linux/block/blk-mq-sched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * blk-mq scheduling framework
   4 *
   5 * Copyright (C) 2016 Jens Axboe
   6 */
   7#include <linux/kernel.h>
   8#include <linux/module.h>
   9#include <linux/blk-mq.h>
  10#include <linux/list_sort.h>
  11
  12#include <trace/events/block.h>
  13
  14#include "blk.h"
  15#include "blk-mq.h"
  16#include "blk-mq-debugfs.h"
  17#include "blk-mq-sched.h"
  18#include "blk-mq-tag.h"
  19#include "blk-wbt.h"
  20
  21void blk_mq_sched_assign_ioc(struct request *rq)
  22{
  23        struct request_queue *q = rq->q;
  24        struct io_context *ioc;
  25        struct io_cq *icq;
  26
  27        /*
  28         * May not have an IO context if it's a passthrough request
  29         */
  30        ioc = current->io_context;
  31        if (!ioc)
  32                return;
  33
  34        spin_lock_irq(&q->queue_lock);
  35        icq = ioc_lookup_icq(ioc, q);
  36        spin_unlock_irq(&q->queue_lock);
  37
  38        if (!icq) {
  39                icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
  40                if (!icq)
  41                        return;
  42        }
  43        get_io_context(icq->ioc);
  44        rq->elv.icq = icq;
  45}
  46
  47/*
  48 * Mark a hardware queue as needing a restart. For shared queues, maintain
  49 * a count of how many hardware queues are marked for restart.
  50 */
  51void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
  52{
  53        if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
  54                return;
  55
  56        set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
  57}
  58EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
  59
  60void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
  61{
  62        if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
  63                return;
  64        clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
  65
  66        /*
  67         * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
  68         * in blk_mq_run_hw_queue(). Its pair is the barrier in
  69         * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
  70         * meantime new request added to hctx->dispatch is missed to check in
  71         * blk_mq_run_hw_queue().
  72         */
  73        smp_mb();
  74
  75        blk_mq_run_hw_queue(hctx, true);
  76}
  77
  78static int sched_rq_cmp(void *priv, const struct list_head *a,
  79                        const struct list_head *b)
  80{
  81        struct request *rqa = container_of(a, struct request, queuelist);
  82        struct request *rqb = container_of(b, struct request, queuelist);
  83
  84        return rqa->mq_hctx > rqb->mq_hctx;
  85}
  86
  87static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
  88{
  89        struct blk_mq_hw_ctx *hctx =
  90                list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
  91        struct request *rq;
  92        LIST_HEAD(hctx_list);
  93        unsigned int count = 0;
  94
  95        list_for_each_entry(rq, rq_list, queuelist) {
  96                if (rq->mq_hctx != hctx) {
  97                        list_cut_before(&hctx_list, rq_list, &rq->queuelist);
  98                        goto dispatch;
  99                }
 100                count++;
 101        }
 102        list_splice_tail_init(rq_list, &hctx_list);
 103
 104dispatch:
 105        return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
 106}
 107
 108#define BLK_MQ_BUDGET_DELAY     3               /* ms units */
 109
 110/*
 111 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 112 * its queue by itself in its completion handler, so we don't need to
 113 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 114 *
 115 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
 116 * be run again.  This is necessary to avoid starving flushes.
 117 */
 118static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
 119{
 120        struct request_queue *q = hctx->queue;
 121        struct elevator_queue *e = q->elevator;
 122        bool multi_hctxs = false, run_queue = false;
 123        bool dispatched = false, busy = false;
 124        unsigned int max_dispatch;
 125        LIST_HEAD(rq_list);
 126        int count = 0;
 127
 128        if (hctx->dispatch_busy)
 129                max_dispatch = 1;
 130        else
 131                max_dispatch = hctx->queue->nr_requests;
 132
 133        do {
 134                struct request *rq;
 135                int budget_token;
 136
 137                if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
 138                        break;
 139
 140                if (!list_empty_careful(&hctx->dispatch)) {
 141                        busy = true;
 142                        break;
 143                }
 144
 145                budget_token = blk_mq_get_dispatch_budget(q);
 146                if (budget_token < 0)
 147                        break;
 148
 149                rq = e->type->ops.dispatch_request(hctx);
 150                if (!rq) {
 151                        blk_mq_put_dispatch_budget(q, budget_token);
 152                        /*
 153                         * We're releasing without dispatching. Holding the
 154                         * budget could have blocked any "hctx"s with the
 155                         * same queue and if we didn't dispatch then there's
 156                         * no guarantee anyone will kick the queue.  Kick it
 157                         * ourselves.
 158                         */
 159                        run_queue = true;
 160                        break;
 161                }
 162
 163                blk_mq_set_rq_budget_token(rq, budget_token);
 164
 165                /*
 166                 * Now this rq owns the budget which has to be released
 167                 * if this rq won't be queued to driver via .queue_rq()
 168                 * in blk_mq_dispatch_rq_list().
 169                 */
 170                list_add_tail(&rq->queuelist, &rq_list);
 171                count++;
 172                if (rq->mq_hctx != hctx)
 173                        multi_hctxs = true;
 174
 175                /*
 176                 * If we cannot get tag for the request, stop dequeueing
 177                 * requests from the IO scheduler. We are unlikely to be able
 178                 * to submit them anyway and it creates false impression for
 179                 * scheduling heuristics that the device can take more IO.
 180                 */
 181                if (!blk_mq_get_driver_tag(rq))
 182                        break;
 183        } while (count < max_dispatch);
 184
 185        if (!count) {
 186                if (run_queue)
 187                        blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
 188        } else if (multi_hctxs) {
 189                /*
 190                 * Requests from different hctx may be dequeued from some
 191                 * schedulers, such as bfq and deadline.
 192                 *
 193                 * Sort the requests in the list according to their hctx,
 194                 * dispatch batching requests from same hctx at a time.
 195                 */
 196                list_sort(NULL, &rq_list, sched_rq_cmp);
 197                do {
 198                        dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
 199                } while (!list_empty(&rq_list));
 200        } else {
 201                dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
 202        }
 203
 204        if (busy)
 205                return -EAGAIN;
 206        return !!dispatched;
 207}
 208
 209static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
 210{
 211        int ret;
 212
 213        do {
 214                ret = __blk_mq_do_dispatch_sched(hctx);
 215        } while (ret == 1);
 216
 217        return ret;
 218}
 219
 220static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
 221                                          struct blk_mq_ctx *ctx)
 222{
 223        unsigned short idx = ctx->index_hw[hctx->type];
 224
 225        if (++idx == hctx->nr_ctx)
 226                idx = 0;
 227
 228        return hctx->ctxs[idx];
 229}
 230
 231/*
 232 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
 233 * its queue by itself in its completion handler, so we don't need to
 234 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
 235 *
 236 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
 237 * be run again.  This is necessary to avoid starving flushes.
 238 */
 239static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
 240{
 241        struct request_queue *q = hctx->queue;
 242        LIST_HEAD(rq_list);
 243        struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
 244        int ret = 0;
 245        struct request *rq;
 246
 247        do {
 248                int budget_token;
 249
 250                if (!list_empty_careful(&hctx->dispatch)) {
 251                        ret = -EAGAIN;
 252                        break;
 253                }
 254
 255                if (!sbitmap_any_bit_set(&hctx->ctx_map))
 256                        break;
 257
 258                budget_token = blk_mq_get_dispatch_budget(q);
 259                if (budget_token < 0)
 260                        break;
 261
 262                rq = blk_mq_dequeue_from_ctx(hctx, ctx);
 263                if (!rq) {
 264                        blk_mq_put_dispatch_budget(q, budget_token);
 265                        /*
 266                         * We're releasing without dispatching. Holding the
 267                         * budget could have blocked any "hctx"s with the
 268                         * same queue and if we didn't dispatch then there's
 269                         * no guarantee anyone will kick the queue.  Kick it
 270                         * ourselves.
 271                         */
 272                        blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
 273                        break;
 274                }
 275
 276                blk_mq_set_rq_budget_token(rq, budget_token);
 277
 278                /*
 279                 * Now this rq owns the budget which has to be released
 280                 * if this rq won't be queued to driver via .queue_rq()
 281                 * in blk_mq_dispatch_rq_list().
 282                 */
 283                list_add(&rq->queuelist, &rq_list);
 284
 285                /* round robin for fair dispatch */
 286                ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
 287
 288        } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
 289
 290        WRITE_ONCE(hctx->dispatch_from, ctx);
 291        return ret;
 292}
 293
 294static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
 295{
 296        struct request_queue *q = hctx->queue;
 297        const bool has_sched = q->elevator;
 298        int ret = 0;
 299        LIST_HEAD(rq_list);
 300
 301        /*
 302         * If we have previous entries on our dispatch list, grab them first for
 303         * more fair dispatch.
 304         */
 305        if (!list_empty_careful(&hctx->dispatch)) {
 306                spin_lock(&hctx->lock);
 307                if (!list_empty(&hctx->dispatch))
 308                        list_splice_init(&hctx->dispatch, &rq_list);
 309                spin_unlock(&hctx->lock);
 310        }
 311
 312        /*
 313         * Only ask the scheduler for requests, if we didn't have residual
 314         * requests from the dispatch list. This is to avoid the case where
 315         * we only ever dispatch a fraction of the requests available because
 316         * of low device queue depth. Once we pull requests out of the IO
 317         * scheduler, we can no longer merge or sort them. So it's best to
 318         * leave them there for as long as we can. Mark the hw queue as
 319         * needing a restart in that case.
 320         *
 321         * We want to dispatch from the scheduler if there was nothing
 322         * on the dispatch list or we were able to dispatch from the
 323         * dispatch list.
 324         */
 325        if (!list_empty(&rq_list)) {
 326                blk_mq_sched_mark_restart_hctx(hctx);
 327                if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
 328                        if (has_sched)
 329                                ret = blk_mq_do_dispatch_sched(hctx);
 330                        else
 331                                ret = blk_mq_do_dispatch_ctx(hctx);
 332                }
 333        } else if (has_sched) {
 334                ret = blk_mq_do_dispatch_sched(hctx);
 335        } else if (hctx->dispatch_busy) {
 336                /* dequeue request one by one from sw queue if queue is busy */
 337                ret = blk_mq_do_dispatch_ctx(hctx);
 338        } else {
 339                blk_mq_flush_busy_ctxs(hctx, &rq_list);
 340                blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
 341        }
 342
 343        return ret;
 344}
 345
 346void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
 347{
 348        struct request_queue *q = hctx->queue;
 349
 350        /* RCU or SRCU read lock is needed before checking quiesced flag */
 351        if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
 352                return;
 353
 354        hctx->run++;
 355
 356        /*
 357         * A return of -EAGAIN is an indication that hctx->dispatch is not
 358         * empty and we must run again in order to avoid starving flushes.
 359         */
 360        if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
 361                if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
 362                        blk_mq_run_hw_queue(hctx, true);
 363        }
 364}
 365
 366bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
 367                unsigned int nr_segs)
 368{
 369        struct elevator_queue *e = q->elevator;
 370        struct blk_mq_ctx *ctx;
 371        struct blk_mq_hw_ctx *hctx;
 372        bool ret = false;
 373        enum hctx_type type;
 374
 375        if (e && e->type->ops.bio_merge)
 376                return e->type->ops.bio_merge(q, bio, nr_segs);
 377
 378        ctx = blk_mq_get_ctx(q);
 379        hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
 380        type = hctx->type;
 381        if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
 382            list_empty_careful(&ctx->rq_lists[type]))
 383                return false;
 384
 385        /* default per sw-queue merge */
 386        spin_lock(&ctx->lock);
 387        /*
 388         * Reverse check our software queue for entries that we could
 389         * potentially merge with. Currently includes a hand-wavy stop
 390         * count of 8, to not spend too much time checking for merges.
 391         */
 392        if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
 393                ctx->rq_merged++;
 394                ret = true;
 395        }
 396
 397        spin_unlock(&ctx->lock);
 398
 399        return ret;
 400}
 401
 402bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
 403                                   struct list_head *free)
 404{
 405        return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
 406}
 407EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
 408
 409static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
 410                                       struct request *rq)
 411{
 412        /*
 413         * dispatch flush and passthrough rq directly
 414         *
 415         * passthrough request has to be added to hctx->dispatch directly.
 416         * For some reason, device may be in one situation which can't
 417         * handle FS request, so STS_RESOURCE is always returned and the
 418         * FS request will be added to hctx->dispatch. However passthrough
 419         * request may be required at that time for fixing the problem. If
 420         * passthrough request is added to scheduler queue, there isn't any
 421         * chance to dispatch it given we prioritize requests in hctx->dispatch.
 422         */
 423        if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
 424                return true;
 425
 426        return false;
 427}
 428
 429void blk_mq_sched_insert_request(struct request *rq, bool at_head,
 430                                 bool run_queue, bool async)
 431{
 432        struct request_queue *q = rq->q;
 433        struct elevator_queue *e = q->elevator;
 434        struct blk_mq_ctx *ctx = rq->mq_ctx;
 435        struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 436
 437        WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
 438
 439        if (blk_mq_sched_bypass_insert(hctx, rq)) {
 440                /*
 441                 * Firstly normal IO request is inserted to scheduler queue or
 442                 * sw queue, meantime we add flush request to dispatch queue(
 443                 * hctx->dispatch) directly and there is at most one in-flight
 444                 * flush request for each hw queue, so it doesn't matter to add
 445                 * flush request to tail or front of the dispatch queue.
 446                 *
 447                 * Secondly in case of NCQ, flush request belongs to non-NCQ
 448                 * command, and queueing it will fail when there is any
 449                 * in-flight normal IO request(NCQ command). When adding flush
 450                 * rq to the front of hctx->dispatch, it is easier to introduce
 451                 * extra time to flush rq's latency because of S_SCHED_RESTART
 452                 * compared with adding to the tail of dispatch queue, then
 453                 * chance of flush merge is increased, and less flush requests
 454                 * will be issued to controller. It is observed that ~10% time
 455                 * is saved in blktests block/004 on disk attached to AHCI/NCQ
 456                 * drive when adding flush rq to the front of hctx->dispatch.
 457                 *
 458                 * Simply queue flush rq to the front of hctx->dispatch so that
 459                 * intensive flush workloads can benefit in case of NCQ HW.
 460                 */
 461                at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
 462                blk_mq_request_bypass_insert(rq, at_head, false);
 463                goto run;
 464        }
 465
 466        if (e) {
 467                LIST_HEAD(list);
 468
 469                list_add(&rq->queuelist, &list);
 470                e->type->ops.insert_requests(hctx, &list, at_head);
 471        } else {
 472                spin_lock(&ctx->lock);
 473                __blk_mq_insert_request(hctx, rq, at_head);
 474                spin_unlock(&ctx->lock);
 475        }
 476
 477run:
 478        if (run_queue)
 479                blk_mq_run_hw_queue(hctx, async);
 480}
 481
 482void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
 483                                  struct blk_mq_ctx *ctx,
 484                                  struct list_head *list, bool run_queue_async)
 485{
 486        struct elevator_queue *e;
 487        struct request_queue *q = hctx->queue;
 488
 489        /*
 490         * blk_mq_sched_insert_requests() is called from flush plug
 491         * context only, and hold one usage counter to prevent queue
 492         * from being released.
 493         */
 494        percpu_ref_get(&q->q_usage_counter);
 495
 496        e = hctx->queue->elevator;
 497        if (e) {
 498                e->type->ops.insert_requests(hctx, list, false);
 499        } else {
 500                /*
 501                 * try to issue requests directly if the hw queue isn't
 502                 * busy in case of 'none' scheduler, and this way may save
 503                 * us one extra enqueue & dequeue to sw queue.
 504                 */
 505                if (!hctx->dispatch_busy && !e && !run_queue_async) {
 506                        blk_mq_try_issue_list_directly(hctx, list);
 507                        if (list_empty(list))
 508                                goto out;
 509                }
 510                blk_mq_insert_requests(hctx, ctx, list);
 511        }
 512
 513        blk_mq_run_hw_queue(hctx, run_queue_async);
 514 out:
 515        percpu_ref_put(&q->q_usage_counter);
 516}
 517
 518static int blk_mq_sched_alloc_tags(struct request_queue *q,
 519                                   struct blk_mq_hw_ctx *hctx,
 520                                   unsigned int hctx_idx)
 521{
 522        struct blk_mq_tag_set *set = q->tag_set;
 523        int ret;
 524
 525        hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
 526                                               set->reserved_tags, set->flags);
 527        if (!hctx->sched_tags)
 528                return -ENOMEM;
 529
 530        ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
 531        if (ret) {
 532                blk_mq_free_rq_map(hctx->sched_tags, set->flags);
 533                hctx->sched_tags = NULL;
 534        }
 535
 536        return ret;
 537}
 538
 539/* called in queue's release handler, tagset has gone away */
 540static void blk_mq_sched_tags_teardown(struct request_queue *q)
 541{
 542        struct blk_mq_hw_ctx *hctx;
 543        int i;
 544
 545        queue_for_each_hw_ctx(q, hctx, i) {
 546                if (hctx->sched_tags) {
 547                        blk_mq_free_rq_map(hctx->sched_tags, hctx->flags);
 548                        hctx->sched_tags = NULL;
 549                }
 550        }
 551}
 552
 553static int blk_mq_init_sched_shared_sbitmap(struct request_queue *queue)
 554{
 555        struct blk_mq_tag_set *set = queue->tag_set;
 556        int alloc_policy = BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags);
 557        struct blk_mq_hw_ctx *hctx;
 558        int ret, i;
 559
 560        /*
 561         * Set initial depth at max so that we don't need to reallocate for
 562         * updating nr_requests.
 563         */
 564        ret = blk_mq_init_bitmaps(&queue->sched_bitmap_tags,
 565                                  &queue->sched_breserved_tags,
 566                                  MAX_SCHED_RQ, set->reserved_tags,
 567                                  set->numa_node, alloc_policy);
 568        if (ret)
 569                return ret;
 570
 571        queue_for_each_hw_ctx(queue, hctx, i) {
 572                hctx->sched_tags->bitmap_tags =
 573                                        &queue->sched_bitmap_tags;
 574                hctx->sched_tags->breserved_tags =
 575                                        &queue->sched_breserved_tags;
 576        }
 577
 578        sbitmap_queue_resize(&queue->sched_bitmap_tags,
 579                             queue->nr_requests - set->reserved_tags);
 580
 581        return 0;
 582}
 583
 584static void blk_mq_exit_sched_shared_sbitmap(struct request_queue *queue)
 585{
 586        sbitmap_queue_free(&queue->sched_bitmap_tags);
 587        sbitmap_queue_free(&queue->sched_breserved_tags);
 588}
 589
 590int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
 591{
 592        struct blk_mq_hw_ctx *hctx;
 593        struct elevator_queue *eq;
 594        unsigned int i;
 595        int ret;
 596
 597        if (!e) {
 598                q->elevator = NULL;
 599                q->nr_requests = q->tag_set->queue_depth;
 600                return 0;
 601        }
 602
 603        /*
 604         * Default to double of smaller one between hw queue_depth and 128,
 605         * since we don't split into sync/async like the old code did.
 606         * Additionally, this is a per-hw queue depth.
 607         */
 608        q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
 609                                   BLKDEV_MAX_RQ);
 610
 611        queue_for_each_hw_ctx(q, hctx, i) {
 612                ret = blk_mq_sched_alloc_tags(q, hctx, i);
 613                if (ret)
 614                        goto err_free_tags;
 615        }
 616
 617        if (blk_mq_is_sbitmap_shared(q->tag_set->flags)) {
 618                ret = blk_mq_init_sched_shared_sbitmap(q);
 619                if (ret)
 620                        goto err_free_tags;
 621        }
 622
 623        ret = e->ops.init_sched(q, e);
 624        if (ret)
 625                goto err_free_sbitmap;
 626
 627        blk_mq_debugfs_register_sched(q);
 628
 629        queue_for_each_hw_ctx(q, hctx, i) {
 630                if (e->ops.init_hctx) {
 631                        ret = e->ops.init_hctx(hctx, i);
 632                        if (ret) {
 633                                eq = q->elevator;
 634                                blk_mq_sched_free_requests(q);
 635                                blk_mq_exit_sched(q, eq);
 636                                kobject_put(&eq->kobj);
 637                                return ret;
 638                        }
 639                }
 640                blk_mq_debugfs_register_sched_hctx(q, hctx);
 641        }
 642
 643        return 0;
 644
 645err_free_sbitmap:
 646        if (blk_mq_is_sbitmap_shared(q->tag_set->flags))
 647                blk_mq_exit_sched_shared_sbitmap(q);
 648err_free_tags:
 649        blk_mq_sched_free_requests(q);
 650        blk_mq_sched_tags_teardown(q);
 651        q->elevator = NULL;
 652        return ret;
 653}
 654
 655/*
 656 * called in either blk_queue_cleanup or elevator_switch, tagset
 657 * is required for freeing requests
 658 */
 659void blk_mq_sched_free_requests(struct request_queue *q)
 660{
 661        struct blk_mq_hw_ctx *hctx;
 662        int i;
 663
 664        queue_for_each_hw_ctx(q, hctx, i) {
 665                if (hctx->sched_tags)
 666                        blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
 667        }
 668}
 669
 670void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
 671{
 672        struct blk_mq_hw_ctx *hctx;
 673        unsigned int i;
 674        unsigned int flags = 0;
 675
 676        queue_for_each_hw_ctx(q, hctx, i) {
 677                blk_mq_debugfs_unregister_sched_hctx(hctx);
 678                if (e->type->ops.exit_hctx && hctx->sched_data) {
 679                        e->type->ops.exit_hctx(hctx, i);
 680                        hctx->sched_data = NULL;
 681                }
 682                flags = hctx->flags;
 683        }
 684        blk_mq_debugfs_unregister_sched(q);
 685        if (e->type->ops.exit_sched)
 686                e->type->ops.exit_sched(e);
 687        blk_mq_sched_tags_teardown(q);
 688        if (blk_mq_is_sbitmap_shared(flags))
 689                blk_mq_exit_sched_shared_sbitmap(q);
 690        q->elevator = NULL;
 691}
 692