(p);
2197}
2198
2199static const void *device_namespace(struct kobject *kobj)
2200{
2201        struct device *dev = kobj_to_dev(kobj);
2202        const void *ns = NULL;
2203
2204        if (dev->class && dev->class->ns_type)
2205                ns = dev->class->namespace(dev);
2206
2207        return ns;
2208}
2209
2210static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2211{
2212        struct device *dev = kobj_to_dev(kobj);
2213
2214        if (dev->class && dev->class->get_ownership)
2215                dev->class->get_ownership(dev, uid, gid);
2216}
2217
2218static struct kobj_type device_ktype = {
2219        .release        = device_release,
2220        .sysfs_ops      = &dev_sysfs_ops,
2221        .namespace      = device_namespace,
2222        .get_ownership  = device_get_ownership,
2223};
2224
2225
2226static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2227{
2228        struct kobj_type *ktype = get_ktype(kobj);
2229
2230        if (ktype == &device_ktype) {
2231                struct device *dev = kobj_to_dev(kobj);
2232                if (dev->bus)
2233                        return 1;
2234                if (dev->class)
2235                        return 1;
2236        }
2237        return 0;
2238}
2239
2240static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2241{
2242        struct device *dev = kobj_to_dev(kobj);
2243
2244        if (dev->bus)
2245                return dev->bus->name;
2246        if (dev->class)
2247                return dev->class->name;
2248        return NULL;
2249}
2250
2251static int dev_uevent(struct kset *kset, struct kobject *kobj,
2252                      struct kobj_uevent_env *env)
2253{
2254        struct device *dev = kobj_to_dev(kobj);
2255        int retval = 0;
2256
2257        /* add device node properties if present */
2258        if (MAJOR(dev->devt)) {
2259                const char *tmp;
2260                const char *name;
2261                umode_t mode = 0;
2262                kuid_t uid = GLOBAL_ROOT_UID;
2263                kgid_t gid = GLOBAL_ROOT_GID;
2264
2265                add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2266                add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2267                name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2268                if (name) {
2269                        add_uevent_var(env, "DEVNAME=%s", name);
2270                        if (mode)
2271                                add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2272                        if (!uid_eq(uid, GLOBAL_ROOT_UID))
2273                                add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2274                        if (!gid_eq(gid, GLOBAL_ROOT_GID))
2275                                add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2276                        kfree(tmp);
2277                }
2278        }
2279
2280        if (dev->type && dev->type->name)
2281                add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2282
2283        if (dev->driver)
2284                add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2285
2286        /* Add common DT information about the device */
2287        of_device_uevent(dev, env);
2288
2289        /* have the bus specific function add its stuff */
2290        if (dev->bus && dev->bus->uevent) {
2291                retval = dev->bus->uevent(dev, env);
2292                if (retval)
2293                        pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2294                                 dev_name(dev), __func__, retval);
2295        }
2296
2297        /* have the class specific function add its stuff */
2298        if (dev->class && dev->class->dev_uevent) {
2299                retval = dev->class->dev_uevent(dev, env);
2300                if (retval)
2301                        pr_debug("device: '%s': %s: class uevent() "
2302                                 "returned %d\n", dev_name(dev),
2303                                 __func__, retval);
2304        }
2305
2306        /* have the device type specific function add its stuff */
2307        if (dev->type && dev->type->uevent) {
2308                retval = dev->type->uevent(dev, env);
2309                if (retval)
2310                        pr_debug("device: '%s': %s: dev_type uevent() "
2311                                 "returned %d\n", dev_name(dev),
2312                                 __func__, retval);
2313        }
2314
2315        return retval;
2316}
2317
2318static const struct kset_uevent_ops device_uevent_ops = {
2319        .filter =       dev_uevent_filter,
2320        .name =         dev_uevent_name,
2321        .uevent =       dev_uevent,
2322};
2323
2324static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2325                           char *buf)
2326{
2327        struct kobject *top_kobj;
2328        struct kset *kset;
2329        struct kobj_uevent_env *env = NULL;
2330        int i;
2331        int len = 0;
2332        int retval;
2333
2334        /* search the kset, the device belongs to */
2335        top_kobj = &dev->kobj;
2336        while (!top_kobj->kset && top_kobj->parent)
2337                top_kobj = top_kobj->parent;
2338        if (!top_kobj->kset)
2339                goto out;
2340
2341        kset = top_kobj->kset;
2342        if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2343                goto out;
2344
2345        /* respect filter */
2346        if (kset->uevent_ops && kset->uevent_ops->filter)
2347                if (!kset->uevent_ops->filter(kset, &dev->kobj))
2348                        goto out;
2349
2350        env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2351        if (!env)
2352                return -ENOMEM;
2353
2354        /* let the kset specific function add its keys */
2355        retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2356        if (retval)
2357                goto out;
2358
2359        /* copy keys to file */
2360        for (i = 0; i < env->envp_idx; i++)
2361                len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2362out:
2363        kfree(env);
2364        return len;
2365}
2366
2367static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2368                            const char *buf, size_t count)
2369{
2370        int rc;
2371
2372        rc = kobject_synth_uevent(&dev->kobj, buf, count);
2373
2374        if (rc) {
2375                dev_err(dev, "uevent: failed to send synthetic uevent\n");
2376                return rc;
2377        }
2378
2379        return count;
2380}
2381static DEVICE_ATTR_RW(uevent);
2382
2383static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2384                           char *buf)
2385{
2386        bool val;
2387
2388        device_lock(dev);
2389        val = !dev->offline;
2390        device_unlock(dev);
2391        return sysfs_emit(buf, "%u\n", val);
2392}
2393
2394static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2395                            const char *buf, size_t count)
2396{
2397        bool val;
2398        int ret;
2399
2400        ret = strtobool(buf, &val);
2401        if (ret < 0)
2402                return ret;
2403
2404        ret = lock_device_hotplug_sysfs();
2405        if (ret)
2406                return ret;
2407
2408        ret = val ? device_online(dev) : device_offline(dev);
2409        unlock_device_hotplug();
2410        return ret < 0 ? ret : count;
2411}
2412static DEVICE_ATTR_RW(online);
2413
2414static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2415                              char *buf)
2416{
2417        const char *loc;
2418
2419        switch (dev->removable) {
2420        case DEVICE_REMOVABLE:
2421                loc = "removable";
2422                break;
2423        case DEVICE_FIXED:
2424                loc = "fixed";
2425                break;
2426        default:
2427                loc = "unknown";
2428        }
2429        return sysfs_emit(buf, "%s\n", loc);
2430}
2431static DEVICE_ATTR_RO(removable);
2432
2433int device_add_groups(struct device *dev, const struct attribute_group **groups)
2434{
2435        return sysfs_create_groups(&dev->kobj, groups);
2436}
2437EXPORT_SYMBOL_GPL(device_add_groups);
2438
2439void device_remove_groups(struct device *dev,
2440                          const struct attribute_group **groups)
2441{
2442        sysfs_remove_groups(&dev->kobj, groups);
2443}
2444EXPORT_SYMBOL_GPL(device_remove_groups);
2445
2446union device_attr_group_devres {
2447        const struct attribute_group *group;
2448        const struct attribute_group **groups;
2449};
2450
2451static int devm_attr_group_match(struct device *dev, void *res, void *data)
2452{
2453        return ((union device_attr_group_devres *)res)->group == data;
2454}
2455
2456static void devm_attr_group_remove(struct device *dev, void *res)
2457{
2458        union device_attr_group_devres *devres = res;
2459        const struct attribute_group *group = devres->group;
2460
2461        dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2462        sysfs_remove_group(&dev->kobj, group);
2463}
2464
2465static void devm_attr_groups_remove(struct device *dev, void *res)
2466{
2467        union device_attr_group_devres *devres = res;
2468        const struct attribute_group **groups = devres->groups;
2469
2470        dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2471        sysfs_remove_groups(&dev->kobj, groups);
2472}
2473
2474/**
2475 * devm_device_add_group - given a device, create a managed attribute group
2476 * @dev:        The device to create the group for
2477 * @grp:        The attribute group to create
2478 *
2479 * This function creates a group for the first time.  It will explicitly
2480 * warn and error if any of the attribute files being created already exist.
2481 *
2482 * Returns 0 on success or error code on failure.
2483 */
2484int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2485{
2486        union device_attr_group_devres *devres;
2487        int error;
2488
2489        devres = devres_alloc(devm_attr_group_remove,
2490                              sizeof(*devres), GFP_KERNEL);
2491        if (!devres)
2492                return -ENOMEM;
2493
2494        error = sysfs_create_group(&dev->kobj, grp);
2495        if (error) {
2496                devres_free(devres);
2497                return error;
2498        }
2499
2500        devres->group = grp;
2501        devres_add(dev, devres);
2502        return 0;
2503}
2504EXPORT_SYMBOL_GPL(devm_device_add_group);
2505
2506/**
2507 * devm_device_remove_group: remove a managed group from a device
2508 * @dev:        device to remove the group from
2509 * @grp:        group to remove
2510 *
2511 * This function removes a group of attributes from a device. The attributes
2512 * previously have to have been created for this group, otherwise it will fail.
2513 */
2514void devm_device_remove_group(struct device *dev,
2515                              const struct attribute_group *grp)
2516{
2517        WARN_ON(devres_release(dev, devm_attr_group_remove,
2518                               devm_attr_group_match,
2519                               /* cast away const */ (void *)grp));
2520}
2521EXPORT_SYMBOL_GPL(devm_device_remove_group);
2522
2523/**
2524 * devm_device_add_groups - create a bunch of managed attribute groups
2525 * @dev:        The device to create the group for
2526 * @groups:     The attribute groups to create, NULL terminated
2527 *
2528 * This function creates a bunch of managed attribute groups.  If an error
2529 * occurs when creating a group, all previously created groups will be
2530 * removed, unwinding everything back to the original state when this
2531 * function was called.  It will explicitly warn and error if any of the
2532 * attribute files being created already exist.
2533 *
2534 * Returns 0 on success or error code from sysfs_create_group on failure.
2535 */
2536int devm_device_add_groups(struct device *dev,
2537                           const struct attribute_group **groups)
2538{
2539        union device_attr_group_devres *devres;
2540        int error;
2541
2542        devres = devres_alloc(devm_attr_groups_remove,
2543                              sizeof(*devres), GFP_KERNEL);
2544        if (!devres)
2545                return -ENOMEM;
2546
2547        error = sysfs_create_groups(&dev->kobj, groups);
2548        if (error) {
2549                devres_free(devres);
2550                return error;
2551        }
2552
2553        devres->groups = groups;
2554        devres_add(dev, devres);
2555        return 0;
2556}
2557EXPORT_SYMBOL_GPL(devm_device_add_groups);
2558
2559/**
2560 * devm_device_remove_groups - remove a list of managed groups
2561 *
2562 * @dev:        The device for the groups to be removed from
2563 * @groups:     NULL terminated list of groups to be removed
2564 *
2565 * If groups is not NULL, remove the specified groups from the device.
2566 */
2567void devm_device_remove_groups(struct device *dev,
2568                               const struct attribute_group **groups)
2569{
2570        WARN_ON(devres_release(dev, devm_attr_groups_remove,
2571                               devm_attr_group_match,
2572                               /* cast away const */ (void *)groups));
2573}
2574EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2575
2576static int device_add_attrs(struct device *dev)
2577{
2578        struct class *class = dev->class;
2579        const struct device_type *type = dev->type;
2580        int error;
2581
2582        if (class) {
2583                error = device_add_groups(dev, class->dev_groups);
2584                if (error)
2585                        return error;
2586        }
2587
2588        if (type) {
2589                error = device_add_groups(dev, type->groups);
2590                if (error)
2591                        goto err_remove_class_groups;
2592        }
2593
2594        error = device_add_groups(dev, dev->groups);
2595        if (error)
2596                goto err_remove_type_groups;
2597
2598        if (device_supports_offline(dev) && !dev->offline_disabled) {
2599                error = device_create_file(dev, &dev_attr_online);
2600                if (error)
2601                        goto err_remove_dev_groups;
2602        }
2603
2604        if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2605                error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2606                if (error)
2607                        goto err_remove_dev_online;
2608        }
2609
2610        if (dev_removable_is_valid(dev)) {
2611                error = device_create_file(dev, &dev_attr_removable);
2612                if (error)
2613                        goto err_remove_dev_waiting_for_supplier;
2614        }
2615
2616        return 0;
2617
2618 err_remove_dev_waiting_for_supplier:
2619        device_remove_file(dev, &dev_attr_waiting_for_supplier);
2620 err_remove_dev_online:
2621        device_remove_file(dev, &dev_attr_online);
2622 err_remove_dev_groups:
2623        device_remove_groups(dev, dev->groups);
2624 err_remove_type_groups:
2625        if (type)
2626                device_remove_groups(dev, type->groups);
2627 err_remove_class_groups:
2628        if (class)
2629                device_remove_groups(dev, class->dev_groups);
2630
2631        return error;
2632}
2633
2634static void device_remove_attrs(struct device *dev)
2635{
2636        struct class *class = dev->class;
2637        const struct device_type *type = dev->type;
2638
2639        device_remove_file(dev, &dev_attr_removable);
2640        device_remove_file(dev, &dev_attr_waiting_for_supplier);
2641        device_remove_file(dev, &dev_attr_online);
2642        device_remove_groups(dev, dev->groups);
2643
2644        if (type)
2645                device_remove_groups(dev, type->groups);
2646
2647        if (class)
2648                device_remove_groups(dev, class->dev_groups);
2649}
2650
2651static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2652                        char *buf)
2653{
2654        return print_dev_t(buf, dev->devt);
2655}
2656static DEVICE_ATTR_RO(dev);
2657
2658/* /sys/devices/ */
2659struct kset *devices_kset;
2660
2661/**
2662 * devices_kset_move_before - Move device in the devices_kset's list.
2663 * @deva: Device to move.
2664 * @devb: Device @deva should come before.
2665 */
2666static void devices_kset_move_before(struct device *deva, struct device *devb)
2667{
2668        if (!devices_kset)
2669                return;
2670        pr_debug("devices_kset: Moving %s before %s\n",
2671                 dev_name(deva), dev_name(devb));
2672        spin_lock(&devices_kset->list_lock);
2673        list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2674        spin_unlock(&devices_kset->list_lock);
2675}
2676
2677/**
2678 * devices_kset_move_after - Move device in the devices_kset's list.
2679 * @deva: Device to move
2680 * @devb: Device @deva should come after.
2681 */
2682static void devices_kset_move_after(struct device *deva, struct device *devb)
2683{
2684        if (!devices_kset)
2685                return;
2686        pr_debug("devices_kset: Moving %s after %s\n",
2687                 dev_name(deva), dev_name(devb));
2688        spin_lock(&devices_kset->list_lock);
2689        list_move(&deva->kobj.entry, &devb->kobj.entry);
2690        spin_unlock(&devices_kset->list_lock);
2691}
2692
2693/**
2694 * devices_kset_move_last - move the device to the end of devices_kset's list.
2695 * @dev: device to move
2696 */
2697void devices_kset_move_last(struct device *dev)
2698{
2699        if (!devices_kset)
2700                return;
2701        pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2702        spin_lock(&devices_kset->list_lock);
2703        list_move_tail(&dev->kobj.entry, &devices_kset->list);
2704        spin_unlock(&devices_kset->list_lock);
2705}
2706
2707/**
2708 * device_create_file - create sysfs attribute file for device.
2709 * @dev: device.
2710 * @attr: device attribute descriptor.
2711 */
2712int device_create_file(struct device *dev,
2713                       const struct device_attribute *attr)
2714{
2715        int error = 0;
2716
2717        if (dev) {
2718                WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2719                        "Attribute %s: write permission without 'store'\n",
2720                        attr->attr.name);
2721                WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2722                        "Attribute %s: read permission without 'show'\n",
2723                        attr->attr.name);
2724                error = sysfs_create_file(&dev->kobj, &attr->attr);
2725        }
2726
2727        return error;
2728}
2729EXPORT_SYMBOL_GPL(device_create_file);
2730
2731/**
2732 * device_remove_file - remove sysfs attribute file.
2733 * @dev: device.
2734 * @attr: device attribute descriptor.
2735 */
2736void device_remove_file(struct device *dev,
2737                        const struct device_attribute *attr)
2738{
2739        if (dev)
2740                sysfs_remove_file(&dev->kobj, &attr->attr);
2741}
2742EXPORT_SYMBOL_GPL(device_remove_file);
2743
2744/**
2745 * device_remove_file_self - remove sysfs attribute file from its own method.
2746 * @dev: device.
2747 * @attr: device attribute descriptor.
2748 *
2749 * See kernfs_remove_self() for details.
2750 */
2751bool device_remove_file_self(struct device *dev,
2752                             const struct device_attribute *attr)
2753{
2754        if (dev)
2755                return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2756        else
2757                return false;
2758}
2759EXPORT_SYMBOL_GPL(device_remove_file_self);
2760
2761/**
2762 * device_create_bin_file - create sysfs binary attribute file for device.
2763 * @dev: device.
2764 * @attr: device binary attribute descriptor.
2765 */
2766int device_create_bin_file(struct device *dev,
2767                           const struct bin_attribute *attr)
2768{
2769        int error = -EINVAL;
2770        if (dev)
2771                error = sysfs_create_bin_file(&dev->kobj, attr);
2772        return error;
2773}
2774EXPORT_SYMBOL_GPL(device_create_bin_file);
2775
2776/**
2777 * device_remove_bin_file - remove sysfs binary attribute file
2778 * @dev: device.
2779 * @attr: device binary attribute descriptor.
2780 */
2781void device_remove_bin_file(struct device *dev,
2782                            const struct bin_attribute *attr)
2783{
2784        if (dev)
2785                sysfs_remove_bin_file(&dev->kobj, attr);
2786}
2787EXPORT_SYMBOL_GPL(device_remove_bin_file);
2788
2789static void klist_children_get(struct klist_node *n)
2790{
2791        struct device_private *p = to_device_private_parent(n);
2792        struct device *dev = p->device;
2793
2794        get_device(dev);
2795}
2796
2797static void klist_children_put(struct klist_node *n)
2798{
2799        struct device_private *p = to_device_private_parent(n);
2800        struct device *dev = p->device;
2801
2802        put_device(dev);
2803}
2804
2805/**
2806 * device_initialize - init device structure.
2807 * @dev: device.
2808 *
2809 * This prepares the device for use by other layers by initializing
2810 * its fields.
2811 * It is the first half of device_register(), if called by
2812 * that function, though it can also be called separately, so one
2813 * may use @dev's fields. In particular, get_device()/put_device()
2814 * may be used for reference counting of @dev after calling this
2815 * function.
2816 *
2817 * All fields in @dev must be initialized by the caller to 0, except
2818 * for those explicitly set to some other value.  The simplest
2819 * approach is to use kzalloc() to allocate the structure containing
2820 * @dev.
2821 *
2822 * NOTE: Use put_device() to give up your reference instead of freeing
2823 * @dev directly once you have called this function.
2824 */
2825void device_initialize(struct device *dev)
2826{
2827        dev->kobj.kset = devices_kset;
2828        kobject_init(&dev->kobj, &device_ktype);
2829        INIT_LIST_HEAD(&dev->dma_pools);
2830        mutex_init(&dev->mutex);
2831#ifdef CONFIG_PROVE_LOCKING
2832        mutex_init(&dev->lockdep_mutex);
2833#endif
2834        lockdep_set_novalidate_class(&dev->mutex);
2835        spin_lock_init(&dev->devres_lock);
2836        INIT_LIST_HEAD(&dev->devres_head);
2837        device_pm_init(dev);
2838        set_dev_node(dev, -1);
2839#ifdef CONFIG_GENERIC_MSI_IRQ
2840        raw_spin_lock_init(&dev->msi_lock);
2841        INIT_LIST_HEAD(&dev->msi_list);
2842#endif
2843        INIT_LIST_HEAD(&dev->links.consumers);
2844        INIT_LIST_HEAD(&dev->links.suppliers);
2845        INIT_LIST_HEAD(&dev->links.defer_sync);
2846        dev->links.status = DL_DEV_NO_DRIVER;
2847#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2848    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2849    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2850        dev->dma_coherent = dma_default_coherent;
2851#endif
2852}
2853EXPORT_SYMBOL_GPL(device_initialize);
2854
2855struct kobject *virtual_device_parent(struct device *dev)
2856{
2857        static struct kobject *virtual_dir = NULL;
2858
2859        if (!virtual_dir)
2860                virtual_dir = kobject_create_and_add("virtual",
2861                                                     &devices_kset->kobj);
2862
2863        return virtual_dir;
2864}
2865
2866struct class_dir {
2867        struct kobject kobj;
2868        struct class *class;
2869};
2870
2871#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2872
2873static void class_dir_release(struct kobject *kobj)
2874{
2875        struct class_dir *dir = to_class_dir(kobj);
2876        kfree(dir);
2877}
2878
2879static const
2880struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2881{
2882        struct class_dir *dir = to_class_dir(kobj);
2883        return dir->class->ns_type;
2884}
2885
2886static struct kobj_type class_dir_ktype = {
2887        .release        = class_dir_release,
2888        .sysfs_ops      = &kobj_sysfs_ops,
2889        .child_ns_type  = class_dir_child_ns_type
2890};
2891
2892static struct kobject *
2893class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2894{
2895        struct class_dir *dir;
2896        int retval;
2897
2898        dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2899        if (!dir)
2900                return ERR_PTR(-ENOMEM);
2901
2902        dir->class = class;
2903        kobject_init(&dir->kobj, &class_dir_ktype);
2904
2905        dir->kobj.kset = &class->p->glue_dirs;
2906
2907        retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2908        if (retval < 0) {
2909                kobject_put(&dir->kobj);
2910                return ERR_PTR(retval);
2911        }
2912        return &dir->kobj;
2913}
2914
2915static DEFINE_MUTEX(gdp_mutex);
2916
2917static struct kobject *get_device_parent(struct device *dev,
2918                                         struct device *parent)
2919{
2920        if (dev->class) {
2921                struct kobject *kobj = NULL;
2922                struct kobject *parent_kobj;
2923                struct kobject *k;
2924
2925#ifdef CONFIG_BLOCK
2926                /* block disks show up in /sys/block */
2927                if (sysfs_deprecated && dev->class == &block_class) {
2928                        if (parent && parent->class == &block_class)
2929                                return &parent->kobj;
2930                        return &block_class.p->subsys.kobj;
2931                }
2932#endif
2933
2934                /*
2935                 * If we have no parent, we live in "virtual".
2936                 * Class-devices with a non class-device as parent, live
2937                 * in a "glue" directory to prevent namespace collisions.
2938                 */
2939                if (parent == NULL)
2940                        parent_kobj = virtual_device_parent(dev);
2941                else if (parent->class && !dev->class->ns_type)
2942                        return &parent->kobj;
2943                else
2944                        parent_kobj = &parent->kobj;
2945
2946                mutex_lock(&gdp_mutex);
2947
2948                /* find our class-directory at the parent and reference it */
2949                spin_lock(&dev->class->p->glue_dirs.list_lock);
2950                list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2951                        if (k->parent == parent_kobj) {
2952                                kobj = kobject_get(k);
2953                                break;
2954                        }
2955                spin_unlock(&dev->class->p->glue_dirs.list_lock);
2956                if (kobj) {
2957                        mutex_unlock(&gdp_mutex);
2958                        return kobj;
2959                }
2960
2961                /* or create a new class-directory at the parent device */
2962                k = class_dir_create_and_add(dev->class, parent_kobj);
2963                /* do not emit an uevent for this simple "glue" directory */
2964                mutex_unlock(&gdp_mutex);
2965                return k;
2966        }
2967
2968        /* subsystems can specify a default root directory for their devices */
2969        if (!parent && dev->bus && dev->bus->dev_root)
2970                return &dev->bus->dev_root->kobj;
2971
2972        if (parent)
2973                return &parent->kobj;
2974        return NULL;
2975}
2976
2977static inline bool live_in_glue_dir(struct kobject *kobj,
2978                                    struct device *dev)
2979{
2980        if (!kobj || !dev->class ||
2981            kobj->kset != &dev->class->p->glue_dirs)
2982                return false;
2983        return true;
2984}
2985
2986static inline struct kobject *get_glue_dir(struct device *dev)
2987{
2988        return dev->kobj.parent;
2989}
2990
2991/*
2992 * make sure cleaning up dir as the last step, we need to make
2993 * sure .release handler of kobject is run with holding the
2994 * global lock
2995 */
2996static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2997{
2998        unsigned int ref;
2999
3000        /* see if we live in a "glue" directory */
3001        if (!live_in_glue_dir(glue_dir, dev))
3002                return;
3003
3004        mutex_lock(&gdp_mutex);
3005        /**
3006         * There is a race condition between removing glue directory
3007         * and adding a new device under the glue directory.
3008         *
3009         * CPU1:                                         CPU2:
3010         *
3011         * device_add()
3012         *   get_device_parent()
3013         *     class_dir_create_and_add()
3014         *       kobject_add_internal()
3015         *         create_dir()    // create glue_dir
3016         *
3017         *                                               device_add()
3018         *                                                 get_device_parent()
3019         *                                                   kobject_get() // get glue_dir
3020         *
3021         * device_del()
3022         *   cleanup_glue_dir()
3023         *     kobject_del(glue_dir)
3024         *
3025         *                                               kobject_add()
3026         *                                                 kobject_add_internal()
3027         *                                                   create_dir() // in glue_dir
3028         *                                                     sysfs_create_dir_ns()
3029         *                                                       kernfs_create_dir_ns(sd)
3030         *
3031         *       sysfs_remove_dir() // glue_dir->sd=NULL
3032         *       sysfs_put()        // free glue_dir->sd
3033         *
3034         *                                                         // sd is freed
3035         *                                                         kernfs_new_node(sd)
3036         *                                                           kernfs_get(glue_dir)
3037         *                                                           kernfs_add_one()
3038         *                                                           kernfs_put()
3039         *
3040         * Before CPU1 remove last child device under glue dir, if CPU2 add
3041         * a new device under glue dir, the glue_dir kobject reference count
3042         * will be increase to 2 in kobject_get(k). And CPU2 has been called
3043         * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3044         * and sysfs_put(). This result in glue_dir->sd is freed.
3045         *
3046         * Then the CPU2 will see a stale "empty" but still potentially used
3047         * glue dir around in kernfs_new_node().
3048         *
3049         * In order to avoid this happening, we also should make sure that
3050         * kernfs_node for glue_dir is released in CPU1 only when refcount
3051         * for glue_dir kobj is 1.
3052         */
3053        ref = kref_read(&glue_dir->kref);
3054        if (!kobject_has_children(glue_dir) && !--ref)
3055                kobject_del(glue_dir);
3056        kobject_put(glue_dir);
3057        mutex_unlock(&gdp_mutex);
3058}
3059
3060static int device_add_class_symlinks(struct device *dev)
3061{
3062        struct device_node *of_node = dev_of_node(dev);
3063        int error;
3064
3065        if (of_node) {
3066                error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3067                if (error)
3068                        dev_warn(dev, "Error %d creating of_node link\n",error);
3069                /* An error here doesn't warrant bringing down the device */
3070        }
3071
3072        if (!dev->class)
3073                return 0;
3074
3075        error = sysfs_create_link(&dev->kobj,
3076                                  &dev->class->p->subsys.kobj,
3077                                  "subsystem");
3078        if (error)
3079                goto out_devnode;
3080
3081        if (dev->parent && device_is_not_partition(dev)) {
3082                error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3083                                          "device");
3084                if (error)
3085                        goto out_subsys;
3086        }
3087
3088#ifdef CONFIG_BLOCK
3089        /* /sys/block has directories and does not need symlinks */
3090        if (sysfs_deprecated && dev->class == &block_class)
3091                return 0;
3092#endif
3093
3094        /* link in the class directory pointing to the device */
3095        error = sysfs_create_link(&dev->class->p->subsys.kobj,
3096                                  &dev->kobj, dev_name(dev));
3097        if (error)
3098                goto out_device;
3099
3100        return 0;
3101
3102out_device:
3103        sysfs_remove_link(&dev->kobj, "device");
3104
3105out_subsys:
3106        sysfs_remove_link(&dev->kobj, "subsystem");
3107out_devnode:
3108        sysfs_remove_link(&dev->kobj, "of_node");
3109        return error;
3110}
3111
3112static void device_remove_class_symlinks(struct device *dev)
3113{
3114        if (dev_of_node(dev))
3115                sysfs_remove_link(&dev->kobj, "of_node");
3116
3117        if (!dev->class)
3118                return;
3119
3120        if (dev->parent && device_is_not_partition(dev))
3121                sysfs_remove_link(&dev->kobj, "device");
3122        sysfs_remove_link(&dev->kobj, "subsystem");
3123#ifdef CONFIG_BLOCK
3124        if (sysfs_deprecated && dev->class == &block_class)
3125                return;
3126#endif
3127        sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3128}
3129
3130/**
3131 * dev_set_name - set a device name
3132 * @dev: device
3133 * @fmt: format string for the device's name
3134 */
3135int dev_set_name(struct device *dev, const char *fmt, ...)
3136{
3137        va_list vargs;
3138        int err;
3139
3140        va_start(vargs, fmt);
3141        err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3142        va_end(vargs);
3143        return err;
3144}
3145EXPORT_SYMBOL_GPL(dev_set_name);
3146
3147/**
3148 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3149 * @dev: device
3150 *
3151 * By default we select char/ for new entries.  Setting class->dev_obj
3152 * to NULL prevents an entry from being created.  class->dev_kobj must
3153 * be set (or cleared) before any devices are registered to the class
3154 * otherwise device_create_sys_dev_entry() and
3155 * device_remove_sys_dev_entry() will disagree about the presence of
3156 * the link.
3157 */
3158static struct kobject *device_to_dev_kobj(struct device *dev)
3159{
3160        struct kobject *kobj;
3161
3162        if (dev->class)
3163                kobj = dev->class->dev_kobj;
3164        else
3165                kobj = sysfs_dev_char_kobj;
3166
3167        return kobj;
3168}
3169
3170static int device_create_sys_dev_entry(struct device *dev)
3171{
3172        struct kobject *kobj = device_to_dev_kobj(dev);
3173        int error = 0;
3174        char devt_str[15];
3175
3176        if (kobj) {
3177                format_dev_t(devt_str, dev->devt);
3178                error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3179        }
3180
3181        return error;
3182}
3183
3184static void device_remove_sys_dev_entry(struct device *dev)
3185{
3186        struct kobject *kobj = device_to_dev_kobj(dev);
3187        char devt_str[15];
3188
3189        if (kobj) {
3190                format_dev_t(devt_str, dev->devt);
3191                sysfs_remove_link(kobj, devt_str);
3192        }
3193}
3194
3195static int device_private_init(struct device *dev)
3196{
3197        dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3198        if (!dev->p)
3199                return -ENOMEM;
3200        dev->p->device = dev;
3201        klist_init(&dev->p->klist_children, klist_children_get,
3202                   klist_children_put);
3203        INIT_LIST_HEAD(&dev->p->deferred_probe);
3204        return 0;
3205}
3206
3207/**
3208 * device_add - add device to device hierarchy.
3209 * @dev: device.
3210 *
3211 * This is part 2 of device_register(), though may be called
3212 * separately _iff_ device_initialize() has been called separately.
3213 *
3214 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3215 * to the global and sibling lists for the device, then
3216 * adds it to the other relevant subsystems of the driver model.
3217 *
3218 * Do not call this routine or device_register() more than once for
3219 * any device structure.  The driver model core is not designed to work
3220 * with devices that get unregistered and then spring back to life.
3221 * (Among other things, it's very hard to guarantee that all references
3222 * to the previous incarnation of @dev have been dropped.)  Allocate
3223 * and register a fresh new struct device instead.
3224 *
3225 * NOTE: _Never_ directly free @dev after calling this function, even
3226 * if it returned an error! Always use put_device() to give up your
3227 * reference instead.
3228 *
3229 * Rule of thumb is: if device_add() succeeds, you should call
3230 * device_del() when you want to get rid of it. If device_add() has
3231 * *not* succeeded, use *only* put_device() to drop the reference
3232 * count.
3233 */
3234int device_add(struct device *dev)
3235{
3236        struct device *parent;
3237        struct kobject *kobj;
3238        struct class_interface *class_intf;
3239        int error = -EINVAL;
3240        struct kobject *glue_dir = NULL;
3241
3242        dev = get_device(dev);
3243        if (!dev)
3244                goto done;
3245
3246        if (!dev->p) {
3247                error = device_private_init(dev);
3248                if (error)
3249                        goto done;
3250        }
3251
3252        /*
3253         * for statically allocated devices, which should all be converted
3254         * some day, we need to initialize the name. We prevent reading back
3255         * the name, and force the use of dev_name()
3256         */
3257        if (dev->init_name) {
3258                dev_set_name(dev, "%s", dev->init_name);
3259                dev->init_name = NULL;
3260        }
3261
3262        /* subsystems can specify simple device enumeration */
3263        if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3264                dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3265
3266        if (!dev_name(dev)) {
3267                error = -EINVAL;
3268                goto name_error;
3269        }
3270
3271        pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3272
3273        parent = get_device(dev->parent);
3274        kobj = get_device_parent(dev, parent);
3275        if (IS_ERR(kobj)) {
3276                error = PTR_ERR(kobj);
3277                goto parent_error;
3278        }
3279        if (kobj)
3280                dev->kobj.parent = kobj;
3281
3282        /* use parent numa_node */
3283        if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3284                set_dev_node(dev, dev_to_node(parent));
3285
3286        /* first, register with generic layer. */
3287        /* we require the name to be set before, and pass NULL */
3288        error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3289        if (error) {
3290                glue_dir = get_glue_dir(dev);
3291                goto Error;
3292        }
3293
3294        /* notify platform of device entry */
3295        error = device_platform_notify(dev, KOBJ_ADD);
3296        if (error)
3297                goto platform_error;
3298
3299        error = device_create_file(dev, &dev_attr_uevent);
3300        if (error)
3301                goto attrError;
3302
3303        error = device_add_class_symlinks(dev);
3304        if (error)
3305                goto SymlinkError;
3306        error = device_add_attrs(dev);
3307        if (error)
3308                goto AttrsError;
3309        error = bus_add_device(dev);
3310        if (error)
3311                goto BusError;
3312        error = dpm_sysfs_add(dev);
3313        if (error)
3314                goto DPMError;
3315        device_pm_add(dev);
3316
3317        if (MAJOR(dev->devt)) {
3318                error = device_create_file(dev, &dev_attr_dev);
3319                if (error)
3320                        goto DevAttrError;
3321
3322                error = device_create_sys_dev_entry(dev);
3323                if (error)
3324                        goto SysEntryError;
3325
3326                devtmpfs_create_node(dev);
3327        }
3328
3329        /* Notify clients of device addition.  This call must come
3330         * after dpm_sysfs_add() and before kobject_uevent().
3331         */
3332        if (dev->bus)
3333                blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3334                                             BUS_NOTIFY_ADD_DEVICE, dev);
3335
3336        kobject_uevent(&dev->kobj, KOBJ_ADD);
3337
3338        /*
3339         * Check if any of the other devices (consumers) have been waiting for
3340         * this device (supplier) to be added so that they can create a device
3341         * link to it.
3342         *
3343         * This needs to happen after device_pm_add() because device_link_add()
3344         * requires the supplier be registered before it's called.
3345         *
3346         * But this also needs to happen before bus_probe_device() to make sure
3347         * waiting consumers can link to it before the driver is bound to the
3348         * device and the driver sync_state callback is called for this device.
3349         */
3350        if (dev->fwnode && !dev->fwnode->dev) {
3351                dev->fwnode->dev = dev;
3352                fw_devlink_link_device(dev);
3353        }
3354
3355        bus_probe_device(dev);
3356
3357        /*
3358         * If all driver registration is done and a newly added device doesn't
3359         * match with any driver, don't block its consumers from probing in
3360         * case the consumer device is able to operate without this supplier.
3361         */
3362        if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3363                fw_devlink_unblock_consumers(dev);
3364
3365        if (parent)
3366                klist_add_tail(&dev->p->knode_parent,
3367                               &parent->p->klist_children);
3368
3369        if (dev->class) {
3370                mutex_lock(&dev->class->p->mutex);
3371                /* tie the class to the device */
3372                klist_add_tail(&dev->p->knode_class,
3373                               &dev->class->p->klist_devices);
3374
3375                /* notify any interfaces that the device is here */
3376                list_for_each_entry(class_intf,
3377                                    &dev->class->p->interfaces, node)
3378                        if (class_intf->add_dev)
3379                                class_intf->add_dev(dev, class_intf);
3380                mutex_unlock(&dev->class->p->mutex);
3381        }
3382done:
3383        put_device(dev);
3384        return error;
3385 SysEntryError:
3386        if (MAJOR(dev->devt))
3387                device_remove_file(dev, &dev_attr_dev);
3388 DevAttrError:
3389        device_pm_remove(dev);
3390        dpm_sysfs_remove(dev);
3391 DPMError:
3392        bus_remove_device(dev);
3393 BusError:
3394        device_remove_attrs(dev);
3395 AttrsError:
3396        device_remove_class_symlinks(dev);
3397 SymlinkError:
3398        device_remove_file(dev, &dev_attr_uevent);
3399 attrError:
3400        device_platform_notify(dev, KOBJ_REMOVE);
3401platform_error:
3402        kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3403        glue_dir = get_glue_dir(dev);
3404        kobject_del(&dev->kobj);
3405 Error:
3406        cleanup_glue_dir(dev, glue_dir);
3407parent_error:
3408        put_device(parent);
3409name_error:
3410        kfree(dev->p);
3411        dev->p = NULL;
3412        goto done;
3413}
3414EXPORT_SYMBOL_GPL(device_add);
3415
3416/**
3417 * device_register - register a device with the system.
3418 * @dev: pointer to the device structure
3419 *
3420 * This happens in two clean steps - initialize the device
3421 * and add it to the system. The two steps can be called
3422 * separately, but this is the easiest and most common.
3423 * I.e. you should only call the two helpers separately if
3424 * have a clearly defined need to use and refcount the device
3425 * before it is added to the hierarchy.
3426 *
3427 * For more information, see the kerneldoc for device_initialize()
3428 * and device_add().
3429 *
3430 * NOTE: _Never_ directly free @dev after calling this function, even
3431 * if it returned an error! Always use put_device() to give up the
3432 * reference initialized in this function instead.
3433 */
3434int device_register(struct device *dev)
3435{
3436        device_initialize(dev);
3437        return device_add(dev);
3438}
3439EXPORT_SYMBOL_GPL(device_register);
3440
3441/**
3442 * get_device - increment reference count for device.
3443 * @dev: device.
3444 *
3445 * This simply forwards the call to kobject_get(), though
3446 * we do take care to provide for the case that we get a NULL
3447 * pointer passed in.
3448 */
3449struct device *get_device(struct device *dev)
3450{
3451        return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3452}
3453EXPORT_SYMBOL_GPL(get_device);
3454
3455/**
3456 * put_device - decrement reference count.
3457 * @dev: device in question.
3458 */
3459void put_device(struct device *dev)
3460{
3461        /* might_sleep(); */
3462        if (dev)
3463                kobject_put(&dev->kobj);
3464}
3465EXPORT_SYMBOL_GPL(put_device);
3466
3467bool kill_device(struct device *dev)
3468{
3469        /*
3470         * Require the device lock and set the "dead" flag to guarantee that
3471         * the update behavior is consistent with the other bitfields near
3472         * it and that we cannot have an asynchronous probe routine trying
3473         * to run while we are tearing out the bus/class/sysfs from
3474         * underneath the device.
3475         */
3476        device_lock_assert(dev);
3477
3478        if (dev->p->dead)
3479                return false;
3480        dev->p->dead = true;
3481        return true;
3482}
3483EXPORT_SYMBOL_GPL(kill_device);
3484
3485/**
3486 * device_del - delete device from system.
3487 * @dev: device.
3488 *
3489 * This is the first part of the device unregistration
3490 * sequence. This removes the device from the lists we control
3491 * from here, has it removed from the other driver model
3492 * subsystems it was added to in device_add(), and removes it
3493 * from the kobject hierarchy.
3494 *
3495 * NOTE: this should be called manually _iff_ device_add() was
3496 * also called manually.
3497 */
3498void device_del(struct device *dev)
3499{
3500        struct device *parent = dev->parent;
3501        struct kobject *glue_dir = NULL;
3502        struct class_interface *class_intf;
3503        unsigned int noio_flag;
3504
3505        device_lock(dev);
3506        kill_device(dev);
3507        device_unlock(dev);
3508
3509        if (dev->fwnode && dev->fwnode->dev == dev)
3510                dev->fwnode->dev = NULL;
3511
3512        /* Notify clients of device removal.  This call must come
3513         * before dpm_sysfs_remove().
3514         */
3515        noio_flag = memalloc_noio_save();
3516        if (dev->bus)
3517                blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3518                                             BUS_NOTIFY_DEL_DEVICE, dev);
3519
3520        dpm_sysfs_remove(dev);
3521        if (parent)
3522                klist_del(&dev->p->knode_parent);
3523        if (MAJOR(dev->devt)) {
3524                devtmpfs_delete_node(dev);
3525                device_remove_sys_dev_entry(dev);
3526                device_remove_file(dev, &dev_attr_dev);
3527        }
3528        if (dev->class) {
3529                device_remove_class_symlinks(dev);
3530
3531                mutex_lock(&dev->class->p->mutex);
3532                /* notify any interfaces that the device is now gone */
3533                list_for_each_entry(class_intf,
3534                                    &dev->class->p->interfaces, node)
3535                        if (class_intf->remove_dev)
3536                                class_intf->remove_dev(dev, class_intf);
3537                /* remove the device from the class list */
3538                klist_del(&dev->p->knode_class);
3539                mutex_unlock(&dev->class->p->mutex);
3540        }
3541        device_remove_file(dev, &dev_attr_uevent);
3542        device_remove_attrs(dev);
3543        bus_remove_device(dev);
3544        device_pm_remove(dev);
3545        driver_deferred_probe_del(dev);
3546        device_platform_notify(dev, KOBJ_REMOVE);
3547        device_remove_properties(dev);
3548        device_links_purge(dev);
3549
3550        if (dev->bus)
3551                blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3552                                             BUS_NOTIFY_REMOVED_DEVICE, dev);
3553        kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3554        glue_dir = get_glue_dir(dev);
3555        kobject_del(&dev->kobj);
3556        cleanup_glue_dir(dev, glue_dir);
3557        memalloc_noio_restore(noio_flag);
3558        put_device(parent);
3559}
3560EXPORT_SYMBOL_GPL(device_del);
3561
3562/**
3563 * device_unregister - unregister device from system.
3564 * @dev: device going away.
3565 *
3566 * We do this in two parts, like we do device_register(). First,
3567 * we remove it from all the subsystems with device_del(), then
3568 * we decrement the reference count via put_device(). If that
3569 * is the final reference count, the device will be cleaned up
3570 * via device_release() above. Otherwise, the structure will
3571 * stick around until the final reference to the device is dropped.
3572 */
3573void device_unregister(struct device *dev)
3574{
3575        pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3576        device_del(dev);
3577        put_device(dev);
3578}
3579EXPORT_SYMBOL_GPL(device_unregister);
3580
3581static struct device *prev_device(struct klist_iter *i)
3582{
3583        struct klist_node *n = klist_prev(i);
3584        struct device *dev = NULL;
3585        struct device_private *p;
3586
3587        if (n) {
3588                p = to_device_private_parent(n);
3589                dev = p->device;
3590        }
3591        return dev;
3592}
3593
3594static struct device *next_device(struct klist_iter *i)
3595{
3596        struct klist_node *n = klist_next(i);
3597        struct device *dev = NULL;
3598        struct device_private *p;
3599
3600        if (n) {
3601                p = to_device_private_parent(n);
3602                dev = p->device;
3603        }
3604        return dev;
3605}
3606
3607/**
3608 * device_get_devnode - path of device node file
3609 * @dev: device
3610 * @mode: returned file access mode
3611 * @uid: returned file owner
3612 * @gid: returned file group
3613 * @tmp: possibly allocated string
3614 *
3615 * Return the relative path of a possible device node.
3616 * Non-default names may need to allocate a memory to compose
3617 * a name. This memory is returned in tmp and needs to be
3618 * freed by the caller.
3619 */
3620const char *device_get_devnode(struct device *dev,
3621                               umode_t *mode, kuid_t *uid, kgid_t *gid,
3622                               const char **tmp)
3623{
3624        char *s;
3625
3626        *tmp = NULL;
3627
3628        /* the device type may provide a specific name */
3629        if (dev->type && dev->type->devnode)
3630                *tmp = dev->type->devnode(dev, mode, uid, gid);
3631        if (*tmp)
3632                return *tmp;
3633
3634        /* the class may provide a specific name */
3635        if (dev->class && dev->class->devnode)
3636                *tmp = dev->class->devnode(dev, mode);
3637        if (*tmp)
3638                return *tmp;
3639
3640        /* return name without allocation, tmp == NULL */
3641        if (strchr(dev_name(dev), '!') == NULL)
3642                return dev_name(dev);
3643
3644        /* replace '!' in the name with '/' */
3645        s = kstrdup(dev_name(dev), GFP_KERNEL);
3646        if (!s)
3647                return NULL;
3648        strreplace(s, '!', '/');
3649        return *tmp = s;
3650}
3651
3652/**
3653 * device_for_each_child - device child iterator.
3654 * @parent: parent struct device.
3655 * @fn: function to be called for each device.
3656 * @data: data for the callback.
3657 *
3658 * Iterate over @parent's child devices, and call @fn for each,
3659 * passing it @data.
3660 *
3661 * We check the return of @fn each time. If it returns anything
3662 * other than 0, we break out and return that value.
3663 */
3664int device_for_each_child(struct device *parent, void *data,
3665                          int (*fn)(struct device *dev, void *data))
3666{
3667        struct klist_iter i;
3668        struct device *child;
3669        int error = 0;
3670
3671        if (!parent->p)
3672                return 0;
3673
3674        klist_iter_init(&parent->p->klist_children, &i);
3675        while (!error && (child = next_device(&i)))
3676                error = fn(child, data);
3677        klist_iter_exit(&i);
3678        return error;
3679}
3680EXPORT_SYMBOL_GPL(device_for_each_child);
3681
3682/**
3683 * device_for_each_child_reverse - device child iterator in reversed order.
3684 * @parent: parent struct device.
3685 * @fn: function to be called for each device.
3686 * @data: data for the callback.
3687 *
3688 * Iterate over @parent's child devices, and call @fn for each,
3689 * passing it @data.
3690 *
3691 * We check the return of @fn each time. If it returns anything
3692 * other than 0, we break out and return that value.
3693 */
3694int device_for_each_child_reverse(struct device *parent, void *data,
3695                                  int (*fn)(struct device *dev, void *data))
3696{
3697        struct klist_iter i;
3698        struct device *child;
3699        int error = 0;
3700
3701        if (!parent->p)
3702                return 0;
3703
3704        klist_iter_init(&parent->p->klist_children, &i);
3705        while ((child = prev_device(&i)) && !error)
3706                error = fn(child, data);
3707        klist_iter_exit(&i);
3708        return error;
3709}
3710EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3711
3712/**
3713 * device_find_child - device iterator for locating a particular device.
3714 * @parent: parent struct device
3715 * @match: Callback function to check device
3716 * @data: Data to pass to match function
3717 *
3718 * This is similar to the device_for_each_child() function above, but it
3719 * returns a reference to a device that is 'found' for later use, as
3720 * determined by the @match callback.
3721 *
3722 * The callback should return 0 if the device doesn't match and non-zero
3723 * if it does.  If the callback returns non-zero and a reference to the
3724 * current device can be obtained, this function will return to the caller
3725 * and not iterate over any more devices.
3726 *
3727 * NOTE: you will need to drop the reference with put_device() after use.
3728 */
3729struct device *device_find_child(struct device *parent, void *data,
3730                                 int (*match)(struct device *dev, void *data))
3731{
3732        struct klist_iter i;
3733        struct device *child;
3734
3735        if (!parent)
3736                return NULL;
3737
3738        klist_iter_init(&parent->p->klist_children, &i);
3739        while ((child = next_device(&i)))
3740                if (match(child, data) && get_device(child))
3741                        break;
3742        klist_iter_exit(&i);
3743        return child;
3744}
3745EXPORT_SYMBOL_GPL(device_find_child);
3746
3747/**
3748 * device_find_child_by_name - device iterator for locating a child device.
3749 * @parent: parent struct device
3750 * @name: name of the child device
3751 *
3752 * This is similar to the device_find_child() function above, but it
3753 * returns a reference to a device that has the name @name.
3754 *
3755 * NOTE: you will need to drop the reference with put_device() after use.
3756 */
3757struct device *device_find_child_by_name(struct device *parent,
3758                                         const char *name)
3759{
3760        struct klist_iter i;
3761        struct device *child;
3762
3763        if (!parent)
3764                return NULL;
3765
3766        klist_iter_init(&parent->p->klist_children, &i);
3767        while ((child = next_device(&i)))
3768                if (sysfs_streq(dev_name(child), name) && get_device(child))
3769                        break;
3770        klist_iter_exit(&i);
3771        return child;
3772}
3773EXPORT_SYMBOL_GPL(device_find_child_by_name);
3774
3775int __init devices_init(void)
3776{
3777        devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3778        if (!devices_kset)
3779                return -ENOMEM;
3780        dev_kobj = kobject_create_and_add("dev", NULL);
3781        if (!dev_kobj)
3782                goto dev_kobj_err;
3783        sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3784        if (!sysfs_dev_block_kobj)
3785                goto block_kobj_err;
3786        sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3787        if (!sysfs_dev_char_kobj)
3788                goto char_kobj_err;
3789
3790        return 0;
3791
3792 char_kobj_err:
3793        kobject_put(sysfs_dev_block_kobj);
3794 block_kobj_err:
3795        kobject_put(dev_kobj);
3796 dev_kobj_err:
3797        kset_unregister(devices_kset);
3798        return -ENOMEM;
3799}
3800
3801static int device_check_offline(struct device *dev, void *not_used)
3802{
3803        int ret;
3804
3805        ret = device_for_each_child(dev, NULL, device_check_offline);
3806        if (ret)
3807                return ret;
3808
3809        return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3810}
3811
3812/**
3813 * device_offline - Prepare the device for hot-removal.
3814 * @dev: Device to be put offline.
3815 *
3816 * Execute the device bus type's .offline() callback, if present, to prepare
3817 * the device for a subsequent hot-removal.  If that succeeds, the device must
3818 * not be used until either it is removed or its bus type's .online() callback
3819 * is executed.
3820 *
3821 * Call under device_hotplug_lock.
3822 */
3823int device_offline(struct device *dev)
3824{
3825        int ret;
3826
3827        if (dev->offline_disabled)
3828                return -EPERM;
3829
3830        ret = device_for_each_child(dev, NULL, device_check_offline);
3831        if (ret)
3832                return ret;
3833
3834        device_lock(dev);
3835        if (device_supports_offline(dev)) {
3836                if (dev->offline) {
3837                        ret = 1;
3838                } else {
3839                        ret = dev->bus->offline(dev);
3840                        if (!ret) {
3841                                kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3842                                dev->offline = true;
3843                        }
3844                }
3845        }
3846        device_unlock(dev);
3847
3848        return ret;
3849}
3850
3851/**
3852 * device_online - Put the device back online after successful device_offline().
3853 * @dev: Device to be put back online.
3854 *
3855 * If device_offline() has been successfully executed for @dev, but the device
3856 * has not been removed subsequently, execute its bus type's .online() callback
3857 * to indicate that the device can be used again.
3858 *
3859 * Call under device_hotplug_lock.
3860 */
3861int device_online(struct device *dev)
3862{
3863        int ret = 0;
3864
3865        device_lock(dev);
3866        if (device_supports_offline(dev)) {
3867                if (dev->offline) {
3868                        ret = dev->bus->online(dev);
3869                        if (!ret) {
3870                                kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3871                                dev->offline = false;
3872                        }
3873                } else {
3874                        ret = 1;
3875                }
3876        }
3877        device_unlock(dev);
3878
3879        return ret;
3880}
3881
3882struct root_device {
3883        struct device dev;
3884        struct module *owner;
3885};
3886
3887static inline struct root_device *to_root_device(struct device *d)
3888{
3889        return container_of(d, struct root_device, dev);
3890}
3891
3892static void root_device_release(struct device *dev)
3893{
3894        kfree(to_root_device(dev));
3895}
3896
3897/**
3898 * __root_device_register - allocate and register a root device
3899 * @name: root device name
3900 * @owner: owner module of the root device, usually THIS_MODULE
3901 *
3902 * This function allocates a root device and registers it
3903 * using device_register(). In order to free the returned
3904 * device, use root_device_unregister().
3905 *
3906 * Root devices are dummy devices which allow other devices
3907 * to be grouped under /sys/devices. Use this function to
3908 * allocate a root device and then use it as the parent of
3909 * any device which should appear under /sys/devices/{name}
3910 *
3911 * The /sys/devices/{name} directory will also contain a
3912 * 'module' symlink which points to the @owner directory
3913 * in sysfs.
3914 *
3915 * Returns &struct device pointer on success, or ERR_PTR() on error.
3916 *
3917 * Note: You probably want to use root_device_register().
3918 */
3919struct device *__root_device_register(const char *name, struct module *owner)
3920{
3921        struct root_device *root;
3922        int err = -ENOMEM;
3923
3924        root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3925        if (!root)
3926                return ERR_PTR(err);
3927
3928        err = dev_set_name(&root->dev, "%s", name);
3929        if (err) {
3930                kfree(root);
3931                return ERR_PTR(err);
3932        }
3933
3934        root->dev.release = root_device_release;
3935
3936        err = device_register(&root->dev);
3937        if (err) {
3938                put_device(&root->dev);
3939                return ERR_PTR(err);
3940        }
3941
3942#ifdef CONFIG_MODULES   /* gotta find a "cleaner" way to do this */
3943        if (owner) {
3944                struct module_kobject *mk = &owner->mkobj;
3945
3946                err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3947                if (err) {
3948                        device_unregister(&root->dev);
3949                        return ERR_PTR(err);
3950                }
3951                root->owner = owner;
3952        }
3953#endif
3954
3955        return &root->dev;
3956}
3957EXPORT_SYMBOL_GPL(__root_device_register);
3958
3959/**
3960 * root_device_unregister - unregister and free a root device
3961 * @dev: device going away
3962 *
3963 * This function unregisters and cleans up a device that was created by
3964 * root_device_register().
3965 */
3966void root_device_unregister(struct device *dev)
3967{
3968        struct root_device *root = to_root_device(dev);
3969
3970        if (root->owner)
3971                sysfs_remove_link(&root->dev.kobj, "module");
3972
3973        device_unregister(dev);
3974}
3975EXPORT_SYMBOL_GPL(root_device_unregister);
3976
3977
3978static void device_create_release(struct device *dev)
3979{
3980        pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3981        kfree(dev);
3982}
3983
3984static __printf(6, 0) struct device *
3985device_create_groups_vargs(struct class *class, struct device *parent,
3986                           dev_t devt, void *drvdata,
3987                           const struct attribute_group **groups,
3988                           const char *fmt, va_list args)
3989{
3990        struct device *dev = NULL;
3991        int retval = -ENODEV;
3992
3993        if (class == NULL || IS_ERR(class))
3994                goto error;
3995
3996        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3997        if (!dev) {
3998                retval = -ENOMEM;
3999                goto error;
4000        }
4001
4002        device_initialize(dev);
4003        dev->devt = devt;
4004        dev->class = class;
4005        dev->parent = parent;
4006        dev->groups = groups;
4007        dev->release = device_create_release;
4008        dev_set_drvdata(dev, drvdata);
4009
4010        retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4011        if (retval)
4012                goto error;
4013
4014        retval = device_add(dev);
4015        if (retval)
4016                goto error;
4017
4018        return dev;
4019
4020error:
4021        put_device(dev);
4022        return ERR_PTR(retval);
4023}
4024
4025/**
4026 * device_create - creates a device and registers it with sysfs
4027 * @class: pointer to the struct class that this device should be registered to
4028 * @parent: pointer to the parent struct device of this new device, if any
4029 * @devt: the dev_t for the char device to be added
4030 * @drvdata: the data to be added to the device for callbacks
4031 * @fmt: string for the device's name
4032 *
4033 * This function can be used by char device classes.  A struct device
4034 * will be created in sysfs, registered to the specified class.
4035 *
4036 * A "dev" file will be created, showing the dev_t for the device, if
4037 * the dev_t is not 0,0.
4038 * If a pointer to a parent struct device is passed in, the newly created
4039 * struct device will be a child of that device in sysfs.
4040 * The pointer to the struct device will be returned from the call.
4041 * Any further sysfs files that might be required can be created using this
4042 * pointer.
4043 *
4044 * Returns &struct device pointer on success, or ERR_PTR() on error.
4045 *
4046 * Note: the struct class passed to this function must have previously
4047 * been created with a call to class_create().
4048 */
4049struct device *device_create(struct class *class, struct device *parent,
4050                             dev_t devt, void *drvdata, const char *fmt, ...)
4051{
4052        va_list vargs;
4053        struct device *dev;
4054
4055        va_start(vargs, fmt);
4056        dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4057                                          fmt, vargs);
4058        va_end(vargs);
4059        return dev;
4060}
4061EXPORT_SYMBOL_GPL(device_create);
4062
4063/**
4064 * device_create_with_groups - creates a device and registers it with sysfs
4065 * @class: pointer to the struct class that this device should be registered to
4066 * @parent: pointer to the parent struct device of this new device, if any
4067 * @devt: the dev_t for the char device to be added
4068 * @drvdata: the data to be added to the device for callbacks
4069 * @groups: NULL-terminated list of attribute groups to be created
4070 * @fmt: string for the device's name
4071 *
4072 * This function can be used by char device classes.  A struct device
4073 * will be created in sysfs, registered to the specified class.
4074 * Additional attributes specified in the groups parameter will also
4075 * be created automatically.
4076 *
4077 * A "dev" file will be created, showing the dev_t for the device, if
4078 * the dev_t is not 0,0.
4079 * If a pointer to a parent struct device is passed in, the newly created
4080 * struct device will be a child of that device in sysfs.
4081 * The pointer to the struct device will be returned from the call.
4082 * Any further sysfs files that might be required can be created using this
4083 * pointer.
4084 *
4085 * Returns &struct device pointer on success, or ERR_PTR() on error.
4086 *
4087 * Note: the struct class passed to this function must have previously
4088 * been created with a call to class_create().
4089 */
4090struct device *device_create_with_groups(struct class *class,
4091                                         struct device *parent, dev_t devt,
4092                                         void *drvdata,
4093                                         const struct attribute_group **groups,
4094                                         const char *fmt, ...)
4095{
4096        va_list vargs;
4097        struct device *dev;
4098
4099        va_start(vargs, fmt);
4100        dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4101                                         fmt, vargs);
4102        va_end(vargs);
4103        return dev;
4104}
4105EXPORT_SYMBOL_GPL(device_create_with_groups);
4106
4107/**
4108 * device_destroy - removes a device that was created with device_create()
4109 * @class: pointer to the struct class that this device was registered with
4110 * @devt: the dev_t of the device that was previously registered
4111 *
4112 * This call unregisters and cleans up a device that was created with a
4113 * call to device_create().
4114 */
4115void device_destroy(struct class *class, dev_t devt)
4116{
4117        struct device *dev;
4118
4119        dev = class_find_device_by_devt(class, devt);
4120        if (dev) {
4121                put_device(dev);
4122                device_unregister(dev);
4123        }
4124}
4125EXPORT_SYMBOL_GPL(device_destroy);
4126
4127/**
4128 * device_rename - renames a device
4129 * @dev: the pointer to the struct device to be renamed
4130 * @new_name: the new name of the device
4131 *
4132 * It is the responsibility of the caller to provide mutual
4133 * exclusion between two different calls of device_rename
4134 * on the same device to ensure that new_name is valid and
4135 * won't conflict with other devices.
4136 *
4137 * Note: Don't call this function.  Currently, the networking layer calls this
4138 * function, but that will change.  The following text from Kay Sievers offers
4139 * some insight:
4140 *
4141 * Renaming devices is racy at many levels, symlinks and other stuff are not
4142 * replaced atomically, and you get a "move" uevent, but it's not easy to
4143 * connect the event to the old and new device. Device nodes are not renamed at
4144 * all, there isn't even support for that in the kernel now.
4145 *
4146 * In the meantime, during renaming, your target name might be taken by another
4147 * driver, creating conflicts. Or the old name is taken directly after you
4148 * renamed it -- then you get events for the same DEVPATH, before you even see
4149 * the "move" event. It's just a mess, and nothing new should ever rely on
4150 * kernel device renaming. Besides that, it's not even implemented now for
4151 * other things than (driver-core wise very simple) network devices.
4152 *
4153 * We are currently about to change network renaming in udev to completely
4154 * disallow renaming of devices in the same namespace as the kernel uses,
4155 * because we can't solve the problems properly, that arise with swapping names
4156 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4157 * be allowed to some other name than eth[0-9]*, for the aforementioned
4158 * reasons.
4159 *
4160 * Make up a "real" name in the driver before you register anything, or add
4161 * some other attributes for userspace to find the device, or use udev to add
4162 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4163 * don't even want to get into that and try to implement the missing pieces in
4164 * the core. We really have other pieces to fix in the driver core mess. :)
4165 */
4166int device_rename(struct device *dev, const char *new_name)
4167{
4168        struct kobject *kobj = &dev->kobj;
4169        char *old_device_name = NULL;
4170        int error;
4171
4172        dev = get_device(dev);
4173        if (!dev)
4174                return -EINVAL;
4175
4176        dev_dbg(dev, "renaming to %s\n", new_name);
4177
4178        old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4179        if (!old_device_name) {
4180                error = -ENOMEM;
4181                goto out;
4182        }
4183
4184        if (dev->class) {
4185                error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4186                                             kobj, old_device_name,
4187                                             new_name, kobject_namespace(kobj));
4188                if (error)
4189                        goto out;
4190        }
4191
4192        error = kobject_rename(kobj, new_name);
4193        if (error)
4194                goto out;
4195
4196out:
4197        put_device(dev);
4198
4199        kfree(old_device_name);
4200
4201        return error;
4202}
4203EXPORT_SYMBOL_GPL(device_rename);
4204
4205static int device_move_class_links(struct device *dev,
4206                                   struct device *old_parent,
4207                                   struct device *new_parent)
4208{
4209        int error = 0;
4210
4211        if (old_parent)
4212                sysfs_remove_link(&dev->kobj, "device");
4213        if (new_parent)
4214                error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4215                                          "device");
4216        return error;
4217}
4218
4219/**
4220 * device_move - moves a device to a new parent
4221 * @dev: the pointer to the struct device to be moved
4222 * @new_parent: the new parent of the device (can be NULL)
4223 * @dpm_order: how to reorder the dpm_list
4224 */
4225int device_move(struct device *dev, struct device *new_parent,
4226                enum dpm_order dpm_order)
4227{
4228        int error;
4229        struct device *old_parent;
4230        struct kobject *new_parent_kobj;
4231
4232        dev = get_device(dev);
4233        if (!dev)
4234                return -EINVAL;
4235
4236        device_pm_lock();
4237        new_parent = get_device(new_parent);
4238        new_parent_kobj = get_device_parent(dev, new_parent);
4239        if (IS_ERR(new_parent_kobj)) {
4240                error = PTR_ERR(new_parent_kobj);
4241                put_device(new_parent);
4242                goto out;
4243        }
4244
4245        pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4246                 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4247        error = kobject_move(&dev->kobj, new_parent_kobj);
4248        if (error) {
4249                cleanup_glue_dir(dev, new_parent_kobj);
4250                put_device(new_parent);
4251                goto out;
4252        }
4253        old_parent = dev->parent;
4254        dev->parent = new_parent;
4255        if (old_parent)
4256                klist_remove(&dev->p->knode_parent);
4257        if (new_parent) {
4258                klist_add_tail(&dev->p->knode_parent,
4259                               &new_parent->p->klist_children);
4260                set_dev_node(dev, dev_to_node(new_parent));
4261        }
4262
4263        if (dev->class) {
4264                error = device_move_class_links(dev, old_parent, new_parent);
4265                if (error) {
4266                        /* We ignore errors on cleanup since we're hosed anyway... */
4267                        device_move_class_links(dev, new_parent, old_parent);
4268                        if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4269                                if (new_parent)
4270                                        klist_remove(&dev->p->knode_parent);
4271                                dev->parent = old_parent;
4272                                if (old_parent) {
4273                                        klist_add_tail(&dev->p->knode_parent,
4274                                                       &old_parent->p->klist_children);
4275                                        set_dev_node(dev, dev_to_node(old_parent));
4276                                }
4277                        }
4278                        cleanup_glue_dir(dev, new_parent_kobj);
4279                        put_device(new_parent);
4280                        goto out;
4281                }
4282        }
4283        switch (dpm_order) {
4284        case DPM_ORDER_NONE:
4285                break;
4286        case DPM_ORDER_DEV_AFTER_PARENT:
4287                device_pm_move_after(dev, new_parent);
4288                devices_kset_move_after(dev, new_parent);
4289                break;
4290        case DPM_ORDER_PARENT_BEFORE_DEV:
4291                device_pm_move_before(new_parent, dev);
4292                devices_kset_move_before(new_parent, dev);
4293                break;
4294        case DPM_ORDER_DEV_LAST:
4295                device_pm_move_last(dev);
4296                devices_kset_move_last(dev);
4297                break;
4298        }
4299
4300        put_device(old_parent);
4301out:
4302        device_pm_unlock();
4303        put_device(dev);
4304        return error;
4305}
4306EXPORT_SYMBOL_GPL(device_move);
4307
4308static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4309                                     kgid_t kgid)
4310{
4311        struct kobject *kobj = &dev->kobj;
4312        struct class *class = dev->class;
4313        const struct device_type *type = dev->type;
4314        int error;
4315
4316        if (class) {
4317                /*
4318                 * Change the device groups of the device class for @dev to
4319                 * @kuid/@kgid.
4320                 */
4321                error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4322                                                  kgid);
4323                if (error)
4324                        return error;
4325        }
4326
4327        if (type) {
4328                /*
4329                 * Change the device groups of the device type for @dev to
4330                 * @kuid/@kgid.
4331                 */
4332                error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4333                                                  kgid);
4334                if (error)
4335                        return error;
4336        }
4337
4338        /* Change the device groups of @dev to @kuid/@kgid. */
4339        error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4340        if (error)
4341                return error;
4342
4343        if (device_supports_offline(dev) && !dev->offline_disabled) {
4344                /* Change online device attributes of @dev to @kuid/@kgid. */
4345                error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4346                                                kuid, kgid);
4347                if (error)
4348                        return error;
4349        }
4350
4351        return 0;
4352}
4353
4354/**
4355 * device_change_owner - change the owner of an existing device.
4356 * @dev: device.
4357 * @kuid: new owner's kuid
4358 * @kgid: new owner's kgid
4359 *
4360 * This changes the owner of @dev and its corresponding sysfs entries to
4361 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4362 * core.
4363 *
4364 * Returns 0 on success or error code on failure.
4365 */
4366int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4367{
4368        int error;
4369        struct kobject *kobj = &dev->kobj;
4370
4371        dev = get_device(dev);
4372        if (!dev)
4373                return -EINVAL;
4374
4375        /*
4376         * Change the kobject and the default attributes and groups of the
4377         * ktype associated with it to @kuid/@kgid.
4378         */
4379        error = sysfs_change_owner(kobj, kuid, kgid);
4380        if (error)
4381                goto out;
4382
4383        /*
4384         * Change the uevent file for @dev to the new owner. The uevent file
4385         * was created in a separate step when @dev got added and we mirror
4386         * that step here.
4387         */
4388        error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4389                                        kgid);
4390        if (error)
4391                goto out;
4392
4393        /*
4394         * Change the device groups, the device groups associated with the
4395         * device class, and the groups associated with the device type of @dev
4396         * to @kuid/@kgid.
4397         */
4398        error = device_attrs_change_owner(dev, kuid, kgid);
4399        if (error)
4400                goto out;
4401
4402        error = dpm_sysfs_change_owner(dev, kuid, kgid);
4403        if (error)
4404                goto out;
4405
4406#ifdef CONFIG_BLOCK
4407        if (sysfs_deprecated && dev->class == &block_class)
4408                goto out;
4409#endif
4410
4411        /*
4412         * Change the owner of the symlink located in the class directory of
4413         * the device class associated with @dev which points to the actual
4414         * directory entry for @dev to @kuid/@kgid. This ensures that the
4415         * symlink shows the same permissions as its target.
4416         */
4417        error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4418                                        dev_name(dev), kuid, kgid);
4419        if (error)
4420                goto out;
4421
4422out:
4423        put_device(dev);
4424        return error;
4425}
4426EXPORT_SYMBOL_GPL(device_change_owner);
4427
4428/**
4429 * device_shutdown - call ->shutdown() on each device to shutdown.
4430 */
4431void device_shutdown(void)
4432{
4433        struct device *dev, *parent;
4434
4435        wait_for_device_probe();
4436        device_block_probing();
4437
4438        cpufreq_suspend();
4439
4440        spin_lock(&devices_kset->list_lock);
4441        /*
4442         * Walk the devices list backward, shutting down each in turn.
4443         * Beware that device unplug events may also start pulling
4444         * devices offline, even as the system is shutting down.
4445         */
4446        while (!list_empty(&devices_kset->list)) {
4447                dev = list_entry(devices_kset->list.prev, struct device,
4448                                kobj.entry);
4449
4450                /*
4451                 * hold reference count of device's parent to
4452                 * prevent it from being freed because parent's
4453                 * lock is to be held
4454                 */
4455                parent = get_device(dev->parent);
4456                get_device(dev);
4457                /*
4458                 * Make sure the device is off the kset list, in the
4459                 * event that dev->*->shutdown() doesn't remove it.
4460                 */
4461                list_del_init(&dev->kobj.entry);
4462                spin_unlock(&devices_kset->list_lock);
4463
4464                /* hold lock to avoid race with probe/release */
4465                if (parent)
4466                        device_lock(parent);
4467                device_lock(dev);
4468
4469                /* Don't allow any more runtime suspends */
4470                pm_runtime_get_noresume(dev);
4471                pm_runtime_barrier(dev);
4472
4473                if (dev->class && dev->class->shutdown_pre) {
4474                        if (initcall_debug)
4475                                dev_info(dev, "shutdown_pre\n");
4476                        dev->class->shutdown_pre(dev);
4477                }
4478                if (dev->bus && dev->bus->shutdown) {
4479                        if (initcall_debug)
4480                                dev_info(dev, "shutdown\n");
4481                        dev->bus->shutdown(dev);
4482                } else if (dev->driver && dev->driver->shutdown) {
4483                        if (initcall_debug)
4484                                dev_info(dev, "shutdown\n");
4485                        dev->driver->shutdown(dev);
4486                }
4487
4488                device_unlock(dev);
4489                if (parent)
4490                        device_unlock(parent);
4491
4492                put_device(dev);
4493                put_device(parent);
4494
4495                spin_lock(&devices_kset->list_lock);
4496        }
4497        spin_unlock(&devices_kset->list_lock);
4498}
4499
4500/*
4501 * Device logging functions
4502 */
4503
4504#ifdef CONFIG_PRINTK
4505static void
4506set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4507{
4508        const char *subsys;
4509
4510        memset(dev_info, 0, sizeof(*dev_info));
4511
4512        if (dev->class)
4513                subsys = dev->class->name;
4514        else if (dev->bus)
4515                subsys = dev->bus->name;
4516        else
4517                return;
4518
4519        strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4520
4521        /*
4522         * Add device identifier DEVICE=:
4523         *   b12:8         block dev_t
4524         *   c127:3        char dev_t
4525         *   n8            netdev ifindex
4526         *   +sound:card0  subsystem:devname
4527         */
4528        if (MAJOR(dev->devt)) {
4529                char c;
4530
4531                if (strcmp(subsys, "block") == 0)
4532                        c = 'b';
4533                else
4534                        c = 'c';
4535
4536                snprintf(dev_info->device, sizeof(dev_info->device),
4537                         "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4538        } else if (strcmp(subsys, "net") == 0) {
4539                struct net_device *net = to_net_dev(dev);
4540
4541                snprintf(dev_info->device, sizeof(dev_info->device),
4542                         "n%u", net->ifindex);
4543        } else {
4544                snprintf(dev_info->device, sizeof(dev_info->device),
4545                         "+%s:%s", subsys, dev_name(dev));
4546        }
4547}
4548
4549int dev_vprintk_emit(int level, const struct device *dev,
4550                     const char *fmt, va_list args)
4551{
4552        struct dev_printk_info dev_info;
4553
4554        set_dev_info(dev, &dev_info);
4555
4556        return vprintk_emit(0, level, &dev_info, fmt, args);
4557}
4558EXPORT_SYMBOL(dev_vprintk_emit);
4559
4560int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4561{
4562        va_list args;
4563        int r;
4564
4565        va_start(args, fmt);
4566
4567        r = dev_vprintk_emit(level, dev, fmt, args);
4568
4569        va_end(args);
4570
4571        return r;
4572}
4573EXPORT_SYMBOL(dev_printk_emit);
4574
4575static void __dev_printk(const char *level, const struct device *dev,
4576                        struct va_format *vaf)
4577{
4578        if (dev)
4579                dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4580                                dev_driver_string(dev), dev_name(dev), vaf);
4581        else
4582                printk("%s(NULL device *): %pV", level, vaf);
4583}
4584
4585void dev_printk(const char *level, const struct device *dev,
4586                const char *fmt, ...)
4587{
4588        struct va_format vaf;
4589        va_list args;
4590
4591        va_start(args, fmt);
4592
4593        vaf.fmt = fmt;
4594        vaf.va = &args;
4595
4596        __dev_printk(level, dev, &vaf);
4597
4598        va_end(args);
4599}
4600EXPORT_SYMBOL(dev_printk);
4601
4602#define define_dev_printk_level(func, kern_level)               \
4603void func(const struct device *dev, const char *fmt, ...)       \
4604{                                                               \
4605        struct va_format vaf;                                   \
4606        va_list args;                                           \
4607                                                                \
4608        va_start(args, fmt);                                    \
4609                                                                \
4610        vaf.fmt = fmt;                                          \
4611        vaf.va = &args;                                         \
4612                                                                \
4613        __dev_printk(kern_level, dev, &vaf);                    \
4614                                                                \
4615        va_end(args);                                           \
4616}                                                               \
4617EXPORT_SYMBOL(func);
4618
4619define_dev_printk_level(_dev_emerg, KERN_EMERG);
4620define_dev_printk_level(_dev_alert, KERN_ALERT);
4621define_dev_printk_level(_dev_crit, KERN_CRIT);
4622define_dev_printk_level(_dev_err, KERN_ERR);
4623define_dev_printk_level(_dev_warn, KERN_WARNING);
4624define_dev_printk_level(_dev_notice, KERN_NOTICE);
4625define_dev_printk_level(_dev_info, KERN_INFO);
4626
4627#endif
4628
4629/**
4630 * dev_err_probe - probe error check and log helper
4631 * @dev: the pointer to the struct device
4632 * @err: error value to test
4633 * @fmt: printf-style format string
4634 * @...: arguments as specified in the format string
4635 *
4636 * This helper implements common pattern present in probe functions for error
4637 * checking: print debug or error message depending if the error value is
4638 * -EPROBE_DEFER and propagate error upwards.
4639 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4640 * checked later by reading devices_deferred debugfs attribute.
4641 * It replaces code sequence::
4642 *
4643 *      if (err != -EPROBE_DEFER)
4644 *              dev_err(dev, ...);
4645 *      else
4646 *              dev_dbg(dev, ...);
4647 *      return err;
4648 *
4649 * with::
4650 *
4651 *      return dev_err_probe(dev, err, ...);
4652 *
4653 * Returns @err.
4654 *
4655 */
4656int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4657{
4658        struct va_format vaf;
4659        va_list args;
4660
4661        va_start(args, fmt);
4662        vaf.fmt = fmt;
4663        vaf.va = &args;
4664
4665        if (err != -EPROBE_DEFER) {
4666                dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4667        } else {
4668                device_set_deferred_probe_reason(dev, &vaf);
4669                dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4670        }
4671
4672        va_end(args);
4673
4674        return err;
4675}
4676EXPORT_SYMBOL_GPL(dev_err_probe);
4677
4678static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4679{
4680        return fwnode && !IS_ERR(fwnode->secondary);
4681}
4682
4683/**
4684 * set_primary_fwnode - Change the primary firmware node of a given device.
4685 * @dev: Device to handle.
4686 * @fwnode: New primary firmware node of the device.
4687 *
4688 * Set the device's firmware node pointer to @fwnode, but if a secondary
4689 * firmware node of the device is present, preserve it.
4690 *
4691 * Valid fwnode cases are:
4692 *  - primary --> secondary --> -ENODEV
4693 *  - primary --> NULL
4694 *  - secondary --> -ENODEV
4695 *  - NULL
4696 */
4697void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4698{
4699        struct device *parent = dev->parent;
4700        struct fwnode_handle *fn = dev->fwnode;
4701
4702        if (fwnode) {
4703                if (fwnode_is_primary(fn))
4704                        fn = fn->secondary;
4705
4706                if (fn) {
4707                        WARN_ON(fwnode->secondary);
4708                        fwnode->secondary = fn;
4709                }
4710                dev->fwnode = fwnode;
4711        } else {
4712                if (fwnode_is_primary(fn)) {
4713                        dev->fwnode = fn->secondary;
4714                        /* Set fn->secondary = NULL, so fn remains the primary fwnode */
4715                        if (!(parent && fn == parent->fwnode))
4716                                fn->secondary = NULL;
4717                } else {
4718                        dev->fwnode = NULL;
4719                }
4720        }
4721}
4722EXPORT_SYMBOL_GPL(set_primary_fwnode);
4723
4724/**
4725 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4726 * @dev: Device to handle.
4727 * @fwnode: New secondary firmware node of the device.
4728 *
4729 * If a primary firmware node of the device is present, set its secondary
4730 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4731 * @fwnode.
4732 */
4733void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4734{
4735        if (fwnode)
4736                fwnode->secondary = ERR_PTR(-ENODEV);
4737
4738        if (fwnode_is_primary(dev->fwnode))
4739                dev->fwnode->secondary = fwnode;
4740        else
4741                dev->fwnode = fwnode;
4742}
4743EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4744
4745/**
4746 * device_set_of_node_from_dev - reuse device-tree node of another device
4747 * @dev: device whose device-tree node is being set
4748 * @dev2: device whose device-tree node is being reused
4749 *
4750 * Takes another reference to the new device-tree node after first dropping
4751 * any reference held to the old node.
4752 */
4753void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4754{
4755        of_node_put(dev->of_node);
4756        dev->of_node = of_node_get(dev2->of_node);
4757        dev->of_node_reused = true;
4758}
4759EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4760
4761void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4762{
4763        dev->fwnode = fwnode;
4764        dev->of_node = to_of_node(fwnode);
4765}
4766EXPORT_SYMBOL_GPL(device_set_node);
4767
4768int device_match_name(struct device *dev, const void *name)
4769{
4770        return sysfs_streq(dev_name(dev), name);
4771}
4772EXPORT_SYMBOL_GPL(device_match_name);
4773
4774int device_match_of_node(struct device *dev, const void *np)
4775{
4776        return dev->of_node == np;
4777}
4778EXPORT_SYMBOL_GPL(device_match_of_node);
4779
4780int device_match_fwnode(struct device *dev, const void *fwnode)
4781{
4782        return dev_fwnode(dev) == fwnode;
4783}
4784EXPORT_SYMBOL_GPL(device_match_fwnode);
4785
4786int device_match_devt(struct device *dev, const void *pdevt)
4787{
4788        return dev->devt == *(dev_t *)pdevt;
4789}
4790EXPORT_SYMBOL_GPL(device_match_devt);
4791
4792int device_match_acpi_dev(struct device *dev, const void *adev)
4793{
4794        return ACPI_COMPANION(dev) == adev;
4795}
4796EXPORT_SYMBOL(device_match_acpi_dev);
4797
4798int device_match_any(struct device *dev, const void *unused)
4799{
4800        return 1;
4801}
4802EXPORT_SYMBOL_GPL(device_match_any);
4803