linux/arch/x86/kvm/hyperv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * KVM Microsoft Hyper-V emulation
   4 *
   5 * derived from arch/x86/kvm/x86.c
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright (C) 2008 Qumranet, Inc.
   9 * Copyright IBM Corporation, 2008
  10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
  12 *
  13 * Authors:
  14 *   Avi Kivity   <avi@qumranet.com>
  15 *   Yaniv Kamay  <yaniv@qumranet.com>
  16 *   Amit Shah    <amit.shah@qumranet.com>
  17 *   Ben-Ami Yassour <benami@il.ibm.com>
  18 *   Andrey Smetanin <asmetanin@virtuozzo.com>
  19 */
  20
  21#include "x86.h"
  22#include "lapic.h"
  23#include "ioapic.h"
  24#include "cpuid.h"
  25#include "hyperv.h"
  26#include "xen.h"
  27
  28#include <linux/cpu.h>
  29#include <linux/kvm_host.h>
  30#include <linux/highmem.h>
  31#include <linux/sched/cputime.h>
  32#include <linux/eventfd.h>
  33
  34#include <asm/apicdef.h>
  35#include <trace/events/kvm.h>
  36
  37#include "trace.h"
  38#include "irq.h"
  39#include "fpu.h"
  40
  41/* "Hv#1" signature */
  42#define HYPERV_CPUID_SIGNATURE_EAX 0x31237648
  43
  44#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
  45
  46static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
  47                                bool vcpu_kick);
  48
  49static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
  50{
  51        return atomic64_read(&synic->sint[sint]);
  52}
  53
  54static inline int synic_get_sint_vector(u64 sint_value)
  55{
  56        if (sint_value & HV_SYNIC_SINT_MASKED)
  57                return -1;
  58        return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
  59}
  60
  61static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
  62                                      int vector)
  63{
  64        int i;
  65
  66        for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
  67                if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
  68                        return true;
  69        }
  70        return false;
  71}
  72
  73static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
  74                                     int vector)
  75{
  76        int i;
  77        u64 sint_value;
  78
  79        for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
  80                sint_value = synic_read_sint(synic, i);
  81                if (synic_get_sint_vector(sint_value) == vector &&
  82                    sint_value & HV_SYNIC_SINT_AUTO_EOI)
  83                        return true;
  84        }
  85        return false;
  86}
  87
  88static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
  89                                int vector)
  90{
  91        if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
  92                return;
  93
  94        if (synic_has_vector_connected(synic, vector))
  95                __set_bit(vector, synic->vec_bitmap);
  96        else
  97                __clear_bit(vector, synic->vec_bitmap);
  98
  99        if (synic_has_vector_auto_eoi(synic, vector))
 100                __set_bit(vector, synic->auto_eoi_bitmap);
 101        else
 102                __clear_bit(vector, synic->auto_eoi_bitmap);
 103}
 104
 105static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
 106                          u64 data, bool host)
 107{
 108        int vector, old_vector;
 109        bool masked;
 110
 111        vector = data & HV_SYNIC_SINT_VECTOR_MASK;
 112        masked = data & HV_SYNIC_SINT_MASKED;
 113
 114        /*
 115         * Valid vectors are 16-255, however, nested Hyper-V attempts to write
 116         * default '0x10000' value on boot and this should not #GP. We need to
 117         * allow zero-initing the register from host as well.
 118         */
 119        if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
 120                return 1;
 121        /*
 122         * Guest may configure multiple SINTs to use the same vector, so
 123         * we maintain a bitmap of vectors handled by synic, and a
 124         * bitmap of vectors with auto-eoi behavior.  The bitmaps are
 125         * updated here, and atomically queried on fast paths.
 126         */
 127        old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
 128
 129        atomic64_set(&synic->sint[sint], data);
 130
 131        synic_update_vector(synic, old_vector);
 132
 133        synic_update_vector(synic, vector);
 134
 135        /* Load SynIC vectors into EOI exit bitmap */
 136        kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
 137        return 0;
 138}
 139
 140static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
 141{
 142        struct kvm_vcpu *vcpu = NULL;
 143        int i;
 144
 145        if (vpidx >= KVM_MAX_VCPUS)
 146                return NULL;
 147
 148        vcpu = kvm_get_vcpu(kvm, vpidx);
 149        if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
 150                return vcpu;
 151        kvm_for_each_vcpu(i, vcpu, kvm)
 152                if (kvm_hv_get_vpindex(vcpu) == vpidx)
 153                        return vcpu;
 154        return NULL;
 155}
 156
 157static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
 158{
 159        struct kvm_vcpu *vcpu;
 160        struct kvm_vcpu_hv_synic *synic;
 161
 162        vcpu = get_vcpu_by_vpidx(kvm, vpidx);
 163        if (!vcpu || !to_hv_vcpu(vcpu))
 164                return NULL;
 165        synic = to_hv_synic(vcpu);
 166        return (synic->active) ? synic : NULL;
 167}
 168
 169static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
 170{
 171        struct kvm *kvm = vcpu->kvm;
 172        struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
 173        struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
 174        struct kvm_vcpu_hv_stimer *stimer;
 175        int gsi, idx;
 176
 177        trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
 178
 179        /* Try to deliver pending Hyper-V SynIC timers messages */
 180        for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
 181                stimer = &hv_vcpu->stimer[idx];
 182                if (stimer->msg_pending && stimer->config.enable &&
 183                    !stimer->config.direct_mode &&
 184                    stimer->config.sintx == sint)
 185                        stimer_mark_pending(stimer, false);
 186        }
 187
 188        idx = srcu_read_lock(&kvm->irq_srcu);
 189        gsi = atomic_read(&synic->sint_to_gsi[sint]);
 190        if (gsi != -1)
 191                kvm_notify_acked_gsi(kvm, gsi);
 192        srcu_read_unlock(&kvm->irq_srcu, idx);
 193}
 194
 195static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
 196{
 197        struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
 198        struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
 199
 200        hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
 201        hv_vcpu->exit.u.synic.msr = msr;
 202        hv_vcpu->exit.u.synic.control = synic->control;
 203        hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
 204        hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
 205
 206        kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
 207}
 208
 209static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
 210                         u32 msr, u64 data, bool host)
 211{
 212        struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
 213        int ret;
 214
 215        if (!synic->active && !host)
 216                return 1;
 217
 218        trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
 219
 220        ret = 0;
 221        switch (msr) {
 222        case HV_X64_MSR_SCONTROL:
 223                synic->control = data;
 224                if (!host)
 225                        synic_exit(synic, msr);
 226                break;
 227        case HV_X64_MSR_SVERSION:
 228                if (!host) {
 229                        ret = 1;
 230                        break;
 231                }
 232                synic->version = data;
 233                break;
 234        case HV_X64_MSR_SIEFP:
 235                if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
 236                    !synic->dont_zero_synic_pages)
 237                        if (kvm_clear_guest(vcpu->kvm,
 238                                            data & PAGE_MASK, PAGE_SIZE)) {
 239                                ret = 1;
 240                                break;
 241                        }
 242                synic->evt_page = data;
 243                if (!host)
 244                        synic_exit(synic, msr);
 245                break;
 246        case HV_X64_MSR_SIMP:
 247                if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
 248                    !synic->dont_zero_synic_pages)
 249                        if (kvm_clear_guest(vcpu->kvm,
 250                                            data & PAGE_MASK, PAGE_SIZE)) {
 251                                ret = 1;
 252                                break;
 253                        }
 254                synic->msg_page = data;
 255                if (!host)
 256                        synic_exit(synic, msr);
 257                break;
 258        case HV_X64_MSR_EOM: {
 259                int i;
 260
 261                for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
 262                        kvm_hv_notify_acked_sint(vcpu, i);
 263                break;
 264        }
 265        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
 266                ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
 267                break;
 268        default:
 269                ret = 1;
 270                break;
 271        }
 272        return ret;
 273}
 274
 275static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
 276{
 277        struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
 278
 279        return hv_vcpu->cpuid_cache.syndbg_cap_eax &
 280                HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
 281}
 282
 283static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
 284{
 285        struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
 286
 287        if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
 288                hv->hv_syndbg.control.status =
 289                        vcpu->run->hyperv.u.syndbg.status;
 290        return 1;
 291}
 292
 293static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
 294{
 295        struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
 296        struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
 297
 298        hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
 299        hv_vcpu->exit.u.syndbg.msr = msr;
 300        hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
 301        hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
 302        hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
 303        hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
 304        vcpu->arch.complete_userspace_io =
 305                        kvm_hv_syndbg_complete_userspace;
 306
 307        kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
 308}
 309
 310static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
 311{
 312        struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
 313
 314        if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
 315                return 1;
 316
 317        trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
 318                                    to_hv_vcpu(vcpu)->vp_index, msr, data);
 319        switch (msr) {
 320        case HV_X64_MSR_SYNDBG_CONTROL:
 321                syndbg->control.control = data;
 322                if (!host)
 323                        syndbg_exit(vcpu, msr);
 324                break;
 325        case HV_X64_MSR_SYNDBG_STATUS:
 326                syndbg->control.status = data;
 327                break;
 328        case HV_X64_MSR_SYNDBG_SEND_BUFFER:
 329                syndbg->control.send_page = data;
 330                break;
 331        case HV_X64_MSR_SYNDBG_RECV_BUFFER:
 332                syndbg->control.recv_page = data;
 333                break;
 334        case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
 335                syndbg->control.pending_page = data;
 336                if (!host)
 337                        syndbg_exit(vcpu, msr);
 338                break;
 339        case HV_X64_MSR_SYNDBG_OPTIONS:
 340                syndbg->options = data;
 341                break;
 342        default:
 343                break;
 344        }
 345
 346        return 0;
 347}
 348
 349static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
 350{
 351        struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
 352
 353        if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
 354                return 1;
 355
 356        switch (msr) {
 357        case HV_X64_MSR_SYNDBG_CONTROL:
 358                *pdata = syndbg->control.control;
 359                break;
 360        case HV_X64_MSR_SYNDBG_STATUS:
 361                *pdata = syndbg->control.status;
 362                break;
 363        case HV_X64_MSR_SYNDBG_SEND_BUFFER:
 364                *pdata = syndbg->control.send_page;
 365                break;
 366        case HV_X64_MSR_SYNDBG_RECV_BUFFER:
 367                *pdata = syndbg->control.recv_page;
 368                break;
 369        case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
 370                *pdata = syndbg->control.pending_page;
 371                break;
 372        case HV_X64_MSR_SYNDBG_OPTIONS:
 373                *pdata = syndbg->options;
 374                break;
 375        default:
 376                break;
 377        }
 378
 379        trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);
 380
 381        return 0;
 382}
 383
 384static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
 385                         bool host)
 386{
 387        int ret;
 388
 389        if (!synic->active && !host)
 390                return 1;
 391
 392        ret = 0;
 393        switch (msr) {
 394        case HV_X64_MSR_SCONTROL:
 395                *pdata = synic->control;
 396                break;
 397        case HV_X64_MSR_SVERSION:
 398                *pdata = synic->version;
 399                break;
 400        case HV_X64_MSR_SIEFP:
 401                *pdata = synic->evt_page;
 402                break;
 403        case HV_X64_MSR_SIMP:
 404                *pdata = synic->msg_page;
 405                break;
 406        case HV_X64_MSR_EOM:
 407                *pdata = 0;
 408                break;
 409        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
 410                *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
 411                break;
 412        default:
 413                ret = 1;
 414                break;
 415        }
 416        return ret;
 417}
 418
 419static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
 420{
 421        struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
 422        struct kvm_lapic_irq irq;
 423        int ret, vector;
 424
 425        if (sint >= ARRAY_SIZE(synic->sint))
 426                return -EINVAL;
 427
 428        vector = synic_get_sint_vector(synic_read_sint(synic, sint));
 429        if (vector < 0)
 430                return -ENOENT;
 431
 432        memset(&irq, 0, sizeof(irq));
 433        irq.shorthand = APIC_DEST_SELF;
 434        irq.dest_mode = APIC_DEST_PHYSICAL;
 435        irq.delivery_mode = APIC_DM_FIXED;
 436        irq.vector = vector;
 437        irq.level = 1;
 438
 439        ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
 440        trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
 441        return ret;
 442}
 443
 444int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
 445{
 446        struct kvm_vcpu_hv_synic *synic;
 447
 448        synic = synic_get(kvm, vpidx);
 449        if (!synic)
 450                return -EINVAL;
 451
 452        return synic_set_irq(synic, sint);
 453}
 454
 455void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
 456{
 457        struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
 458        int i;
 459
 460        trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
 461
 462        for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
 463                if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
 464                        kvm_hv_notify_acked_sint(vcpu, i);
 465}
 466
 467static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
 468{
 469        struct kvm_vcpu_hv_synic *synic;
 470
 471        synic = synic_get(kvm, vpidx);
 472        if (!synic)
 473                return -EINVAL;
 474
 475        if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
 476                return -EINVAL;
 477
 478        atomic_set(&synic->sint_to_gsi[sint], gsi);
 479        return 0;
 480}
 481
 482void kvm_hv_irq_routing_update(struct kvm *kvm)
 483{
 484        struct kvm_irq_routing_table *irq_rt;
 485        struct kvm_kernel_irq_routing_entry *e;
 486        u32 gsi;
 487
 488        irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
 489                                        lockdep_is_held(&kvm->irq_lock));
 490
 491        for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
 492                hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
 493                        if (e->type == KVM_IRQ_ROUTING_HV_SINT)
 494                                kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
 495                                                    e->hv_sint.sint, gsi);
 496                }
 497        }
 498}
 499
 500static void synic_init(struct kvm_vcpu_hv_synic *synic)
 501{
 502        int i;
 503
 504        memset(synic, 0, sizeof(*synic));
 505        synic->version = HV_SYNIC_VERSION_1;
 506        for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
 507                atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
 508                atomic_set(&synic->sint_to_gsi[i], -1);
 509        }
 510}
 511
 512static u64 get_time_ref_counter(struct kvm *kvm)
 513{
 514        struct kvm_hv *hv = to_kvm_hv(kvm);
 515        struct kvm_vcpu *vcpu;
 516        u64 tsc;
 517
 518        /*
 519         * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
 520         * is broken, disabled or being updated.
 521         */
 522        if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
 523                return div_u64(get_kvmclock_ns(kvm), 100);
 524
 525        vcpu = kvm_get_vcpu(kvm, 0);
 526        tsc = kvm_read_l1_tsc(vcpu, rdtsc());
 527        return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
 528                + hv->tsc_ref.tsc_offset;
 529}
 530
 531static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
 532                                bool vcpu_kick)
 533{
 534        struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
 535
 536        set_bit(stimer->index,
 537                to_hv_vcpu(vcpu)->stimer_pending_bitmap);
 538        kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
 539        if (vcpu_kick)
 540                kvm_vcpu_kick(vcpu);
 541}
 542
 543static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
 544{
 545        struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
 546
 547        trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
 548                                    stimer->index);
 549
 550        hrtimer_cancel(&stimer->timer);
 551        clear_bit(stimer->index,
 552                  to_hv_vcpu(vcpu)->stimer_pending_bitmap);
 553        stimer->msg_pending = false;
 554        stimer->exp_time = 0;
 555}
 556
 557static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
 558{
 559        struct kvm_vcpu_hv_stimer *stimer;
 560
 561        stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
 562        trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
 563                                     stimer->index);
 564        stimer_mark_pending(stimer, true);
 565
 566        return HRTIMER_NORESTART;
 567}
 568
 569/*
 570 * stimer_start() assumptions:
 571 * a) stimer->count is not equal to 0
 572 * b) stimer->config has HV_STIMER_ENABLE flag
 573 */
 574static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
 575{
 576        u64 time_now;
 577        ktime_t ktime_now;
 578
 579        time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
 580        ktime_now = ktime_get();
 581
 582        if (stimer->config.periodic) {
 583                if (stimer->exp_time) {
 584                        if (time_now >= stimer->exp_time) {
 585                                u64 remainder;
 586
 587                                div64_u64_rem(time_now - stimer->exp_time,
 588                                              stimer->count, &remainder);
 589                                stimer->exp_time =
 590                                        time_now + (stimer->count - remainder);
 591                        }
 592                } else
 593                        stimer->exp_time = time_now + stimer->count;
 594
 595                trace_kvm_hv_stimer_start_periodic(
 596                                        hv_stimer_to_vcpu(stimer)->vcpu_id,
 597                                        stimer->index,
 598                                        time_now, stimer->exp_time);
 599
 600                hrtimer_start(&stimer->timer,
 601                              ktime_add_ns(ktime_now,
 602                                           100 * (stimer->exp_time - time_now)),
 603                              HRTIMER_MODE_ABS);
 604                return 0;
 605        }
 606        stimer->exp_time = stimer->count;
 607        if (time_now >= stimer->count) {
 608                /*
 609                 * Expire timer according to Hypervisor Top-Level Functional
 610                 * specification v4(15.3.1):
 611                 * "If a one shot is enabled and the specified count is in
 612                 * the past, it will expire immediately."
 613                 */
 614                stimer_mark_pending(stimer, false);
 615                return 0;
 616        }
 617
 618        trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
 619                                           stimer->index,
 620                                           time_now, stimer->count);
 621
 622        hrtimer_start(&stimer->timer,
 623                      ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
 624                      HRTIMER_MODE_ABS);
 625        return 0;
 626}
 627
 628static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
 629                             bool host)
 630{
 631        union hv_stimer_config new_config = {.as_uint64 = config},
 632                old_config = {.as_uint64 = stimer->config.as_uint64};
 633        struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
 634        struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
 635        struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
 636
 637        if (!synic->active && !host)
 638                return 1;
 639
 640        if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
 641                     !(hv_vcpu->cpuid_cache.features_edx &
 642                       HV_STIMER_DIRECT_MODE_AVAILABLE)))
 643                return 1;
 644
 645        trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
 646                                       stimer->index, config, host);
 647
 648        stimer_cleanup(stimer);
 649        if (old_config.enable &&
 650            !new_config.direct_mode && new_config.sintx == 0)
 651                new_config.enable = 0;
 652        stimer->config.as_uint64 = new_config.as_uint64;
 653
 654        if (stimer->config.enable)
 655                stimer_mark_pending(stimer, false);
 656
 657        return 0;
 658}
 659
 660static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
 661                            bool host)
 662{
 663        struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
 664        struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
 665
 666        if (!synic->active && !host)
 667                return 1;
 668
 669        trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
 670                                      stimer->index, count, host);
 671
 672        stimer_cleanup(stimer);
 673        stimer->count = count;
 674        if (stimer->count == 0)
 675                stimer->config.enable = 0;
 676        else if (stimer->config.auto_enable)
 677                stimer->config.enable = 1;
 678
 679        if (stimer->config.enable)
 680                stimer_mark_pending(stimer, false);
 681
 682        return 0;
 683}
 684
 685static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
 686{
 687        *pconfig = stimer->config.as_uint64;
 688        return 0;
 689}
 690
 691static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
 692{
 693        *pcount = stimer->count;
 694        return 0;
 695}
 696
 697static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
 698                             struct hv_message *src_msg, bool no_retry)
 699{
 700        struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
 701        int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
 702        gfn_t msg_page_gfn;
 703        struct hv_message_header hv_hdr;
 704        int r;
 705
 706        if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
 707                return -ENOENT;
 708
 709        msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
 710
 711        /*
 712         * Strictly following the spec-mandated ordering would assume setting
 713         * .msg_pending before checking .message_type.  However, this function
 714         * is only called in vcpu context so the entire update is atomic from
 715         * guest POV and thus the exact order here doesn't matter.
 716         */
 717        r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
 718                                     msg_off + offsetof(struct hv_message,
 719                                                        header.message_type),
 720                                     sizeof(hv_hdr.message_type));
 721        if (r < 0)
 722                return r;
 723
 724        if (hv_hdr.message_type != HVMSG_NONE) {
 725                if (no_retry)
 726                        return 0;
 727
 728                hv_hdr.message_flags.msg_pending = 1;
 729                r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
 730                                              &hv_hdr.message_flags,
 731                                              msg_off +
 732                                              offsetof(struct hv_message,
 733                                                       header.message_flags),
 734                                              sizeof(hv_hdr.message_flags));
 735                if (r < 0)
 736                        return r;
 737                return -EAGAIN;
 738        }
 739
 740        r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
 741                                      sizeof(src_msg->header) +
 742                                      src_msg->header.payload_size);
 743        if (r < 0)
 744                return r;
 745
 746        r = synic_set_irq(synic, sint);
 747        if (r < 0)
 748                return r;
 749        if (r == 0)
 750                return -EFAULT;
 751        return 0;
 752}
 753
 754static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
 755{
 756        struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
 757        struct hv_message *msg = &stimer->msg;
 758        struct hv_timer_message_payload *payload =
 759                        (struct hv_timer_message_payload *)&msg->u.payload;
 760
 761        /*
 762         * To avoid piling up periodic ticks, don't retry message
 763         * delivery for them (within "lazy" lost ticks policy).
 764         */
 765        bool no_retry = stimer->config.periodic;
 766
 767        payload->expiration_time = stimer->exp_time;
 768        payload->delivery_time = get_time_ref_counter(vcpu->kvm);
 769        return synic_deliver_msg(to_hv_synic(vcpu),
 770                                 stimer->config.sintx, msg,
 771                                 no_retry);
 772}
 773
 774static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
 775{
 776        struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
 777        struct kvm_lapic_irq irq = {
 778                .delivery_mode = APIC_DM_FIXED,
 779                .vector = stimer->config.apic_vector
 780        };
 781
 782        if (lapic_in_kernel(vcpu))
 783                return !kvm_apic_set_irq(vcpu, &irq, NULL);
 784        return 0;
 785}
 786
 787static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
 788{
 789        int r, direct = stimer->config.direct_mode;
 790
 791        stimer->msg_pending = true;
 792        if (!direct)
 793                r = stimer_send_msg(stimer);
 794        else
 795                r = stimer_notify_direct(stimer);
 796        trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
 797                                       stimer->index, direct, r);
 798        if (!r) {
 799                stimer->msg_pending = false;
 800                if (!(stimer->config.periodic))
 801                        stimer->config.enable = 0;
 802        }
 803}
 804
 805void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
 806{
 807        struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
 808        struct kvm_vcpu_hv_stimer *stimer;
 809        u64 time_now, exp_time;
 810        int i;
 811
 812        if (!hv_vcpu)
 813                return;
 814
 815        for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
 816                if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
 817                        stimer = &hv_vcpu->stimer[i];
 818                        if (stimer->config.enable) {
 819                                exp_time = stimer->exp_time;
 820
 821                                if (exp_time) {
 822                                        time_now =
 823                                                get_time_ref_counter(vcpu->kvm);
 824                                        if (time_now >= exp_time)
 825                                                stimer_expiration(stimer);
 826                                }
 827
 828                                if ((stimer->config.enable) &&
 829                                    stimer->count) {
 830                                        if (!stimer->msg_pending)
 831                                                stimer_start(stimer);
 832                                } else
 833                                        stimer_cleanup(stimer);
 834                        }
 835                }
 836}
 837
 838void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
 839{
 840        struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
 841        int i;
 842
 843        if (!hv_vcpu)
 844                return;
 845
 846        for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
 847                stimer_cleanup(&hv_vcpu->stimer[i]);
 848
 849        kfree(hv_vcpu);
 850        vcpu->arch.hyperv = NULL;
 851}
 852
 853bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
 854{
 855        struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
 856
 857        if (!hv_vcpu)
 858                return false;
 859
 860        if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
 861                return false;
 862        return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
 863}
 864EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
 865
 866bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
 867                            struct hv_vp_assist_page *assist_page)
 868{
 869        if (!kvm_hv_assist_page_enabled(vcpu))
 870                return false;
 871        return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
 872                                      assist_page, sizeof(*assist_page));
 873}
 874EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
 875
 876static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
 877{
 878        struct hv_message *msg = &stimer->msg;
 879        struct hv_timer_message_payload *payload =
 880                        (struct hv_timer_message_payload *)&msg->u.payload;
 881
 882        memset(&msg->header, 0, sizeof(msg->header));
 883        msg->header.message_type = HVMSG_TIMER_EXPIRED;
 884        msg->header.payload_size = sizeof(*payload);
 885
 886        payload->timer_index = stimer->index;
 887        payload->expiration_time = 0;
 888        payload->delivery_time = 0;
 889}
 890
 891static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
 892{
 893        memset(stimer, 0, sizeof(*stimer));
 894        stimer->index = timer_index;
 895        hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 896        stimer->timer.function = stimer_timer_callback;
 897        stimer_prepare_msg(stimer);
 898}
 899
 900static int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
 901{
 902        struct kvm_vcpu_hv *hv_vcpu;
 903        int i;
 904
 905        hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
 906        if (!hv_vcpu)
 907                return -ENOMEM;
 908
 909        vcpu->arch.hyperv = hv_vcpu;
 910        hv_vcpu->vcpu = vcpu;
 911
 912        synic_init(&hv_vcpu->synic);
 913
 914        bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
 915        for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
 916                stimer_init(&hv_vcpu->stimer[i], i);
 917
 918        hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
 919
 920        return 0;
 921}
 922
 923int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
 924{
 925        struct kvm_vcpu_hv_synic *synic;
 926        int r;
 927
 928        if (!to_hv_vcpu(vcpu)) {
 929                r = kvm_hv_vcpu_init(vcpu);
 930                if (r)
 931                        return r;
 932        }
 933
 934        synic = to_hv_synic(vcpu);
 935
 936        /*
 937         * Hyper-V SynIC auto EOI SINT's are
 938         * not compatible with APICV, so request
 939         * to deactivate APICV permanently.
 940         */
 941        kvm_request_apicv_update(vcpu->kvm, false, APICV_INHIBIT_REASON_HYPERV);
 942        synic->active = true;
 943        synic->dont_zero_synic_pages = dont_zero_synic_pages;
 944        synic->control = HV_SYNIC_CONTROL_ENABLE;
 945        return 0;
 946}
 947
 948static bool kvm_hv_msr_partition_wide(u32 msr)
 949{
 950        bool r = false;
 951
 952        switch (msr) {
 953        case HV_X64_MSR_GUEST_OS_ID:
 954        case HV_X64_MSR_HYPERCALL:
 955        case HV_X64_MSR_REFERENCE_TSC:
 956        case HV_X64_MSR_TIME_REF_COUNT:
 957        case HV_X64_MSR_CRASH_CTL:
 958        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
 959        case HV_X64_MSR_RESET:
 960        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
 961        case HV_X64_MSR_TSC_EMULATION_CONTROL:
 962        case HV_X64_MSR_TSC_EMULATION_STATUS:
 963        case HV_X64_MSR_SYNDBG_OPTIONS:
 964        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
 965                r = true;
 966                break;
 967        }
 968
 969        return r;
 970}
 971
 972static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
 973{
 974        struct kvm_hv *hv = to_kvm_hv(kvm);
 975        size_t size = ARRAY_SIZE(hv->hv_crash_param);
 976
 977        if (WARN_ON_ONCE(index >= size))
 978                return -EINVAL;
 979
 980        *pdata = hv->hv_crash_param[array_index_nospec(index, size)];
 981        return 0;
 982}
 983
 984static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
 985{
 986        struct kvm_hv *hv = to_kvm_hv(kvm);
 987
 988        *pdata = hv->hv_crash_ctl;
 989        return 0;
 990}
 991
 992static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
 993{
 994        struct kvm_hv *hv = to_kvm_hv(kvm);
 995
 996        hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
 997
 998        return 0;
 999}
1000
1001static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
1002{
1003        struct kvm_hv *hv = to_kvm_hv(kvm);
1004        size_t size = ARRAY_SIZE(hv->hv_crash_param);
1005
1006        if (WARN_ON_ONCE(index >= size))
1007                return -EINVAL;
1008
1009        hv->hv_crash_param[array_index_nospec(index, size)] = data;
1010        return 0;
1011}
1012
1013/*
1014 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1015 * between them is possible:
1016 *
1017 * kvmclock formula:
1018 *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1019 *           + system_time
1020 *
1021 * Hyper-V formula:
1022 *    nsec/100 = ticks * scale / 2^64 + offset
1023 *
1024 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1025 * By dividing the kvmclock formula by 100 and equating what's left we get:
1026 *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1027 *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
1028 *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
1029 *
1030 * Now expand the kvmclock formula and divide by 100:
1031 *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1032 *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1033 *           + system_time
1034 *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1035 *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1036 *               + system_time / 100
1037 *
1038 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1039 *    nsec/100 = ticks * scale / 2^64
1040 *               - tsc_timestamp * scale / 2^64
1041 *               + system_time / 100
1042 *
1043 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1044 *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
1045 *
1046 * These two equivalencies are implemented in this function.
1047 */
1048static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1049                                        struct ms_hyperv_tsc_page *tsc_ref)
1050{
1051        u64 max_mul;
1052
1053        if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1054                return false;
1055
1056        /*
1057         * check if scale would overflow, if so we use the time ref counter
1058         *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1059         *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1060         *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1061         */
1062        max_mul = 100ull << (32 - hv_clock->tsc_shift);
1063        if (hv_clock->tsc_to_system_mul >= max_mul)
1064                return false;
1065
1066        /*
1067         * Otherwise compute the scale and offset according to the formulas
1068         * derived above.
1069         */
1070        tsc_ref->tsc_scale =
1071                mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
1072                                hv_clock->tsc_to_system_mul,
1073                                100);
1074
1075        tsc_ref->tsc_offset = hv_clock->system_time;
1076        do_div(tsc_ref->tsc_offset, 100);
1077        tsc_ref->tsc_offset -=
1078                mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
1079        return true;
1080}
1081
1082/*
1083 * Don't touch TSC page values if the guest has opted for TSC emulation after
1084 * migration. KVM doesn't fully support reenlightenment notifications and TSC
1085 * access emulation and Hyper-V is known to expect the values in TSC page to
1086 * stay constant before TSC access emulation is disabled from guest side
1087 * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
1088 * frequency and guest visible TSC value across migration (and prevent it when
1089 * TSC scaling is unsupported).
1090 */
1091static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
1092{
1093        return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
1094                hv->hv_tsc_emulation_control;
1095}
1096
1097void kvm_hv_setup_tsc_page(struct kvm *kvm,
1098                           struct pvclock_vcpu_time_info *hv_clock)
1099{
1100        struct kvm_hv *hv = to_kvm_hv(kvm);
1101        u32 tsc_seq;
1102        u64 gfn;
1103
1104        BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1105        BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
1106
1107        if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1108            hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
1109                return;
1110
1111        mutex_lock(&hv->hv_lock);
1112        if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1113                goto out_unlock;
1114
1115        gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1116        /*
1117         * Because the TSC parameters only vary when there is a
1118         * change in the master clock, do not bother with caching.
1119         */
1120        if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1121                                    &tsc_seq, sizeof(tsc_seq))))
1122                goto out_err;
1123
1124        if (tsc_seq && tsc_page_update_unsafe(hv)) {
1125                if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1126                        goto out_err;
1127
1128                hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1129                goto out_unlock;
1130        }
1131
1132        /*
1133         * While we're computing and writing the parameters, force the
1134         * guest to use the time reference count MSR.
1135         */
1136        hv->tsc_ref.tsc_sequence = 0;
1137        if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1138                            &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1139                goto out_err;
1140
1141        if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
1142                goto out_err;
1143
1144        /* Ensure sequence is zero before writing the rest of the struct.  */
1145        smp_wmb();
1146        if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
1147                goto out_err;
1148
1149        /*
1150         * Now switch to the TSC page mechanism by writing the sequence.
1151         */
1152        tsc_seq++;
1153        if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1154                tsc_seq = 1;
1155
1156        /* Write the struct entirely before the non-zero sequence.  */
1157        smp_wmb();
1158
1159        hv->tsc_ref.tsc_sequence = tsc_seq;
1160        if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1161                            &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1162                goto out_err;
1163
1164        hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1165        goto out_unlock;
1166
1167out_err:
1168        hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1169out_unlock:
1170        mutex_unlock(&hv->hv_lock);
1171}
1172
1173void kvm_hv_invalidate_tsc_page(struct kvm *kvm)
1174{
1175        struct kvm_hv *hv = to_kvm_hv(kvm);
1176        u64 gfn;
1177        int idx;
1178
1179        if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1180            hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET ||
1181            tsc_page_update_unsafe(hv))
1182                return;
1183
1184        mutex_lock(&hv->hv_lock);
1185
1186        if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1187                goto out_unlock;
1188
1189        /* Preserve HV_TSC_PAGE_GUEST_CHANGED/HV_TSC_PAGE_HOST_CHANGED states */
1190        if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET)
1191                hv->hv_tsc_page_status = HV_TSC_PAGE_UPDATING;
1192
1193        gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1194
1195        hv->tsc_ref.tsc_sequence = 0;
1196
1197        /*
1198         * Take the srcu lock as memslots will be accessed to check the gfn
1199         * cache generation against the memslots generation.
1200         */
1201        idx = srcu_read_lock(&kvm->srcu);
1202        if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
1203                            &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
1204                hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1205        srcu_read_unlock(&kvm->srcu, idx);
1206
1207out_unlock:
1208        mutex_unlock(&hv->hv_lock);
1209}
1210
1211
1212static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
1213{
1214        if (!hv_vcpu->enforce_cpuid)
1215                return true;
1216
1217        switch (msr) {
1218        case HV_X64_MSR_GUEST_OS_ID:
1219        case HV_X64_MSR_HYPERCALL:
1220                return hv_vcpu->cpuid_cache.features_eax &
1221                        HV_MSR_HYPERCALL_AVAILABLE;
1222        case HV_X64_MSR_VP_RUNTIME:
1223                return hv_vcpu->cpuid_cache.features_eax &
1224                        HV_MSR_VP_RUNTIME_AVAILABLE;
1225        case HV_X64_MSR_TIME_REF_COUNT:
1226                return hv_vcpu->cpuid_cache.features_eax &
1227                        HV_MSR_TIME_REF_COUNT_AVAILABLE;
1228        case HV_X64_MSR_VP_INDEX:
1229                return hv_vcpu->cpuid_cache.features_eax &
1230                        HV_MSR_VP_INDEX_AVAILABLE;
1231        case HV_X64_MSR_RESET:
1232                return hv_vcpu->cpuid_cache.features_eax &
1233                        HV_MSR_RESET_AVAILABLE;
1234        case HV_X64_MSR_REFERENCE_TSC:
1235                return hv_vcpu->cpuid_cache.features_eax &
1236                        HV_MSR_REFERENCE_TSC_AVAILABLE;
1237        case HV_X64_MSR_SCONTROL:
1238        case HV_X64_MSR_SVERSION:
1239        case HV_X64_MSR_SIEFP:
1240        case HV_X64_MSR_SIMP:
1241        case HV_X64_MSR_EOM:
1242        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1243                return hv_vcpu->cpuid_cache.features_eax &
1244                        HV_MSR_SYNIC_AVAILABLE;
1245        case HV_X64_MSR_STIMER0_CONFIG:
1246        case HV_X64_MSR_STIMER1_CONFIG:
1247        case HV_X64_MSR_STIMER2_CONFIG:
1248        case HV_X64_MSR_STIMER3_CONFIG:
1249        case HV_X64_MSR_STIMER0_COUNT:
1250        case HV_X64_MSR_STIMER1_COUNT:
1251        case HV_X64_MSR_STIMER2_COUNT:
1252        case HV_X64_MSR_STIMER3_COUNT:
1253                return hv_vcpu->cpuid_cache.features_eax &
1254                        HV_MSR_SYNTIMER_AVAILABLE;
1255        case HV_X64_MSR_EOI:
1256        case HV_X64_MSR_ICR:
1257        case HV_X64_MSR_TPR:
1258        case HV_X64_MSR_VP_ASSIST_PAGE:
1259                return hv_vcpu->cpuid_cache.features_eax &
1260                        HV_MSR_APIC_ACCESS_AVAILABLE;
1261                break;
1262        case HV_X64_MSR_TSC_FREQUENCY:
1263        case HV_X64_MSR_APIC_FREQUENCY:
1264                return hv_vcpu->cpuid_cache.features_eax &
1265                        HV_ACCESS_FREQUENCY_MSRS;
1266        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1267        case HV_X64_MSR_TSC_EMULATION_CONTROL:
1268        case HV_X64_MSR_TSC_EMULATION_STATUS:
1269                return hv_vcpu->cpuid_cache.features_eax &
1270                        HV_ACCESS_REENLIGHTENMENT;
1271        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1272        case HV_X64_MSR_CRASH_CTL:
1273                return hv_vcpu->cpuid_cache.features_edx &
1274                        HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1275        case HV_X64_MSR_SYNDBG_OPTIONS:
1276        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1277                return hv_vcpu->cpuid_cache.features_edx &
1278                        HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1279        default:
1280                break;
1281        }
1282
1283        return false;
1284}
1285
1286static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1287                             bool host)
1288{
1289        struct kvm *kvm = vcpu->kvm;
1290        struct kvm_hv *hv = to_kvm_hv(kvm);
1291
1292        if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1293                return 1;
1294
1295        switch (msr) {
1296        case HV_X64_MSR_GUEST_OS_ID:
1297                hv->hv_guest_os_id = data;
1298                /* setting guest os id to zero disables hypercall page */
1299                if (!hv->hv_guest_os_id)
1300                        hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1301                break;
1302        case HV_X64_MSR_HYPERCALL: {
1303                u8 instructions[9];
1304                int i = 0;
1305                u64 addr;
1306
1307                /* if guest os id is not set hypercall should remain disabled */
1308                if (!hv->hv_guest_os_id)
1309                        break;
1310                if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1311                        hv->hv_hypercall = data;
1312                        break;
1313                }
1314
1315                /*
1316                 * If Xen and Hyper-V hypercalls are both enabled, disambiguate
1317                 * the same way Xen itself does, by setting the bit 31 of EAX
1318                 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
1319                 * going to be clobbered on 64-bit.
1320                 */
1321                if (kvm_xen_hypercall_enabled(kvm)) {
1322                        /* orl $0x80000000, %eax */
1323                        instructions[i++] = 0x0d;
1324                        instructions[i++] = 0x00;
1325                        instructions[i++] = 0x00;
1326                        instructions[i++] = 0x00;
1327                        instructions[i++] = 0x80;
1328                }
1329
1330                /* vmcall/vmmcall */
1331                static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
1332                i += 3;
1333
1334                /* ret */
1335                ((unsigned char *)instructions)[i++] = 0xc3;
1336
1337                addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
1338                if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
1339                        return 1;
1340                hv->hv_hypercall = data;
1341                break;
1342        }
1343        case HV_X64_MSR_REFERENCE_TSC:
1344                hv->hv_tsc_page = data;
1345                if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
1346                        if (!host)
1347                                hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
1348                        else
1349                                hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1350                        kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1351                } else {
1352                        hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
1353                }
1354                break;
1355        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1356                return kvm_hv_msr_set_crash_data(kvm,
1357                                                 msr - HV_X64_MSR_CRASH_P0,
1358                                                 data);
1359        case HV_X64_MSR_CRASH_CTL:
1360                if (host)
1361                        return kvm_hv_msr_set_crash_ctl(kvm, data);
1362
1363                if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
1364                        vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
1365                                   hv->hv_crash_param[0],
1366                                   hv->hv_crash_param[1],
1367                                   hv->hv_crash_param[2],
1368                                   hv->hv_crash_param[3],
1369                                   hv->hv_crash_param[4]);
1370
1371                        /* Send notification about crash to user space */
1372                        kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
1373                }
1374                break;
1375        case HV_X64_MSR_RESET:
1376                if (data == 1) {
1377                        vcpu_debug(vcpu, "hyper-v reset requested\n");
1378                        kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1379                }
1380                break;
1381        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1382                hv->hv_reenlightenment_control = data;
1383                break;
1384        case HV_X64_MSR_TSC_EMULATION_CONTROL:
1385                hv->hv_tsc_emulation_control = data;
1386                break;
1387        case HV_X64_MSR_TSC_EMULATION_STATUS:
1388                if (data && !host)
1389                        return 1;
1390
1391                hv->hv_tsc_emulation_status = data;
1392                break;
1393        case HV_X64_MSR_TIME_REF_COUNT:
1394                /* read-only, but still ignore it if host-initiated */
1395                if (!host)
1396                        return 1;
1397                break;
1398        case HV_X64_MSR_SYNDBG_OPTIONS:
1399        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1400                return syndbg_set_msr(vcpu, msr, data, host);
1401        default:
1402                vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1403                            msr, data);
1404                return 1;
1405        }
1406        return 0;
1407}
1408
1409/* Calculate cpu time spent by current task in 100ns units */
1410static u64 current_task_runtime_100ns(void)
1411{
1412        u64 utime, stime;
1413
1414        task_cputime_adjusted(current, &utime, &stime);
1415
1416        return div_u64(utime + stime, 100);
1417}
1418
1419static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1420{
1421        struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1422
1423        if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1424                return 1;
1425
1426        switch (msr) {
1427        case HV_X64_MSR_VP_INDEX: {
1428                struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1429                int vcpu_idx = kvm_vcpu_get_idx(vcpu);
1430                u32 new_vp_index = (u32)data;
1431
1432                if (!host || new_vp_index >= KVM_MAX_VCPUS)
1433                        return 1;
1434
1435                if (new_vp_index == hv_vcpu->vp_index)
1436                        return 0;
1437
1438                /*
1439                 * The VP index is initialized to vcpu_index by
1440                 * kvm_hv_vcpu_postcreate so they initially match.  Now the
1441                 * VP index is changing, adjust num_mismatched_vp_indexes if
1442                 * it now matches or no longer matches vcpu_idx.
1443                 */
1444                if (hv_vcpu->vp_index == vcpu_idx)
1445                        atomic_inc(&hv->num_mismatched_vp_indexes);
1446                else if (new_vp_index == vcpu_idx)
1447                        atomic_dec(&hv->num_mismatched_vp_indexes);
1448
1449                hv_vcpu->vp_index = new_vp_index;
1450                break;
1451        }
1452        case HV_X64_MSR_VP_ASSIST_PAGE: {
1453                u64 gfn;
1454                unsigned long addr;
1455
1456                if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1457                        hv_vcpu->hv_vapic = data;
1458                        if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1459                                return 1;
1460                        break;
1461                }
1462                gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1463                addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1464                if (kvm_is_error_hva(addr))
1465                        return 1;
1466
1467                /*
1468                 * Clear apic_assist portion of struct hv_vp_assist_page
1469                 * only, there can be valuable data in the rest which needs
1470                 * to be preserved e.g. on migration.
1471                 */
1472                if (__put_user(0, (u32 __user *)addr))
1473                        return 1;
1474                hv_vcpu->hv_vapic = data;
1475                kvm_vcpu_mark_page_dirty(vcpu, gfn);
1476                if (kvm_lapic_enable_pv_eoi(vcpu,
1477                                            gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1478                                            sizeof(struct hv_vp_assist_page)))
1479                        return 1;
1480                break;
1481        }
1482        case HV_X64_MSR_EOI:
1483                return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1484        case HV_X64_MSR_ICR:
1485                return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1486        case HV_X64_MSR_TPR:
1487                return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1488        case HV_X64_MSR_VP_RUNTIME:
1489                if (!host)
1490                        return 1;
1491                hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1492                break;
1493        case HV_X64_MSR_SCONTROL:
1494        case HV_X64_MSR_SVERSION:
1495        case HV_X64_MSR_SIEFP:
1496        case HV_X64_MSR_SIMP:
1497        case HV_X64_MSR_EOM:
1498        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1499                return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
1500        case HV_X64_MSR_STIMER0_CONFIG:
1501        case HV_X64_MSR_STIMER1_CONFIG:
1502        case HV_X64_MSR_STIMER2_CONFIG:
1503        case HV_X64_MSR_STIMER3_CONFIG: {
1504                int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1505
1506                return stimer_set_config(to_hv_stimer(vcpu, timer_index),
1507                                         data, host);
1508        }
1509        case HV_X64_MSR_STIMER0_COUNT:
1510        case HV_X64_MSR_STIMER1_COUNT:
1511        case HV_X64_MSR_STIMER2_COUNT:
1512        case HV_X64_MSR_STIMER3_COUNT: {
1513                int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1514
1515                return stimer_set_count(to_hv_stimer(vcpu, timer_index),
1516                                        data, host);
1517        }
1518        case HV_X64_MSR_TSC_FREQUENCY:
1519        case HV_X64_MSR_APIC_FREQUENCY:
1520                /* read-only, but still ignore it if host-initiated */
1521                if (!host)
1522                        return 1;
1523                break;
1524        default:
1525                vcpu_unimpl(vcpu, "Hyper-V unhandled wrmsr: 0x%x data 0x%llx\n",
1526                            msr, data);
1527                return 1;
1528        }
1529
1530        return 0;
1531}
1532
1533static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1534                             bool host)
1535{
1536        u64 data = 0;
1537        struct kvm *kvm = vcpu->kvm;
1538        struct kvm_hv *hv = to_kvm_hv(kvm);
1539
1540        if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1541                return 1;
1542
1543        switch (msr) {
1544        case HV_X64_MSR_GUEST_OS_ID:
1545                data = hv->hv_guest_os_id;
1546                break;
1547        case HV_X64_MSR_HYPERCALL:
1548                data = hv->hv_hypercall;
1549                break;
1550        case HV_X64_MSR_TIME_REF_COUNT:
1551                data = get_time_ref_counter(kvm);
1552                break;
1553        case HV_X64_MSR_REFERENCE_TSC:
1554                data = hv->hv_tsc_page;
1555                break;
1556        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1557                return kvm_hv_msr_get_crash_data(kvm,
1558                                                 msr - HV_X64_MSR_CRASH_P0,
1559                                                 pdata);
1560        case HV_X64_MSR_CRASH_CTL:
1561                return kvm_hv_msr_get_crash_ctl(kvm, pdata);
1562        case HV_X64_MSR_RESET:
1563                data = 0;
1564                break;
1565        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1566                data = hv->hv_reenlightenment_control;
1567                break;
1568        case HV_X64_MSR_TSC_EMULATION_CONTROL:
1569                data = hv->hv_tsc_emulation_control;
1570                break;
1571        case HV_X64_MSR_TSC_EMULATION_STATUS:
1572                data = hv->hv_tsc_emulation_status;
1573                break;
1574        case HV_X64_MSR_SYNDBG_OPTIONS:
1575        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1576                return syndbg_get_msr(vcpu, msr, pdata, host);
1577        default:
1578                vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1579                return 1;
1580        }
1581
1582        *pdata = data;
1583        return 0;
1584}
1585
1586static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1587                          bool host)
1588{
1589        u64 data = 0;
1590        struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1591
1592        if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1593                return 1;
1594
1595        switch (msr) {
1596        case HV_X64_MSR_VP_INDEX:
1597                data = hv_vcpu->vp_index;
1598                break;
1599        case HV_X64_MSR_EOI:
1600                return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1601        case HV_X64_MSR_ICR:
1602                return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1603        case HV_X64_MSR_TPR:
1604                return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1605        case HV_X64_MSR_VP_ASSIST_PAGE:
1606                data = hv_vcpu->hv_vapic;
1607                break;
1608        case HV_X64_MSR_VP_RUNTIME:
1609                data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1610                break;
1611        case HV_X64_MSR_SCONTROL:
1612        case HV_X64_MSR_SVERSION:
1613        case HV_X64_MSR_SIEFP:
1614        case HV_X64_MSR_SIMP:
1615        case HV_X64_MSR_EOM:
1616        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1617                return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
1618        case HV_X64_MSR_STIMER0_CONFIG:
1619        case HV_X64_MSR_STIMER1_CONFIG:
1620        case HV_X64_MSR_STIMER2_CONFIG:
1621        case HV_X64_MSR_STIMER3_CONFIG: {
1622                int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1623
1624                return stimer_get_config(to_hv_stimer(vcpu, timer_index),
1625                                         pdata);
1626        }
1627        case HV_X64_MSR_STIMER0_COUNT:
1628        case HV_X64_MSR_STIMER1_COUNT:
1629        case HV_X64_MSR_STIMER2_COUNT:
1630        case HV_X64_MSR_STIMER3_COUNT: {
1631                int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1632
1633                return stimer_get_count(to_hv_stimer(vcpu, timer_index),
1634                                        pdata);
1635        }
1636        case HV_X64_MSR_TSC_FREQUENCY:
1637                data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1638                break;
1639        case HV_X64_MSR_APIC_FREQUENCY:
1640                data = APIC_BUS_FREQUENCY;
1641                break;
1642        default:
1643                vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1644                return 1;
1645        }
1646        *pdata = data;
1647        return 0;
1648}
1649
1650int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1651{
1652        struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1653
1654        if (!host && !vcpu->arch.hyperv_enabled)
1655                return 1;
1656
1657        if (!to_hv_vcpu(vcpu)) {
1658                if (kvm_hv_vcpu_init(vcpu))
1659                        return 1;
1660        }
1661
1662        if (kvm_hv_msr_partition_wide(msr)) {
1663                int r;
1664
1665                mutex_lock(&hv->hv_lock);
1666                r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1667                mutex_unlock(&hv->hv_lock);
1668                return r;
1669        } else
1670                return kvm_hv_set_msr(vcpu, msr, data, host);
1671}
1672
1673int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1674{
1675        struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
1676
1677        if (!host && !vcpu->arch.hyperv_enabled)
1678                return 1;
1679
1680        if (!to_hv_vcpu(vcpu)) {
1681                if (kvm_hv_vcpu_init(vcpu))
1682                        return 1;
1683        }
1684
1685        if (kvm_hv_msr_partition_wide(msr)) {
1686                int r;
1687
1688                mutex_lock(&hv->hv_lock);
1689                r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1690                mutex_unlock(&hv->hv_lock);
1691                return r;
1692        } else
1693                return kvm_hv_get_msr(vcpu, msr, pdata, host);
1694}
1695
1696static __always_inline unsigned long *sparse_set_to_vcpu_mask(
1697        struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
1698        u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1699{
1700        struct kvm_hv *hv = to_kvm_hv(kvm);
1701        struct kvm_vcpu *vcpu;
1702        int i, bank, sbank = 0;
1703
1704        memset(vp_bitmap, 0,
1705               KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
1706        for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1707                         KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1708                vp_bitmap[bank] = sparse_banks[sbank++];
1709
1710        if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
1711                /* for all vcpus vp_index == vcpu_idx */
1712                return (unsigned long *)vp_bitmap;
1713        }
1714
1715        bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
1716        kvm_for_each_vcpu(i, vcpu, kvm) {
1717                if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
1718                        __set_bit(i, vcpu_bitmap);
1719        }
1720        return vcpu_bitmap;
1721}
1722
1723struct kvm_hv_hcall {
1724        u64 param;
1725        u64 ingpa;
1726        u64 outgpa;
1727        u16 code;
1728        u16 rep_cnt;
1729        u16 rep_idx;
1730        bool fast;
1731        bool rep;
1732        sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
1733};
1734
1735static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool ex)
1736{
1737        int i;
1738        gpa_t gpa;
1739        struct kvm *kvm = vcpu->kvm;
1740        struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1741        struct hv_tlb_flush_ex flush_ex;
1742        struct hv_tlb_flush flush;
1743        u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1744        DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1745        unsigned long *vcpu_mask;
1746        u64 valid_bank_mask;
1747        u64 sparse_banks[64];
1748        int sparse_banks_len;
1749        bool all_cpus;
1750
1751        if (!ex) {
1752                if (hc->fast) {
1753                        flush.address_space = hc->ingpa;
1754                        flush.flags = hc->outgpa;
1755                        flush.processor_mask = sse128_lo(hc->xmm[0]);
1756                } else {
1757                        if (unlikely(kvm_read_guest(kvm, hc->ingpa,
1758                                                    &flush, sizeof(flush))))
1759                                return HV_STATUS_INVALID_HYPERCALL_INPUT;
1760                }
1761
1762                trace_kvm_hv_flush_tlb(flush.processor_mask,
1763                                       flush.address_space, flush.flags);
1764
1765                valid_bank_mask = BIT_ULL(0);
1766                sparse_banks[0] = flush.processor_mask;
1767
1768                /*
1769                 * Work around possible WS2012 bug: it sends hypercalls
1770                 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
1771                 * while also expecting us to flush something and crashing if
1772                 * we don't. Let's treat processor_mask == 0 same as
1773                 * HV_FLUSH_ALL_PROCESSORS.
1774                 */
1775                all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
1776                        flush.processor_mask == 0;
1777        } else {
1778                if (hc->fast) {
1779                        flush_ex.address_space = hc->ingpa;
1780                        flush_ex.flags = hc->outgpa;
1781                        memcpy(&flush_ex.hv_vp_set,
1782                               &hc->xmm[0], sizeof(hc->xmm[0]));
1783                } else {
1784                        if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
1785                                                    sizeof(flush_ex))))
1786                                return HV_STATUS_INVALID_HYPERCALL_INPUT;
1787                }
1788
1789                trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1790                                          flush_ex.hv_vp_set.format,
1791                                          flush_ex.address_space,
1792                                          flush_ex.flags);
1793
1794                valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1795                all_cpus = flush_ex.hv_vp_set.format !=
1796                        HV_GENERIC_SET_SPARSE_4K;
1797
1798                sparse_banks_len = bitmap_weight((unsigned long *)&valid_bank_mask, 64);
1799
1800                if (!sparse_banks_len && !all_cpus)
1801                        goto ret_success;
1802
1803                if (!all_cpus) {
1804                        if (hc->fast) {
1805                                if (sparse_banks_len > HV_HYPERCALL_MAX_XMM_REGISTERS - 1)
1806                                        return HV_STATUS_INVALID_HYPERCALL_INPUT;
1807                                for (i = 0; i < sparse_banks_len; i += 2) {
1808                                        sparse_banks[i] = sse128_lo(hc->xmm[i / 2 + 1]);
1809                                        sparse_banks[i + 1] = sse128_hi(hc->xmm[i / 2 + 1]);
1810                                }
1811                        } else {
1812                                gpa = hc->ingpa + offsetof(struct hv_tlb_flush_ex,
1813                                                           hv_vp_set.bank_contents);
1814                                if (unlikely(kvm_read_guest(kvm, gpa, sparse_banks,
1815                                                            sparse_banks_len *
1816                                                            sizeof(sparse_banks[0]))))
1817                                        return HV_STATUS_INVALID_HYPERCALL_INPUT;
1818                        }
1819                }
1820        }
1821
1822        cpumask_clear(&hv_vcpu->tlb_flush);
1823
1824        vcpu_mask = all_cpus ? NULL :
1825                sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1826                                        vp_bitmap, vcpu_bitmap);
1827
1828        /*
1829         * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1830         * analyze it here, flush TLB regardless of the specified address space.
1831         */
1832        kvm_make_vcpus_request_mask(kvm, KVM_REQ_TLB_FLUSH_GUEST,
1833                                    NULL, vcpu_mask, &hv_vcpu->tlb_flush);
1834
1835ret_success:
1836        /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
1837        return (u64)HV_STATUS_SUCCESS |
1838                ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1839}
1840
1841static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
1842                                 unsigned long *vcpu_bitmap)
1843{
1844        struct kvm_lapic_irq irq = {
1845                .delivery_mode = APIC_DM_FIXED,
1846                .vector = vector
1847        };
1848        struct kvm_vcpu *vcpu;
1849        int i;
1850
1851        kvm_for_each_vcpu(i, vcpu, kvm) {
1852                if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
1853                        continue;
1854
1855                /* We fail only when APIC is disabled */
1856                kvm_apic_set_irq(vcpu, &irq, NULL);
1857        }
1858}
1859
1860static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc, bool ex)
1861{
1862        struct kvm *kvm = vcpu->kvm;
1863        struct hv_send_ipi_ex send_ipi_ex;
1864        struct hv_send_ipi send_ipi;
1865        u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1866        DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1867        unsigned long *vcpu_mask;
1868        unsigned long valid_bank_mask;
1869        u64 sparse_banks[64];
1870        int sparse_banks_len;
1871        u32 vector;
1872        bool all_cpus;
1873
1874        if (!ex) {
1875                if (!hc->fast) {
1876                        if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
1877                                                    sizeof(send_ipi))))
1878                                return HV_STATUS_INVALID_HYPERCALL_INPUT;
1879                        sparse_banks[0] = send_ipi.cpu_mask;
1880                        vector = send_ipi.vector;
1881                } else {
1882                        /* 'reserved' part of hv_send_ipi should be 0 */
1883                        if (unlikely(hc->ingpa >> 32 != 0))
1884                                return HV_STATUS_INVALID_HYPERCALL_INPUT;
1885                        sparse_banks[0] = hc->outgpa;
1886                        vector = (u32)hc->ingpa;
1887                }
1888                all_cpus = false;
1889                valid_bank_mask = BIT_ULL(0);
1890
1891                trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1892        } else {
1893                if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
1894                                            sizeof(send_ipi_ex))))
1895                        return HV_STATUS_INVALID_HYPERCALL_INPUT;
1896
1897                trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
1898                                         send_ipi_ex.vp_set.format,
1899                                         send_ipi_ex.vp_set.valid_bank_mask);
1900
1901                vector = send_ipi_ex.vector;
1902                valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
1903                sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1904                        sizeof(sparse_banks[0]);
1905
1906                all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
1907
1908                if (!sparse_banks_len)
1909                        goto ret_success;
1910
1911                if (!all_cpus &&
1912                    kvm_read_guest(kvm,
1913                                   hc->ingpa + offsetof(struct hv_send_ipi_ex,
1914                                                        vp_set.bank_contents),
1915                                   sparse_banks,
1916                                   sparse_banks_len))
1917                        return HV_STATUS_INVALID_HYPERCALL_INPUT;
1918        }
1919
1920        if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1921                return HV_STATUS_INVALID_HYPERCALL_INPUT;
1922
1923        vcpu_mask = all_cpus ? NULL :
1924                sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1925                                        vp_bitmap, vcpu_bitmap);
1926
1927        kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1928
1929ret_success:
1930        return HV_STATUS_SUCCESS;
1931}
1932
1933void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu)
1934{
1935        struct kvm_cpuid_entry2 *entry;
1936        struct kvm_vcpu_hv *hv_vcpu;
1937
1938        entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE, 0);
1939        if (entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX) {
1940                vcpu->arch.hyperv_enabled = true;
1941        } else {
1942                vcpu->arch.hyperv_enabled = false;
1943                return;
1944        }
1945
1946        if (!to_hv_vcpu(vcpu) && kvm_hv_vcpu_init(vcpu))
1947                return;
1948
1949        hv_vcpu = to_hv_vcpu(vcpu);
1950
1951        entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES, 0);
1952        if (entry) {
1953                hv_vcpu->cpuid_cache.features_eax = entry->eax;
1954                hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
1955                hv_vcpu->cpuid_cache.features_edx = entry->edx;
1956        } else {
1957                hv_vcpu->cpuid_cache.features_eax = 0;
1958                hv_vcpu->cpuid_cache.features_ebx = 0;
1959                hv_vcpu->cpuid_cache.features_edx = 0;
1960        }
1961
1962        entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO, 0);
1963        if (entry) {
1964                hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
1965                hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
1966        } else {
1967                hv_vcpu->cpuid_cache.enlightenments_eax = 0;
1968                hv_vcpu->cpuid_cache.enlightenments_ebx = 0;
1969        }
1970
1971        entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES, 0);
1972        if (entry)
1973                hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
1974        else
1975                hv_vcpu->cpuid_cache.syndbg_cap_eax = 0;
1976}
1977
1978int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
1979{
1980        struct kvm_vcpu_hv *hv_vcpu;
1981        int ret = 0;
1982
1983        if (!to_hv_vcpu(vcpu)) {
1984                if (enforce) {
1985                        ret = kvm_hv_vcpu_init(vcpu);
1986                        if (ret)
1987                                return ret;
1988                } else {
1989                        return 0;
1990                }
1991        }
1992
1993        hv_vcpu = to_hv_vcpu(vcpu);
1994        hv_vcpu->enforce_cpuid = enforce;
1995
1996        return ret;
1997}
1998
1999bool kvm_hv_hypercall_enabled(struct kvm_vcpu *vcpu)
2000{
2001        return vcpu->arch.hyperv_enabled && to_kvm_hv(vcpu->kvm)->hv_guest_os_id;
2002}
2003
2004static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
2005{
2006        bool longmode;
2007
2008        longmode = is_64_bit_mode(vcpu);
2009        if (longmode)
2010                kvm_rax_write(vcpu, result);
2011        else {
2012                kvm_rdx_write(vcpu, result >> 32);
2013                kvm_rax_write(vcpu, result & 0xffffffff);
2014        }
2015}
2016
2017static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
2018{
2019        trace_kvm_hv_hypercall_done(result);
2020        kvm_hv_hypercall_set_result(vcpu, result);
2021        ++vcpu->stat.hypercalls;
2022        return kvm_skip_emulated_instruction(vcpu);
2023}
2024
2025static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
2026{
2027        return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
2028}
2029
2030static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2031{
2032        struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
2033        struct eventfd_ctx *eventfd;
2034
2035        if (unlikely(!hc->fast)) {
2036                int ret;
2037                gpa_t gpa = hc->ingpa;
2038
2039                if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
2040                    offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
2041                        return HV_STATUS_INVALID_ALIGNMENT;
2042
2043                ret = kvm_vcpu_read_guest(vcpu, gpa,
2044                                          &hc->ingpa, sizeof(hc->ingpa));
2045                if (ret < 0)
2046                        return HV_STATUS_INVALID_ALIGNMENT;
2047        }
2048
2049        /*
2050         * Per spec, bits 32-47 contain the extra "flag number".  However, we
2051         * have no use for it, and in all known usecases it is zero, so just
2052         * report lookup failure if it isn't.
2053         */
2054        if (hc->ingpa & 0xffff00000000ULL)
2055                return HV_STATUS_INVALID_PORT_ID;
2056        /* remaining bits are reserved-zero */
2057        if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
2058                return HV_STATUS_INVALID_HYPERCALL_INPUT;
2059
2060        /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
2061        rcu_read_lock();
2062        eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
2063        rcu_read_unlock();
2064        if (!eventfd)
2065                return HV_STATUS_INVALID_PORT_ID;
2066
2067        eventfd_signal(eventfd, 1);
2068        return HV_STATUS_SUCCESS;
2069}
2070
2071static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
2072{
2073        switch (hc->code) {
2074        case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2075        case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2076        case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2077        case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2078                return true;
2079        }
2080
2081        return false;
2082}
2083
2084static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
2085{
2086        int reg;
2087
2088        kvm_fpu_get();
2089        for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
2090                _kvm_read_sse_reg(reg, &hc->xmm[reg]);
2091        kvm_fpu_put();
2092}
2093
2094static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
2095{
2096        if (!hv_vcpu->enforce_cpuid)
2097                return true;
2098
2099        switch (code) {
2100        case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2101                return hv_vcpu->cpuid_cache.enlightenments_ebx &&
2102                        hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
2103        case HVCALL_POST_MESSAGE:
2104                return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
2105        case HVCALL_SIGNAL_EVENT:
2106                return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
2107        case HVCALL_POST_DEBUG_DATA:
2108        case HVCALL_RETRIEVE_DEBUG_DATA:
2109        case HVCALL_RESET_DEBUG_SESSION:
2110                /*
2111                 * Return 'true' when SynDBG is disabled so the resulting code
2112                 * will be HV_STATUS_INVALID_HYPERCALL_CODE.
2113                 */
2114                return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
2115                        hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
2116        case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2117        case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2118                if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2119                      HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2120                        return false;
2121                fallthrough;
2122        case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2123        case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2124                return hv_vcpu->cpuid_cache.enlightenments_eax &
2125                        HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2126        case HVCALL_SEND_IPI_EX:
2127                if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2128                      HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2129                        return false;
2130                fallthrough;
2131        case HVCALL_SEND_IPI:
2132                return hv_vcpu->cpuid_cache.enlightenments_eax &
2133                        HV_X64_CLUSTER_IPI_RECOMMENDED;
2134        default:
2135                break;
2136        }
2137
2138        return true;
2139}
2140
2141int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
2142{
2143        struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2144        struct kvm_hv_hcall hc;
2145        u64 ret = HV_STATUS_SUCCESS;
2146
2147        /*
2148         * hypercall generates UD from non zero cpl and real mode
2149         * per HYPER-V spec
2150         */
2151        if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
2152                kvm_queue_exception(vcpu, UD_VECTOR);
2153                return 1;
2154        }
2155
2156#ifdef CONFIG_X86_64
2157        if (is_64_bit_mode(vcpu)) {
2158                hc.param = kvm_rcx_read(vcpu);
2159                hc.ingpa = kvm_rdx_read(vcpu);
2160                hc.outgpa = kvm_r8_read(vcpu);
2161        } else
2162#endif
2163        {
2164                hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
2165                            (kvm_rax_read(vcpu) & 0xffffffff);
2166                hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
2167                            (kvm_rcx_read(vcpu) & 0xffffffff);
2168                hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
2169                             (kvm_rsi_read(vcpu) & 0xffffffff);
2170        }
2171
2172        hc.code = hc.param & 0xffff;
2173        hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
2174        hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
2175        hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
2176        hc.rep = !!(hc.rep_cnt || hc.rep_idx);
2177
2178        trace_kvm_hv_hypercall(hc.code, hc.fast, hc.rep_cnt, hc.rep_idx,
2179                               hc.ingpa, hc.outgpa);
2180
2181        if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
2182                ret = HV_STATUS_ACCESS_DENIED;
2183                goto hypercall_complete;
2184        }
2185
2186        if (hc.fast && is_xmm_fast_hypercall(&hc)) {
2187                if (unlikely(hv_vcpu->enforce_cpuid &&
2188                             !(hv_vcpu->cpuid_cache.features_edx &
2189                               HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
2190                        kvm_queue_exception(vcpu, UD_VECTOR);
2191                        return 1;
2192                }
2193
2194                kvm_hv_hypercall_read_xmm(&hc);
2195        }
2196
2197        switch (hc.code) {
2198        case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2199                if (unlikely(hc.rep)) {
2200                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2201                        break;
2202                }
2203                kvm_vcpu_on_spin(vcpu, true);
2204                break;
2205        case HVCALL_SIGNAL_EVENT:
2206                if (unlikely(hc.rep)) {
2207                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2208                        break;
2209                }
2210                ret = kvm_hvcall_signal_event(vcpu, &hc);
2211                if (ret != HV_STATUS_INVALID_PORT_ID)
2212                        break;
2213                fallthrough;    /* maybe userspace knows this conn_id */
2214        case HVCALL_POST_MESSAGE:
2215                /* don't bother userspace if it has no way to handle it */
2216                if (unlikely(hc.rep || !to_hv_synic(vcpu)->active)) {
2217                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2218                        break;
2219                }
2220                vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2221                vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2222                vcpu->run->hyperv.u.hcall.input = hc.param;
2223                vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2224                vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2225                vcpu->arch.complete_userspace_io =
2226                                kvm_hv_hypercall_complete_userspace;
2227                return 0;
2228        case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2229                if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2230                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2231                        break;
2232                }
2233                ret = kvm_hv_flush_tlb(vcpu, &hc, false);
2234                break;
2235        case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2236                if (unlikely(hc.rep)) {
2237                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2238                        break;
2239                }
2240                ret = kvm_hv_flush_tlb(vcpu, &hc, false);
2241                break;
2242        case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2243                if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2244                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2245                        break;
2246                }
2247                ret = kvm_hv_flush_tlb(vcpu, &hc, true);
2248                break;
2249        case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2250                if (unlikely(hc.rep)) {
2251                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2252                        break;
2253                }
2254                ret = kvm_hv_flush_tlb(vcpu, &hc, true);
2255                break;
2256        case HVCALL_SEND_IPI:
2257                if (unlikely(hc.rep)) {
2258                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2259                        break;
2260                }
2261                ret = kvm_hv_send_ipi(vcpu, &hc, false);
2262                break;
2263        case HVCALL_SEND_IPI_EX:
2264                if (unlikely(hc.fast || hc.rep)) {
2265                        ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2266                        break;
2267                }
2268                ret = kvm_hv_send_ipi(vcpu, &hc, true);
2269                break;
2270        case HVCALL_POST_DEBUG_DATA:
2271        case HVCALL_RETRIEVE_DEBUG_DATA:
2272                if (unlikely(hc.fast)) {
2273                        ret = HV_STATUS_INVALID_PARAMETER;
2274                        break;
2275                }
2276                fallthrough;
2277        case HVCALL_RESET_DEBUG_SESSION: {
2278                struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
2279
2280                if (!kvm_hv_is_syndbg_enabled(vcpu)) {
2281                        ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2282                        break;
2283                }
2284
2285                if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
2286                        ret = HV_STATUS_OPERATION_DENIED;
2287                        break;
2288                }
2289                vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2290                vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2291                vcpu->run->hyperv.u.hcall.input = hc.param;
2292                vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2293                vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2294                vcpu->arch.complete_userspace_io =
2295                                kvm_hv_hypercall_complete_userspace;
2296                return 0;
2297        }
2298        default:
2299                ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2300                break;
2301        }
2302
2303hypercall_complete:
2304        return kvm_hv_hypercall_complete(vcpu, ret);
2305}
2306
2307void kvm_hv_init_vm(struct kvm *kvm)
2308{
2309        struct kvm_hv *hv = to_kvm_hv(kvm);
2310
2311        mutex_init(&hv->hv_lock);
2312        idr_init(&hv->conn_to_evt);
2313}
2314
2315void kvm_hv_destroy_vm(struct kvm *kvm)
2316{
2317        struct kvm_hv *hv = to_kvm_hv(kvm);
2318        struct eventfd_ctx *eventfd;
2319        int i;
2320
2321        idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
2322                eventfd_ctx_put(eventfd);
2323        idr_destroy(&hv->conn_to_evt);
2324}
2325
2326static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
2327{
2328        struct kvm_hv *hv = to_kvm_hv(kvm);
2329        struct eventfd_ctx *eventfd;
2330        int ret;
2331
2332        eventfd = eventfd_ctx_fdget(fd);
2333        if (IS_ERR(eventfd))
2334                return PTR_ERR(eventfd);
2335
2336        mutex_lock(&hv->hv_lock);
2337        ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
2338                        GFP_KERNEL_ACCOUNT);
2339        mutex_unlock(&hv->hv_lock);
2340
2341        if (ret >= 0)
2342                return 0;
2343
2344        if (ret == -ENOSPC)
2345                ret = -EEXIST;
2346        eventfd_ctx_put(eventfd);
2347        return ret;
2348}
2349
2350static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
2351{
2352        struct kvm_hv *hv = to_kvm_hv(kvm);
2353        struct eventfd_ctx *eventfd;
2354
2355        mutex_lock(&hv->hv_lock);
2356        eventfd = idr_remove(&hv->conn_to_evt, conn_id);
2357        mutex_unlock(&hv->hv_lock);
2358
2359        if (!eventfd)
2360                return -ENOENT;
2361
2362        synchronize_srcu(&kvm->srcu);
2363        eventfd_ctx_put(eventfd);
2364        return 0;
2365}
2366
2367int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
2368{
2369        if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
2370            (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
2371                return -EINVAL;
2372
2373        if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
2374                return kvm_hv_eventfd_deassign(kvm, args->conn_id);
2375        return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
2376}
2377
2378int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
2379                     struct kvm_cpuid_entry2 __user *entries)
2380{
2381        uint16_t evmcs_ver = 0;
2382        struct kvm_cpuid_entry2 cpuid_entries[] = {
2383                { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
2384                { .function = HYPERV_CPUID_INTERFACE },
2385                { .function = HYPERV_CPUID_VERSION },
2386                { .function = HYPERV_CPUID_FEATURES },
2387                { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
2388                { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
2389                { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
2390                { .function = HYPERV_CPUID_SYNDBG_INTERFACE },
2391                { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
2392                { .function = HYPERV_CPUID_NESTED_FEATURES },
2393        };
2394        int i, nent = ARRAY_SIZE(cpuid_entries);
2395
2396        if (kvm_x86_ops.nested_ops->get_evmcs_version)
2397                evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
2398
2399        /* Skip NESTED_FEATURES if eVMCS is not supported */
2400        if (!evmcs_ver)
2401                --nent;
2402
2403        if (cpuid->nent < nent)
2404                return -E2BIG;
2405
2406        if (cpuid->nent > nent)
2407                cpuid->nent = nent;
2408
2409        for (i = 0; i < nent; i++) {
2410                struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
2411                u32 signature[3];
2412
2413                switch (ent->function) {
2414                case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
2415                        memcpy(signature, "Linux KVM Hv", 12);
2416
2417                        ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2418                        ent->ebx = signature[0];
2419                        ent->ecx = signature[1];
2420                        ent->edx = signature[2];
2421                        break;
2422
2423                case HYPERV_CPUID_INTERFACE:
2424                        ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
2425                        break;
2426
2427                case HYPERV_CPUID_VERSION:
2428                        /*
2429                         * We implement some Hyper-V 2016 functions so let's use
2430                         * this version.
2431                         */
2432                        ent->eax = 0x00003839;
2433                        ent->ebx = 0x000A0000;
2434                        break;
2435
2436                case HYPERV_CPUID_FEATURES:
2437                        ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2438                        ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2439                        ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2440                        ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2441                        ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
2442                        ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
2443                        ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
2444                        ent->eax |= HV_MSR_RESET_AVAILABLE;
2445                        ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2446                        ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
2447                        ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2448
2449                        ent->ebx |= HV_POST_MESSAGES;
2450                        ent->ebx |= HV_SIGNAL_EVENTS;
2451
2452                        ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
2453                        ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2454                        ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2455
2456                        ent->ebx |= HV_DEBUGGING;
2457                        ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2458                        ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
2459
2460                        /*
2461                         * Direct Synthetic timers only make sense with in-kernel
2462                         * LAPIC
2463                         */
2464                        if (!vcpu || lapic_in_kernel(vcpu))
2465                                ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2466
2467                        break;
2468
2469                case HYPERV_CPUID_ENLIGHTMENT_INFO:
2470                        ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2471                        ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2472                        ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2473                        ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2474                        ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2475                        if (evmcs_ver)
2476                                ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2477                        if (!cpu_smt_possible())
2478                                ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2479                        /*
2480                         * Default number of spinlock retry attempts, matches
2481                         * HyperV 2016.
2482                         */
2483                        ent->ebx = 0x00000FFF;
2484
2485                        break;
2486
2487                case HYPERV_CPUID_IMPLEMENT_LIMITS:
2488                        /* Maximum number of virtual processors */
2489                        ent->eax = KVM_MAX_VCPUS;
2490                        /*
2491                         * Maximum number of logical processors, matches
2492                         * HyperV 2016.
2493                         */
2494                        ent->ebx = 64;
2495
2496                        break;
2497
2498                case HYPERV_CPUID_NESTED_FEATURES:
2499                        ent->eax = evmcs_ver;
2500
2501                        break;
2502
2503                case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2504                        memcpy(signature, "Linux KVM Hv", 12);
2505
2506                        ent->eax = 0;
2507                        ent->ebx = signature[0];
2508                        ent->ecx = signature[1];
2509                        ent->edx = signature[2];
2510                        break;
2511
2512                case HYPERV_CPUID_SYNDBG_INTERFACE:
2513                        memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2514                        ent->eax = signature[0];
2515                        break;
2516
2517                case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2518                        ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2519                        break;
2520
2521                default:
2522                        break;
2523                }
2524        }
2525
2526        if (copy_to_user(entries, cpuid_entries,
2527                         nent * sizeof(struct kvm_cpuid_entry2)))
2528                return -EFAULT;
2529
2530        return 0;
2531}
2532