linux/arch/x86/kvm/vmx/vmx.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef __KVM_X86_VMX_H
   3#define __KVM_X86_VMX_H
   4
   5#include <linux/kvm_host.h>
   6
   7#include <asm/kvm.h>
   8#include <asm/intel_pt.h>
   9
  10#include "capabilities.h"
  11#include "kvm_cache_regs.h"
  12#include "posted_intr.h"
  13#include "vmcs.h"
  14#include "vmx_ops.h"
  15#include "cpuid.h"
  16
  17#define MSR_TYPE_R      1
  18#define MSR_TYPE_W      2
  19#define MSR_TYPE_RW     3
  20
  21#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
  22
  23#ifdef CONFIG_X86_64
  24#define MAX_NR_USER_RETURN_MSRS 7
  25#else
  26#define MAX_NR_USER_RETURN_MSRS 4
  27#endif
  28
  29#define MAX_NR_LOADSTORE_MSRS   8
  30
  31struct vmx_msrs {
  32        unsigned int            nr;
  33        struct vmx_msr_entry    val[MAX_NR_LOADSTORE_MSRS];
  34};
  35
  36struct vmx_uret_msr {
  37        bool load_into_hardware;
  38        u64 data;
  39        u64 mask;
  40};
  41
  42enum segment_cache_field {
  43        SEG_FIELD_SEL = 0,
  44        SEG_FIELD_BASE = 1,
  45        SEG_FIELD_LIMIT = 2,
  46        SEG_FIELD_AR = 3,
  47
  48        SEG_FIELD_NR = 4
  49};
  50
  51#define RTIT_ADDR_RANGE         4
  52
  53struct pt_ctx {
  54        u64 ctl;
  55        u64 status;
  56        u64 output_base;
  57        u64 output_mask;
  58        u64 cr3_match;
  59        u64 addr_a[RTIT_ADDR_RANGE];
  60        u64 addr_b[RTIT_ADDR_RANGE];
  61};
  62
  63struct pt_desc {
  64        u64 ctl_bitmask;
  65        u32 addr_range;
  66        u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
  67        struct pt_ctx host;
  68        struct pt_ctx guest;
  69};
  70
  71union vmx_exit_reason {
  72        struct {
  73                u32     basic                   : 16;
  74                u32     reserved16              : 1;
  75                u32     reserved17              : 1;
  76                u32     reserved18              : 1;
  77                u32     reserved19              : 1;
  78                u32     reserved20              : 1;
  79                u32     reserved21              : 1;
  80                u32     reserved22              : 1;
  81                u32     reserved23              : 1;
  82                u32     reserved24              : 1;
  83                u32     reserved25              : 1;
  84                u32     bus_lock_detected       : 1;
  85                u32     enclave_mode            : 1;
  86                u32     smi_pending_mtf         : 1;
  87                u32     smi_from_vmx_root       : 1;
  88                u32     reserved30              : 1;
  89                u32     failed_vmentry          : 1;
  90        };
  91        u32 full;
  92};
  93
  94#define vcpu_to_lbr_desc(vcpu) (&to_vmx(vcpu)->lbr_desc)
  95#define vcpu_to_lbr_records(vcpu) (&to_vmx(vcpu)->lbr_desc.records)
  96
  97bool intel_pmu_lbr_is_compatible(struct kvm_vcpu *vcpu);
  98bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu);
  99
 100int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
 101void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
 102
 103struct lbr_desc {
 104        /* Basic info about guest LBR records. */
 105        struct x86_pmu_lbr records;
 106
 107        /*
 108         * Emulate LBR feature via passthrough LBR registers when the
 109         * per-vcpu guest LBR event is scheduled on the current pcpu.
 110         *
 111         * The records may be inaccurate if the host reclaims the LBR.
 112         */
 113        struct perf_event *event;
 114
 115        /* True if LBRs are marked as not intercepted in the MSR bitmap */
 116        bool msr_passthrough;
 117};
 118
 119/*
 120 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
 121 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
 122 */
 123struct nested_vmx {
 124        /* Has the level1 guest done vmxon? */
 125        bool vmxon;
 126        gpa_t vmxon_ptr;
 127        bool pml_full;
 128
 129        /* The guest-physical address of the current VMCS L1 keeps for L2 */
 130        gpa_t current_vmptr;
 131        /*
 132         * Cache of the guest's VMCS, existing outside of guest memory.
 133         * Loaded from guest memory during VMPTRLD. Flushed to guest
 134         * memory during VMCLEAR and VMPTRLD.
 135         */
 136        struct vmcs12 *cached_vmcs12;
 137        /*
 138         * Cache of the guest's shadow VMCS, existing outside of guest
 139         * memory. Loaded from guest memory during VM entry. Flushed
 140         * to guest memory during VM exit.
 141         */
 142        struct vmcs12 *cached_shadow_vmcs12;
 143
 144        /*
 145         * Indicates if the shadow vmcs or enlightened vmcs must be updated
 146         * with the data held by struct vmcs12.
 147         */
 148        bool need_vmcs12_to_shadow_sync;
 149        bool dirty_vmcs12;
 150
 151        /*
 152         * Indicates lazily loaded guest state has not yet been decached from
 153         * vmcs02.
 154         */
 155        bool need_sync_vmcs02_to_vmcs12_rare;
 156
 157        /*
 158         * vmcs02 has been initialized, i.e. state that is constant for
 159         * vmcs02 has been written to the backing VMCS.  Initialization
 160         * is delayed until L1 actually attempts to run a nested VM.
 161         */
 162        bool vmcs02_initialized;
 163
 164        bool change_vmcs01_virtual_apic_mode;
 165        bool reload_vmcs01_apic_access_page;
 166        bool update_vmcs01_cpu_dirty_logging;
 167
 168        /*
 169         * Enlightened VMCS has been enabled. It does not mean that L1 has to
 170         * use it. However, VMX features available to L1 will be limited based
 171         * on what the enlightened VMCS supports.
 172         */
 173        bool enlightened_vmcs_enabled;
 174
 175        /* L2 must run next, and mustn't decide to exit to L1. */
 176        bool nested_run_pending;
 177
 178        /* Pending MTF VM-exit into L1.  */
 179        bool mtf_pending;
 180
 181        struct loaded_vmcs vmcs02;
 182
 183        /*
 184         * Guest pages referred to in the vmcs02 with host-physical
 185         * pointers, so we must keep them pinned while L2 runs.
 186         */
 187        struct page *apic_access_page;
 188        struct kvm_host_map virtual_apic_map;
 189        struct kvm_host_map pi_desc_map;
 190
 191        struct kvm_host_map msr_bitmap_map;
 192
 193        struct pi_desc *pi_desc;
 194        bool pi_pending;
 195        u16 posted_intr_nv;
 196
 197        struct hrtimer preemption_timer;
 198        u64 preemption_timer_deadline;
 199        bool has_preemption_timer_deadline;
 200        bool preemption_timer_expired;
 201
 202        /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
 203        u64 vmcs01_debugctl;
 204        u64 vmcs01_guest_bndcfgs;
 205
 206        /* to migrate it to L1 if L2 writes to L1's CR8 directly */
 207        int l1_tpr_threshold;
 208
 209        u16 vpid02;
 210        u16 last_vpid;
 211
 212        struct nested_vmx_msrs msrs;
 213
 214        /* SMM related state */
 215        struct {
 216                /* in VMX operation on SMM entry? */
 217                bool vmxon;
 218                /* in guest mode on SMM entry? */
 219                bool guest_mode;
 220        } smm;
 221
 222        gpa_t hv_evmcs_vmptr;
 223        struct kvm_host_map hv_evmcs_map;
 224        struct hv_enlightened_vmcs *hv_evmcs;
 225};
 226
 227struct vcpu_vmx {
 228        struct kvm_vcpu       vcpu;
 229        u8                    fail;
 230        u8                    msr_bitmap_mode;
 231
 232        /*
 233         * If true, host state has been stored in vmx->loaded_vmcs for
 234         * the CPU registers that only need to be switched when transitioning
 235         * to/from the kernel, and the registers have been loaded with guest
 236         * values.  If false, host state is loaded in the CPU registers
 237         * and vmx->loaded_vmcs->host_state is invalid.
 238         */
 239        bool                  guest_state_loaded;
 240
 241        unsigned long         exit_qualification;
 242        u32                   exit_intr_info;
 243        u32                   idt_vectoring_info;
 244        ulong                 rflags;
 245
 246        /*
 247         * User return MSRs are always emulated when enabled in the guest, but
 248         * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
 249         * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
 250         * be loaded into hardware if those conditions aren't met.
 251         * nr_active_uret_msrs tracks the number of MSRs that need to be loaded
 252         * into hardware when running the guest.  guest_uret_msrs[] is resorted
 253         * whenever the number of "active" uret MSRs is modified.
 254         */
 255        struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
 256        int                   nr_active_uret_msrs;
 257        bool                  guest_uret_msrs_loaded;
 258#ifdef CONFIG_X86_64
 259        u64                   msr_host_kernel_gs_base;
 260        u64                   msr_guest_kernel_gs_base;
 261#endif
 262
 263        u64                   spec_ctrl;
 264        u32                   msr_ia32_umwait_control;
 265
 266        u32 secondary_exec_control;
 267
 268        /*
 269         * loaded_vmcs points to the VMCS currently used in this vcpu. For a
 270         * non-nested (L1) guest, it always points to vmcs01. For a nested
 271         * guest (L2), it points to a different VMCS.
 272         */
 273        struct loaded_vmcs    vmcs01;
 274        struct loaded_vmcs   *loaded_vmcs;
 275
 276        struct msr_autoload {
 277                struct vmx_msrs guest;
 278                struct vmx_msrs host;
 279        } msr_autoload;
 280
 281        struct msr_autostore {
 282                struct vmx_msrs guest;
 283        } msr_autostore;
 284
 285        struct {
 286                int vm86_active;
 287                ulong save_rflags;
 288                struct kvm_segment segs[8];
 289        } rmode;
 290        struct {
 291                u32 bitmask; /* 4 bits per segment (1 bit per field) */
 292                struct kvm_save_segment {
 293                        u16 selector;
 294                        unsigned long base;
 295                        u32 limit;
 296                        u32 ar;
 297                } seg[8];
 298        } segment_cache;
 299        int vpid;
 300        bool emulation_required;
 301
 302        union vmx_exit_reason exit_reason;
 303
 304        /* Posted interrupt descriptor */
 305        struct pi_desc pi_desc;
 306
 307        /* Support for a guest hypervisor (nested VMX) */
 308        struct nested_vmx nested;
 309
 310        /* Dynamic PLE window. */
 311        unsigned int ple_window;
 312        bool ple_window_dirty;
 313
 314        bool req_immediate_exit;
 315
 316        /* Support for PML */
 317#define PML_ENTITY_NUM          512
 318        struct page *pml_pg;
 319
 320        /* apic deadline value in host tsc */
 321        u64 hv_deadline_tsc;
 322
 323        unsigned long host_debugctlmsr;
 324
 325        /*
 326         * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
 327         * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
 328         * in msr_ia32_feature_control_valid_bits.
 329         */
 330        u64 msr_ia32_feature_control;
 331        u64 msr_ia32_feature_control_valid_bits;
 332        /* SGX Launch Control public key hash */
 333        u64 msr_ia32_sgxlepubkeyhash[4];
 334
 335        struct pt_desc pt_desc;
 336        struct lbr_desc lbr_desc;
 337
 338        /* Save desired MSR intercept (read: pass-through) state */
 339#define MAX_POSSIBLE_PASSTHROUGH_MSRS   13
 340        struct {
 341                DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
 342                DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
 343        } shadow_msr_intercept;
 344};
 345
 346struct kvm_vmx {
 347        struct kvm kvm;
 348
 349        unsigned int tss_addr;
 350        bool ept_identity_pagetable_done;
 351        gpa_t ept_identity_map_addr;
 352};
 353
 354bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
 355void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
 356                        struct loaded_vmcs *buddy);
 357int allocate_vpid(void);
 358void free_vpid(int vpid);
 359void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
 360void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
 361void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
 362                        unsigned long fs_base, unsigned long gs_base);
 363int vmx_get_cpl(struct kvm_vcpu *vcpu);
 364unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
 365void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
 366u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
 367void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
 368int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
 369void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
 370void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
 371void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
 372void ept_save_pdptrs(struct kvm_vcpu *vcpu);
 373void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
 374void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
 375u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
 376
 377bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
 378void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
 379void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
 380bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
 381bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
 382bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
 383void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
 384void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
 385struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
 386void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
 387void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
 388bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
 389int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
 390void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
 391
 392void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
 393void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
 394
 395u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
 396u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
 397
 398static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
 399                                             int type, bool value)
 400{
 401        if (value)
 402                vmx_enable_intercept_for_msr(vcpu, msr, type);
 403        else
 404                vmx_disable_intercept_for_msr(vcpu, msr, type);
 405}
 406
 407void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
 408
 409static inline u8 vmx_get_rvi(void)
 410{
 411        return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
 412}
 413
 414#define BUILD_CONTROLS_SHADOW(lname, uname)                                 \
 415static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val)      \
 416{                                                                           \
 417        if (vmx->loaded_vmcs->controls_shadow.lname != val) {               \
 418                vmcs_write32(uname, val);                                   \
 419                vmx->loaded_vmcs->controls_shadow.lname = val;              \
 420        }                                                                   \
 421}                                                                           \
 422static inline u32 lname##_controls_get(struct vcpu_vmx *vmx)                \
 423{                                                                           \
 424        return vmx->loaded_vmcs->controls_shadow.lname;                     \
 425}                                                                           \
 426static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val)   \
 427{                                                                           \
 428        lname##_controls_set(vmx, lname##_controls_get(vmx) | val);         \
 429}                                                                           \
 430static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \
 431{                                                                           \
 432        lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);        \
 433}
 434BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS)
 435BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS)
 436BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL)
 437BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL)
 438BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL)
 439
 440static inline void vmx_register_cache_reset(struct kvm_vcpu *vcpu)
 441{
 442        vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
 443                                  | (1 << VCPU_EXREG_RFLAGS)
 444                                  | (1 << VCPU_EXREG_PDPTR)
 445                                  | (1 << VCPU_EXREG_SEGMENTS)
 446                                  | (1 << VCPU_EXREG_CR0)
 447                                  | (1 << VCPU_EXREG_CR3)
 448                                  | (1 << VCPU_EXREG_CR4)
 449                                  | (1 << VCPU_EXREG_EXIT_INFO_1)
 450                                  | (1 << VCPU_EXREG_EXIT_INFO_2));
 451        vcpu->arch.regs_dirty = 0;
 452}
 453
 454static inline u32 vmx_vmentry_ctrl(void)
 455{
 456        u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
 457        if (vmx_pt_mode_is_system())
 458                vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
 459                                  VM_ENTRY_LOAD_IA32_RTIT_CTL);
 460        /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
 461        return vmentry_ctrl &
 462                ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
 463}
 464
 465static inline u32 vmx_vmexit_ctrl(void)
 466{
 467        u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
 468        if (vmx_pt_mode_is_system())
 469                vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
 470                                 VM_EXIT_CLEAR_IA32_RTIT_CTL);
 471        /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
 472        return vmexit_ctrl &
 473                ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
 474}
 475
 476u32 vmx_exec_control(struct vcpu_vmx *vmx);
 477u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx);
 478
 479static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
 480{
 481        return container_of(kvm, struct kvm_vmx, kvm);
 482}
 483
 484static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
 485{
 486        return container_of(vcpu, struct vcpu_vmx, vcpu);
 487}
 488
 489static inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
 490{
 491        struct vcpu_vmx *vmx = to_vmx(vcpu);
 492
 493        if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) {
 494                kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
 495                vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
 496        }
 497        return vmx->exit_qualification;
 498}
 499
 500static inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
 501{
 502        struct vcpu_vmx *vmx = to_vmx(vcpu);
 503
 504        if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) {
 505                kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
 506                vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
 507        }
 508        return vmx->exit_intr_info;
 509}
 510
 511struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
 512void free_vmcs(struct vmcs *vmcs);
 513int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
 514void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
 515void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
 516
 517static inline struct vmcs *alloc_vmcs(bool shadow)
 518{
 519        return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
 520                              GFP_KERNEL_ACCOUNT);
 521}
 522
 523static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
 524{
 525        return secondary_exec_controls_get(vmx) &
 526                SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
 527}
 528
 529static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
 530{
 531        if (!enable_ept)
 532                return true;
 533
 534        return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
 535}
 536
 537static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
 538{
 539        return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
 540            (secondary_exec_controls_get(to_vmx(vcpu)) &
 541            SECONDARY_EXEC_UNRESTRICTED_GUEST));
 542}
 543
 544bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
 545static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
 546{
 547        return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
 548}
 549
 550void dump_vmcs(struct kvm_vcpu *vcpu);
 551
 552#endif /* __KVM_X86_VMX_H */
 553