linux/arch/x86/kvm/svm/sev.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * AMD SVM-SEV support
   6 *
   7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   8 */
   9
  10#include <linux/kvm_types.h>
  11#include <linux/kvm_host.h>
  12#include <linux/kernel.h>
  13#include <linux/highmem.h>
  14#include <linux/psp-sev.h>
  15#include <linux/pagemap.h>
  16#include <linux/swap.h>
  17#include <linux/misc_cgroup.h>
  18#include <linux/processor.h>
  19#include <linux/trace_events.h>
  20#include <asm/fpu/internal.h>
  21
  22#include <asm/pkru.h>
  23#include <asm/trapnr.h>
  24
  25#include "x86.h"
  26#include "svm.h"
  27#include "svm_ops.h"
  28#include "cpuid.h"
  29#include "trace.h"
  30
  31#define __ex(x) __kvm_handle_fault_on_reboot(x)
  32
  33#ifndef CONFIG_KVM_AMD_SEV
  34/*
  35 * When this config is not defined, SEV feature is not supported and APIs in
  36 * this file are not used but this file still gets compiled into the KVM AMD
  37 * module.
  38 *
  39 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
  40 * misc_res_type {} defined in linux/misc_cgroup.h.
  41 *
  42 * Below macros allow compilation to succeed.
  43 */
  44#define MISC_CG_RES_SEV MISC_CG_RES_TYPES
  45#define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
  46#endif
  47
  48#ifdef CONFIG_KVM_AMD_SEV
  49/* enable/disable SEV support */
  50static bool sev_enabled = true;
  51module_param_named(sev, sev_enabled, bool, 0444);
  52
  53/* enable/disable SEV-ES support */
  54static bool sev_es_enabled = true;
  55module_param_named(sev_es, sev_es_enabled, bool, 0444);
  56#else
  57#define sev_enabled false
  58#define sev_es_enabled false
  59#endif /* CONFIG_KVM_AMD_SEV */
  60
  61static u8 sev_enc_bit;
  62static DECLARE_RWSEM(sev_deactivate_lock);
  63static DEFINE_MUTEX(sev_bitmap_lock);
  64unsigned int max_sev_asid;
  65static unsigned int min_sev_asid;
  66static unsigned long sev_me_mask;
  67static unsigned int nr_asids;
  68static unsigned long *sev_asid_bitmap;
  69static unsigned long *sev_reclaim_asid_bitmap;
  70
  71struct enc_region {
  72        struct list_head list;
  73        unsigned long npages;
  74        struct page **pages;
  75        unsigned long uaddr;
  76        unsigned long size;
  77};
  78
  79/* Called with the sev_bitmap_lock held, or on shutdown  */
  80static int sev_flush_asids(int min_asid, int max_asid)
  81{
  82        int ret, asid, error = 0;
  83
  84        /* Check if there are any ASIDs to reclaim before performing a flush */
  85        asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
  86        if (asid > max_asid)
  87                return -EBUSY;
  88
  89        /*
  90         * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
  91         * so it must be guarded.
  92         */
  93        down_write(&sev_deactivate_lock);
  94
  95        wbinvd_on_all_cpus();
  96        ret = sev_guest_df_flush(&error);
  97
  98        up_write(&sev_deactivate_lock);
  99
 100        if (ret)
 101                pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
 102
 103        return ret;
 104}
 105
 106static inline bool is_mirroring_enc_context(struct kvm *kvm)
 107{
 108        return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
 109}
 110
 111/* Must be called with the sev_bitmap_lock held */
 112static bool __sev_recycle_asids(int min_asid, int max_asid)
 113{
 114        if (sev_flush_asids(min_asid, max_asid))
 115                return false;
 116
 117        /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
 118        bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
 119                   nr_asids);
 120        bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
 121
 122        return true;
 123}
 124
 125static int sev_asid_new(struct kvm_sev_info *sev)
 126{
 127        int asid, min_asid, max_asid, ret;
 128        bool retry = true;
 129        enum misc_res_type type;
 130
 131        type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
 132        WARN_ON(sev->misc_cg);
 133        sev->misc_cg = get_current_misc_cg();
 134        ret = misc_cg_try_charge(type, sev->misc_cg, 1);
 135        if (ret) {
 136                put_misc_cg(sev->misc_cg);
 137                sev->misc_cg = NULL;
 138                return ret;
 139        }
 140
 141        mutex_lock(&sev_bitmap_lock);
 142
 143        /*
 144         * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
 145         * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
 146         */
 147        min_asid = sev->es_active ? 1 : min_sev_asid;
 148        max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
 149again:
 150        asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
 151        if (asid > max_asid) {
 152                if (retry && __sev_recycle_asids(min_asid, max_asid)) {
 153                        retry = false;
 154                        goto again;
 155                }
 156                mutex_unlock(&sev_bitmap_lock);
 157                ret = -EBUSY;
 158                goto e_uncharge;
 159        }
 160
 161        __set_bit(asid, sev_asid_bitmap);
 162
 163        mutex_unlock(&sev_bitmap_lock);
 164
 165        return asid;
 166e_uncharge:
 167        misc_cg_uncharge(type, sev->misc_cg, 1);
 168        put_misc_cg(sev->misc_cg);
 169        sev->misc_cg = NULL;
 170        return ret;
 171}
 172
 173static int sev_get_asid(struct kvm *kvm)
 174{
 175        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 176
 177        return sev->asid;
 178}
 179
 180static void sev_asid_free(struct kvm_sev_info *sev)
 181{
 182        struct svm_cpu_data *sd;
 183        int cpu;
 184        enum misc_res_type type;
 185
 186        mutex_lock(&sev_bitmap_lock);
 187
 188        __set_bit(sev->asid, sev_reclaim_asid_bitmap);
 189
 190        for_each_possible_cpu(cpu) {
 191                sd = per_cpu(svm_data, cpu);
 192                sd->sev_vmcbs[sev->asid] = NULL;
 193        }
 194
 195        mutex_unlock(&sev_bitmap_lock);
 196
 197        type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
 198        misc_cg_uncharge(type, sev->misc_cg, 1);
 199        put_misc_cg(sev->misc_cg);
 200        sev->misc_cg = NULL;
 201}
 202
 203static void sev_decommission(unsigned int handle)
 204{
 205        struct sev_data_decommission decommission;
 206
 207        if (!handle)
 208                return;
 209
 210        decommission.handle = handle;
 211        sev_guest_decommission(&decommission, NULL);
 212}
 213
 214static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
 215{
 216        struct sev_data_deactivate deactivate;
 217
 218        if (!handle)
 219                return;
 220
 221        deactivate.handle = handle;
 222
 223        /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
 224        down_read(&sev_deactivate_lock);
 225        sev_guest_deactivate(&deactivate, NULL);
 226        up_read(&sev_deactivate_lock);
 227
 228        sev_decommission(handle);
 229}
 230
 231static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
 232{
 233        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 234        bool es_active = argp->id == KVM_SEV_ES_INIT;
 235        int asid, ret;
 236
 237        if (kvm->created_vcpus)
 238                return -EINVAL;
 239
 240        ret = -EBUSY;
 241        if (unlikely(sev->active))
 242                return ret;
 243
 244        sev->es_active = es_active;
 245        asid = sev_asid_new(sev);
 246        if (asid < 0)
 247                goto e_no_asid;
 248        sev->asid = asid;
 249
 250        ret = sev_platform_init(&argp->error);
 251        if (ret)
 252                goto e_free;
 253
 254        sev->active = true;
 255        sev->asid = asid;
 256        INIT_LIST_HEAD(&sev->regions_list);
 257
 258        return 0;
 259
 260e_free:
 261        sev_asid_free(sev);
 262        sev->asid = 0;
 263e_no_asid:
 264        sev->es_active = false;
 265        return ret;
 266}
 267
 268static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
 269{
 270        struct sev_data_activate activate;
 271        int asid = sev_get_asid(kvm);
 272        int ret;
 273
 274        /* activate ASID on the given handle */
 275        activate.handle = handle;
 276        activate.asid   = asid;
 277        ret = sev_guest_activate(&activate, error);
 278
 279        return ret;
 280}
 281
 282static int __sev_issue_cmd(int fd, int id, void *data, int *error)
 283{
 284        struct fd f;
 285        int ret;
 286
 287        f = fdget(fd);
 288        if (!f.file)
 289                return -EBADF;
 290
 291        ret = sev_issue_cmd_external_user(f.file, id, data, error);
 292
 293        fdput(f);
 294        return ret;
 295}
 296
 297static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
 298{
 299        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 300
 301        return __sev_issue_cmd(sev->fd, id, data, error);
 302}
 303
 304static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
 305{
 306        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 307        struct sev_data_launch_start start;
 308        struct kvm_sev_launch_start params;
 309        void *dh_blob, *session_blob;
 310        int *error = &argp->error;
 311        int ret;
 312
 313        if (!sev_guest(kvm))
 314                return -ENOTTY;
 315
 316        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
 317                return -EFAULT;
 318
 319        memset(&start, 0, sizeof(start));
 320
 321        dh_blob = NULL;
 322        if (params.dh_uaddr) {
 323                dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
 324                if (IS_ERR(dh_blob))
 325                        return PTR_ERR(dh_blob);
 326
 327                start.dh_cert_address = __sme_set(__pa(dh_blob));
 328                start.dh_cert_len = params.dh_len;
 329        }
 330
 331        session_blob = NULL;
 332        if (params.session_uaddr) {
 333                session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
 334                if (IS_ERR(session_blob)) {
 335                        ret = PTR_ERR(session_blob);
 336                        goto e_free_dh;
 337                }
 338
 339                start.session_address = __sme_set(__pa(session_blob));
 340                start.session_len = params.session_len;
 341        }
 342
 343        start.handle = params.handle;
 344        start.policy = params.policy;
 345
 346        /* create memory encryption context */
 347        ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
 348        if (ret)
 349                goto e_free_session;
 350
 351        /* Bind ASID to this guest */
 352        ret = sev_bind_asid(kvm, start.handle, error);
 353        if (ret) {
 354                sev_decommission(start.handle);
 355                goto e_free_session;
 356        }
 357
 358        /* return handle to userspace */
 359        params.handle = start.handle;
 360        if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
 361                sev_unbind_asid(kvm, start.handle);
 362                ret = -EFAULT;
 363                goto e_free_session;
 364        }
 365
 366        sev->handle = start.handle;
 367        sev->fd = argp->sev_fd;
 368
 369e_free_session:
 370        kfree(session_blob);
 371e_free_dh:
 372        kfree(dh_blob);
 373        return ret;
 374}
 375
 376static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
 377                                    unsigned long ulen, unsigned long *n,
 378                                    int write)
 379{
 380        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 381        unsigned long npages, size;
 382        int npinned;
 383        unsigned long locked, lock_limit;
 384        struct page **pages;
 385        unsigned long first, last;
 386        int ret;
 387
 388        lockdep_assert_held(&kvm->lock);
 389
 390        if (ulen == 0 || uaddr + ulen < uaddr)
 391                return ERR_PTR(-EINVAL);
 392
 393        /* Calculate number of pages. */
 394        first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
 395        last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
 396        npages = (last - first + 1);
 397
 398        locked = sev->pages_locked + npages;
 399        lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
 400        if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
 401                pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
 402                return ERR_PTR(-ENOMEM);
 403        }
 404
 405        if (WARN_ON_ONCE(npages > INT_MAX))
 406                return ERR_PTR(-EINVAL);
 407
 408        /* Avoid using vmalloc for smaller buffers. */
 409        size = npages * sizeof(struct page *);
 410        if (size > PAGE_SIZE)
 411                pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
 412        else
 413                pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
 414
 415        if (!pages)
 416                return ERR_PTR(-ENOMEM);
 417
 418        /* Pin the user virtual address. */
 419        npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
 420        if (npinned != npages) {
 421                pr_err("SEV: Failure locking %lu pages.\n", npages);
 422                ret = -ENOMEM;
 423                goto err;
 424        }
 425
 426        *n = npages;
 427        sev->pages_locked = locked;
 428
 429        return pages;
 430
 431err:
 432        if (npinned > 0)
 433                unpin_user_pages(pages, npinned);
 434
 435        kvfree(pages);
 436        return ERR_PTR(ret);
 437}
 438
 439static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
 440                             unsigned long npages)
 441{
 442        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 443
 444        unpin_user_pages(pages, npages);
 445        kvfree(pages);
 446        sev->pages_locked -= npages;
 447}
 448
 449static void sev_clflush_pages(struct page *pages[], unsigned long npages)
 450{
 451        uint8_t *page_virtual;
 452        unsigned long i;
 453
 454        if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
 455            pages == NULL)
 456                return;
 457
 458        for (i = 0; i < npages; i++) {
 459                page_virtual = kmap_atomic(pages[i]);
 460                clflush_cache_range(page_virtual, PAGE_SIZE);
 461                kunmap_atomic(page_virtual);
 462        }
 463}
 464
 465static unsigned long get_num_contig_pages(unsigned long idx,
 466                                struct page **inpages, unsigned long npages)
 467{
 468        unsigned long paddr, next_paddr;
 469        unsigned long i = idx + 1, pages = 1;
 470
 471        /* find the number of contiguous pages starting from idx */
 472        paddr = __sme_page_pa(inpages[idx]);
 473        while (i < npages) {
 474                next_paddr = __sme_page_pa(inpages[i++]);
 475                if ((paddr + PAGE_SIZE) == next_paddr) {
 476                        pages++;
 477                        paddr = next_paddr;
 478                        continue;
 479                }
 480                break;
 481        }
 482
 483        return pages;
 484}
 485
 486static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
 487{
 488        unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
 489        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 490        struct kvm_sev_launch_update_data params;
 491        struct sev_data_launch_update_data data;
 492        struct page **inpages;
 493        int ret;
 494
 495        if (!sev_guest(kvm))
 496                return -ENOTTY;
 497
 498        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
 499                return -EFAULT;
 500
 501        vaddr = params.uaddr;
 502        size = params.len;
 503        vaddr_end = vaddr + size;
 504
 505        /* Lock the user memory. */
 506        inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
 507        if (IS_ERR(inpages))
 508                return PTR_ERR(inpages);
 509
 510        /*
 511         * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
 512         * place; the cache may contain the data that was written unencrypted.
 513         */
 514        sev_clflush_pages(inpages, npages);
 515
 516        data.reserved = 0;
 517        data.handle = sev->handle;
 518
 519        for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
 520                int offset, len;
 521
 522                /*
 523                 * If the user buffer is not page-aligned, calculate the offset
 524                 * within the page.
 525                 */
 526                offset = vaddr & (PAGE_SIZE - 1);
 527
 528                /* Calculate the number of pages that can be encrypted in one go. */
 529                pages = get_num_contig_pages(i, inpages, npages);
 530
 531                len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
 532
 533                data.len = len;
 534                data.address = __sme_page_pa(inpages[i]) + offset;
 535                ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
 536                if (ret)
 537                        goto e_unpin;
 538
 539                size -= len;
 540                next_vaddr = vaddr + len;
 541        }
 542
 543e_unpin:
 544        /* content of memory is updated, mark pages dirty */
 545        for (i = 0; i < npages; i++) {
 546                set_page_dirty_lock(inpages[i]);
 547                mark_page_accessed(inpages[i]);
 548        }
 549        /* unlock the user pages */
 550        sev_unpin_memory(kvm, inpages, npages);
 551        return ret;
 552}
 553
 554static int sev_es_sync_vmsa(struct vcpu_svm *svm)
 555{
 556        struct vmcb_save_area *save = &svm->vmcb->save;
 557
 558        /* Check some debug related fields before encrypting the VMSA */
 559        if (svm->vcpu.guest_debug || (save->dr7 & ~DR7_FIXED_1))
 560                return -EINVAL;
 561
 562        /* Sync registgers */
 563        save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
 564        save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
 565        save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
 566        save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
 567        save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
 568        save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
 569        save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
 570        save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
 571#ifdef CONFIG_X86_64
 572        save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
 573        save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
 574        save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
 575        save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
 576        save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
 577        save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
 578        save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
 579        save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
 580#endif
 581        save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
 582
 583        /* Sync some non-GPR registers before encrypting */
 584        save->xcr0 = svm->vcpu.arch.xcr0;
 585        save->pkru = svm->vcpu.arch.pkru;
 586        save->xss  = svm->vcpu.arch.ia32_xss;
 587
 588        /*
 589         * SEV-ES will use a VMSA that is pointed to by the VMCB, not
 590         * the traditional VMSA that is part of the VMCB. Copy the
 591         * traditional VMSA as it has been built so far (in prep
 592         * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
 593         */
 594        memcpy(svm->vmsa, save, sizeof(*save));
 595
 596        return 0;
 597}
 598
 599static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
 600{
 601        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 602        struct sev_data_launch_update_vmsa vmsa;
 603        struct kvm_vcpu *vcpu;
 604        int i, ret;
 605
 606        if (!sev_es_guest(kvm))
 607                return -ENOTTY;
 608
 609        vmsa.reserved = 0;
 610
 611        kvm_for_each_vcpu(i, vcpu, kvm) {
 612                struct vcpu_svm *svm = to_svm(vcpu);
 613
 614                /* Perform some pre-encryption checks against the VMSA */
 615                ret = sev_es_sync_vmsa(svm);
 616                if (ret)
 617                        return ret;
 618
 619                /*
 620                 * The LAUNCH_UPDATE_VMSA command will perform in-place
 621                 * encryption of the VMSA memory content (i.e it will write
 622                 * the same memory region with the guest's key), so invalidate
 623                 * it first.
 624                 */
 625                clflush_cache_range(svm->vmsa, PAGE_SIZE);
 626
 627                vmsa.handle = sev->handle;
 628                vmsa.address = __sme_pa(svm->vmsa);
 629                vmsa.len = PAGE_SIZE;
 630                ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa,
 631                                    &argp->error);
 632                if (ret)
 633                        return ret;
 634
 635                svm->vcpu.arch.guest_state_protected = true;
 636        }
 637
 638        return 0;
 639}
 640
 641static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
 642{
 643        void __user *measure = (void __user *)(uintptr_t)argp->data;
 644        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 645        struct sev_data_launch_measure data;
 646        struct kvm_sev_launch_measure params;
 647        void __user *p = NULL;
 648        void *blob = NULL;
 649        int ret;
 650
 651        if (!sev_guest(kvm))
 652                return -ENOTTY;
 653
 654        if (copy_from_user(&params, measure, sizeof(params)))
 655                return -EFAULT;
 656
 657        memset(&data, 0, sizeof(data));
 658
 659        /* User wants to query the blob length */
 660        if (!params.len)
 661                goto cmd;
 662
 663        p = (void __user *)(uintptr_t)params.uaddr;
 664        if (p) {
 665                if (params.len > SEV_FW_BLOB_MAX_SIZE)
 666                        return -EINVAL;
 667
 668                blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
 669                if (!blob)
 670                        return -ENOMEM;
 671
 672                data.address = __psp_pa(blob);
 673                data.len = params.len;
 674        }
 675
 676cmd:
 677        data.handle = sev->handle;
 678        ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
 679
 680        /*
 681         * If we query the session length, FW responded with expected data.
 682         */
 683        if (!params.len)
 684                goto done;
 685
 686        if (ret)
 687                goto e_free_blob;
 688
 689        if (blob) {
 690                if (copy_to_user(p, blob, params.len))
 691                        ret = -EFAULT;
 692        }
 693
 694done:
 695        params.len = data.len;
 696        if (copy_to_user(measure, &params, sizeof(params)))
 697                ret = -EFAULT;
 698e_free_blob:
 699        kfree(blob);
 700        return ret;
 701}
 702
 703static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
 704{
 705        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 706        struct sev_data_launch_finish data;
 707
 708        if (!sev_guest(kvm))
 709                return -ENOTTY;
 710
 711        data.handle = sev->handle;
 712        return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
 713}
 714
 715static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
 716{
 717        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 718        struct kvm_sev_guest_status params;
 719        struct sev_data_guest_status data;
 720        int ret;
 721
 722        if (!sev_guest(kvm))
 723                return -ENOTTY;
 724
 725        memset(&data, 0, sizeof(data));
 726
 727        data.handle = sev->handle;
 728        ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
 729        if (ret)
 730                return ret;
 731
 732        params.policy = data.policy;
 733        params.state = data.state;
 734        params.handle = data.handle;
 735
 736        if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
 737                ret = -EFAULT;
 738
 739        return ret;
 740}
 741
 742static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
 743                               unsigned long dst, int size,
 744                               int *error, bool enc)
 745{
 746        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 747        struct sev_data_dbg data;
 748
 749        data.reserved = 0;
 750        data.handle = sev->handle;
 751        data.dst_addr = dst;
 752        data.src_addr = src;
 753        data.len = size;
 754
 755        return sev_issue_cmd(kvm,
 756                             enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
 757                             &data, error);
 758}
 759
 760static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
 761                             unsigned long dst_paddr, int sz, int *err)
 762{
 763        int offset;
 764
 765        /*
 766         * Its safe to read more than we are asked, caller should ensure that
 767         * destination has enough space.
 768         */
 769        offset = src_paddr & 15;
 770        src_paddr = round_down(src_paddr, 16);
 771        sz = round_up(sz + offset, 16);
 772
 773        return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
 774}
 775
 776static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
 777                                  void __user *dst_uaddr,
 778                                  unsigned long dst_paddr,
 779                                  int size, int *err)
 780{
 781        struct page *tpage = NULL;
 782        int ret, offset;
 783
 784        /* if inputs are not 16-byte then use intermediate buffer */
 785        if (!IS_ALIGNED(dst_paddr, 16) ||
 786            !IS_ALIGNED(paddr,     16) ||
 787            !IS_ALIGNED(size,      16)) {
 788                tpage = (void *)alloc_page(GFP_KERNEL);
 789                if (!tpage)
 790                        return -ENOMEM;
 791
 792                dst_paddr = __sme_page_pa(tpage);
 793        }
 794
 795        ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
 796        if (ret)
 797                goto e_free;
 798
 799        if (tpage) {
 800                offset = paddr & 15;
 801                if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
 802                        ret = -EFAULT;
 803        }
 804
 805e_free:
 806        if (tpage)
 807                __free_page(tpage);
 808
 809        return ret;
 810}
 811
 812static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
 813                                  void __user *vaddr,
 814                                  unsigned long dst_paddr,
 815                                  void __user *dst_vaddr,
 816                                  int size, int *error)
 817{
 818        struct page *src_tpage = NULL;
 819        struct page *dst_tpage = NULL;
 820        int ret, len = size;
 821
 822        /* If source buffer is not aligned then use an intermediate buffer */
 823        if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
 824                src_tpage = alloc_page(GFP_KERNEL);
 825                if (!src_tpage)
 826                        return -ENOMEM;
 827
 828                if (copy_from_user(page_address(src_tpage), vaddr, size)) {
 829                        __free_page(src_tpage);
 830                        return -EFAULT;
 831                }
 832
 833                paddr = __sme_page_pa(src_tpage);
 834        }
 835
 836        /*
 837         *  If destination buffer or length is not aligned then do read-modify-write:
 838         *   - decrypt destination in an intermediate buffer
 839         *   - copy the source buffer in an intermediate buffer
 840         *   - use the intermediate buffer as source buffer
 841         */
 842        if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
 843                int dst_offset;
 844
 845                dst_tpage = alloc_page(GFP_KERNEL);
 846                if (!dst_tpage) {
 847                        ret = -ENOMEM;
 848                        goto e_free;
 849                }
 850
 851                ret = __sev_dbg_decrypt(kvm, dst_paddr,
 852                                        __sme_page_pa(dst_tpage), size, error);
 853                if (ret)
 854                        goto e_free;
 855
 856                /*
 857                 *  If source is kernel buffer then use memcpy() otherwise
 858                 *  copy_from_user().
 859                 */
 860                dst_offset = dst_paddr & 15;
 861
 862                if (src_tpage)
 863                        memcpy(page_address(dst_tpage) + dst_offset,
 864                               page_address(src_tpage), size);
 865                else {
 866                        if (copy_from_user(page_address(dst_tpage) + dst_offset,
 867                                           vaddr, size)) {
 868                                ret = -EFAULT;
 869                                goto e_free;
 870                        }
 871                }
 872
 873                paddr = __sme_page_pa(dst_tpage);
 874                dst_paddr = round_down(dst_paddr, 16);
 875                len = round_up(size, 16);
 876        }
 877
 878        ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
 879
 880e_free:
 881        if (src_tpage)
 882                __free_page(src_tpage);
 883        if (dst_tpage)
 884                __free_page(dst_tpage);
 885        return ret;
 886}
 887
 888static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
 889{
 890        unsigned long vaddr, vaddr_end, next_vaddr;
 891        unsigned long dst_vaddr;
 892        struct page **src_p, **dst_p;
 893        struct kvm_sev_dbg debug;
 894        unsigned long n;
 895        unsigned int size;
 896        int ret;
 897
 898        if (!sev_guest(kvm))
 899                return -ENOTTY;
 900
 901        if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
 902                return -EFAULT;
 903
 904        if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
 905                return -EINVAL;
 906        if (!debug.dst_uaddr)
 907                return -EINVAL;
 908
 909        vaddr = debug.src_uaddr;
 910        size = debug.len;
 911        vaddr_end = vaddr + size;
 912        dst_vaddr = debug.dst_uaddr;
 913
 914        for (; vaddr < vaddr_end; vaddr = next_vaddr) {
 915                int len, s_off, d_off;
 916
 917                /* lock userspace source and destination page */
 918                src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
 919                if (IS_ERR(src_p))
 920                        return PTR_ERR(src_p);
 921
 922                dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
 923                if (IS_ERR(dst_p)) {
 924                        sev_unpin_memory(kvm, src_p, n);
 925                        return PTR_ERR(dst_p);
 926                }
 927
 928                /*
 929                 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
 930                 * the pages; flush the destination too so that future accesses do not
 931                 * see stale data.
 932                 */
 933                sev_clflush_pages(src_p, 1);
 934                sev_clflush_pages(dst_p, 1);
 935
 936                /*
 937                 * Since user buffer may not be page aligned, calculate the
 938                 * offset within the page.
 939                 */
 940                s_off = vaddr & ~PAGE_MASK;
 941                d_off = dst_vaddr & ~PAGE_MASK;
 942                len = min_t(size_t, (PAGE_SIZE - s_off), size);
 943
 944                if (dec)
 945                        ret = __sev_dbg_decrypt_user(kvm,
 946                                                     __sme_page_pa(src_p[0]) + s_off,
 947                                                     (void __user *)dst_vaddr,
 948                                                     __sme_page_pa(dst_p[0]) + d_off,
 949                                                     len, &argp->error);
 950                else
 951                        ret = __sev_dbg_encrypt_user(kvm,
 952                                                     __sme_page_pa(src_p[0]) + s_off,
 953                                                     (void __user *)vaddr,
 954                                                     __sme_page_pa(dst_p[0]) + d_off,
 955                                                     (void __user *)dst_vaddr,
 956                                                     len, &argp->error);
 957
 958                sev_unpin_memory(kvm, src_p, n);
 959                sev_unpin_memory(kvm, dst_p, n);
 960
 961                if (ret)
 962                        goto err;
 963
 964                next_vaddr = vaddr + len;
 965                dst_vaddr = dst_vaddr + len;
 966                size -= len;
 967        }
 968err:
 969        return ret;
 970}
 971
 972static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
 973{
 974        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 975        struct sev_data_launch_secret data;
 976        struct kvm_sev_launch_secret params;
 977        struct page **pages;
 978        void *blob, *hdr;
 979        unsigned long n, i;
 980        int ret, offset;
 981
 982        if (!sev_guest(kvm))
 983                return -ENOTTY;
 984
 985        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
 986                return -EFAULT;
 987
 988        pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
 989        if (IS_ERR(pages))
 990                return PTR_ERR(pages);
 991
 992        /*
 993         * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
 994         * place; the cache may contain the data that was written unencrypted.
 995         */
 996        sev_clflush_pages(pages, n);
 997
 998        /*
 999         * The secret must be copied into contiguous memory region, lets verify
1000         * that userspace memory pages are contiguous before we issue command.
1001         */
1002        if (get_num_contig_pages(0, pages, n) != n) {
1003                ret = -EINVAL;
1004                goto e_unpin_memory;
1005        }
1006
1007        memset(&data, 0, sizeof(data));
1008
1009        offset = params.guest_uaddr & (PAGE_SIZE - 1);
1010        data.guest_address = __sme_page_pa(pages[0]) + offset;
1011        data.guest_len = params.guest_len;
1012
1013        blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1014        if (IS_ERR(blob)) {
1015                ret = PTR_ERR(blob);
1016                goto e_unpin_memory;
1017        }
1018
1019        data.trans_address = __psp_pa(blob);
1020        data.trans_len = params.trans_len;
1021
1022        hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1023        if (IS_ERR(hdr)) {
1024                ret = PTR_ERR(hdr);
1025                goto e_free_blob;
1026        }
1027        data.hdr_address = __psp_pa(hdr);
1028        data.hdr_len = params.hdr_len;
1029
1030        data.handle = sev->handle;
1031        ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1032
1033        kfree(hdr);
1034
1035e_free_blob:
1036        kfree(blob);
1037e_unpin_memory:
1038        /* content of memory is updated, mark pages dirty */
1039        for (i = 0; i < n; i++) {
1040                set_page_dirty_lock(pages[i]);
1041                mark_page_accessed(pages[i]);
1042        }
1043        sev_unpin_memory(kvm, pages, n);
1044        return ret;
1045}
1046
1047static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1048{
1049        void __user *report = (void __user *)(uintptr_t)argp->data;
1050        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1051        struct sev_data_attestation_report data;
1052        struct kvm_sev_attestation_report params;
1053        void __user *p;
1054        void *blob = NULL;
1055        int ret;
1056
1057        if (!sev_guest(kvm))
1058                return -ENOTTY;
1059
1060        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1061                return -EFAULT;
1062
1063        memset(&data, 0, sizeof(data));
1064
1065        /* User wants to query the blob length */
1066        if (!params.len)
1067                goto cmd;
1068
1069        p = (void __user *)(uintptr_t)params.uaddr;
1070        if (p) {
1071                if (params.len > SEV_FW_BLOB_MAX_SIZE)
1072                        return -EINVAL;
1073
1074                blob = kmalloc(params.len, GFP_KERNEL_ACCOUNT);
1075                if (!blob)
1076                        return -ENOMEM;
1077
1078                data.address = __psp_pa(blob);
1079                data.len = params.len;
1080                memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1081        }
1082cmd:
1083        data.handle = sev->handle;
1084        ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1085        /*
1086         * If we query the session length, FW responded with expected data.
1087         */
1088        if (!params.len)
1089                goto done;
1090
1091        if (ret)
1092                goto e_free_blob;
1093
1094        if (blob) {
1095                if (copy_to_user(p, blob, params.len))
1096                        ret = -EFAULT;
1097        }
1098
1099done:
1100        params.len = data.len;
1101        if (copy_to_user(report, &params, sizeof(params)))
1102                ret = -EFAULT;
1103e_free_blob:
1104        kfree(blob);
1105        return ret;
1106}
1107
1108/* Userspace wants to query session length. */
1109static int
1110__sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1111                                      struct kvm_sev_send_start *params)
1112{
1113        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1114        struct sev_data_send_start data;
1115        int ret;
1116
1117        memset(&data, 0, sizeof(data));
1118        data.handle = sev->handle;
1119        ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1120
1121        params->session_len = data.session_len;
1122        if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1123                                sizeof(struct kvm_sev_send_start)))
1124                ret = -EFAULT;
1125
1126        return ret;
1127}
1128
1129static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1130{
1131        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1132        struct sev_data_send_start data;
1133        struct kvm_sev_send_start params;
1134        void *amd_certs, *session_data;
1135        void *pdh_cert, *plat_certs;
1136        int ret;
1137
1138        if (!sev_guest(kvm))
1139                return -ENOTTY;
1140
1141        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1142                                sizeof(struct kvm_sev_send_start)))
1143                return -EFAULT;
1144
1145        /* if session_len is zero, userspace wants to query the session length */
1146        if (!params.session_len)
1147                return __sev_send_start_query_session_length(kvm, argp,
1148                                &params);
1149
1150        /* some sanity checks */
1151        if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1152            !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1153                return -EINVAL;
1154
1155        /* allocate the memory to hold the session data blob */
1156        session_data = kmalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1157        if (!session_data)
1158                return -ENOMEM;
1159
1160        /* copy the certificate blobs from userspace */
1161        pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1162                                params.pdh_cert_len);
1163        if (IS_ERR(pdh_cert)) {
1164                ret = PTR_ERR(pdh_cert);
1165                goto e_free_session;
1166        }
1167
1168        plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1169                                params.plat_certs_len);
1170        if (IS_ERR(plat_certs)) {
1171                ret = PTR_ERR(plat_certs);
1172                goto e_free_pdh;
1173        }
1174
1175        amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1176                                params.amd_certs_len);
1177        if (IS_ERR(amd_certs)) {
1178                ret = PTR_ERR(amd_certs);
1179                goto e_free_plat_cert;
1180        }
1181
1182        /* populate the FW SEND_START field with system physical address */
1183        memset(&data, 0, sizeof(data));
1184        data.pdh_cert_address = __psp_pa(pdh_cert);
1185        data.pdh_cert_len = params.pdh_cert_len;
1186        data.plat_certs_address = __psp_pa(plat_certs);
1187        data.plat_certs_len = params.plat_certs_len;
1188        data.amd_certs_address = __psp_pa(amd_certs);
1189        data.amd_certs_len = params.amd_certs_len;
1190        data.session_address = __psp_pa(session_data);
1191        data.session_len = params.session_len;
1192        data.handle = sev->handle;
1193
1194        ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1195
1196        if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1197                        session_data, params.session_len)) {
1198                ret = -EFAULT;
1199                goto e_free_amd_cert;
1200        }
1201
1202        params.policy = data.policy;
1203        params.session_len = data.session_len;
1204        if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1205                                sizeof(struct kvm_sev_send_start)))
1206                ret = -EFAULT;
1207
1208e_free_amd_cert:
1209        kfree(amd_certs);
1210e_free_plat_cert:
1211        kfree(plat_certs);
1212e_free_pdh:
1213        kfree(pdh_cert);
1214e_free_session:
1215        kfree(session_data);
1216        return ret;
1217}
1218
1219/* Userspace wants to query either header or trans length. */
1220static int
1221__sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1222                                     struct kvm_sev_send_update_data *params)
1223{
1224        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1225        struct sev_data_send_update_data data;
1226        int ret;
1227
1228        memset(&data, 0, sizeof(data));
1229        data.handle = sev->handle;
1230        ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1231
1232        params->hdr_len = data.hdr_len;
1233        params->trans_len = data.trans_len;
1234
1235        if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1236                         sizeof(struct kvm_sev_send_update_data)))
1237                ret = -EFAULT;
1238
1239        return ret;
1240}
1241
1242static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1243{
1244        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1245        struct sev_data_send_update_data data;
1246        struct kvm_sev_send_update_data params;
1247        void *hdr, *trans_data;
1248        struct page **guest_page;
1249        unsigned long n;
1250        int ret, offset;
1251
1252        if (!sev_guest(kvm))
1253                return -ENOTTY;
1254
1255        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1256                        sizeof(struct kvm_sev_send_update_data)))
1257                return -EFAULT;
1258
1259        /* userspace wants to query either header or trans length */
1260        if (!params.trans_len || !params.hdr_len)
1261                return __sev_send_update_data_query_lengths(kvm, argp, &params);
1262
1263        if (!params.trans_uaddr || !params.guest_uaddr ||
1264            !params.guest_len || !params.hdr_uaddr)
1265                return -EINVAL;
1266
1267        /* Check if we are crossing the page boundary */
1268        offset = params.guest_uaddr & (PAGE_SIZE - 1);
1269        if ((params.guest_len + offset > PAGE_SIZE))
1270                return -EINVAL;
1271
1272        /* Pin guest memory */
1273        guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1274                                    PAGE_SIZE, &n, 0);
1275        if (IS_ERR(guest_page))
1276                return PTR_ERR(guest_page);
1277
1278        /* allocate memory for header and transport buffer */
1279        ret = -ENOMEM;
1280        hdr = kmalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1281        if (!hdr)
1282                goto e_unpin;
1283
1284        trans_data = kmalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1285        if (!trans_data)
1286                goto e_free_hdr;
1287
1288        memset(&data, 0, sizeof(data));
1289        data.hdr_address = __psp_pa(hdr);
1290        data.hdr_len = params.hdr_len;
1291        data.trans_address = __psp_pa(trans_data);
1292        data.trans_len = params.trans_len;
1293
1294        /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1295        data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1296        data.guest_address |= sev_me_mask;
1297        data.guest_len = params.guest_len;
1298        data.handle = sev->handle;
1299
1300        ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1301
1302        if (ret)
1303                goto e_free_trans_data;
1304
1305        /* copy transport buffer to user space */
1306        if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1307                         trans_data, params.trans_len)) {
1308                ret = -EFAULT;
1309                goto e_free_trans_data;
1310        }
1311
1312        /* Copy packet header to userspace. */
1313        if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1314                         params.hdr_len))
1315                ret = -EFAULT;
1316
1317e_free_trans_data:
1318        kfree(trans_data);
1319e_free_hdr:
1320        kfree(hdr);
1321e_unpin:
1322        sev_unpin_memory(kvm, guest_page, n);
1323
1324        return ret;
1325}
1326
1327static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1328{
1329        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1330        struct sev_data_send_finish data;
1331
1332        if (!sev_guest(kvm))
1333                return -ENOTTY;
1334
1335        data.handle = sev->handle;
1336        return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1337}
1338
1339static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1340{
1341        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1342        struct sev_data_send_cancel data;
1343
1344        if (!sev_guest(kvm))
1345                return -ENOTTY;
1346
1347        data.handle = sev->handle;
1348        return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1349}
1350
1351static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1352{
1353        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1354        struct sev_data_receive_start start;
1355        struct kvm_sev_receive_start params;
1356        int *error = &argp->error;
1357        void *session_data;
1358        void *pdh_data;
1359        int ret;
1360
1361        if (!sev_guest(kvm))
1362                return -ENOTTY;
1363
1364        /* Get parameter from the userspace */
1365        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1366                        sizeof(struct kvm_sev_receive_start)))
1367                return -EFAULT;
1368
1369        /* some sanity checks */
1370        if (!params.pdh_uaddr || !params.pdh_len ||
1371            !params.session_uaddr || !params.session_len)
1372                return -EINVAL;
1373
1374        pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1375        if (IS_ERR(pdh_data))
1376                return PTR_ERR(pdh_data);
1377
1378        session_data = psp_copy_user_blob(params.session_uaddr,
1379                        params.session_len);
1380        if (IS_ERR(session_data)) {
1381                ret = PTR_ERR(session_data);
1382                goto e_free_pdh;
1383        }
1384
1385        memset(&start, 0, sizeof(start));
1386        start.handle = params.handle;
1387        start.policy = params.policy;
1388        start.pdh_cert_address = __psp_pa(pdh_data);
1389        start.pdh_cert_len = params.pdh_len;
1390        start.session_address = __psp_pa(session_data);
1391        start.session_len = params.session_len;
1392
1393        /* create memory encryption context */
1394        ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1395                                error);
1396        if (ret)
1397                goto e_free_session;
1398
1399        /* Bind ASID to this guest */
1400        ret = sev_bind_asid(kvm, start.handle, error);
1401        if (ret)
1402                goto e_free_session;
1403
1404        params.handle = start.handle;
1405        if (copy_to_user((void __user *)(uintptr_t)argp->data,
1406                         &params, sizeof(struct kvm_sev_receive_start))) {
1407                ret = -EFAULT;
1408                sev_unbind_asid(kvm, start.handle);
1409                goto e_free_session;
1410        }
1411
1412        sev->handle = start.handle;
1413        sev->fd = argp->sev_fd;
1414
1415e_free_session:
1416        kfree(session_data);
1417e_free_pdh:
1418        kfree(pdh_data);
1419
1420        return ret;
1421}
1422
1423static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1424{
1425        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1426        struct kvm_sev_receive_update_data params;
1427        struct sev_data_receive_update_data data;
1428        void *hdr = NULL, *trans = NULL;
1429        struct page **guest_page;
1430        unsigned long n;
1431        int ret, offset;
1432
1433        if (!sev_guest(kvm))
1434                return -EINVAL;
1435
1436        if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1437                        sizeof(struct kvm_sev_receive_update_data)))
1438                return -EFAULT;
1439
1440        if (!params.hdr_uaddr || !params.hdr_len ||
1441            !params.guest_uaddr || !params.guest_len ||
1442            !params.trans_uaddr || !params.trans_len)
1443                return -EINVAL;
1444
1445        /* Check if we are crossing the page boundary */
1446        offset = params.guest_uaddr & (PAGE_SIZE - 1);
1447        if ((params.guest_len + offset > PAGE_SIZE))
1448                return -EINVAL;
1449
1450        hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1451        if (IS_ERR(hdr))
1452                return PTR_ERR(hdr);
1453
1454        trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1455        if (IS_ERR(trans)) {
1456                ret = PTR_ERR(trans);
1457                goto e_free_hdr;
1458        }
1459
1460        memset(&data, 0, sizeof(data));
1461        data.hdr_address = __psp_pa(hdr);
1462        data.hdr_len = params.hdr_len;
1463        data.trans_address = __psp_pa(trans);
1464        data.trans_len = params.trans_len;
1465
1466        /* Pin guest memory */
1467        guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1468                                    PAGE_SIZE, &n, 0);
1469        if (IS_ERR(guest_page)) {
1470                ret = PTR_ERR(guest_page);
1471                goto e_free_trans;
1472        }
1473
1474        /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1475        data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1476        data.guest_address |= sev_me_mask;
1477        data.guest_len = params.guest_len;
1478        data.handle = sev->handle;
1479
1480        ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1481                                &argp->error);
1482
1483        sev_unpin_memory(kvm, guest_page, n);
1484
1485e_free_trans:
1486        kfree(trans);
1487e_free_hdr:
1488        kfree(hdr);
1489
1490        return ret;
1491}
1492
1493static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1494{
1495        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1496        struct sev_data_receive_finish data;
1497
1498        if (!sev_guest(kvm))
1499                return -ENOTTY;
1500
1501        data.handle = sev->handle;
1502        return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1503}
1504
1505int svm_mem_enc_op(struct kvm *kvm, void __user *argp)
1506{
1507        struct kvm_sev_cmd sev_cmd;
1508        int r;
1509
1510        if (!sev_enabled)
1511                return -ENOTTY;
1512
1513        if (!argp)
1514                return 0;
1515
1516        if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1517                return -EFAULT;
1518
1519        mutex_lock(&kvm->lock);
1520
1521        /* enc_context_owner handles all memory enc operations */
1522        if (is_mirroring_enc_context(kvm)) {
1523                r = -EINVAL;
1524                goto out;
1525        }
1526
1527        switch (sev_cmd.id) {
1528        case KVM_SEV_ES_INIT:
1529                if (!sev_es_enabled) {
1530                        r = -ENOTTY;
1531                        goto out;
1532                }
1533                fallthrough;
1534        case KVM_SEV_INIT:
1535                r = sev_guest_init(kvm, &sev_cmd);
1536                break;
1537        case KVM_SEV_LAUNCH_START:
1538                r = sev_launch_start(kvm, &sev_cmd);
1539                break;
1540        case KVM_SEV_LAUNCH_UPDATE_DATA:
1541                r = sev_launch_update_data(kvm, &sev_cmd);
1542                break;
1543        case KVM_SEV_LAUNCH_UPDATE_VMSA:
1544                r = sev_launch_update_vmsa(kvm, &sev_cmd);
1545                break;
1546        case KVM_SEV_LAUNCH_MEASURE:
1547                r = sev_launch_measure(kvm, &sev_cmd);
1548                break;
1549        case KVM_SEV_LAUNCH_FINISH:
1550                r = sev_launch_finish(kvm, &sev_cmd);
1551                break;
1552        case KVM_SEV_GUEST_STATUS:
1553                r = sev_guest_status(kvm, &sev_cmd);
1554                break;
1555        case KVM_SEV_DBG_DECRYPT:
1556                r = sev_dbg_crypt(kvm, &sev_cmd, true);
1557                break;
1558        case KVM_SEV_DBG_ENCRYPT:
1559                r = sev_dbg_crypt(kvm, &sev_cmd, false);
1560                break;
1561        case KVM_SEV_LAUNCH_SECRET:
1562                r = sev_launch_secret(kvm, &sev_cmd);
1563                break;
1564        case KVM_SEV_GET_ATTESTATION_REPORT:
1565                r = sev_get_attestation_report(kvm, &sev_cmd);
1566                break;
1567        case KVM_SEV_SEND_START:
1568                r = sev_send_start(kvm, &sev_cmd);
1569                break;
1570        case KVM_SEV_SEND_UPDATE_DATA:
1571                r = sev_send_update_data(kvm, &sev_cmd);
1572                break;
1573        case KVM_SEV_SEND_FINISH:
1574                r = sev_send_finish(kvm, &sev_cmd);
1575                break;
1576        case KVM_SEV_SEND_CANCEL:
1577                r = sev_send_cancel(kvm, &sev_cmd);
1578                break;
1579        case KVM_SEV_RECEIVE_START:
1580                r = sev_receive_start(kvm, &sev_cmd);
1581                break;
1582        case KVM_SEV_RECEIVE_UPDATE_DATA:
1583                r = sev_receive_update_data(kvm, &sev_cmd);
1584                break;
1585        case KVM_SEV_RECEIVE_FINISH:
1586                r = sev_receive_finish(kvm, &sev_cmd);
1587                break;
1588        default:
1589                r = -EINVAL;
1590                goto out;
1591        }
1592
1593        if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1594                r = -EFAULT;
1595
1596out:
1597        mutex_unlock(&kvm->lock);
1598        return r;
1599}
1600
1601int svm_register_enc_region(struct kvm *kvm,
1602                            struct kvm_enc_region *range)
1603{
1604        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1605        struct enc_region *region;
1606        int ret = 0;
1607
1608        if (!sev_guest(kvm))
1609                return -ENOTTY;
1610
1611        /* If kvm is mirroring encryption context it isn't responsible for it */
1612        if (is_mirroring_enc_context(kvm))
1613                return -EINVAL;
1614
1615        if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1616                return -EINVAL;
1617
1618        region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1619        if (!region)
1620                return -ENOMEM;
1621
1622        mutex_lock(&kvm->lock);
1623        region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1624        if (IS_ERR(region->pages)) {
1625                ret = PTR_ERR(region->pages);
1626                mutex_unlock(&kvm->lock);
1627                goto e_free;
1628        }
1629
1630        region->uaddr = range->addr;
1631        region->size = range->size;
1632
1633        list_add_tail(&region->list, &sev->regions_list);
1634        mutex_unlock(&kvm->lock);
1635
1636        /*
1637         * The guest may change the memory encryption attribute from C=0 -> C=1
1638         * or vice versa for this memory range. Lets make sure caches are
1639         * flushed to ensure that guest data gets written into memory with
1640         * correct C-bit.
1641         */
1642        sev_clflush_pages(region->pages, region->npages);
1643
1644        return ret;
1645
1646e_free:
1647        kfree(region);
1648        return ret;
1649}
1650
1651static struct enc_region *
1652find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
1653{
1654        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1655        struct list_head *head = &sev->regions_list;
1656        struct enc_region *i;
1657
1658        list_for_each_entry(i, head, list) {
1659                if (i->uaddr == range->addr &&
1660                    i->size == range->size)
1661                        return i;
1662        }
1663
1664        return NULL;
1665}
1666
1667static void __unregister_enc_region_locked(struct kvm *kvm,
1668                                           struct enc_region *region)
1669{
1670        sev_unpin_memory(kvm, region->pages, region->npages);
1671        list_del(&region->list);
1672        kfree(region);
1673}
1674
1675int svm_unregister_enc_region(struct kvm *kvm,
1676                              struct kvm_enc_region *range)
1677{
1678        struct enc_region *region;
1679        int ret;
1680
1681        /* If kvm is mirroring encryption context it isn't responsible for it */
1682        if (is_mirroring_enc_context(kvm))
1683                return -EINVAL;
1684
1685        mutex_lock(&kvm->lock);
1686
1687        if (!sev_guest(kvm)) {
1688                ret = -ENOTTY;
1689                goto failed;
1690        }
1691
1692        region = find_enc_region(kvm, range);
1693        if (!region) {
1694                ret = -EINVAL;
1695                goto failed;
1696        }
1697
1698        /*
1699         * Ensure that all guest tagged cache entries are flushed before
1700         * releasing the pages back to the system for use. CLFLUSH will
1701         * not do this, so issue a WBINVD.
1702         */
1703        wbinvd_on_all_cpus();
1704
1705        __unregister_enc_region_locked(kvm, region);
1706
1707        mutex_unlock(&kvm->lock);
1708        return 0;
1709
1710failed:
1711        mutex_unlock(&kvm->lock);
1712        return ret;
1713}
1714
1715int svm_vm_copy_asid_from(struct kvm *kvm, unsigned int source_fd)
1716{
1717        struct file *source_kvm_file;
1718        struct kvm *source_kvm;
1719        struct kvm_sev_info *mirror_sev;
1720        unsigned int asid;
1721        int ret;
1722
1723        source_kvm_file = fget(source_fd);
1724        if (!file_is_kvm(source_kvm_file)) {
1725                ret = -EBADF;
1726                goto e_source_put;
1727        }
1728
1729        source_kvm = source_kvm_file->private_data;
1730        mutex_lock(&source_kvm->lock);
1731
1732        if (!sev_guest(source_kvm)) {
1733                ret = -EINVAL;
1734                goto e_source_unlock;
1735        }
1736
1737        /* Mirrors of mirrors should work, but let's not get silly */
1738        if (is_mirroring_enc_context(source_kvm) || source_kvm == kvm) {
1739                ret = -EINVAL;
1740                goto e_source_unlock;
1741        }
1742
1743        asid = to_kvm_svm(source_kvm)->sev_info.asid;
1744
1745        /*
1746         * The mirror kvm holds an enc_context_owner ref so its asid can't
1747         * disappear until we're done with it
1748         */
1749        kvm_get_kvm(source_kvm);
1750
1751        fput(source_kvm_file);
1752        mutex_unlock(&source_kvm->lock);
1753        mutex_lock(&kvm->lock);
1754
1755        if (sev_guest(kvm)) {
1756                ret = -EINVAL;
1757                goto e_mirror_unlock;
1758        }
1759
1760        /* Set enc_context_owner and copy its encryption context over */
1761        mirror_sev = &to_kvm_svm(kvm)->sev_info;
1762        mirror_sev->enc_context_owner = source_kvm;
1763        mirror_sev->asid = asid;
1764        mirror_sev->active = true;
1765
1766        mutex_unlock(&kvm->lock);
1767        return 0;
1768
1769e_mirror_unlock:
1770        mutex_unlock(&kvm->lock);
1771        kvm_put_kvm(source_kvm);
1772        return ret;
1773e_source_unlock:
1774        mutex_unlock(&source_kvm->lock);
1775e_source_put:
1776        if (source_kvm_file)
1777                fput(source_kvm_file);
1778        return ret;
1779}
1780
1781void sev_vm_destroy(struct kvm *kvm)
1782{
1783        struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1784        struct list_head *head = &sev->regions_list;
1785        struct list_head *pos, *q;
1786
1787        if (!sev_guest(kvm))
1788                return;
1789
1790        /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
1791        if (is_mirroring_enc_context(kvm)) {
1792                kvm_put_kvm(sev->enc_context_owner);
1793                return;
1794        }
1795
1796        mutex_lock(&kvm->lock);
1797
1798        /*
1799         * Ensure that all guest tagged cache entries are flushed before
1800         * releasing the pages back to the system for use. CLFLUSH will
1801         * not do this, so issue a WBINVD.
1802         */
1803        wbinvd_on_all_cpus();
1804
1805        /*
1806         * if userspace was terminated before unregistering the memory regions
1807         * then lets unpin all the registered memory.
1808         */
1809        if (!list_empty(head)) {
1810                list_for_each_safe(pos, q, head) {
1811                        __unregister_enc_region_locked(kvm,
1812                                list_entry(pos, struct enc_region, list));
1813                        cond_resched();
1814                }
1815        }
1816
1817        mutex_unlock(&kvm->lock);
1818
1819        sev_unbind_asid(kvm, sev->handle);
1820        sev_asid_free(sev);
1821}
1822
1823void __init sev_set_cpu_caps(void)
1824{
1825        if (!sev_enabled)
1826                kvm_cpu_cap_clear(X86_FEATURE_SEV);
1827        if (!sev_es_enabled)
1828                kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
1829}
1830
1831void __init sev_hardware_setup(void)
1832{
1833#ifdef CONFIG_KVM_AMD_SEV
1834        unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
1835        bool sev_es_supported = false;
1836        bool sev_supported = false;
1837
1838        if (!sev_enabled || !npt_enabled)
1839                goto out;
1840
1841        /* Does the CPU support SEV? */
1842        if (!boot_cpu_has(X86_FEATURE_SEV))
1843                goto out;
1844
1845        /* Retrieve SEV CPUID information */
1846        cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
1847
1848        /* Set encryption bit location for SEV-ES guests */
1849        sev_enc_bit = ebx & 0x3f;
1850
1851        /* Maximum number of encrypted guests supported simultaneously */
1852        max_sev_asid = ecx;
1853        if (!max_sev_asid)
1854                goto out;
1855
1856        /* Minimum ASID value that should be used for SEV guest */
1857        min_sev_asid = edx;
1858        sev_me_mask = 1UL << (ebx & 0x3f);
1859
1860        /*
1861         * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
1862         * even though it's never used, so that the bitmap is indexed by the
1863         * actual ASID.
1864         */
1865        nr_asids = max_sev_asid + 1;
1866        sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
1867        if (!sev_asid_bitmap)
1868                goto out;
1869
1870        sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
1871        if (!sev_reclaim_asid_bitmap) {
1872                bitmap_free(sev_asid_bitmap);
1873                sev_asid_bitmap = NULL;
1874                goto out;
1875        }
1876
1877        sev_asid_count = max_sev_asid - min_sev_asid + 1;
1878        if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
1879                goto out;
1880
1881        pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
1882        sev_supported = true;
1883
1884        /* SEV-ES support requested? */
1885        if (!sev_es_enabled)
1886                goto out;
1887
1888        /* Does the CPU support SEV-ES? */
1889        if (!boot_cpu_has(X86_FEATURE_SEV_ES))
1890                goto out;
1891
1892        /* Has the system been allocated ASIDs for SEV-ES? */
1893        if (min_sev_asid == 1)
1894                goto out;
1895
1896        sev_es_asid_count = min_sev_asid - 1;
1897        if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
1898                goto out;
1899
1900        pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
1901        sev_es_supported = true;
1902
1903out:
1904        sev_enabled = sev_supported;
1905        sev_es_enabled = sev_es_supported;
1906#endif
1907}
1908
1909void sev_hardware_teardown(void)
1910{
1911        if (!sev_enabled)
1912                return;
1913
1914        /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
1915        sev_flush_asids(1, max_sev_asid);
1916
1917        bitmap_free(sev_asid_bitmap);
1918        bitmap_free(sev_reclaim_asid_bitmap);
1919
1920        misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
1921        misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
1922}
1923
1924int sev_cpu_init(struct svm_cpu_data *sd)
1925{
1926        if (!sev_enabled)
1927                return 0;
1928
1929        sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
1930        if (!sd->sev_vmcbs)
1931                return -ENOMEM;
1932
1933        return 0;
1934}
1935
1936/*
1937 * Pages used by hardware to hold guest encrypted state must be flushed before
1938 * returning them to the system.
1939 */
1940static void sev_flush_guest_memory(struct vcpu_svm *svm, void *va,
1941                                   unsigned long len)
1942{
1943        /*
1944         * If hardware enforced cache coherency for encrypted mappings of the
1945         * same physical page is supported, nothing to do.
1946         */
1947        if (boot_cpu_has(X86_FEATURE_SME_COHERENT))
1948                return;
1949
1950        /*
1951         * If the VM Page Flush MSR is supported, use it to flush the page
1952         * (using the page virtual address and the guest ASID).
1953         */
1954        if (boot_cpu_has(X86_FEATURE_VM_PAGE_FLUSH)) {
1955                struct kvm_sev_info *sev;
1956                unsigned long va_start;
1957                u64 start, stop;
1958
1959                /* Align start and stop to page boundaries. */
1960                va_start = (unsigned long)va;
1961                start = (u64)va_start & PAGE_MASK;
1962                stop = PAGE_ALIGN((u64)va_start + len);
1963
1964                if (start < stop) {
1965                        sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
1966
1967                        while (start < stop) {
1968                                wrmsrl(MSR_AMD64_VM_PAGE_FLUSH,
1969                                       start | sev->asid);
1970
1971                                start += PAGE_SIZE;
1972                        }
1973
1974                        return;
1975                }
1976
1977                WARN(1, "Address overflow, using WBINVD\n");
1978        }
1979
1980        /*
1981         * Hardware should always have one of the above features,
1982         * but if not, use WBINVD and issue a warning.
1983         */
1984        WARN_ONCE(1, "Using WBINVD to flush guest memory\n");
1985        wbinvd_on_all_cpus();
1986}
1987
1988void sev_free_vcpu(struct kvm_vcpu *vcpu)
1989{
1990        struct vcpu_svm *svm;
1991
1992        if (!sev_es_guest(vcpu->kvm))
1993                return;
1994
1995        svm = to_svm(vcpu);
1996
1997        if (vcpu->arch.guest_state_protected)
1998                sev_flush_guest_memory(svm, svm->vmsa, PAGE_SIZE);
1999        __free_page(virt_to_page(svm->vmsa));
2000
2001        if (svm->ghcb_sa_free)
2002                kfree(svm->ghcb_sa);
2003}
2004
2005static void dump_ghcb(struct vcpu_svm *svm)
2006{
2007        struct ghcb *ghcb = svm->ghcb;
2008        unsigned int nbits;
2009
2010        /* Re-use the dump_invalid_vmcb module parameter */
2011        if (!dump_invalid_vmcb) {
2012                pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2013                return;
2014        }
2015
2016        nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2017
2018        pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2019        pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2020               ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2021        pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2022               ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2023        pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2024               ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2025        pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2026               ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2027        pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2028}
2029
2030static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2031{
2032        struct kvm_vcpu *vcpu = &svm->vcpu;
2033        struct ghcb *ghcb = svm->ghcb;
2034
2035        /*
2036         * The GHCB protocol so far allows for the following data
2037         * to be returned:
2038         *   GPRs RAX, RBX, RCX, RDX
2039         *
2040         * Copy their values, even if they may not have been written during the
2041         * VM-Exit.  It's the guest's responsibility to not consume random data.
2042         */
2043        ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2044        ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2045        ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2046        ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2047}
2048
2049static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2050{
2051        struct vmcb_control_area *control = &svm->vmcb->control;
2052        struct kvm_vcpu *vcpu = &svm->vcpu;
2053        struct ghcb *ghcb = svm->ghcb;
2054        u64 exit_code;
2055
2056        /*
2057         * The GHCB protocol so far allows for the following data
2058         * to be supplied:
2059         *   GPRs RAX, RBX, RCX, RDX
2060         *   XCR0
2061         *   CPL
2062         *
2063         * VMMCALL allows the guest to provide extra registers. KVM also
2064         * expects RSI for hypercalls, so include that, too.
2065         *
2066         * Copy their values to the appropriate location if supplied.
2067         */
2068        memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2069
2070        vcpu->arch.regs[VCPU_REGS_RAX] = ghcb_get_rax_if_valid(ghcb);
2071        vcpu->arch.regs[VCPU_REGS_RBX] = ghcb_get_rbx_if_valid(ghcb);
2072        vcpu->arch.regs[VCPU_REGS_RCX] = ghcb_get_rcx_if_valid(ghcb);
2073        vcpu->arch.regs[VCPU_REGS_RDX] = ghcb_get_rdx_if_valid(ghcb);
2074        vcpu->arch.regs[VCPU_REGS_RSI] = ghcb_get_rsi_if_valid(ghcb);
2075
2076        svm->vmcb->save.cpl = ghcb_get_cpl_if_valid(ghcb);
2077
2078        if (ghcb_xcr0_is_valid(ghcb)) {
2079                vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2080                kvm_update_cpuid_runtime(vcpu);
2081        }
2082
2083        /* Copy the GHCB exit information into the VMCB fields */
2084        exit_code = ghcb_get_sw_exit_code(ghcb);
2085        control->exit_code = lower_32_bits(exit_code);
2086        control->exit_code_hi = upper_32_bits(exit_code);
2087        control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2088        control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2089
2090        /* Clear the valid entries fields */
2091        memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2092}
2093
2094static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2095{
2096        struct kvm_vcpu *vcpu;
2097        struct ghcb *ghcb;
2098        u64 exit_code = 0;
2099
2100        ghcb = svm->ghcb;
2101
2102        /* Only GHCB Usage code 0 is supported */
2103        if (ghcb->ghcb_usage)
2104                goto vmgexit_err;
2105
2106        /*
2107         * Retrieve the exit code now even though is may not be marked valid
2108         * as it could help with debugging.
2109         */
2110        exit_code = ghcb_get_sw_exit_code(ghcb);
2111
2112        if (!ghcb_sw_exit_code_is_valid(ghcb) ||
2113            !ghcb_sw_exit_info_1_is_valid(ghcb) ||
2114            !ghcb_sw_exit_info_2_is_valid(ghcb))
2115                goto vmgexit_err;
2116
2117        switch (ghcb_get_sw_exit_code(ghcb)) {
2118        case SVM_EXIT_READ_DR7:
2119                break;
2120        case SVM_EXIT_WRITE_DR7:
2121                if (!ghcb_rax_is_valid(ghcb))
2122                        goto vmgexit_err;
2123                break;
2124        case SVM_EXIT_RDTSC:
2125                break;
2126        case SVM_EXIT_RDPMC:
2127                if (!ghcb_rcx_is_valid(ghcb))
2128                        goto vmgexit_err;
2129                break;
2130        case SVM_EXIT_CPUID:
2131                if (!ghcb_rax_is_valid(ghcb) ||
2132                    !ghcb_rcx_is_valid(ghcb))
2133                        goto vmgexit_err;
2134                if (ghcb_get_rax(ghcb) == 0xd)
2135                        if (!ghcb_xcr0_is_valid(ghcb))
2136                                goto vmgexit_err;
2137                break;
2138        case SVM_EXIT_INVD:
2139                break;
2140        case SVM_EXIT_IOIO:
2141                if (ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_STR_MASK) {
2142                        if (!ghcb_sw_scratch_is_valid(ghcb))
2143                                goto vmgexit_err;
2144                } else {
2145                        if (!(ghcb_get_sw_exit_info_1(ghcb) & SVM_IOIO_TYPE_MASK))
2146                                if (!ghcb_rax_is_valid(ghcb))
2147                                        goto vmgexit_err;
2148                }
2149                break;
2150        case SVM_EXIT_MSR:
2151                if (!ghcb_rcx_is_valid(ghcb))
2152                        goto vmgexit_err;
2153                if (ghcb_get_sw_exit_info_1(ghcb)) {
2154                        if (!ghcb_rax_is_valid(ghcb) ||
2155                            !ghcb_rdx_is_valid(ghcb))
2156                                goto vmgexit_err;
2157                }
2158                break;
2159        case SVM_EXIT_VMMCALL:
2160                if (!ghcb_rax_is_valid(ghcb) ||
2161                    !ghcb_cpl_is_valid(ghcb))
2162                        goto vmgexit_err;
2163                break;
2164        case SVM_EXIT_RDTSCP:
2165                break;
2166        case SVM_EXIT_WBINVD:
2167                break;
2168        case SVM_EXIT_MONITOR:
2169                if (!ghcb_rax_is_valid(ghcb) ||
2170                    !ghcb_rcx_is_valid(ghcb) ||
2171                    !ghcb_rdx_is_valid(ghcb))
2172                        goto vmgexit_err;
2173                break;
2174        case SVM_EXIT_MWAIT:
2175                if (!ghcb_rax_is_valid(ghcb) ||
2176                    !ghcb_rcx_is_valid(ghcb))
2177                        goto vmgexit_err;
2178                break;
2179        case SVM_VMGEXIT_MMIO_READ:
2180        case SVM_VMGEXIT_MMIO_WRITE:
2181                if (!ghcb_sw_scratch_is_valid(ghcb))
2182                        goto vmgexit_err;
2183                break;
2184        case SVM_VMGEXIT_NMI_COMPLETE:
2185        case SVM_VMGEXIT_AP_HLT_LOOP:
2186        case SVM_VMGEXIT_AP_JUMP_TABLE:
2187        case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2188                break;
2189        default:
2190                goto vmgexit_err;
2191        }
2192
2193        return 0;
2194
2195vmgexit_err:
2196        vcpu = &svm->vcpu;
2197
2198        if (ghcb->ghcb_usage) {
2199                vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2200                            ghcb->ghcb_usage);
2201        } else {
2202                vcpu_unimpl(vcpu, "vmgexit: exit reason %#llx is not valid\n",
2203                            exit_code);
2204                dump_ghcb(svm);
2205        }
2206
2207        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2208        vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
2209        vcpu->run->internal.ndata = 2;
2210        vcpu->run->internal.data[0] = exit_code;
2211        vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
2212
2213        return -EINVAL;
2214}
2215
2216void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2217{
2218        if (!svm->ghcb)
2219                return;
2220
2221        if (svm->ghcb_sa_free) {
2222                /*
2223                 * The scratch area lives outside the GHCB, so there is a
2224                 * buffer that, depending on the operation performed, may
2225                 * need to be synced, then freed.
2226                 */
2227                if (svm->ghcb_sa_sync) {
2228                        kvm_write_guest(svm->vcpu.kvm,
2229                                        ghcb_get_sw_scratch(svm->ghcb),
2230                                        svm->ghcb_sa, svm->ghcb_sa_len);
2231                        svm->ghcb_sa_sync = false;
2232                }
2233
2234                kfree(svm->ghcb_sa);
2235                svm->ghcb_sa = NULL;
2236                svm->ghcb_sa_free = false;
2237        }
2238
2239        trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->ghcb);
2240
2241        sev_es_sync_to_ghcb(svm);
2242
2243        kvm_vcpu_unmap(&svm->vcpu, &svm->ghcb_map, true);
2244        svm->ghcb = NULL;
2245}
2246
2247void pre_sev_run(struct vcpu_svm *svm, int cpu)
2248{
2249        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2250        int asid = sev_get_asid(svm->vcpu.kvm);
2251
2252        /* Assign the asid allocated with this SEV guest */
2253        svm->asid = asid;
2254
2255        /*
2256         * Flush guest TLB:
2257         *
2258         * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2259         * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2260         */
2261        if (sd->sev_vmcbs[asid] == svm->vmcb &&
2262            svm->vcpu.arch.last_vmentry_cpu == cpu)
2263                return;
2264
2265        sd->sev_vmcbs[asid] = svm->vmcb;
2266        svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2267        vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2268}
2269
2270#define GHCB_SCRATCH_AREA_LIMIT         (16ULL * PAGE_SIZE)
2271static bool setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2272{
2273        struct vmcb_control_area *control = &svm->vmcb->control;
2274        struct ghcb *ghcb = svm->ghcb;
2275        u64 ghcb_scratch_beg, ghcb_scratch_end;
2276        u64 scratch_gpa_beg, scratch_gpa_end;
2277        void *scratch_va;
2278
2279        scratch_gpa_beg = ghcb_get_sw_scratch(ghcb);
2280        if (!scratch_gpa_beg) {
2281                pr_err("vmgexit: scratch gpa not provided\n");
2282                return false;
2283        }
2284
2285        scratch_gpa_end = scratch_gpa_beg + len;
2286        if (scratch_gpa_end < scratch_gpa_beg) {
2287                pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2288                       len, scratch_gpa_beg);
2289                return false;
2290        }
2291
2292        if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2293                /* Scratch area begins within GHCB */
2294                ghcb_scratch_beg = control->ghcb_gpa +
2295                                   offsetof(struct ghcb, shared_buffer);
2296                ghcb_scratch_end = control->ghcb_gpa +
2297                                   offsetof(struct ghcb, reserved_1);
2298
2299                /*
2300                 * If the scratch area begins within the GHCB, it must be
2301                 * completely contained in the GHCB shared buffer area.
2302                 */
2303                if (scratch_gpa_beg < ghcb_scratch_beg ||
2304                    scratch_gpa_end > ghcb_scratch_end) {
2305                        pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2306                               scratch_gpa_beg, scratch_gpa_end);
2307                        return false;
2308                }
2309
2310                scratch_va = (void *)svm->ghcb;
2311                scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2312        } else {
2313                /*
2314                 * The guest memory must be read into a kernel buffer, so
2315                 * limit the size
2316                 */
2317                if (len > GHCB_SCRATCH_AREA_LIMIT) {
2318                        pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2319                               len, GHCB_SCRATCH_AREA_LIMIT);
2320                        return false;
2321                }
2322                scratch_va = kzalloc(len, GFP_KERNEL_ACCOUNT);
2323                if (!scratch_va)
2324                        return false;
2325
2326                if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2327                        /* Unable to copy scratch area from guest */
2328                        pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2329
2330                        kfree(scratch_va);
2331                        return false;
2332                }
2333
2334                /*
2335                 * The scratch area is outside the GHCB. The operation will
2336                 * dictate whether the buffer needs to be synced before running
2337                 * the vCPU next time (i.e. a read was requested so the data
2338                 * must be written back to the guest memory).
2339                 */
2340                svm->ghcb_sa_sync = sync;
2341                svm->ghcb_sa_free = true;
2342        }
2343
2344        svm->ghcb_sa = scratch_va;
2345        svm->ghcb_sa_len = len;
2346
2347        return true;
2348}
2349
2350static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2351                              unsigned int pos)
2352{
2353        svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2354        svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2355}
2356
2357static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2358{
2359        return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2360}
2361
2362static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2363{
2364        svm->vmcb->control.ghcb_gpa = value;
2365}
2366
2367static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2368{
2369        struct vmcb_control_area *control = &svm->vmcb->control;
2370        struct kvm_vcpu *vcpu = &svm->vcpu;
2371        u64 ghcb_info;
2372        int ret = 1;
2373
2374        ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2375
2376        trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2377                                             control->ghcb_gpa);
2378
2379        switch (ghcb_info) {
2380        case GHCB_MSR_SEV_INFO_REQ:
2381                set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2382                                                    GHCB_VERSION_MIN,
2383                                                    sev_enc_bit));
2384                break;
2385        case GHCB_MSR_CPUID_REQ: {
2386                u64 cpuid_fn, cpuid_reg, cpuid_value;
2387
2388                cpuid_fn = get_ghcb_msr_bits(svm,
2389                                             GHCB_MSR_CPUID_FUNC_MASK,
2390                                             GHCB_MSR_CPUID_FUNC_POS);
2391
2392                /* Initialize the registers needed by the CPUID intercept */
2393                vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2394                vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2395
2396                ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2397                if (!ret) {
2398                        ret = -EINVAL;
2399                        break;
2400                }
2401
2402                cpuid_reg = get_ghcb_msr_bits(svm,
2403                                              GHCB_MSR_CPUID_REG_MASK,
2404                                              GHCB_MSR_CPUID_REG_POS);
2405                if (cpuid_reg == 0)
2406                        cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2407                else if (cpuid_reg == 1)
2408                        cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2409                else if (cpuid_reg == 2)
2410                        cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2411                else
2412                        cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2413
2414                set_ghcb_msr_bits(svm, cpuid_value,
2415                                  GHCB_MSR_CPUID_VALUE_MASK,
2416                                  GHCB_MSR_CPUID_VALUE_POS);
2417
2418                set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2419                                  GHCB_MSR_INFO_MASK,
2420                                  GHCB_MSR_INFO_POS);
2421                break;
2422        }
2423        case GHCB_MSR_TERM_REQ: {
2424                u64 reason_set, reason_code;
2425
2426                reason_set = get_ghcb_msr_bits(svm,
2427                                               GHCB_MSR_TERM_REASON_SET_MASK,
2428                                               GHCB_MSR_TERM_REASON_SET_POS);
2429                reason_code = get_ghcb_msr_bits(svm,
2430                                                GHCB_MSR_TERM_REASON_MASK,
2431                                                GHCB_MSR_TERM_REASON_POS);
2432                pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2433                        reason_set, reason_code);
2434                fallthrough;
2435        }
2436        default:
2437                ret = -EINVAL;
2438        }
2439
2440        trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2441                                            control->ghcb_gpa, ret);
2442
2443        return ret;
2444}
2445
2446int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2447{
2448        struct vcpu_svm *svm = to_svm(vcpu);
2449        struct vmcb_control_area *control = &svm->vmcb->control;
2450        u64 ghcb_gpa, exit_code;
2451        struct ghcb *ghcb;
2452        int ret;
2453
2454        /* Validate the GHCB */
2455        ghcb_gpa = control->ghcb_gpa;
2456        if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2457                return sev_handle_vmgexit_msr_protocol(svm);
2458
2459        if (!ghcb_gpa) {
2460                vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2461                return -EINVAL;
2462        }
2463
2464        if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->ghcb_map)) {
2465                /* Unable to map GHCB from guest */
2466                vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2467                            ghcb_gpa);
2468                return -EINVAL;
2469        }
2470
2471        svm->ghcb = svm->ghcb_map.hva;
2472        ghcb = svm->ghcb_map.hva;
2473
2474        trace_kvm_vmgexit_enter(vcpu->vcpu_id, ghcb);
2475
2476        exit_code = ghcb_get_sw_exit_code(ghcb);
2477
2478        ret = sev_es_validate_vmgexit(svm);
2479        if (ret)
2480                return ret;
2481
2482        sev_es_sync_from_ghcb(svm);
2483        ghcb_set_sw_exit_info_1(ghcb, 0);
2484        ghcb_set_sw_exit_info_2(ghcb, 0);
2485
2486        ret = -EINVAL;
2487        switch (exit_code) {
2488        case SVM_VMGEXIT_MMIO_READ:
2489                if (!setup_vmgexit_scratch(svm, true, control->exit_info_2))
2490                        break;
2491
2492                ret = kvm_sev_es_mmio_read(vcpu,
2493                                           control->exit_info_1,
2494                                           control->exit_info_2,
2495                                           svm->ghcb_sa);
2496                break;
2497        case SVM_VMGEXIT_MMIO_WRITE:
2498                if (!setup_vmgexit_scratch(svm, false, control->exit_info_2))
2499                        break;
2500
2501                ret = kvm_sev_es_mmio_write(vcpu,
2502                                            control->exit_info_1,
2503                                            control->exit_info_2,
2504                                            svm->ghcb_sa);
2505                break;
2506        case SVM_VMGEXIT_NMI_COMPLETE:
2507                ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
2508                break;
2509        case SVM_VMGEXIT_AP_HLT_LOOP:
2510                ret = kvm_emulate_ap_reset_hold(vcpu);
2511                break;
2512        case SVM_VMGEXIT_AP_JUMP_TABLE: {
2513                struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2514
2515                switch (control->exit_info_1) {
2516                case 0:
2517                        /* Set AP jump table address */
2518                        sev->ap_jump_table = control->exit_info_2;
2519                        break;
2520                case 1:
2521                        /* Get AP jump table address */
2522                        ghcb_set_sw_exit_info_2(ghcb, sev->ap_jump_table);
2523                        break;
2524                default:
2525                        pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2526                               control->exit_info_1);
2527                        ghcb_set_sw_exit_info_1(ghcb, 1);
2528                        ghcb_set_sw_exit_info_2(ghcb,
2529                                                X86_TRAP_UD |
2530                                                SVM_EVTINJ_TYPE_EXEPT |
2531                                                SVM_EVTINJ_VALID);
2532                }
2533
2534                ret = 1;
2535                break;
2536        }
2537        case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2538                vcpu_unimpl(vcpu,
2539                            "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2540                            control->exit_info_1, control->exit_info_2);
2541                break;
2542        default:
2543                ret = svm_invoke_exit_handler(vcpu, exit_code);
2544        }
2545
2546        return ret;
2547}
2548
2549int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2550{
2551        if (!setup_vmgexit_scratch(svm, in, svm->vmcb->control.exit_info_2))
2552                return -EINVAL;
2553
2554        return kvm_sev_es_string_io(&svm->vcpu, size, port,
2555                                    svm->ghcb_sa, svm->ghcb_sa_len, in);
2556}
2557
2558void sev_es_init_vmcb(struct vcpu_svm *svm)
2559{
2560        struct kvm_vcpu *vcpu = &svm->vcpu;
2561
2562        svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2563        svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2564
2565        /*
2566         * An SEV-ES guest requires a VMSA area that is a separate from the
2567         * VMCB page. Do not include the encryption mask on the VMSA physical
2568         * address since hardware will access it using the guest key.
2569         */
2570        svm->vmcb->control.vmsa_pa = __pa(svm->vmsa);
2571
2572        /* Can't intercept CR register access, HV can't modify CR registers */
2573        svm_clr_intercept(svm, INTERCEPT_CR0_READ);
2574        svm_clr_intercept(svm, INTERCEPT_CR4_READ);
2575        svm_clr_intercept(svm, INTERCEPT_CR8_READ);
2576        svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
2577        svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
2578        svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
2579
2580        svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
2581
2582        /* Track EFER/CR register changes */
2583        svm_set_intercept(svm, TRAP_EFER_WRITE);
2584        svm_set_intercept(svm, TRAP_CR0_WRITE);
2585        svm_set_intercept(svm, TRAP_CR4_WRITE);
2586        svm_set_intercept(svm, TRAP_CR8_WRITE);
2587
2588        /* No support for enable_vmware_backdoor */
2589        clr_exception_intercept(svm, GP_VECTOR);
2590
2591        /* Can't intercept XSETBV, HV can't modify XCR0 directly */
2592        svm_clr_intercept(svm, INTERCEPT_XSETBV);
2593
2594        /* Clear intercepts on selected MSRs */
2595        set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
2596        set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
2597        set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
2598        set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
2599        set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
2600        set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
2601}
2602
2603void sev_es_create_vcpu(struct vcpu_svm *svm)
2604{
2605        /*
2606         * Set the GHCB MSR value as per the GHCB specification when creating
2607         * a vCPU for an SEV-ES guest.
2608         */
2609        set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2610                                            GHCB_VERSION_MIN,
2611                                            sev_enc_bit));
2612}
2613
2614void sev_es_prepare_guest_switch(struct vcpu_svm *svm, unsigned int cpu)
2615{
2616        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2617        struct vmcb_save_area *hostsa;
2618
2619        /*
2620         * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
2621         * of which one step is to perform a VMLOAD. Since hardware does not
2622         * perform a VMSAVE on VMRUN, the host savearea must be updated.
2623         */
2624        vmsave(__sme_page_pa(sd->save_area));
2625
2626        /* XCR0 is restored on VMEXIT, save the current host value */
2627        hostsa = (struct vmcb_save_area *)(page_address(sd->save_area) + 0x400);
2628        hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
2629
2630        /* PKRU is restored on VMEXIT, save the current host value */
2631        hostsa->pkru = read_pkru();
2632
2633        /* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
2634        hostsa->xss = host_xss;
2635}
2636
2637void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
2638{
2639        struct vcpu_svm *svm = to_svm(vcpu);
2640
2641        /* First SIPI: Use the values as initially set by the VMM */
2642        if (!svm->received_first_sipi) {
2643                svm->received_first_sipi = true;
2644                return;
2645        }
2646
2647        /*
2648         * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
2649         * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
2650         * non-zero value.
2651         */
2652        if (!svm->ghcb)
2653                return;
2654
2655        ghcb_set_sw_exit_info_2(svm->ghcb, 1);
2656}
2657