linux/block/kyber-iosched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
   4 * scalable techniques.
   5 *
   6 * Copyright (C) 2017 Facebook
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/blkdev.h>
  11#include <linux/blk-mq.h>
  12#include <linux/elevator.h>
  13#include <linux/module.h>
  14#include <linux/sbitmap.h>
  15
  16#include <trace/events/block.h>
  17
  18#include "blk.h"
  19#include "blk-mq.h"
  20#include "blk-mq-debugfs.h"
  21#include "blk-mq-sched.h"
  22#include "blk-mq-tag.h"
  23
  24#define CREATE_TRACE_POINTS
  25#include <trace/events/kyber.h>
  26
  27/*
  28 * Scheduling domains: the device is divided into multiple domains based on the
  29 * request type.
  30 */
  31enum {
  32        KYBER_READ,
  33        KYBER_WRITE,
  34        KYBER_DISCARD,
  35        KYBER_OTHER,
  36        KYBER_NUM_DOMAINS,
  37};
  38
  39static const char *kyber_domain_names[] = {
  40        [KYBER_READ] = "READ",
  41        [KYBER_WRITE] = "WRITE",
  42        [KYBER_DISCARD] = "DISCARD",
  43        [KYBER_OTHER] = "OTHER",
  44};
  45
  46enum {
  47        /*
  48         * In order to prevent starvation of synchronous requests by a flood of
  49         * asynchronous requests, we reserve 25% of requests for synchronous
  50         * operations.
  51         */
  52        KYBER_ASYNC_PERCENT = 75,
  53};
  54
  55/*
  56 * Maximum device-wide depth for each scheduling domain.
  57 *
  58 * Even for fast devices with lots of tags like NVMe, you can saturate the
  59 * device with only a fraction of the maximum possible queue depth. So, we cap
  60 * these to a reasonable value.
  61 */
  62static const unsigned int kyber_depth[] = {
  63        [KYBER_READ] = 256,
  64        [KYBER_WRITE] = 128,
  65        [KYBER_DISCARD] = 64,
  66        [KYBER_OTHER] = 16,
  67};
  68
  69/*
  70 * Default latency targets for each scheduling domain.
  71 */
  72static const u64 kyber_latency_targets[] = {
  73        [KYBER_READ] = 2ULL * NSEC_PER_MSEC,
  74        [KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
  75        [KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
  76};
  77
  78/*
  79 * Batch size (number of requests we'll dispatch in a row) for each scheduling
  80 * domain.
  81 */
  82static const unsigned int kyber_batch_size[] = {
  83        [KYBER_READ] = 16,
  84        [KYBER_WRITE] = 8,
  85        [KYBER_DISCARD] = 1,
  86        [KYBER_OTHER] = 1,
  87};
  88
  89/*
  90 * Requests latencies are recorded in a histogram with buckets defined relative
  91 * to the target latency:
  92 *
  93 * <= 1/4 * target latency
  94 * <= 1/2 * target latency
  95 * <= 3/4 * target latency
  96 * <= target latency
  97 * <= 1 1/4 * target latency
  98 * <= 1 1/2 * target latency
  99 * <= 1 3/4 * target latency
 100 * > 1 3/4 * target latency
 101 */
 102enum {
 103        /*
 104         * The width of the latency histogram buckets is
 105         * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
 106         */
 107        KYBER_LATENCY_SHIFT = 2,
 108        /*
 109         * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
 110         * thus, "good".
 111         */
 112        KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
 113        /* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
 114        KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
 115};
 116
 117/*
 118 * We measure both the total latency and the I/O latency (i.e., latency after
 119 * submitting to the device).
 120 */
 121enum {
 122        KYBER_TOTAL_LATENCY,
 123        KYBER_IO_LATENCY,
 124};
 125
 126static const char *kyber_latency_type_names[] = {
 127        [KYBER_TOTAL_LATENCY] = "total",
 128        [KYBER_IO_LATENCY] = "I/O",
 129};
 130
 131/*
 132 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
 133 * domain except for KYBER_OTHER.
 134 */
 135struct kyber_cpu_latency {
 136        atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 137};
 138
 139/*
 140 * There is a same mapping between ctx & hctx and kcq & khd,
 141 * we use request->mq_ctx->index_hw to index the kcq in khd.
 142 */
 143struct kyber_ctx_queue {
 144        /*
 145         * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
 146         * Also protect the rqs on rq_list when merge.
 147         */
 148        spinlock_t lock;
 149        struct list_head rq_list[KYBER_NUM_DOMAINS];
 150} ____cacheline_aligned_in_smp;
 151
 152struct kyber_queue_data {
 153        struct request_queue *q;
 154
 155        /*
 156         * Each scheduling domain has a limited number of in-flight requests
 157         * device-wide, limited by these tokens.
 158         */
 159        struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
 160
 161        /*
 162         * Async request percentage, converted to per-word depth for
 163         * sbitmap_get_shallow().
 164         */
 165        unsigned int async_depth;
 166
 167        struct kyber_cpu_latency __percpu *cpu_latency;
 168
 169        /* Timer for stats aggregation and adjusting domain tokens. */
 170        struct timer_list timer;
 171
 172        unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 173
 174        unsigned long latency_timeout[KYBER_OTHER];
 175
 176        int domain_p99[KYBER_OTHER];
 177
 178        /* Target latencies in nanoseconds. */
 179        u64 latency_targets[KYBER_OTHER];
 180};
 181
 182struct kyber_hctx_data {
 183        spinlock_t lock;
 184        struct list_head rqs[KYBER_NUM_DOMAINS];
 185        unsigned int cur_domain;
 186        unsigned int batching;
 187        struct kyber_ctx_queue *kcqs;
 188        struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
 189        struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
 190        struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
 191        atomic_t wait_index[KYBER_NUM_DOMAINS];
 192};
 193
 194static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
 195                             void *key);
 196
 197static unsigned int kyber_sched_domain(unsigned int op)
 198{
 199        switch (op & REQ_OP_MASK) {
 200        case REQ_OP_READ:
 201                return KYBER_READ;
 202        case REQ_OP_WRITE:
 203                return KYBER_WRITE;
 204        case REQ_OP_DISCARD:
 205                return KYBER_DISCARD;
 206        default:
 207                return KYBER_OTHER;
 208        }
 209}
 210
 211static void flush_latency_buckets(struct kyber_queue_data *kqd,
 212                                  struct kyber_cpu_latency *cpu_latency,
 213                                  unsigned int sched_domain, unsigned int type)
 214{
 215        unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 216        atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
 217        unsigned int bucket;
 218
 219        for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 220                buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
 221}
 222
 223/*
 224 * Calculate the histogram bucket with the given percentile rank, or -1 if there
 225 * aren't enough samples yet.
 226 */
 227static int calculate_percentile(struct kyber_queue_data *kqd,
 228                                unsigned int sched_domain, unsigned int type,
 229                                unsigned int percentile)
 230{
 231        unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 232        unsigned int bucket, samples = 0, percentile_samples;
 233
 234        for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 235                samples += buckets[bucket];
 236
 237        if (!samples)
 238                return -1;
 239
 240        /*
 241         * We do the calculation once we have 500 samples or one second passes
 242         * since the first sample was recorded, whichever comes first.
 243         */
 244        if (!kqd->latency_timeout[sched_domain])
 245                kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
 246        if (samples < 500 &&
 247            time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
 248                return -1;
 249        }
 250        kqd->latency_timeout[sched_domain] = 0;
 251
 252        percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
 253        for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
 254                if (buckets[bucket] >= percentile_samples)
 255                        break;
 256                percentile_samples -= buckets[bucket];
 257        }
 258        memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
 259
 260        trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
 261                            kyber_latency_type_names[type], percentile,
 262                            bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
 263
 264        return bucket;
 265}
 266
 267static void kyber_resize_domain(struct kyber_queue_data *kqd,
 268                                unsigned int sched_domain, unsigned int depth)
 269{
 270        depth = clamp(depth, 1U, kyber_depth[sched_domain]);
 271        if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
 272                sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
 273                trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
 274                                   depth);
 275        }
 276}
 277
 278static void kyber_timer_fn(struct timer_list *t)
 279{
 280        struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
 281        unsigned int sched_domain;
 282        int cpu;
 283        bool bad = false;
 284
 285        /* Sum all of the per-cpu latency histograms. */
 286        for_each_online_cpu(cpu) {
 287                struct kyber_cpu_latency *cpu_latency;
 288
 289                cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
 290                for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 291                        flush_latency_buckets(kqd, cpu_latency, sched_domain,
 292                                              KYBER_TOTAL_LATENCY);
 293                        flush_latency_buckets(kqd, cpu_latency, sched_domain,
 294                                              KYBER_IO_LATENCY);
 295                }
 296        }
 297
 298        /*
 299         * Check if any domains have a high I/O latency, which might indicate
 300         * congestion in the device. Note that we use the p90; we don't want to
 301         * be too sensitive to outliers here.
 302         */
 303        for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 304                int p90;
 305
 306                p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
 307                                           90);
 308                if (p90 >= KYBER_GOOD_BUCKETS)
 309                        bad = true;
 310        }
 311
 312        /*
 313         * Adjust the scheduling domain depths. If we determined that there was
 314         * congestion, we throttle all domains with good latencies. Either way,
 315         * we ease up on throttling domains with bad latencies.
 316         */
 317        for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 318                unsigned int orig_depth, depth;
 319                int p99;
 320
 321                p99 = calculate_percentile(kqd, sched_domain,
 322                                           KYBER_TOTAL_LATENCY, 99);
 323                /*
 324                 * This is kind of subtle: different domains will not
 325                 * necessarily have enough samples to calculate the latency
 326                 * percentiles during the same window, so we have to remember
 327                 * the p99 for the next time we observe congestion; once we do,
 328                 * we don't want to throttle again until we get more data, so we
 329                 * reset it to -1.
 330                 */
 331                if (bad) {
 332                        if (p99 < 0)
 333                                p99 = kqd->domain_p99[sched_domain];
 334                        kqd->domain_p99[sched_domain] = -1;
 335                } else if (p99 >= 0) {
 336                        kqd->domain_p99[sched_domain] = p99;
 337                }
 338                if (p99 < 0)
 339                        continue;
 340
 341                /*
 342                 * If this domain has bad latency, throttle less. Otherwise,
 343                 * throttle more iff we determined that there is congestion.
 344                 *
 345                 * The new depth is scaled linearly with the p99 latency vs the
 346                 * latency target. E.g., if the p99 is 3/4 of the target, then
 347                 * we throttle down to 3/4 of the current depth, and if the p99
 348                 * is 2x the target, then we double the depth.
 349                 */
 350                if (bad || p99 >= KYBER_GOOD_BUCKETS) {
 351                        orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
 352                        depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
 353                        kyber_resize_domain(kqd, sched_domain, depth);
 354                }
 355        }
 356}
 357
 358static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
 359{
 360        struct kyber_queue_data *kqd;
 361        int ret = -ENOMEM;
 362        int i;
 363
 364        kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
 365        if (!kqd)
 366                goto err;
 367
 368        kqd->q = q;
 369
 370        kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
 371                                            GFP_KERNEL | __GFP_ZERO);
 372        if (!kqd->cpu_latency)
 373                goto err_kqd;
 374
 375        timer_setup(&kqd->timer, kyber_timer_fn, 0);
 376
 377        for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 378                WARN_ON(!kyber_depth[i]);
 379                WARN_ON(!kyber_batch_size[i]);
 380                ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
 381                                              kyber_depth[i], -1, false,
 382                                              GFP_KERNEL, q->node);
 383                if (ret) {
 384                        while (--i >= 0)
 385                                sbitmap_queue_free(&kqd->domain_tokens[i]);
 386                        goto err_buckets;
 387                }
 388        }
 389
 390        for (i = 0; i < KYBER_OTHER; i++) {
 391                kqd->domain_p99[i] = -1;
 392                kqd->latency_targets[i] = kyber_latency_targets[i];
 393        }
 394
 395        return kqd;
 396
 397err_buckets:
 398        free_percpu(kqd->cpu_latency);
 399err_kqd:
 400        kfree(kqd);
 401err:
 402        return ERR_PTR(ret);
 403}
 404
 405static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
 406{
 407        struct kyber_queue_data *kqd;
 408        struct elevator_queue *eq;
 409
 410        eq = elevator_alloc(q, e);
 411        if (!eq)
 412                return -ENOMEM;
 413
 414        kqd = kyber_queue_data_alloc(q);
 415        if (IS_ERR(kqd)) {
 416                kobject_put(&eq->kobj);
 417                return PTR_ERR(kqd);
 418        }
 419
 420        blk_stat_enable_accounting(q);
 421
 422        eq->elevator_data = kqd;
 423        q->elevator = eq;
 424
 425        return 0;
 426}
 427
 428static void kyber_exit_sched(struct elevator_queue *e)
 429{
 430        struct kyber_queue_data *kqd = e->elevator_data;
 431        int i;
 432
 433        del_timer_sync(&kqd->timer);
 434
 435        for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 436                sbitmap_queue_free(&kqd->domain_tokens[i]);
 437        free_percpu(kqd->cpu_latency);
 438        kfree(kqd);
 439}
 440
 441static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
 442{
 443        unsigned int i;
 444
 445        spin_lock_init(&kcq->lock);
 446        for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 447                INIT_LIST_HEAD(&kcq->rq_list[i]);
 448}
 449
 450static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
 451{
 452        struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 453        struct blk_mq_tags *tags = hctx->sched_tags;
 454        unsigned int shift = tags->bitmap_tags->sb.shift;
 455
 456        kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
 457
 458        sbitmap_queue_min_shallow_depth(tags->bitmap_tags, kqd->async_depth);
 459}
 460
 461static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 462{
 463        struct kyber_hctx_data *khd;
 464        int i;
 465
 466        khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
 467        if (!khd)
 468                return -ENOMEM;
 469
 470        khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
 471                                       sizeof(struct kyber_ctx_queue),
 472                                       GFP_KERNEL, hctx->numa_node);
 473        if (!khd->kcqs)
 474                goto err_khd;
 475
 476        for (i = 0; i < hctx->nr_ctx; i++)
 477                kyber_ctx_queue_init(&khd->kcqs[i]);
 478
 479        for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 480                if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
 481                                      ilog2(8), GFP_KERNEL, hctx->numa_node,
 482                                      false, false)) {
 483                        while (--i >= 0)
 484                                sbitmap_free(&khd->kcq_map[i]);
 485                        goto err_kcqs;
 486                }
 487        }
 488
 489        spin_lock_init(&khd->lock);
 490
 491        for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 492                INIT_LIST_HEAD(&khd->rqs[i]);
 493                khd->domain_wait[i].sbq = NULL;
 494                init_waitqueue_func_entry(&khd->domain_wait[i].wait,
 495                                          kyber_domain_wake);
 496                khd->domain_wait[i].wait.private = hctx;
 497                INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
 498                atomic_set(&khd->wait_index[i], 0);
 499        }
 500
 501        khd->cur_domain = 0;
 502        khd->batching = 0;
 503
 504        hctx->sched_data = khd;
 505        kyber_depth_updated(hctx);
 506
 507        return 0;
 508
 509err_kcqs:
 510        kfree(khd->kcqs);
 511err_khd:
 512        kfree(khd);
 513        return -ENOMEM;
 514}
 515
 516static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 517{
 518        struct kyber_hctx_data *khd = hctx->sched_data;
 519        int i;
 520
 521        for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 522                sbitmap_free(&khd->kcq_map[i]);
 523        kfree(khd->kcqs);
 524        kfree(hctx->sched_data);
 525}
 526
 527static int rq_get_domain_token(struct request *rq)
 528{
 529        return (long)rq->elv.priv[0];
 530}
 531
 532static void rq_set_domain_token(struct request *rq, int token)
 533{
 534        rq->elv.priv[0] = (void *)(long)token;
 535}
 536
 537static void rq_clear_domain_token(struct kyber_queue_data *kqd,
 538                                  struct request *rq)
 539{
 540        unsigned int sched_domain;
 541        int nr;
 542
 543        nr = rq_get_domain_token(rq);
 544        if (nr != -1) {
 545                sched_domain = kyber_sched_domain(rq->cmd_flags);
 546                sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
 547                                    rq->mq_ctx->cpu);
 548        }
 549}
 550
 551static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
 552{
 553        /*
 554         * We use the scheduler tags as per-hardware queue queueing tokens.
 555         * Async requests can be limited at this stage.
 556         */
 557        if (!op_is_sync(op)) {
 558                struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
 559
 560                data->shallow_depth = kqd->async_depth;
 561        }
 562}
 563
 564static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
 565                unsigned int nr_segs)
 566{
 567        struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
 568        struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
 569        struct kyber_hctx_data *khd = hctx->sched_data;
 570        struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
 571        unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
 572        struct list_head *rq_list = &kcq->rq_list[sched_domain];
 573        bool merged;
 574
 575        spin_lock(&kcq->lock);
 576        merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
 577        spin_unlock(&kcq->lock);
 578
 579        return merged;
 580}
 581
 582static void kyber_prepare_request(struct request *rq)
 583{
 584        rq_set_domain_token(rq, -1);
 585}
 586
 587static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
 588                                  struct list_head *rq_list, bool at_head)
 589{
 590        struct kyber_hctx_data *khd = hctx->sched_data;
 591        struct request *rq, *next;
 592
 593        list_for_each_entry_safe(rq, next, rq_list, queuelist) {
 594                unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
 595                struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
 596                struct list_head *head = &kcq->rq_list[sched_domain];
 597
 598                spin_lock(&kcq->lock);
 599                trace_block_rq_insert(rq);
 600                if (at_head)
 601                        list_move(&rq->queuelist, head);
 602                else
 603                        list_move_tail(&rq->queuelist, head);
 604                sbitmap_set_bit(&khd->kcq_map[sched_domain],
 605                                rq->mq_ctx->index_hw[hctx->type]);
 606                spin_unlock(&kcq->lock);
 607        }
 608}
 609
 610static void kyber_finish_request(struct request *rq)
 611{
 612        struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 613
 614        rq_clear_domain_token(kqd, rq);
 615}
 616
 617static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
 618                               unsigned int sched_domain, unsigned int type,
 619                               u64 target, u64 latency)
 620{
 621        unsigned int bucket;
 622        u64 divisor;
 623
 624        if (latency > 0) {
 625                divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
 626                bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
 627                               KYBER_LATENCY_BUCKETS - 1);
 628        } else {
 629                bucket = 0;
 630        }
 631
 632        atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
 633}
 634
 635static void kyber_completed_request(struct request *rq, u64 now)
 636{
 637        struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 638        struct kyber_cpu_latency *cpu_latency;
 639        unsigned int sched_domain;
 640        u64 target;
 641
 642        sched_domain = kyber_sched_domain(rq->cmd_flags);
 643        if (sched_domain == KYBER_OTHER)
 644                return;
 645
 646        cpu_latency = get_cpu_ptr(kqd->cpu_latency);
 647        target = kqd->latency_targets[sched_domain];
 648        add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
 649                           target, now - rq->start_time_ns);
 650        add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
 651                           now - rq->io_start_time_ns);
 652        put_cpu_ptr(kqd->cpu_latency);
 653
 654        timer_reduce(&kqd->timer, jiffies + HZ / 10);
 655}
 656
 657struct flush_kcq_data {
 658        struct kyber_hctx_data *khd;
 659        unsigned int sched_domain;
 660        struct list_head *list;
 661};
 662
 663static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
 664{
 665        struct flush_kcq_data *flush_data = data;
 666        struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
 667
 668        spin_lock(&kcq->lock);
 669        list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
 670                              flush_data->list);
 671        sbitmap_clear_bit(sb, bitnr);
 672        spin_unlock(&kcq->lock);
 673
 674        return true;
 675}
 676
 677static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
 678                                  unsigned int sched_domain,
 679                                  struct list_head *list)
 680{
 681        struct flush_kcq_data data = {
 682                .khd = khd,
 683                .sched_domain = sched_domain,
 684                .list = list,
 685        };
 686
 687        sbitmap_for_each_set(&khd->kcq_map[sched_domain],
 688                             flush_busy_kcq, &data);
 689}
 690
 691static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
 692                             void *key)
 693{
 694        struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
 695        struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
 696
 697        sbitmap_del_wait_queue(wait);
 698        blk_mq_run_hw_queue(hctx, true);
 699        return 1;
 700}
 701
 702static int kyber_get_domain_token(struct kyber_queue_data *kqd,
 703                                  struct kyber_hctx_data *khd,
 704                                  struct blk_mq_hw_ctx *hctx)
 705{
 706        unsigned int sched_domain = khd->cur_domain;
 707        struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
 708        struct sbq_wait *wait = &khd->domain_wait[sched_domain];
 709        struct sbq_wait_state *ws;
 710        int nr;
 711
 712        nr = __sbitmap_queue_get(domain_tokens);
 713
 714        /*
 715         * If we failed to get a domain token, make sure the hardware queue is
 716         * run when one becomes available. Note that this is serialized on
 717         * khd->lock, but we still need to be careful about the waker.
 718         */
 719        if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
 720                ws = sbq_wait_ptr(domain_tokens,
 721                                  &khd->wait_index[sched_domain]);
 722                khd->domain_ws[sched_domain] = ws;
 723                sbitmap_add_wait_queue(domain_tokens, ws, wait);
 724
 725                /*
 726                 * Try again in case a token was freed before we got on the wait
 727                 * queue.
 728                 */
 729                nr = __sbitmap_queue_get(domain_tokens);
 730        }
 731
 732        /*
 733         * If we got a token while we were on the wait queue, remove ourselves
 734         * from the wait queue to ensure that all wake ups make forward
 735         * progress. It's possible that the waker already deleted the entry
 736         * between the !list_empty_careful() check and us grabbing the lock, but
 737         * list_del_init() is okay with that.
 738         */
 739        if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
 740                ws = khd->domain_ws[sched_domain];
 741                spin_lock_irq(&ws->wait.lock);
 742                sbitmap_del_wait_queue(wait);
 743                spin_unlock_irq(&ws->wait.lock);
 744        }
 745
 746        return nr;
 747}
 748
 749static struct request *
 750kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
 751                          struct kyber_hctx_data *khd,
 752                          struct blk_mq_hw_ctx *hctx)
 753{
 754        struct list_head *rqs;
 755        struct request *rq;
 756        int nr;
 757
 758        rqs = &khd->rqs[khd->cur_domain];
 759
 760        /*
 761         * If we already have a flushed request, then we just need to get a
 762         * token for it. Otherwise, if there are pending requests in the kcqs,
 763         * flush the kcqs, but only if we can get a token. If not, we should
 764         * leave the requests in the kcqs so that they can be merged. Note that
 765         * khd->lock serializes the flushes, so if we observed any bit set in
 766         * the kcq_map, we will always get a request.
 767         */
 768        rq = list_first_entry_or_null(rqs, struct request, queuelist);
 769        if (rq) {
 770                nr = kyber_get_domain_token(kqd, khd, hctx);
 771                if (nr >= 0) {
 772                        khd->batching++;
 773                        rq_set_domain_token(rq, nr);
 774                        list_del_init(&rq->queuelist);
 775                        return rq;
 776                } else {
 777                        trace_kyber_throttled(kqd->q,
 778                                              kyber_domain_names[khd->cur_domain]);
 779                }
 780        } else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
 781                nr = kyber_get_domain_token(kqd, khd, hctx);
 782                if (nr >= 0) {
 783                        kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
 784                        rq = list_first_entry(rqs, struct request, queuelist);
 785                        khd->batching++;
 786                        rq_set_domain_token(rq, nr);
 787                        list_del_init(&rq->queuelist);
 788                        return rq;
 789                } else {
 790                        trace_kyber_throttled(kqd->q,
 791                                              kyber_domain_names[khd->cur_domain]);
 792                }
 793        }
 794
 795        /* There were either no pending requests or no tokens. */
 796        return NULL;
 797}
 798
 799static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
 800{
 801        struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 802        struct kyber_hctx_data *khd = hctx->sched_data;
 803        struct request *rq;
 804        int i;
 805
 806        spin_lock(&khd->lock);
 807
 808        /*
 809         * First, if we are still entitled to batch, try to dispatch a request
 810         * from the batch.
 811         */
 812        if (khd->batching < kyber_batch_size[khd->cur_domain]) {
 813                rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 814                if (rq)
 815                        goto out;
 816        }
 817
 818        /*
 819         * Either,
 820         * 1. We were no longer entitled to a batch.
 821         * 2. The domain we were batching didn't have any requests.
 822         * 3. The domain we were batching was out of tokens.
 823         *
 824         * Start another batch. Note that this wraps back around to the original
 825         * domain if no other domains have requests or tokens.
 826         */
 827        khd->batching = 0;
 828        for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 829                if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
 830                        khd->cur_domain = 0;
 831                else
 832                        khd->cur_domain++;
 833
 834                rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 835                if (rq)
 836                        goto out;
 837        }
 838
 839        rq = NULL;
 840out:
 841        spin_unlock(&khd->lock);
 842        return rq;
 843}
 844
 845static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
 846{
 847        struct kyber_hctx_data *khd = hctx->sched_data;
 848        int i;
 849
 850        for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 851                if (!list_empty_careful(&khd->rqs[i]) ||
 852                    sbitmap_any_bit_set(&khd->kcq_map[i]))
 853                        return true;
 854        }
 855
 856        return false;
 857}
 858
 859#define KYBER_LAT_SHOW_STORE(domain, name)                              \
 860static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,        \
 861                                       char *page)                      \
 862{                                                                       \
 863        struct kyber_queue_data *kqd = e->elevator_data;                \
 864                                                                        \
 865        return sprintf(page, "%llu\n", kqd->latency_targets[domain]);   \
 866}                                                                       \
 867                                                                        \
 868static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,       \
 869                                        const char *page, size_t count) \
 870{                                                                       \
 871        struct kyber_queue_data *kqd = e->elevator_data;                \
 872        unsigned long long nsec;                                        \
 873        int ret;                                                        \
 874                                                                        \
 875        ret = kstrtoull(page, 10, &nsec);                               \
 876        if (ret)                                                        \
 877                return ret;                                             \
 878                                                                        \
 879        kqd->latency_targets[domain] = nsec;                            \
 880                                                                        \
 881        return count;                                                   \
 882}
 883KYBER_LAT_SHOW_STORE(KYBER_READ, read);
 884KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
 885#undef KYBER_LAT_SHOW_STORE
 886
 887#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
 888static struct elv_fs_entry kyber_sched_attrs[] = {
 889        KYBER_LAT_ATTR(read),
 890        KYBER_LAT_ATTR(write),
 891        __ATTR_NULL
 892};
 893#undef KYBER_LAT_ATTR
 894
 895#ifdef CONFIG_BLK_DEBUG_FS
 896#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)                        \
 897static int kyber_##name##_tokens_show(void *data, struct seq_file *m)   \
 898{                                                                       \
 899        struct request_queue *q = data;                                 \
 900        struct kyber_queue_data *kqd = q->elevator->elevator_data;      \
 901                                                                        \
 902        sbitmap_queue_show(&kqd->domain_tokens[domain], m);             \
 903        return 0;                                                       \
 904}                                                                       \
 905                                                                        \
 906static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)  \
 907        __acquires(&khd->lock)                                          \
 908{                                                                       \
 909        struct blk_mq_hw_ctx *hctx = m->private;                        \
 910        struct kyber_hctx_data *khd = hctx->sched_data;                 \
 911                                                                        \
 912        spin_lock(&khd->lock);                                          \
 913        return seq_list_start(&khd->rqs[domain], *pos);                 \
 914}                                                                       \
 915                                                                        \
 916static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,       \
 917                                     loff_t *pos)                       \
 918{                                                                       \
 919        struct blk_mq_hw_ctx *hctx = m->private;                        \
 920        struct kyber_hctx_data *khd = hctx->sched_data;                 \
 921                                                                        \
 922        return seq_list_next(v, &khd->rqs[domain], pos);                \
 923}                                                                       \
 924                                                                        \
 925static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)        \
 926        __releases(&khd->lock)                                          \
 927{                                                                       \
 928        struct blk_mq_hw_ctx *hctx = m->private;                        \
 929        struct kyber_hctx_data *khd = hctx->sched_data;                 \
 930                                                                        \
 931        spin_unlock(&khd->lock);                                        \
 932}                                                                       \
 933                                                                        \
 934static const struct seq_operations kyber_##name##_rqs_seq_ops = {       \
 935        .start  = kyber_##name##_rqs_start,                             \
 936        .next   = kyber_##name##_rqs_next,                              \
 937        .stop   = kyber_##name##_rqs_stop,                              \
 938        .show   = blk_mq_debugfs_rq_show,                               \
 939};                                                                      \
 940                                                                        \
 941static int kyber_##name##_waiting_show(void *data, struct seq_file *m)  \
 942{                                                                       \
 943        struct blk_mq_hw_ctx *hctx = data;                              \
 944        struct kyber_hctx_data *khd = hctx->sched_data;                 \
 945        wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;      \
 946                                                                        \
 947        seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));       \
 948        return 0;                                                       \
 949}
 950KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
 951KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
 952KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
 953KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
 954#undef KYBER_DEBUGFS_DOMAIN_ATTRS
 955
 956static int kyber_async_depth_show(void *data, struct seq_file *m)
 957{
 958        struct request_queue *q = data;
 959        struct kyber_queue_data *kqd = q->elevator->elevator_data;
 960
 961        seq_printf(m, "%u\n", kqd->async_depth);
 962        return 0;
 963}
 964
 965static int kyber_cur_domain_show(void *data, struct seq_file *m)
 966{
 967        struct blk_mq_hw_ctx *hctx = data;
 968        struct kyber_hctx_data *khd = hctx->sched_data;
 969
 970        seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
 971        return 0;
 972}
 973
 974static int kyber_batching_show(void *data, struct seq_file *m)
 975{
 976        struct blk_mq_hw_ctx *hctx = data;
 977        struct kyber_hctx_data *khd = hctx->sched_data;
 978
 979        seq_printf(m, "%u\n", khd->batching);
 980        return 0;
 981}
 982
 983#define KYBER_QUEUE_DOMAIN_ATTRS(name)  \
 984        {#name "_tokens", 0400, kyber_##name##_tokens_show}
 985static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
 986        KYBER_QUEUE_DOMAIN_ATTRS(read),
 987        KYBER_QUEUE_DOMAIN_ATTRS(write),
 988        KYBER_QUEUE_DOMAIN_ATTRS(discard),
 989        KYBER_QUEUE_DOMAIN_ATTRS(other),
 990        {"async_depth", 0400, kyber_async_depth_show},
 991        {},
 992};
 993#undef KYBER_QUEUE_DOMAIN_ATTRS
 994
 995#define KYBER_HCTX_DOMAIN_ATTRS(name)                                   \
 996        {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},   \
 997        {#name "_waiting", 0400, kyber_##name##_waiting_show}
 998static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
 999        KYBER_HCTX_DOMAIN_ATTRS(read),
1000        KYBER_HCTX_DOMAIN_ATTRS(write),
1001        KYBER_HCTX_DOMAIN_ATTRS(discard),
1002        KYBER_HCTX_DOMAIN_ATTRS(other),
1003        {"cur_domain", 0400, kyber_cur_domain_show},
1004        {"batching", 0400, kyber_batching_show},
1005        {},
1006};
1007#undef KYBER_HCTX_DOMAIN_ATTRS
1008#endif
1009
1010static struct elevator_type kyber_sched = {
1011        .ops = {
1012                .init_sched = kyber_init_sched,
1013                .exit_sched = kyber_exit_sched,
1014                .init_hctx = kyber_init_hctx,
1015                .exit_hctx = kyber_exit_hctx,
1016                .limit_depth = kyber_limit_depth,
1017                .bio_merge = kyber_bio_merge,
1018                .prepare_request = kyber_prepare_request,
1019                .insert_requests = kyber_insert_requests,
1020                .finish_request = kyber_finish_request,
1021                .requeue_request = kyber_finish_request,
1022                .completed_request = kyber_completed_request,
1023                .dispatch_request = kyber_dispatch_request,
1024                .has_work = kyber_has_work,
1025                .depth_updated = kyber_depth_updated,
1026        },
1027#ifdef CONFIG_BLK_DEBUG_FS
1028        .queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1029        .hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1030#endif
1031        .elevator_attrs = kyber_sched_attrs,
1032        .elevator_name = "kyber",
1033        .elevator_features = ELEVATOR_F_MQ_AWARE,
1034        .elevator_owner = THIS_MODULE,
1035};
1036
1037static int __init kyber_init(void)
1038{
1039        return elv_register(&kyber_sched);
1040}
1041
1042static void __exit kyber_exit(void)
1043{
1044        elv_unregister(&kyber_sched);
1045}
1046
1047module_init(kyber_init);
1048module_exit(kyber_exit);
1049
1050MODULE_AUTHOR("Omar Sandoval");
1051MODULE_LICENSE("GPL");
1052MODULE_DESCRIPTION("Kyber I/O scheduler");
1053