linux/arch/x86/mm/init.c
<<
>>
Prefs
   1#include <linux/gfp.h>
   2#include <linux/initrd.h>
   3#include <linux/ioport.h>
   4#include <linux/swap.h>
   5#include <linux/memblock.h>
   6#include <linux/swapfile.h>
   7#include <linux/swapops.h>
   8#include <linux/kmemleak.h>
   9#include <linux/sched/task.h>
  10
  11#include <asm/set_memory.h>
  12#include <asm/e820/api.h>
  13#include <asm/init.h>
  14#include <asm/page.h>
  15#include <asm/page_types.h>
  16#include <asm/sections.h>
  17#include <asm/setup.h>
  18#include <asm/tlbflush.h>
  19#include <asm/tlb.h>
  20#include <asm/proto.h>
  21#include <asm/dma.h>            /* for MAX_DMA_PFN */
  22#include <asm/microcode.h>
  23#include <asm/kaslr.h>
  24#include <asm/hypervisor.h>
  25#include <asm/cpufeature.h>
  26#include <asm/pti.h>
  27#include <asm/text-patching.h>
  28#include <asm/memtype.h>
  29
  30/*
  31 * We need to define the tracepoints somewhere, and tlb.c
  32 * is only compiled when SMP=y.
  33 */
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/tlb.h>
  36
  37#include "mm_internal.h"
  38
  39/*
  40 * Tables translating between page_cache_type_t and pte encoding.
  41 *
  42 * The default values are defined statically as minimal supported mode;
  43 * WC and WT fall back to UC-.  pat_init() updates these values to support
  44 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
  45 * for the details.  Note, __early_ioremap() used during early boot-time
  46 * takes pgprot_t (pte encoding) and does not use these tables.
  47 *
  48 *   Index into __cachemode2pte_tbl[] is the cachemode.
  49 *
  50 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
  51 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  52 */
  53static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  54        [_PAGE_CACHE_MODE_WB      ]     = 0         | 0        ,
  55        [_PAGE_CACHE_MODE_WC      ]     = 0         | _PAGE_PCD,
  56        [_PAGE_CACHE_MODE_UC_MINUS]     = 0         | _PAGE_PCD,
  57        [_PAGE_CACHE_MODE_UC      ]     = _PAGE_PWT | _PAGE_PCD,
  58        [_PAGE_CACHE_MODE_WT      ]     = 0         | _PAGE_PCD,
  59        [_PAGE_CACHE_MODE_WP      ]     = 0         | _PAGE_PCD,
  60};
  61
  62unsigned long cachemode2protval(enum page_cache_mode pcm)
  63{
  64        if (likely(pcm == 0))
  65                return 0;
  66        return __cachemode2pte_tbl[pcm];
  67}
  68EXPORT_SYMBOL(cachemode2protval);
  69
  70static uint8_t __pte2cachemode_tbl[8] = {
  71        [__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
  72        [__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  73        [__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  74        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
  75        [__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  76        [__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  77        [__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  78        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  79};
  80
  81/* Check that the write-protect PAT entry is set for write-protect */
  82bool x86_has_pat_wp(void)
  83{
  84        return __pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] == _PAGE_CACHE_MODE_WP;
  85}
  86
  87enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
  88{
  89        unsigned long masked;
  90
  91        masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
  92        if (likely(masked == 0))
  93                return 0;
  94        return __pte2cachemode_tbl[__pte2cm_idx(masked)];
  95}
  96
  97static unsigned long __initdata pgt_buf_start;
  98static unsigned long __initdata pgt_buf_end;
  99static unsigned long __initdata pgt_buf_top;
 100
 101static unsigned long min_pfn_mapped;
 102
 103static bool __initdata can_use_brk_pgt = true;
 104
 105/*
 106 * Pages returned are already directly mapped.
 107 *
 108 * Changing that is likely to break Xen, see commit:
 109 *
 110 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 111 *
 112 * for detailed information.
 113 */
 114__ref void *alloc_low_pages(unsigned int num)
 115{
 116        unsigned long pfn;
 117        int i;
 118
 119        if (after_bootmem) {
 120                unsigned int order;
 121
 122                order = get_order((unsigned long)num << PAGE_SHIFT);
 123                return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
 124        }
 125
 126        if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 127                unsigned long ret = 0;
 128
 129                if (min_pfn_mapped < max_pfn_mapped) {
 130                        ret = memblock_find_in_range(
 131                                        min_pfn_mapped << PAGE_SHIFT,
 132                                        max_pfn_mapped << PAGE_SHIFT,
 133                                        PAGE_SIZE * num , PAGE_SIZE);
 134                }
 135                if (ret)
 136                        memblock_reserve(ret, PAGE_SIZE * num);
 137                else if (can_use_brk_pgt)
 138                        ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
 139
 140                if (!ret)
 141                        panic("alloc_low_pages: can not alloc memory");
 142
 143                pfn = ret >> PAGE_SHIFT;
 144        } else {
 145                pfn = pgt_buf_end;
 146                pgt_buf_end += num;
 147        }
 148
 149        for (i = 0; i < num; i++) {
 150                void *adr;
 151
 152                adr = __va((pfn + i) << PAGE_SHIFT);
 153                clear_page(adr);
 154        }
 155
 156        return __va(pfn << PAGE_SHIFT);
 157}
 158
 159/*
 160 * By default need to be able to allocate page tables below PGD firstly for
 161 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
 162 * With KASLR memory randomization, depending on the machine e820 memory and the
 163 * PUD alignment, twice that many pages may be needed when KASLR memory
 164 * randomization is enabled.
 165 */
 166
 167#ifndef CONFIG_X86_5LEVEL
 168#define INIT_PGD_PAGE_TABLES    3
 169#else
 170#define INIT_PGD_PAGE_TABLES    4
 171#endif
 172
 173#ifndef CONFIG_RANDOMIZE_MEMORY
 174#define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
 175#else
 176#define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
 177#endif
 178
 179#define INIT_PGT_BUF_SIZE       (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
 180RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
 181void  __init early_alloc_pgt_buf(void)
 182{
 183        unsigned long tables = INIT_PGT_BUF_SIZE;
 184        phys_addr_t base;
 185
 186        base = __pa(extend_brk(tables, PAGE_SIZE));
 187
 188        pgt_buf_start = base >> PAGE_SHIFT;
 189        pgt_buf_end = pgt_buf_start;
 190        pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 191}
 192
 193int after_bootmem;
 194
 195early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
 196
 197struct map_range {
 198        unsigned long start;
 199        unsigned long end;
 200        unsigned page_size_mask;
 201};
 202
 203static int page_size_mask;
 204
 205/*
 206 * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
 207 * enable and PPro Global page enable), so that any CPU's that boot
 208 * up after us can get the correct flags. Invoked on the boot CPU.
 209 */
 210static inline void cr4_set_bits_and_update_boot(unsigned long mask)
 211{
 212        mmu_cr4_features |= mask;
 213        if (trampoline_cr4_features)
 214                *trampoline_cr4_features = mmu_cr4_features;
 215        cr4_set_bits(mask);
 216}
 217
 218static void __init probe_page_size_mask(void)
 219{
 220        /*
 221         * For pagealloc debugging, identity mapping will use small pages.
 222         * This will simplify cpa(), which otherwise needs to support splitting
 223         * large pages into small in interrupt context, etc.
 224         */
 225        if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
 226                page_size_mask |= 1 << PG_LEVEL_2M;
 227        else
 228                direct_gbpages = 0;
 229
 230        /* Enable PSE if available */
 231        if (boot_cpu_has(X86_FEATURE_PSE))
 232                cr4_set_bits_and_update_boot(X86_CR4_PSE);
 233
 234        /* Enable PGE if available */
 235        __supported_pte_mask &= ~_PAGE_GLOBAL;
 236        if (boot_cpu_has(X86_FEATURE_PGE)) {
 237                cr4_set_bits_and_update_boot(X86_CR4_PGE);
 238                __supported_pte_mask |= _PAGE_GLOBAL;
 239        }
 240
 241        /* By the default is everything supported: */
 242        __default_kernel_pte_mask = __supported_pte_mask;
 243        /* Except when with PTI where the kernel is mostly non-Global: */
 244        if (cpu_feature_enabled(X86_FEATURE_PTI))
 245                __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
 246
 247        /* Enable 1 GB linear kernel mappings if available: */
 248        if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
 249                printk(KERN_INFO "Using GB pages for direct mapping\n");
 250                page_size_mask |= 1 << PG_LEVEL_1G;
 251        } else {
 252                direct_gbpages = 0;
 253        }
 254}
 255
 256static void setup_pcid(void)
 257{
 258        if (!IS_ENABLED(CONFIG_X86_64))
 259                return;
 260
 261        if (!boot_cpu_has(X86_FEATURE_PCID))
 262                return;
 263
 264        if (boot_cpu_has(X86_FEATURE_PGE)) {
 265                /*
 266                 * This can't be cr4_set_bits_and_update_boot() -- the
 267                 * trampoline code can't handle CR4.PCIDE and it wouldn't
 268                 * do any good anyway.  Despite the name,
 269                 * cr4_set_bits_and_update_boot() doesn't actually cause
 270                 * the bits in question to remain set all the way through
 271                 * the secondary boot asm.
 272                 *
 273                 * Instead, we brute-force it and set CR4.PCIDE manually in
 274                 * start_secondary().
 275                 */
 276                cr4_set_bits(X86_CR4_PCIDE);
 277
 278                /*
 279                 * INVPCID's single-context modes (2/3) only work if we set
 280                 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
 281                 * on systems that have X86_CR4_PCIDE clear, or that have
 282                 * no INVPCID support at all.
 283                 */
 284                if (boot_cpu_has(X86_FEATURE_INVPCID))
 285                        setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
 286        } else {
 287                /*
 288                 * flush_tlb_all(), as currently implemented, won't work if
 289                 * PCID is on but PGE is not.  Since that combination
 290                 * doesn't exist on real hardware, there's no reason to try
 291                 * to fully support it, but it's polite to avoid corrupting
 292                 * data if we're on an improperly configured VM.
 293                 */
 294                setup_clear_cpu_cap(X86_FEATURE_PCID);
 295        }
 296}
 297
 298#ifdef CONFIG_X86_32
 299#define NR_RANGE_MR 3
 300#else /* CONFIG_X86_64 */
 301#define NR_RANGE_MR 5
 302#endif
 303
 304static int __meminit save_mr(struct map_range *mr, int nr_range,
 305                             unsigned long start_pfn, unsigned long end_pfn,
 306                             unsigned long page_size_mask)
 307{
 308        if (start_pfn < end_pfn) {
 309                if (nr_range >= NR_RANGE_MR)
 310                        panic("run out of range for init_memory_mapping\n");
 311                mr[nr_range].start = start_pfn<<PAGE_SHIFT;
 312                mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
 313                mr[nr_range].page_size_mask = page_size_mask;
 314                nr_range++;
 315        }
 316
 317        return nr_range;
 318}
 319
 320/*
 321 * adjust the page_size_mask for small range to go with
 322 *      big page size instead small one if nearby are ram too.
 323 */
 324static void __ref adjust_range_page_size_mask(struct map_range *mr,
 325                                                         int nr_range)
 326{
 327        int i;
 328
 329        for (i = 0; i < nr_range; i++) {
 330                if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
 331                    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
 332                        unsigned long start = round_down(mr[i].start, PMD_SIZE);
 333                        unsigned long end = round_up(mr[i].end, PMD_SIZE);
 334
 335#ifdef CONFIG_X86_32
 336                        if ((end >> PAGE_SHIFT) > max_low_pfn)
 337                                continue;
 338#endif
 339
 340                        if (memblock_is_region_memory(start, end - start))
 341                                mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
 342                }
 343                if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
 344                    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
 345                        unsigned long start = round_down(mr[i].start, PUD_SIZE);
 346                        unsigned long end = round_up(mr[i].end, PUD_SIZE);
 347
 348                        if (memblock_is_region_memory(start, end - start))
 349                                mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
 350                }
 351        }
 352}
 353
 354static const char *page_size_string(struct map_range *mr)
 355{
 356        static const char str_1g[] = "1G";
 357        static const char str_2m[] = "2M";
 358        static const char str_4m[] = "4M";
 359        static const char str_4k[] = "4k";
 360
 361        if (mr->page_size_mask & (1<<PG_LEVEL_1G))
 362                return str_1g;
 363        /*
 364         * 32-bit without PAE has a 4M large page size.
 365         * PG_LEVEL_2M is misnamed, but we can at least
 366         * print out the right size in the string.
 367         */
 368        if (IS_ENABLED(CONFIG_X86_32) &&
 369            !IS_ENABLED(CONFIG_X86_PAE) &&
 370            mr->page_size_mask & (1<<PG_LEVEL_2M))
 371                return str_4m;
 372
 373        if (mr->page_size_mask & (1<<PG_LEVEL_2M))
 374                return str_2m;
 375
 376        return str_4k;
 377}
 378
 379static int __meminit split_mem_range(struct map_range *mr, int nr_range,
 380                                     unsigned long start,
 381                                     unsigned long end)
 382{
 383        unsigned long start_pfn, end_pfn, limit_pfn;
 384        unsigned long pfn;
 385        int i;
 386
 387        limit_pfn = PFN_DOWN(end);
 388
 389        /* head if not big page alignment ? */
 390        pfn = start_pfn = PFN_DOWN(start);
 391#ifdef CONFIG_X86_32
 392        /*
 393         * Don't use a large page for the first 2/4MB of memory
 394         * because there are often fixed size MTRRs in there
 395         * and overlapping MTRRs into large pages can cause
 396         * slowdowns.
 397         */
 398        if (pfn == 0)
 399                end_pfn = PFN_DOWN(PMD_SIZE);
 400        else
 401                end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 402#else /* CONFIG_X86_64 */
 403        end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 404#endif
 405        if (end_pfn > limit_pfn)
 406                end_pfn = limit_pfn;
 407        if (start_pfn < end_pfn) {
 408                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 409                pfn = end_pfn;
 410        }
 411
 412        /* big page (2M) range */
 413        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 414#ifdef CONFIG_X86_32
 415        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 416#else /* CONFIG_X86_64 */
 417        end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 418        if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
 419                end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 420#endif
 421
 422        if (start_pfn < end_pfn) {
 423                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 424                                page_size_mask & (1<<PG_LEVEL_2M));
 425                pfn = end_pfn;
 426        }
 427
 428#ifdef CONFIG_X86_64
 429        /* big page (1G) range */
 430        start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 431        end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
 432        if (start_pfn < end_pfn) {
 433                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 434                                page_size_mask &
 435                                 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
 436                pfn = end_pfn;
 437        }
 438
 439        /* tail is not big page (1G) alignment */
 440        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 441        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 442        if (start_pfn < end_pfn) {
 443                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 444                                page_size_mask & (1<<PG_LEVEL_2M));
 445                pfn = end_pfn;
 446        }
 447#endif
 448
 449        /* tail is not big page (2M) alignment */
 450        start_pfn = pfn;
 451        end_pfn = limit_pfn;
 452        nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 453
 454        if (!after_bootmem)
 455                adjust_range_page_size_mask(mr, nr_range);
 456
 457        /* try to merge same page size and continuous */
 458        for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
 459                unsigned long old_start;
 460                if (mr[i].end != mr[i+1].start ||
 461                    mr[i].page_size_mask != mr[i+1].page_size_mask)
 462                        continue;
 463                /* move it */
 464                old_start = mr[i].start;
 465                memmove(&mr[i], &mr[i+1],
 466                        (nr_range - 1 - i) * sizeof(struct map_range));
 467                mr[i--].start = old_start;
 468                nr_range--;
 469        }
 470
 471        for (i = 0; i < nr_range; i++)
 472                pr_debug(" [mem %#010lx-%#010lx] page %s\n",
 473                                mr[i].start, mr[i].end - 1,
 474                                page_size_string(&mr[i]));
 475
 476        return nr_range;
 477}
 478
 479struct range pfn_mapped[E820_MAX_ENTRIES];
 480int nr_pfn_mapped;
 481
 482static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
 483{
 484        nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
 485                                             nr_pfn_mapped, start_pfn, end_pfn);
 486        nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
 487
 488        max_pfn_mapped = max(max_pfn_mapped, end_pfn);
 489
 490        if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
 491                max_low_pfn_mapped = max(max_low_pfn_mapped,
 492                                         min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
 493}
 494
 495bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
 496{
 497        int i;
 498
 499        for (i = 0; i < nr_pfn_mapped; i++)
 500                if ((start_pfn >= pfn_mapped[i].start) &&
 501                    (end_pfn <= pfn_mapped[i].end))
 502                        return true;
 503
 504        return false;
 505}
 506
 507/*
 508 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 509 * This runs before bootmem is initialized and gets pages directly from
 510 * the physical memory. To access them they are temporarily mapped.
 511 */
 512unsigned long __ref init_memory_mapping(unsigned long start,
 513                                        unsigned long end, pgprot_t prot)
 514{
 515        struct map_range mr[NR_RANGE_MR];
 516        unsigned long ret = 0;
 517        int nr_range, i;
 518
 519        pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
 520               start, end - 1);
 521
 522        memset(mr, 0, sizeof(mr));
 523        nr_range = split_mem_range(mr, 0, start, end);
 524
 525        for (i = 0; i < nr_range; i++)
 526                ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
 527                                                   mr[i].page_size_mask,
 528                                                   prot);
 529
 530        add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
 531
 532        return ret >> PAGE_SHIFT;
 533}
 534
 535/*
 536 * We need to iterate through the E820 memory map and create direct mappings
 537 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
 538 * create direct mappings for all pfns from [0 to max_low_pfn) and
 539 * [4GB to max_pfn) because of possible memory holes in high addresses
 540 * that cannot be marked as UC by fixed/variable range MTRRs.
 541 * Depending on the alignment of E820 ranges, this may possibly result
 542 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
 543 *
 544 * init_mem_mapping() calls init_range_memory_mapping() with big range.
 545 * That range would have hole in the middle or ends, and only ram parts
 546 * will be mapped in init_range_memory_mapping().
 547 */
 548static unsigned long __init init_range_memory_mapping(
 549                                           unsigned long r_start,
 550                                           unsigned long r_end)
 551{
 552        unsigned long start_pfn, end_pfn;
 553        unsigned long mapped_ram_size = 0;
 554        int i;
 555
 556        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 557                u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
 558                u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
 559                if (start >= end)
 560                        continue;
 561
 562                /*
 563                 * if it is overlapping with brk pgt, we need to
 564                 * alloc pgt buf from memblock instead.
 565                 */
 566                can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
 567                                    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
 568                init_memory_mapping(start, end, PAGE_KERNEL);
 569                mapped_ram_size += end - start;
 570                can_use_brk_pgt = true;
 571        }
 572
 573        return mapped_ram_size;
 574}
 575
 576static unsigned long __init get_new_step_size(unsigned long step_size)
 577{
 578        /*
 579         * Initial mapped size is PMD_SIZE (2M).
 580         * We can not set step_size to be PUD_SIZE (1G) yet.
 581         * In worse case, when we cross the 1G boundary, and
 582         * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
 583         * to map 1G range with PTE. Hence we use one less than the
 584         * difference of page table level shifts.
 585         *
 586         * Don't need to worry about overflow in the top-down case, on 32bit,
 587         * when step_size is 0, round_down() returns 0 for start, and that
 588         * turns it into 0x100000000ULL.
 589         * In the bottom-up case, round_up(x, 0) returns 0 though too, which
 590         * needs to be taken into consideration by the code below.
 591         */
 592        return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
 593}
 594
 595/**
 596 * memory_map_top_down - Map [map_start, map_end) top down
 597 * @map_start: start address of the target memory range
 598 * @map_end: end address of the target memory range
 599 *
 600 * This function will setup direct mapping for memory range
 601 * [map_start, map_end) in top-down. That said, the page tables
 602 * will be allocated at the end of the memory, and we map the
 603 * memory in top-down.
 604 */
 605static void __init memory_map_top_down(unsigned long map_start,
 606                                       unsigned long map_end)
 607{
 608        unsigned long real_end, last_start;
 609        unsigned long step_size;
 610        unsigned long addr;
 611        unsigned long mapped_ram_size = 0;
 612
 613        /* xen has big range in reserved near end of ram, skip it at first.*/
 614        addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
 615        real_end = addr + PMD_SIZE;
 616
 617        /* step_size need to be small so pgt_buf from BRK could cover it */
 618        step_size = PMD_SIZE;
 619        max_pfn_mapped = 0; /* will get exact value next */
 620        min_pfn_mapped = real_end >> PAGE_SHIFT;
 621        last_start = real_end;
 622
 623        /*
 624         * We start from the top (end of memory) and go to the bottom.
 625         * The memblock_find_in_range() gets us a block of RAM from the
 626         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 627         * for page table.
 628         */
 629        while (last_start > map_start) {
 630                unsigned long start;
 631
 632                if (last_start > step_size) {
 633                        start = round_down(last_start - 1, step_size);
 634                        if (start < map_start)
 635                                start = map_start;
 636                } else
 637                        start = map_start;
 638                mapped_ram_size += init_range_memory_mapping(start,
 639                                                        last_start);
 640                last_start = start;
 641                min_pfn_mapped = last_start >> PAGE_SHIFT;
 642                if (mapped_ram_size >= step_size)
 643                        step_size = get_new_step_size(step_size);
 644        }
 645
 646        if (real_end < map_end)
 647                init_range_memory_mapping(real_end, map_end);
 648}
 649
 650/**
 651 * memory_map_bottom_up - Map [map_start, map_end) bottom up
 652 * @map_start: start address of the target memory range
 653 * @map_end: end address of the target memory range
 654 *
 655 * This function will setup direct mapping for memory range
 656 * [map_start, map_end) in bottom-up. Since we have limited the
 657 * bottom-up allocation above the kernel, the page tables will
 658 * be allocated just above the kernel and we map the memory
 659 * in [map_start, map_end) in bottom-up.
 660 */
 661static void __init memory_map_bottom_up(unsigned long map_start,
 662                                        unsigned long map_end)
 663{
 664        unsigned long next, start;
 665        unsigned long mapped_ram_size = 0;
 666        /* step_size need to be small so pgt_buf from BRK could cover it */
 667        unsigned long step_size = PMD_SIZE;
 668
 669        start = map_start;
 670        min_pfn_mapped = start >> PAGE_SHIFT;
 671
 672        /*
 673         * We start from the bottom (@map_start) and go to the top (@map_end).
 674         * The memblock_find_in_range() gets us a block of RAM from the
 675         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 676         * for page table.
 677         */
 678        while (start < map_end) {
 679                if (step_size && map_end - start > step_size) {
 680                        next = round_up(start + 1, step_size);
 681                        if (next > map_end)
 682                                next = map_end;
 683                } else {
 684                        next = map_end;
 685                }
 686
 687                mapped_ram_size += init_range_memory_mapping(start, next);
 688                start = next;
 689
 690                if (mapped_ram_size >= step_size)
 691                        step_size = get_new_step_size(step_size);
 692        }
 693}
 694
 695/*
 696 * The real mode trampoline, which is required for bootstrapping CPUs
 697 * occupies only a small area under the low 1MB.  See reserve_real_mode()
 698 * for details.
 699 *
 700 * If KASLR is disabled the first PGD entry of the direct mapping is copied
 701 * to map the real mode trampoline.
 702 *
 703 * If KASLR is enabled, copy only the PUD which covers the low 1MB
 704 * area. This limits the randomization granularity to 1GB for both 4-level
 705 * and 5-level paging.
 706 */
 707static void __init init_trampoline(void)
 708{
 709#ifdef CONFIG_X86_64
 710        if (!kaslr_memory_enabled())
 711                trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
 712        else
 713                init_trampoline_kaslr();
 714#endif
 715}
 716
 717void __init init_mem_mapping(void)
 718{
 719        unsigned long end;
 720
 721        pti_check_boottime_disable();
 722        probe_page_size_mask();
 723        setup_pcid();
 724
 725#ifdef CONFIG_X86_64
 726        end = max_pfn << PAGE_SHIFT;
 727#else
 728        end = max_low_pfn << PAGE_SHIFT;
 729#endif
 730
 731        /* the ISA range is always mapped regardless of memory holes */
 732        init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
 733
 734        /* Init the trampoline, possibly with KASLR memory offset */
 735        init_trampoline();
 736
 737        /*
 738         * If the allocation is in bottom-up direction, we setup direct mapping
 739         * in bottom-up, otherwise we setup direct mapping in top-down.
 740         */
 741        if (memblock_bottom_up()) {
 742                unsigned long kernel_end = __pa_symbol(_end);
 743
 744                /*
 745                 * we need two separate calls here. This is because we want to
 746                 * allocate page tables above the kernel. So we first map
 747                 * [kernel_end, end) to make memory above the kernel be mapped
 748                 * as soon as possible. And then use page tables allocated above
 749                 * the kernel to map [ISA_END_ADDRESS, kernel_end).
 750                 */
 751                memory_map_bottom_up(kernel_end, end);
 752                memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
 753        } else {
 754                memory_map_top_down(ISA_END_ADDRESS, end);
 755        }
 756
 757#ifdef CONFIG_X86_64
 758        if (max_pfn > max_low_pfn) {
 759                /* can we preserve max_low_pfn ?*/
 760                max_low_pfn = max_pfn;
 761        }
 762#else
 763        early_ioremap_page_table_range_init();
 764#endif
 765
 766        load_cr3(swapper_pg_dir);
 767        __flush_tlb_all();
 768
 769        x86_init.hyper.init_mem_mapping();
 770
 771        early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
 772}
 773
 774/*
 775 * Initialize an mm_struct to be used during poking and a pointer to be used
 776 * during patching.
 777 */
 778void __init poking_init(void)
 779{
 780        spinlock_t *ptl;
 781        pte_t *ptep;
 782
 783        poking_mm = copy_init_mm();
 784        BUG_ON(!poking_mm);
 785
 786        /*
 787         * Randomize the poking address, but make sure that the following page
 788         * will be mapped at the same PMD. We need 2 pages, so find space for 3,
 789         * and adjust the address if the PMD ends after the first one.
 790         */
 791        poking_addr = TASK_UNMAPPED_BASE;
 792        if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
 793                poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
 794                        (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
 795
 796        if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
 797                poking_addr += PAGE_SIZE;
 798
 799        /*
 800         * We need to trigger the allocation of the page-tables that will be
 801         * needed for poking now. Later, poking may be performed in an atomic
 802         * section, which might cause allocation to fail.
 803         */
 804        ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
 805        BUG_ON(!ptep);
 806        pte_unmap_unlock(ptep, ptl);
 807}
 808
 809/*
 810 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 811 * is valid. The argument is a physical page number.
 812 *
 813 * On x86, access has to be given to the first megabyte of RAM because that
 814 * area traditionally contains BIOS code and data regions used by X, dosemu,
 815 * and similar apps. Since they map the entire memory range, the whole range
 816 * must be allowed (for mapping), but any areas that would otherwise be
 817 * disallowed are flagged as being "zero filled" instead of rejected.
 818 * Access has to be given to non-kernel-ram areas as well, these contain the
 819 * PCI mmio resources as well as potential bios/acpi data regions.
 820 */
 821int devmem_is_allowed(unsigned long pagenr)
 822{
 823        if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
 824                                IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
 825                        != REGION_DISJOINT) {
 826                /*
 827                 * For disallowed memory regions in the low 1MB range,
 828                 * request that the page be shown as all zeros.
 829                 */
 830                if (pagenr < 256)
 831                        return 2;
 832
 833                return 0;
 834        }
 835
 836        /*
 837         * This must follow RAM test, since System RAM is considered a
 838         * restricted resource under CONFIG_STRICT_IOMEM.
 839         */
 840        if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
 841                /* Low 1MB bypasses iomem restrictions. */
 842                if (pagenr < 256)
 843                        return 1;
 844
 845                return 0;
 846        }
 847
 848        return 1;
 849}
 850
 851void free_init_pages(const char *what, unsigned long begin, unsigned long end)
 852{
 853        unsigned long begin_aligned, end_aligned;
 854
 855        /* Make sure boundaries are page aligned */
 856        begin_aligned = PAGE_ALIGN(begin);
 857        end_aligned   = end & PAGE_MASK;
 858
 859        if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
 860                begin = begin_aligned;
 861                end   = end_aligned;
 862        }
 863
 864        if (begin >= end)
 865                return;
 866
 867        /*
 868         * If debugging page accesses then do not free this memory but
 869         * mark them not present - any buggy init-section access will
 870         * create a kernel page fault:
 871         */
 872        if (debug_pagealloc_enabled()) {
 873                pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
 874                        begin, end - 1);
 875                /*
 876                 * Inform kmemleak about the hole in the memory since the
 877                 * corresponding pages will be unmapped.
 878                 */
 879                kmemleak_free_part((void *)begin, end - begin);
 880                set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
 881        } else {
 882                /*
 883                 * We just marked the kernel text read only above, now that
 884                 * we are going to free part of that, we need to make that
 885                 * writeable and non-executable first.
 886                 */
 887                set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
 888                set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
 889
 890                free_reserved_area((void *)begin, (void *)end,
 891                                   POISON_FREE_INITMEM, what);
 892        }
 893}
 894
 895/*
 896 * begin/end can be in the direct map or the "high kernel mapping"
 897 * used for the kernel image only.  free_init_pages() will do the
 898 * right thing for either kind of address.
 899 */
 900void free_kernel_image_pages(const char *what, void *begin, void *end)
 901{
 902        unsigned long begin_ul = (unsigned long)begin;
 903        unsigned long end_ul = (unsigned long)end;
 904        unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
 905
 906        free_init_pages(what, begin_ul, end_ul);
 907
 908        /*
 909         * PTI maps some of the kernel into userspace.  For performance,
 910         * this includes some kernel areas that do not contain secrets.
 911         * Those areas might be adjacent to the parts of the kernel image
 912         * being freed, which may contain secrets.  Remove the "high kernel
 913         * image mapping" for these freed areas, ensuring they are not even
 914         * potentially vulnerable to Meltdown regardless of the specific
 915         * optimizations PTI is currently using.
 916         *
 917         * The "noalias" prevents unmapping the direct map alias which is
 918         * needed to access the freed pages.
 919         *
 920         * This is only valid for 64bit kernels. 32bit has only one mapping
 921         * which can't be treated in this way for obvious reasons.
 922         */
 923        if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
 924                set_memory_np_noalias(begin_ul, len_pages);
 925}
 926
 927void __ref free_initmem(void)
 928{
 929        e820__reallocate_tables();
 930
 931        mem_encrypt_free_decrypted_mem();
 932
 933        free_kernel_image_pages("unused kernel image (initmem)",
 934                                &__init_begin, &__init_end);
 935}
 936
 937#ifdef CONFIG_BLK_DEV_INITRD
 938void __init free_initrd_mem(unsigned long start, unsigned long end)
 939{
 940        /*
 941         * end could be not aligned, and We can not align that,
 942         * decompressor could be confused by aligned initrd_end
 943         * We already reserve the end partial page before in
 944         *   - i386_start_kernel()
 945         *   - x86_64_start_kernel()
 946         *   - relocate_initrd()
 947         * So here We can do PAGE_ALIGN() safely to get partial page to be freed
 948         */
 949        free_init_pages("initrd", start, PAGE_ALIGN(end));
 950}
 951#endif
 952
 953/*
 954 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
 955 * and pass it to the MM layer - to help it set zone watermarks more
 956 * accurately.
 957 *
 958 * Done on 64-bit systems only for the time being, although 32-bit systems
 959 * might benefit from this as well.
 960 */
 961void __init memblock_find_dma_reserve(void)
 962{
 963#ifdef CONFIG_X86_64
 964        u64 nr_pages = 0, nr_free_pages = 0;
 965        unsigned long start_pfn, end_pfn;
 966        phys_addr_t start_addr, end_addr;
 967        int i;
 968        u64 u;
 969
 970        /*
 971         * Iterate over all memory ranges (free and reserved ones alike),
 972         * to calculate the total number of pages in the first 16 MB of RAM:
 973         */
 974        nr_pages = 0;
 975        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 976                start_pfn = min(start_pfn, MAX_DMA_PFN);
 977                end_pfn   = min(end_pfn,   MAX_DMA_PFN);
 978
 979                nr_pages += end_pfn - start_pfn;
 980        }
 981
 982        /*
 983         * Iterate over free memory ranges to calculate the number of free
 984         * pages in the DMA zone, while not counting potential partial
 985         * pages at the beginning or the end of the range:
 986         */
 987        nr_free_pages = 0;
 988        for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
 989                start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
 990                end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
 991
 992                if (start_pfn < end_pfn)
 993                        nr_free_pages += end_pfn - start_pfn;
 994        }
 995
 996        set_dma_reserve(nr_pages - nr_free_pages);
 997#endif
 998}
 999
1000void __init zone_sizes_init(void)
1001{
1002        unsigned long max_zone_pfns[MAX_NR_ZONES];
1003
1004        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1005
1006#ifdef CONFIG_ZONE_DMA
1007        max_zone_pfns[ZONE_DMA]         = min(MAX_DMA_PFN, max_low_pfn);
1008#endif
1009#ifdef CONFIG_ZONE_DMA32
1010        max_zone_pfns[ZONE_DMA32]       = min(MAX_DMA32_PFN, max_low_pfn);
1011#endif
1012        max_zone_pfns[ZONE_NORMAL]      = max_low_pfn;
1013#ifdef CONFIG_HIGHMEM
1014        max_zone_pfns[ZONE_HIGHMEM]     = max_pfn;
1015#endif
1016
1017        free_area_init(max_zone_pfns);
1018}
1019
1020__visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1021        .loaded_mm = &init_mm,
1022        .next_asid = 1,
1023        .cr4 = ~0UL,    /* fail hard if we screw up cr4 shadow initialization */
1024};
1025
1026void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1027{
1028        /* entry 0 MUST be WB (hardwired to speed up translations) */
1029        BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1030
1031        __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1032        __pte2cachemode_tbl[entry] = cache;
1033}
1034
1035#ifdef CONFIG_SWAP
1036unsigned long max_swapfile_size(void)
1037{
1038        unsigned long pages;
1039
1040        pages = generic_max_swapfile_size();
1041
1042        if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1043                /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1044                unsigned long long l1tf_limit = l1tf_pfn_limit();
1045                /*
1046                 * We encode swap offsets also with 3 bits below those for pfn
1047                 * which makes the usable limit higher.
1048                 */
1049#if CONFIG_PGTABLE_LEVELS > 2
1050                l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1051#endif
1052                pages = min_t(unsigned long long, l1tf_limit, pages);
1053        }
1054        return pages;
1055}
1056#endif
1057