linux/arch/x86/kernel/cpu/common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* cpu_feature_enabled() cannot be used this early */
   3#define USE_EARLY_PGTABLE_L5
   4
   5#include <linux/memblock.h>
   6#include <linux/linkage.h>
   7#include <linux/bitops.h>
   8#include <linux/kernel.h>
   9#include <linux/export.h>
  10#include <linux/percpu.h>
  11#include <linux/string.h>
  12#include <linux/ctype.h>
  13#include <linux/delay.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/clock.h>
  16#include <linux/sched/task.h>
  17#include <linux/sched/smt.h>
  18#include <linux/init.h>
  19#include <linux/kprobes.h>
  20#include <linux/kgdb.h>
  21#include <linux/smp.h>
  22#include <linux/io.h>
  23#include <linux/syscore_ops.h>
  24#include <linux/pgtable.h>
  25
  26#include <asm/cmdline.h>
  27#include <asm/stackprotector.h>
  28#include <asm/perf_event.h>
  29#include <asm/mmu_context.h>
  30#include <asm/doublefault.h>
  31#include <asm/archrandom.h>
  32#include <asm/hypervisor.h>
  33#include <asm/processor.h>
  34#include <asm/tlbflush.h>
  35#include <asm/debugreg.h>
  36#include <asm/sections.h>
  37#include <asm/vsyscall.h>
  38#include <linux/topology.h>
  39#include <linux/cpumask.h>
  40#include <linux/atomic.h>
  41#include <asm/proto.h>
  42#include <asm/setup.h>
  43#include <asm/apic.h>
  44#include <asm/desc.h>
  45#include <asm/fpu/internal.h>
  46#include <asm/mtrr.h>
  47#include <asm/hwcap2.h>
  48#include <linux/numa.h>
  49#include <asm/numa.h>
  50#include <asm/asm.h>
  51#include <asm/bugs.h>
  52#include <asm/cpu.h>
  53#include <asm/mce.h>
  54#include <asm/msr.h>
  55#include <asm/memtype.h>
  56#include <asm/microcode.h>
  57#include <asm/microcode_intel.h>
  58#include <asm/intel-family.h>
  59#include <asm/cpu_device_id.h>
  60#include <asm/uv/uv.h>
  61#include <asm/sigframe.h>
  62
  63#include "cpu.h"
  64
  65u32 elf_hwcap2 __read_mostly;
  66
  67/* all of these masks are initialized in setup_cpu_local_masks() */
  68cpumask_var_t cpu_initialized_mask;
  69cpumask_var_t cpu_callout_mask;
  70cpumask_var_t cpu_callin_mask;
  71
  72/* representing cpus for which sibling maps can be computed */
  73cpumask_var_t cpu_sibling_setup_mask;
  74
  75/* Number of siblings per CPU package */
  76int smp_num_siblings = 1;
  77EXPORT_SYMBOL(smp_num_siblings);
  78
  79/* Last level cache ID of each logical CPU */
  80DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
  81
  82/* correctly size the local cpu masks */
  83void __init setup_cpu_local_masks(void)
  84{
  85        alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  86        alloc_bootmem_cpumask_var(&cpu_callin_mask);
  87        alloc_bootmem_cpumask_var(&cpu_callout_mask);
  88        alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  89}
  90
  91static void default_init(struct cpuinfo_x86 *c)
  92{
  93#ifdef CONFIG_X86_64
  94        cpu_detect_cache_sizes(c);
  95#else
  96        /* Not much we can do here... */
  97        /* Check if at least it has cpuid */
  98        if (c->cpuid_level == -1) {
  99                /* No cpuid. It must be an ancient CPU */
 100                if (c->x86 == 4)
 101                        strcpy(c->x86_model_id, "486");
 102                else if (c->x86 == 3)
 103                        strcpy(c->x86_model_id, "386");
 104        }
 105#endif
 106}
 107
 108static const struct cpu_dev default_cpu = {
 109        .c_init         = default_init,
 110        .c_vendor       = "Unknown",
 111        .c_x86_vendor   = X86_VENDOR_UNKNOWN,
 112};
 113
 114static const struct cpu_dev *this_cpu = &default_cpu;
 115
 116DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
 117#ifdef CONFIG_X86_64
 118        /*
 119         * We need valid kernel segments for data and code in long mode too
 120         * IRET will check the segment types  kkeil 2000/10/28
 121         * Also sysret mandates a special GDT layout
 122         *
 123         * TLS descriptors are currently at a different place compared to i386.
 124         * Hopefully nobody expects them at a fixed place (Wine?)
 125         */
 126        [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
 127        [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
 128        [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
 129        [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
 130        [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
 131        [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
 132#else
 133        [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
 134        [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 135        [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
 136        [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
 137        /*
 138         * Segments used for calling PnP BIOS have byte granularity.
 139         * They code segments and data segments have fixed 64k limits,
 140         * the transfer segment sizes are set at run time.
 141         */
 142        /* 32-bit code */
 143        [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 144        /* 16-bit code */
 145        [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 146        /* 16-bit data */
 147        [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
 148        /* 16-bit data */
 149        [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 150        /* 16-bit data */
 151        [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 152        /*
 153         * The APM segments have byte granularity and their bases
 154         * are set at run time.  All have 64k limits.
 155         */
 156        /* 32-bit code */
 157        [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 158        /* 16-bit code */
 159        [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 160        /* data */
 161        [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
 162
 163        [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 164        [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 165#endif
 166} };
 167EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
 168
 169#ifdef CONFIG_X86_64
 170static int __init x86_nopcid_setup(char *s)
 171{
 172        /* nopcid doesn't accept parameters */
 173        if (s)
 174                return -EINVAL;
 175
 176        /* do not emit a message if the feature is not present */
 177        if (!boot_cpu_has(X86_FEATURE_PCID))
 178                return 0;
 179
 180        setup_clear_cpu_cap(X86_FEATURE_PCID);
 181        pr_info("nopcid: PCID feature disabled\n");
 182        return 0;
 183}
 184early_param("nopcid", x86_nopcid_setup);
 185#endif
 186
 187static int __init x86_noinvpcid_setup(char *s)
 188{
 189        /* noinvpcid doesn't accept parameters */
 190        if (s)
 191                return -EINVAL;
 192
 193        /* do not emit a message if the feature is not present */
 194        if (!boot_cpu_has(X86_FEATURE_INVPCID))
 195                return 0;
 196
 197        setup_clear_cpu_cap(X86_FEATURE_INVPCID);
 198        pr_info("noinvpcid: INVPCID feature disabled\n");
 199        return 0;
 200}
 201early_param("noinvpcid", x86_noinvpcid_setup);
 202
 203#ifdef CONFIG_X86_32
 204static int cachesize_override = -1;
 205static int disable_x86_serial_nr = 1;
 206
 207static int __init cachesize_setup(char *str)
 208{
 209        get_option(&str, &cachesize_override);
 210        return 1;
 211}
 212__setup("cachesize=", cachesize_setup);
 213
 214static int __init x86_sep_setup(char *s)
 215{
 216        setup_clear_cpu_cap(X86_FEATURE_SEP);
 217        return 1;
 218}
 219__setup("nosep", x86_sep_setup);
 220
 221/* Standard macro to see if a specific flag is changeable */
 222static inline int flag_is_changeable_p(u32 flag)
 223{
 224        u32 f1, f2;
 225
 226        /*
 227         * Cyrix and IDT cpus allow disabling of CPUID
 228         * so the code below may return different results
 229         * when it is executed before and after enabling
 230         * the CPUID. Add "volatile" to not allow gcc to
 231         * optimize the subsequent calls to this function.
 232         */
 233        asm volatile ("pushfl           \n\t"
 234                      "pushfl           \n\t"
 235                      "popl %0          \n\t"
 236                      "movl %0, %1      \n\t"
 237                      "xorl %2, %0      \n\t"
 238                      "pushl %0         \n\t"
 239                      "popfl            \n\t"
 240                      "pushfl           \n\t"
 241                      "popl %0          \n\t"
 242                      "popfl            \n\t"
 243
 244                      : "=&r" (f1), "=&r" (f2)
 245                      : "ir" (flag));
 246
 247        return ((f1^f2) & flag) != 0;
 248}
 249
 250/* Probe for the CPUID instruction */
 251int have_cpuid_p(void)
 252{
 253        return flag_is_changeable_p(X86_EFLAGS_ID);
 254}
 255
 256static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 257{
 258        unsigned long lo, hi;
 259
 260        if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
 261                return;
 262
 263        /* Disable processor serial number: */
 264
 265        rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 266        lo |= 0x200000;
 267        wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 268
 269        pr_notice("CPU serial number disabled.\n");
 270        clear_cpu_cap(c, X86_FEATURE_PN);
 271
 272        /* Disabling the serial number may affect the cpuid level */
 273        c->cpuid_level = cpuid_eax(0);
 274}
 275
 276static int __init x86_serial_nr_setup(char *s)
 277{
 278        disable_x86_serial_nr = 0;
 279        return 1;
 280}
 281__setup("serialnumber", x86_serial_nr_setup);
 282#else
 283static inline int flag_is_changeable_p(u32 flag)
 284{
 285        return 1;
 286}
 287static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 288{
 289}
 290#endif
 291
 292static __init int setup_disable_smep(char *arg)
 293{
 294        setup_clear_cpu_cap(X86_FEATURE_SMEP);
 295        return 1;
 296}
 297__setup("nosmep", setup_disable_smep);
 298
 299static __always_inline void setup_smep(struct cpuinfo_x86 *c)
 300{
 301        if (cpu_has(c, X86_FEATURE_SMEP))
 302                cr4_set_bits(X86_CR4_SMEP);
 303}
 304
 305static __init int setup_disable_smap(char *arg)
 306{
 307        setup_clear_cpu_cap(X86_FEATURE_SMAP);
 308        return 1;
 309}
 310__setup("nosmap", setup_disable_smap);
 311
 312static __always_inline void setup_smap(struct cpuinfo_x86 *c)
 313{
 314        unsigned long eflags = native_save_fl();
 315
 316        /* This should have been cleared long ago */
 317        BUG_ON(eflags & X86_EFLAGS_AC);
 318
 319        if (cpu_has(c, X86_FEATURE_SMAP)) {
 320#ifdef CONFIG_X86_SMAP
 321                cr4_set_bits(X86_CR4_SMAP);
 322#else
 323                cr4_clear_bits(X86_CR4_SMAP);
 324#endif
 325        }
 326}
 327
 328static __always_inline void setup_umip(struct cpuinfo_x86 *c)
 329{
 330        /* Check the boot processor, plus build option for UMIP. */
 331        if (!cpu_feature_enabled(X86_FEATURE_UMIP))
 332                goto out;
 333
 334        /* Check the current processor's cpuid bits. */
 335        if (!cpu_has(c, X86_FEATURE_UMIP))
 336                goto out;
 337
 338        cr4_set_bits(X86_CR4_UMIP);
 339
 340        pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
 341
 342        return;
 343
 344out:
 345        /*
 346         * Make sure UMIP is disabled in case it was enabled in a
 347         * previous boot (e.g., via kexec).
 348         */
 349        cr4_clear_bits(X86_CR4_UMIP);
 350}
 351
 352/* These bits should not change their value after CPU init is finished. */
 353static const unsigned long cr4_pinned_mask =
 354        X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
 355static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
 356static unsigned long cr4_pinned_bits __ro_after_init;
 357
 358void native_write_cr0(unsigned long val)
 359{
 360        unsigned long bits_missing = 0;
 361
 362set_register:
 363        asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
 364
 365        if (static_branch_likely(&cr_pinning)) {
 366                if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
 367                        bits_missing = X86_CR0_WP;
 368                        val |= bits_missing;
 369                        goto set_register;
 370                }
 371                /* Warn after we've set the missing bits. */
 372                WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
 373        }
 374}
 375EXPORT_SYMBOL(native_write_cr0);
 376
 377void native_write_cr4(unsigned long val)
 378{
 379        unsigned long bits_changed = 0;
 380
 381set_register:
 382        asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
 383
 384        if (static_branch_likely(&cr_pinning)) {
 385                if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
 386                        bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
 387                        val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
 388                        goto set_register;
 389                }
 390                /* Warn after we've corrected the changed bits. */
 391                WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
 392                          bits_changed);
 393        }
 394}
 395#if IS_MODULE(CONFIG_LKDTM)
 396EXPORT_SYMBOL_GPL(native_write_cr4);
 397#endif
 398
 399void cr4_update_irqsoff(unsigned long set, unsigned long clear)
 400{
 401        unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
 402
 403        lockdep_assert_irqs_disabled();
 404
 405        newval = (cr4 & ~clear) | set;
 406        if (newval != cr4) {
 407                this_cpu_write(cpu_tlbstate.cr4, newval);
 408                __write_cr4(newval);
 409        }
 410}
 411EXPORT_SYMBOL(cr4_update_irqsoff);
 412
 413/* Read the CR4 shadow. */
 414unsigned long cr4_read_shadow(void)
 415{
 416        return this_cpu_read(cpu_tlbstate.cr4);
 417}
 418EXPORT_SYMBOL_GPL(cr4_read_shadow);
 419
 420void cr4_init(void)
 421{
 422        unsigned long cr4 = __read_cr4();
 423
 424        if (boot_cpu_has(X86_FEATURE_PCID))
 425                cr4 |= X86_CR4_PCIDE;
 426        if (static_branch_likely(&cr_pinning))
 427                cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
 428
 429        __write_cr4(cr4);
 430
 431        /* Initialize cr4 shadow for this CPU. */
 432        this_cpu_write(cpu_tlbstate.cr4, cr4);
 433}
 434
 435/*
 436 * Once CPU feature detection is finished (and boot params have been
 437 * parsed), record any of the sensitive CR bits that are set, and
 438 * enable CR pinning.
 439 */
 440static void __init setup_cr_pinning(void)
 441{
 442        cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
 443        static_key_enable(&cr_pinning.key);
 444}
 445
 446static __init int x86_nofsgsbase_setup(char *arg)
 447{
 448        /* Require an exact match without trailing characters. */
 449        if (strlen(arg))
 450                return 0;
 451
 452        /* Do not emit a message if the feature is not present. */
 453        if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
 454                return 1;
 455
 456        setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
 457        pr_info("FSGSBASE disabled via kernel command line\n");
 458        return 1;
 459}
 460__setup("nofsgsbase", x86_nofsgsbase_setup);
 461
 462/*
 463 * Protection Keys are not available in 32-bit mode.
 464 */
 465static bool pku_disabled;
 466
 467static __always_inline void setup_pku(struct cpuinfo_x86 *c)
 468{
 469        if (c == &boot_cpu_data) {
 470                if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
 471                        return;
 472                /*
 473                 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
 474                 * bit to be set.  Enforce it.
 475                 */
 476                setup_force_cpu_cap(X86_FEATURE_OSPKE);
 477
 478        } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
 479                return;
 480        }
 481
 482        cr4_set_bits(X86_CR4_PKE);
 483        /* Load the default PKRU value */
 484        pkru_write_default();
 485}
 486
 487#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
 488static __init int setup_disable_pku(char *arg)
 489{
 490        /*
 491         * Do not clear the X86_FEATURE_PKU bit.  All of the
 492         * runtime checks are against OSPKE so clearing the
 493         * bit does nothing.
 494         *
 495         * This way, we will see "pku" in cpuinfo, but not
 496         * "ospke", which is exactly what we want.  It shows
 497         * that the CPU has PKU, but the OS has not enabled it.
 498         * This happens to be exactly how a system would look
 499         * if we disabled the config option.
 500         */
 501        pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
 502        pku_disabled = true;
 503        return 1;
 504}
 505__setup("nopku", setup_disable_pku);
 506#endif /* CONFIG_X86_64 */
 507
 508/*
 509 * Some CPU features depend on higher CPUID levels, which may not always
 510 * be available due to CPUID level capping or broken virtualization
 511 * software.  Add those features to this table to auto-disable them.
 512 */
 513struct cpuid_dependent_feature {
 514        u32 feature;
 515        u32 level;
 516};
 517
 518static const struct cpuid_dependent_feature
 519cpuid_dependent_features[] = {
 520        { X86_FEATURE_MWAIT,            0x00000005 },
 521        { X86_FEATURE_DCA,              0x00000009 },
 522        { X86_FEATURE_XSAVE,            0x0000000d },
 523        { 0, 0 }
 524};
 525
 526static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
 527{
 528        const struct cpuid_dependent_feature *df;
 529
 530        for (df = cpuid_dependent_features; df->feature; df++) {
 531
 532                if (!cpu_has(c, df->feature))
 533                        continue;
 534                /*
 535                 * Note: cpuid_level is set to -1 if unavailable, but
 536                 * extended_extended_level is set to 0 if unavailable
 537                 * and the legitimate extended levels are all negative
 538                 * when signed; hence the weird messing around with
 539                 * signs here...
 540                 */
 541                if (!((s32)df->level < 0 ?
 542                     (u32)df->level > (u32)c->extended_cpuid_level :
 543                     (s32)df->level > (s32)c->cpuid_level))
 544                        continue;
 545
 546                clear_cpu_cap(c, df->feature);
 547                if (!warn)
 548                        continue;
 549
 550                pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
 551                        x86_cap_flag(df->feature), df->level);
 552        }
 553}
 554
 555/*
 556 * Naming convention should be: <Name> [(<Codename>)]
 557 * This table only is used unless init_<vendor>() below doesn't set it;
 558 * in particular, if CPUID levels 0x80000002..4 are supported, this
 559 * isn't used
 560 */
 561
 562/* Look up CPU names by table lookup. */
 563static const char *table_lookup_model(struct cpuinfo_x86 *c)
 564{
 565#ifdef CONFIG_X86_32
 566        const struct legacy_cpu_model_info *info;
 567
 568        if (c->x86_model >= 16)
 569                return NULL;    /* Range check */
 570
 571        if (!this_cpu)
 572                return NULL;
 573
 574        info = this_cpu->legacy_models;
 575
 576        while (info->family) {
 577                if (info->family == c->x86)
 578                        return info->model_names[c->x86_model];
 579                info++;
 580        }
 581#endif
 582        return NULL;            /* Not found */
 583}
 584
 585/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
 586__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
 587__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
 588
 589void load_percpu_segment(int cpu)
 590{
 591#ifdef CONFIG_X86_32
 592        loadsegment(fs, __KERNEL_PERCPU);
 593#else
 594        __loadsegment_simple(gs, 0);
 595        wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
 596#endif
 597}
 598
 599#ifdef CONFIG_X86_32
 600/* The 32-bit entry code needs to find cpu_entry_area. */
 601DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
 602#endif
 603
 604/* Load the original GDT from the per-cpu structure */
 605void load_direct_gdt(int cpu)
 606{
 607        struct desc_ptr gdt_descr;
 608
 609        gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
 610        gdt_descr.size = GDT_SIZE - 1;
 611        load_gdt(&gdt_descr);
 612}
 613EXPORT_SYMBOL_GPL(load_direct_gdt);
 614
 615/* Load a fixmap remapping of the per-cpu GDT */
 616void load_fixmap_gdt(int cpu)
 617{
 618        struct desc_ptr gdt_descr;
 619
 620        gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
 621        gdt_descr.size = GDT_SIZE - 1;
 622        load_gdt(&gdt_descr);
 623}
 624EXPORT_SYMBOL_GPL(load_fixmap_gdt);
 625
 626/*
 627 * Current gdt points %fs at the "master" per-cpu area: after this,
 628 * it's on the real one.
 629 */
 630void switch_to_new_gdt(int cpu)
 631{
 632        /* Load the original GDT */
 633        load_direct_gdt(cpu);
 634        /* Reload the per-cpu base */
 635        load_percpu_segment(cpu);
 636}
 637
 638static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
 639
 640static void get_model_name(struct cpuinfo_x86 *c)
 641{
 642        unsigned int *v;
 643        char *p, *q, *s;
 644
 645        if (c->extended_cpuid_level < 0x80000004)
 646                return;
 647
 648        v = (unsigned int *)c->x86_model_id;
 649        cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
 650        cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
 651        cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
 652        c->x86_model_id[48] = 0;
 653
 654        /* Trim whitespace */
 655        p = q = s = &c->x86_model_id[0];
 656
 657        while (*p == ' ')
 658                p++;
 659
 660        while (*p) {
 661                /* Note the last non-whitespace index */
 662                if (!isspace(*p))
 663                        s = q;
 664
 665                *q++ = *p++;
 666        }
 667
 668        *(s + 1) = '\0';
 669}
 670
 671void detect_num_cpu_cores(struct cpuinfo_x86 *c)
 672{
 673        unsigned int eax, ebx, ecx, edx;
 674
 675        c->x86_max_cores = 1;
 676        if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
 677                return;
 678
 679        cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
 680        if (eax & 0x1f)
 681                c->x86_max_cores = (eax >> 26) + 1;
 682}
 683
 684void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
 685{
 686        unsigned int n, dummy, ebx, ecx, edx, l2size;
 687
 688        n = c->extended_cpuid_level;
 689
 690        if (n >= 0x80000005) {
 691                cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
 692                c->x86_cache_size = (ecx>>24) + (edx>>24);
 693#ifdef CONFIG_X86_64
 694                /* On K8 L1 TLB is inclusive, so don't count it */
 695                c->x86_tlbsize = 0;
 696#endif
 697        }
 698
 699        if (n < 0x80000006)     /* Some chips just has a large L1. */
 700                return;
 701
 702        cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
 703        l2size = ecx >> 16;
 704
 705#ifdef CONFIG_X86_64
 706        c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
 707#else
 708        /* do processor-specific cache resizing */
 709        if (this_cpu->legacy_cache_size)
 710                l2size = this_cpu->legacy_cache_size(c, l2size);
 711
 712        /* Allow user to override all this if necessary. */
 713        if (cachesize_override != -1)
 714                l2size = cachesize_override;
 715
 716        if (l2size == 0)
 717                return;         /* Again, no L2 cache is possible */
 718#endif
 719
 720        c->x86_cache_size = l2size;
 721}
 722
 723u16 __read_mostly tlb_lli_4k[NR_INFO];
 724u16 __read_mostly tlb_lli_2m[NR_INFO];
 725u16 __read_mostly tlb_lli_4m[NR_INFO];
 726u16 __read_mostly tlb_lld_4k[NR_INFO];
 727u16 __read_mostly tlb_lld_2m[NR_INFO];
 728u16 __read_mostly tlb_lld_4m[NR_INFO];
 729u16 __read_mostly tlb_lld_1g[NR_INFO];
 730
 731static void cpu_detect_tlb(struct cpuinfo_x86 *c)
 732{
 733        if (this_cpu->c_detect_tlb)
 734                this_cpu->c_detect_tlb(c);
 735
 736        pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
 737                tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
 738                tlb_lli_4m[ENTRIES]);
 739
 740        pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
 741                tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
 742                tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
 743}
 744
 745int detect_ht_early(struct cpuinfo_x86 *c)
 746{
 747#ifdef CONFIG_SMP
 748        u32 eax, ebx, ecx, edx;
 749
 750        if (!cpu_has(c, X86_FEATURE_HT))
 751                return -1;
 752
 753        if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
 754                return -1;
 755
 756        if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
 757                return -1;
 758
 759        cpuid(1, &eax, &ebx, &ecx, &edx);
 760
 761        smp_num_siblings = (ebx & 0xff0000) >> 16;
 762        if (smp_num_siblings == 1)
 763                pr_info_once("CPU0: Hyper-Threading is disabled\n");
 764#endif
 765        return 0;
 766}
 767
 768void detect_ht(struct cpuinfo_x86 *c)
 769{
 770#ifdef CONFIG_SMP
 771        int index_msb, core_bits;
 772
 773        if (detect_ht_early(c) < 0)
 774                return;
 775
 776        index_msb = get_count_order(smp_num_siblings);
 777        c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
 778
 779        smp_num_siblings = smp_num_siblings / c->x86_max_cores;
 780
 781        index_msb = get_count_order(smp_num_siblings);
 782
 783        core_bits = get_count_order(c->x86_max_cores);
 784
 785        c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
 786                                       ((1 << core_bits) - 1);
 787#endif
 788}
 789
 790static void get_cpu_vendor(struct cpuinfo_x86 *c)
 791{
 792        char *v = c->x86_vendor_id;
 793        int i;
 794
 795        for (i = 0; i < X86_VENDOR_NUM; i++) {
 796                if (!cpu_devs[i])
 797                        break;
 798
 799                if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
 800                    (cpu_devs[i]->c_ident[1] &&
 801                     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
 802
 803                        this_cpu = cpu_devs[i];
 804                        c->x86_vendor = this_cpu->c_x86_vendor;
 805                        return;
 806                }
 807        }
 808
 809        pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
 810                    "CPU: Your system may be unstable.\n", v);
 811
 812        c->x86_vendor = X86_VENDOR_UNKNOWN;
 813        this_cpu = &default_cpu;
 814}
 815
 816void cpu_detect(struct cpuinfo_x86 *c)
 817{
 818        /* Get vendor name */
 819        cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
 820              (unsigned int *)&c->x86_vendor_id[0],
 821              (unsigned int *)&c->x86_vendor_id[8],
 822              (unsigned int *)&c->x86_vendor_id[4]);
 823
 824        c->x86 = 4;
 825        /* Intel-defined flags: level 0x00000001 */
 826        if (c->cpuid_level >= 0x00000001) {
 827                u32 junk, tfms, cap0, misc;
 828
 829                cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
 830                c->x86          = x86_family(tfms);
 831                c->x86_model    = x86_model(tfms);
 832                c->x86_stepping = x86_stepping(tfms);
 833
 834                if (cap0 & (1<<19)) {
 835                        c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
 836                        c->x86_cache_alignment = c->x86_clflush_size;
 837                }
 838        }
 839}
 840
 841static void apply_forced_caps(struct cpuinfo_x86 *c)
 842{
 843        int i;
 844
 845        for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
 846                c->x86_capability[i] &= ~cpu_caps_cleared[i];
 847                c->x86_capability[i] |= cpu_caps_set[i];
 848        }
 849}
 850
 851static void init_speculation_control(struct cpuinfo_x86 *c)
 852{
 853        /*
 854         * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
 855         * and they also have a different bit for STIBP support. Also,
 856         * a hypervisor might have set the individual AMD bits even on
 857         * Intel CPUs, for finer-grained selection of what's available.
 858         */
 859        if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
 860                set_cpu_cap(c, X86_FEATURE_IBRS);
 861                set_cpu_cap(c, X86_FEATURE_IBPB);
 862                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 863        }
 864
 865        if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
 866                set_cpu_cap(c, X86_FEATURE_STIBP);
 867
 868        if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
 869            cpu_has(c, X86_FEATURE_VIRT_SSBD))
 870                set_cpu_cap(c, X86_FEATURE_SSBD);
 871
 872        if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
 873                set_cpu_cap(c, X86_FEATURE_IBRS);
 874                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 875        }
 876
 877        if (cpu_has(c, X86_FEATURE_AMD_IBPB))
 878                set_cpu_cap(c, X86_FEATURE_IBPB);
 879
 880        if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
 881                set_cpu_cap(c, X86_FEATURE_STIBP);
 882                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 883        }
 884
 885        if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
 886                set_cpu_cap(c, X86_FEATURE_SSBD);
 887                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 888                clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
 889        }
 890}
 891
 892void get_cpu_cap(struct cpuinfo_x86 *c)
 893{
 894        u32 eax, ebx, ecx, edx;
 895
 896        /* Intel-defined flags: level 0x00000001 */
 897        if (c->cpuid_level >= 0x00000001) {
 898                cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
 899
 900                c->x86_capability[CPUID_1_ECX] = ecx;
 901                c->x86_capability[CPUID_1_EDX] = edx;
 902        }
 903
 904        /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
 905        if (c->cpuid_level >= 0x00000006)
 906                c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
 907
 908        /* Additional Intel-defined flags: level 0x00000007 */
 909        if (c->cpuid_level >= 0x00000007) {
 910                cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
 911                c->x86_capability[CPUID_7_0_EBX] = ebx;
 912                c->x86_capability[CPUID_7_ECX] = ecx;
 913                c->x86_capability[CPUID_7_EDX] = edx;
 914
 915                /* Check valid sub-leaf index before accessing it */
 916                if (eax >= 1) {
 917                        cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
 918                        c->x86_capability[CPUID_7_1_EAX] = eax;
 919                }
 920        }
 921
 922        /* Extended state features: level 0x0000000d */
 923        if (c->cpuid_level >= 0x0000000d) {
 924                cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
 925
 926                c->x86_capability[CPUID_D_1_EAX] = eax;
 927        }
 928
 929        /* AMD-defined flags: level 0x80000001 */
 930        eax = cpuid_eax(0x80000000);
 931        c->extended_cpuid_level = eax;
 932
 933        if ((eax & 0xffff0000) == 0x80000000) {
 934                if (eax >= 0x80000001) {
 935                        cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
 936
 937                        c->x86_capability[CPUID_8000_0001_ECX] = ecx;
 938                        c->x86_capability[CPUID_8000_0001_EDX] = edx;
 939                }
 940        }
 941
 942        if (c->extended_cpuid_level >= 0x80000007) {
 943                cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
 944
 945                c->x86_capability[CPUID_8000_0007_EBX] = ebx;
 946                c->x86_power = edx;
 947        }
 948
 949        if (c->extended_cpuid_level >= 0x80000008) {
 950                cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 951                c->x86_capability[CPUID_8000_0008_EBX] = ebx;
 952        }
 953
 954        if (c->extended_cpuid_level >= 0x8000000a)
 955                c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
 956
 957        if (c->extended_cpuid_level >= 0x8000001f)
 958                c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
 959
 960        init_scattered_cpuid_features(c);
 961        init_speculation_control(c);
 962
 963        /*
 964         * Clear/Set all flags overridden by options, after probe.
 965         * This needs to happen each time we re-probe, which may happen
 966         * several times during CPU initialization.
 967         */
 968        apply_forced_caps(c);
 969}
 970
 971void get_cpu_address_sizes(struct cpuinfo_x86 *c)
 972{
 973        u32 eax, ebx, ecx, edx;
 974
 975        if (c->extended_cpuid_level >= 0x80000008) {
 976                cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 977
 978                c->x86_virt_bits = (eax >> 8) & 0xff;
 979                c->x86_phys_bits = eax & 0xff;
 980        }
 981#ifdef CONFIG_X86_32
 982        else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
 983                c->x86_phys_bits = 36;
 984#endif
 985        c->x86_cache_bits = c->x86_phys_bits;
 986}
 987
 988static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
 989{
 990#ifdef CONFIG_X86_32
 991        int i;
 992
 993        /*
 994         * First of all, decide if this is a 486 or higher
 995         * It's a 486 if we can modify the AC flag
 996         */
 997        if (flag_is_changeable_p(X86_EFLAGS_AC))
 998                c->x86 = 4;
 999        else
1000                c->x86 = 3;
1001
1002        for (i = 0; i < X86_VENDOR_NUM; i++)
1003                if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1004                        c->x86_vendor_id[0] = 0;
1005                        cpu_devs[i]->c_identify(c);
1006                        if (c->x86_vendor_id[0]) {
1007                                get_cpu_vendor(c);
1008                                break;
1009                        }
1010                }
1011#endif
1012}
1013
1014#define NO_SPECULATION          BIT(0)
1015#define NO_MELTDOWN             BIT(1)
1016#define NO_SSB                  BIT(2)
1017#define NO_L1TF                 BIT(3)
1018#define NO_MDS                  BIT(4)
1019#define MSBDS_ONLY              BIT(5)
1020#define NO_SWAPGS               BIT(6)
1021#define NO_ITLB_MULTIHIT        BIT(7)
1022#define NO_SPECTRE_V2           BIT(8)
1023
1024#define VULNWL(vendor, family, model, whitelist)        \
1025        X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1026
1027#define VULNWL_INTEL(model, whitelist)          \
1028        VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1029
1030#define VULNWL_AMD(family, whitelist)           \
1031        VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1032
1033#define VULNWL_HYGON(family, whitelist)         \
1034        VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1035
1036static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1037        VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1038        VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1039        VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1040        VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1041
1042        /* Intel Family 6 */
1043        VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1044        VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1045        VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1046        VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1047        VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1048
1049        VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1050        VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1051        VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1052        VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1053        VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054        VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055
1056        VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1057
1058        VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1059        VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1060
1061        VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062        VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063        VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064
1065        /*
1066         * Technically, swapgs isn't serializing on AMD (despite it previously
1067         * being documented as such in the APM).  But according to AMD, %gs is
1068         * updated non-speculatively, and the issuing of %gs-relative memory
1069         * operands will be blocked until the %gs update completes, which is
1070         * good enough for our purposes.
1071         */
1072
1073        VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT),
1074
1075        /* AMD Family 0xf - 0x12 */
1076        VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1077        VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1078        VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1079        VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1080
1081        /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1082        VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1083        VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084
1085        /* Zhaoxin Family 7 */
1086        VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1087        VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1088        {}
1089};
1090
1091#define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1092        X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1093                                            INTEL_FAM6_##model, steppings, \
1094                                            X86_FEATURE_ANY, issues)
1095
1096#define SRBDS           BIT(0)
1097
1098static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1099        VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1100        VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1101        VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1102        VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1103        VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1104        VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1105        VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS),
1106        VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS),
1107        VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPINGS(0x0, 0xC),        SRBDS),
1108        VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPINGS(0x0, 0xD),        SRBDS),
1109        {}
1110};
1111
1112static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1113{
1114        const struct x86_cpu_id *m = x86_match_cpu(table);
1115
1116        return m && !!(m->driver_data & which);
1117}
1118
1119u64 x86_read_arch_cap_msr(void)
1120{
1121        u64 ia32_cap = 0;
1122
1123        if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1124                rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1125
1126        return ia32_cap;
1127}
1128
1129static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1130{
1131        u64 ia32_cap = x86_read_arch_cap_msr();
1132
1133        /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1134        if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1135            !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1136                setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1137
1138        if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1139                return;
1140
1141        setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1142
1143        if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1144                setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1145
1146        if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1147            !(ia32_cap & ARCH_CAP_SSB_NO) &&
1148           !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1149                setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1150
1151        if (ia32_cap & ARCH_CAP_IBRS_ALL)
1152                setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1153
1154        if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1155            !(ia32_cap & ARCH_CAP_MDS_NO)) {
1156                setup_force_cpu_bug(X86_BUG_MDS);
1157                if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1158                        setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1159        }
1160
1161        if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1162                setup_force_cpu_bug(X86_BUG_SWAPGS);
1163
1164        /*
1165         * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1166         *      - TSX is supported or
1167         *      - TSX_CTRL is present
1168         *
1169         * TSX_CTRL check is needed for cases when TSX could be disabled before
1170         * the kernel boot e.g. kexec.
1171         * TSX_CTRL check alone is not sufficient for cases when the microcode
1172         * update is not present or running as guest that don't get TSX_CTRL.
1173         */
1174        if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1175            (cpu_has(c, X86_FEATURE_RTM) ||
1176             (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1177                setup_force_cpu_bug(X86_BUG_TAA);
1178
1179        /*
1180         * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1181         * in the vulnerability blacklist.
1182         */
1183        if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1184             cpu_has(c, X86_FEATURE_RDSEED)) &&
1185            cpu_matches(cpu_vuln_blacklist, SRBDS))
1186                    setup_force_cpu_bug(X86_BUG_SRBDS);
1187
1188        if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1189                return;
1190
1191        /* Rogue Data Cache Load? No! */
1192        if (ia32_cap & ARCH_CAP_RDCL_NO)
1193                return;
1194
1195        setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1196
1197        if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1198                return;
1199
1200        setup_force_cpu_bug(X86_BUG_L1TF);
1201}
1202
1203/*
1204 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1205 * unfortunately, that's not true in practice because of early VIA
1206 * chips and (more importantly) broken virtualizers that are not easy
1207 * to detect. In the latter case it doesn't even *fail* reliably, so
1208 * probing for it doesn't even work. Disable it completely on 32-bit
1209 * unless we can find a reliable way to detect all the broken cases.
1210 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1211 */
1212static void detect_nopl(void)
1213{
1214#ifdef CONFIG_X86_32
1215        setup_clear_cpu_cap(X86_FEATURE_NOPL);
1216#else
1217        setup_force_cpu_cap(X86_FEATURE_NOPL);
1218#endif
1219}
1220
1221/*
1222 * We parse cpu parameters early because fpu__init_system() is executed
1223 * before parse_early_param().
1224 */
1225static void __init cpu_parse_early_param(void)
1226{
1227        char arg[128];
1228        char *argptr = arg;
1229        int arglen, res, bit;
1230
1231#ifdef CONFIG_X86_32
1232        if (cmdline_find_option_bool(boot_command_line, "no387"))
1233#ifdef CONFIG_MATH_EMULATION
1234                setup_clear_cpu_cap(X86_FEATURE_FPU);
1235#else
1236                pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1237#endif
1238
1239        if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1240                setup_clear_cpu_cap(X86_FEATURE_FXSR);
1241#endif
1242
1243        if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1244                setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1245
1246        if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1247                setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1248
1249        if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1250                setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1251
1252        arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1253        if (arglen <= 0)
1254                return;
1255
1256        pr_info("Clearing CPUID bits:");
1257        do {
1258                res = get_option(&argptr, &bit);
1259                if (res == 0 || res == 3)
1260                        break;
1261
1262                /* If the argument was too long, the last bit may be cut off */
1263                if (res == 1 && arglen >= sizeof(arg))
1264                        break;
1265
1266                if (bit >= 0 && bit < NCAPINTS * 32) {
1267                        pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1268                        setup_clear_cpu_cap(bit);
1269                }
1270        } while (res == 2);
1271        pr_cont("\n");
1272}
1273
1274/*
1275 * Do minimum CPU detection early.
1276 * Fields really needed: vendor, cpuid_level, family, model, mask,
1277 * cache alignment.
1278 * The others are not touched to avoid unwanted side effects.
1279 *
1280 * WARNING: this function is only called on the boot CPU.  Don't add code
1281 * here that is supposed to run on all CPUs.
1282 */
1283static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1284{
1285#ifdef CONFIG_X86_64
1286        c->x86_clflush_size = 64;
1287        c->x86_phys_bits = 36;
1288        c->x86_virt_bits = 48;
1289#else
1290        c->x86_clflush_size = 32;
1291        c->x86_phys_bits = 32;
1292        c->x86_virt_bits = 32;
1293#endif
1294        c->x86_cache_alignment = c->x86_clflush_size;
1295
1296        memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1297        c->extended_cpuid_level = 0;
1298
1299        if (!have_cpuid_p())
1300                identify_cpu_without_cpuid(c);
1301
1302        /* cyrix could have cpuid enabled via c_identify()*/
1303        if (have_cpuid_p()) {
1304                cpu_detect(c);
1305                get_cpu_vendor(c);
1306                get_cpu_cap(c);
1307                get_cpu_address_sizes(c);
1308                setup_force_cpu_cap(X86_FEATURE_CPUID);
1309                cpu_parse_early_param();
1310
1311                if (this_cpu->c_early_init)
1312                        this_cpu->c_early_init(c);
1313
1314                c->cpu_index = 0;
1315                filter_cpuid_features(c, false);
1316
1317                if (this_cpu->c_bsp_init)
1318                        this_cpu->c_bsp_init(c);
1319        } else {
1320                setup_clear_cpu_cap(X86_FEATURE_CPUID);
1321        }
1322
1323        setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1324
1325        cpu_set_bug_bits(c);
1326
1327        sld_setup(c);
1328
1329        fpu__init_system(c);
1330
1331        init_sigframe_size();
1332
1333#ifdef CONFIG_X86_32
1334        /*
1335         * Regardless of whether PCID is enumerated, the SDM says
1336         * that it can't be enabled in 32-bit mode.
1337         */
1338        setup_clear_cpu_cap(X86_FEATURE_PCID);
1339#endif
1340
1341        /*
1342         * Later in the boot process pgtable_l5_enabled() relies on
1343         * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1344         * enabled by this point we need to clear the feature bit to avoid
1345         * false-positives at the later stage.
1346         *
1347         * pgtable_l5_enabled() can be false here for several reasons:
1348         *  - 5-level paging is disabled compile-time;
1349         *  - it's 32-bit kernel;
1350         *  - machine doesn't support 5-level paging;
1351         *  - user specified 'no5lvl' in kernel command line.
1352         */
1353        if (!pgtable_l5_enabled())
1354                setup_clear_cpu_cap(X86_FEATURE_LA57);
1355
1356        detect_nopl();
1357}
1358
1359void __init early_cpu_init(void)
1360{
1361        const struct cpu_dev *const *cdev;
1362        int count = 0;
1363
1364#ifdef CONFIG_PROCESSOR_SELECT
1365        pr_info("KERNEL supported cpus:\n");
1366#endif
1367
1368        for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1369                const struct cpu_dev *cpudev = *cdev;
1370
1371                if (count >= X86_VENDOR_NUM)
1372                        break;
1373                cpu_devs[count] = cpudev;
1374                count++;
1375
1376#ifdef CONFIG_PROCESSOR_SELECT
1377                {
1378                        unsigned int j;
1379
1380                        for (j = 0; j < 2; j++) {
1381                                if (!cpudev->c_ident[j])
1382                                        continue;
1383                                pr_info("  %s %s\n", cpudev->c_vendor,
1384                                        cpudev->c_ident[j]);
1385                        }
1386                }
1387#endif
1388        }
1389        early_identify_cpu(&boot_cpu_data);
1390}
1391
1392static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1393{
1394#ifdef CONFIG_X86_64
1395        /*
1396         * Empirically, writing zero to a segment selector on AMD does
1397         * not clear the base, whereas writing zero to a segment
1398         * selector on Intel does clear the base.  Intel's behavior
1399         * allows slightly faster context switches in the common case
1400         * where GS is unused by the prev and next threads.
1401         *
1402         * Since neither vendor documents this anywhere that I can see,
1403         * detect it directly instead of hard-coding the choice by
1404         * vendor.
1405         *
1406         * I've designated AMD's behavior as the "bug" because it's
1407         * counterintuitive and less friendly.
1408         */
1409
1410        unsigned long old_base, tmp;
1411        rdmsrl(MSR_FS_BASE, old_base);
1412        wrmsrl(MSR_FS_BASE, 1);
1413        loadsegment(fs, 0);
1414        rdmsrl(MSR_FS_BASE, tmp);
1415        if (tmp != 0)
1416                set_cpu_bug(c, X86_BUG_NULL_SEG);
1417        wrmsrl(MSR_FS_BASE, old_base);
1418#endif
1419}
1420
1421static void generic_identify(struct cpuinfo_x86 *c)
1422{
1423        c->extended_cpuid_level = 0;
1424
1425        if (!have_cpuid_p())
1426                identify_cpu_without_cpuid(c);
1427
1428        /* cyrix could have cpuid enabled via c_identify()*/
1429        if (!have_cpuid_p())
1430                return;
1431
1432        cpu_detect(c);
1433
1434        get_cpu_vendor(c);
1435
1436        get_cpu_cap(c);
1437
1438        get_cpu_address_sizes(c);
1439
1440        if (c->cpuid_level >= 0x00000001) {
1441                c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1442#ifdef CONFIG_X86_32
1443# ifdef CONFIG_SMP
1444                c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1445# else
1446                c->apicid = c->initial_apicid;
1447# endif
1448#endif
1449                c->phys_proc_id = c->initial_apicid;
1450        }
1451
1452        get_model_name(c); /* Default name */
1453
1454        detect_null_seg_behavior(c);
1455
1456        /*
1457         * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1458         * systems that run Linux at CPL > 0 may or may not have the
1459         * issue, but, even if they have the issue, there's absolutely
1460         * nothing we can do about it because we can't use the real IRET
1461         * instruction.
1462         *
1463         * NB: For the time being, only 32-bit kernels support
1464         * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1465         * whether to apply espfix using paravirt hooks.  If any
1466         * non-paravirt system ever shows up that does *not* have the
1467         * ESPFIX issue, we can change this.
1468         */
1469#ifdef CONFIG_X86_32
1470        set_cpu_bug(c, X86_BUG_ESPFIX);
1471#endif
1472}
1473
1474/*
1475 * Validate that ACPI/mptables have the same information about the
1476 * effective APIC id and update the package map.
1477 */
1478static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1479{
1480#ifdef CONFIG_SMP
1481        unsigned int apicid, cpu = smp_processor_id();
1482
1483        apicid = apic->cpu_present_to_apicid(cpu);
1484
1485        if (apicid != c->apicid) {
1486                pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1487                       cpu, apicid, c->initial_apicid);
1488        }
1489        BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1490        BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1491#else
1492        c->logical_proc_id = 0;
1493#endif
1494}
1495
1496/*
1497 * This does the hard work of actually picking apart the CPU stuff...
1498 */
1499static void identify_cpu(struct cpuinfo_x86 *c)
1500{
1501        int i;
1502
1503        c->loops_per_jiffy = loops_per_jiffy;
1504        c->x86_cache_size = 0;
1505        c->x86_vendor = X86_VENDOR_UNKNOWN;
1506        c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1507        c->x86_vendor_id[0] = '\0'; /* Unset */
1508        c->x86_model_id[0] = '\0';  /* Unset */
1509        c->x86_max_cores = 1;
1510        c->x86_coreid_bits = 0;
1511        c->cu_id = 0xff;
1512#ifdef CONFIG_X86_64
1513        c->x86_clflush_size = 64;
1514        c->x86_phys_bits = 36;
1515        c->x86_virt_bits = 48;
1516#else
1517        c->cpuid_level = -1;    /* CPUID not detected */
1518        c->x86_clflush_size = 32;
1519        c->x86_phys_bits = 32;
1520        c->x86_virt_bits = 32;
1521#endif
1522        c->x86_cache_alignment = c->x86_clflush_size;
1523        memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1524#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1525        memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1526#endif
1527
1528        generic_identify(c);
1529
1530        if (this_cpu->c_identify)
1531                this_cpu->c_identify(c);
1532
1533        /* Clear/Set all flags overridden by options, after probe */
1534        apply_forced_caps(c);
1535
1536#ifdef CONFIG_X86_64
1537        c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1538#endif
1539
1540        /*
1541         * Vendor-specific initialization.  In this section we
1542         * canonicalize the feature flags, meaning if there are
1543         * features a certain CPU supports which CPUID doesn't
1544         * tell us, CPUID claiming incorrect flags, or other bugs,
1545         * we handle them here.
1546         *
1547         * At the end of this section, c->x86_capability better
1548         * indicate the features this CPU genuinely supports!
1549         */
1550        if (this_cpu->c_init)
1551                this_cpu->c_init(c);
1552
1553        /* Disable the PN if appropriate */
1554        squash_the_stupid_serial_number(c);
1555
1556        /* Set up SMEP/SMAP/UMIP */
1557        setup_smep(c);
1558        setup_smap(c);
1559        setup_umip(c);
1560
1561        /* Enable FSGSBASE instructions if available. */
1562        if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1563                cr4_set_bits(X86_CR4_FSGSBASE);
1564                elf_hwcap2 |= HWCAP2_FSGSBASE;
1565        }
1566
1567        /*
1568         * The vendor-specific functions might have changed features.
1569         * Now we do "generic changes."
1570         */
1571
1572        /* Filter out anything that depends on CPUID levels we don't have */
1573        filter_cpuid_features(c, true);
1574
1575        /* If the model name is still unset, do table lookup. */
1576        if (!c->x86_model_id[0]) {
1577                const char *p;
1578                p = table_lookup_model(c);
1579                if (p)
1580                        strcpy(c->x86_model_id, p);
1581                else
1582                        /* Last resort... */
1583                        sprintf(c->x86_model_id, "%02x/%02x",
1584                                c->x86, c->x86_model);
1585        }
1586
1587#ifdef CONFIG_X86_64
1588        detect_ht(c);
1589#endif
1590
1591        x86_init_rdrand(c);
1592        setup_pku(c);
1593
1594        /*
1595         * Clear/Set all flags overridden by options, need do it
1596         * before following smp all cpus cap AND.
1597         */
1598        apply_forced_caps(c);
1599
1600        /*
1601         * On SMP, boot_cpu_data holds the common feature set between
1602         * all CPUs; so make sure that we indicate which features are
1603         * common between the CPUs.  The first time this routine gets
1604         * executed, c == &boot_cpu_data.
1605         */
1606        if (c != &boot_cpu_data) {
1607                /* AND the already accumulated flags with these */
1608                for (i = 0; i < NCAPINTS; i++)
1609                        boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1610
1611                /* OR, i.e. replicate the bug flags */
1612                for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1613                        c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1614        }
1615
1616        /* Init Machine Check Exception if available. */
1617        mcheck_cpu_init(c);
1618
1619        select_idle_routine(c);
1620
1621#ifdef CONFIG_NUMA
1622        numa_add_cpu(smp_processor_id());
1623#endif
1624}
1625
1626/*
1627 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1628 * on 32-bit kernels:
1629 */
1630#ifdef CONFIG_X86_32
1631void enable_sep_cpu(void)
1632{
1633        struct tss_struct *tss;
1634        int cpu;
1635
1636        if (!boot_cpu_has(X86_FEATURE_SEP))
1637                return;
1638
1639        cpu = get_cpu();
1640        tss = &per_cpu(cpu_tss_rw, cpu);
1641
1642        /*
1643         * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1644         * see the big comment in struct x86_hw_tss's definition.
1645         */
1646
1647        tss->x86_tss.ss1 = __KERNEL_CS;
1648        wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1649        wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1650        wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1651
1652        put_cpu();
1653}
1654#endif
1655
1656void __init identify_boot_cpu(void)
1657{
1658        identify_cpu(&boot_cpu_data);
1659#ifdef CONFIG_X86_32
1660        sysenter_setup();
1661        enable_sep_cpu();
1662#endif
1663        cpu_detect_tlb(&boot_cpu_data);
1664        setup_cr_pinning();
1665
1666        tsx_init();
1667}
1668
1669void identify_secondary_cpu(struct cpuinfo_x86 *c)
1670{
1671        BUG_ON(c == &boot_cpu_data);
1672        identify_cpu(c);
1673#ifdef CONFIG_X86_32
1674        enable_sep_cpu();
1675#endif
1676        mtrr_ap_init();
1677        validate_apic_and_package_id(c);
1678        x86_spec_ctrl_setup_ap();
1679        update_srbds_msr();
1680}
1681
1682static __init int setup_noclflush(char *arg)
1683{
1684        setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1685        setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1686        return 1;
1687}
1688__setup("noclflush", setup_noclflush);
1689
1690void print_cpu_info(struct cpuinfo_x86 *c)
1691{
1692        const char *vendor = NULL;
1693
1694        if (c->x86_vendor < X86_VENDOR_NUM) {
1695                vendor = this_cpu->c_vendor;
1696        } else {
1697                if (c->cpuid_level >= 0)
1698                        vendor = c->x86_vendor_id;
1699        }
1700
1701        if (vendor && !strstr(c->x86_model_id, vendor))
1702                pr_cont("%s ", vendor);
1703
1704        if (c->x86_model_id[0])
1705                pr_cont("%s", c->x86_model_id);
1706        else
1707                pr_cont("%d86", c->x86);
1708
1709        pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1710
1711        if (c->x86_stepping || c->cpuid_level >= 0)
1712                pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1713        else
1714                pr_cont(")\n");
1715}
1716
1717/*
1718 * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1719 * function prevents it from becoming an environment variable for init.
1720 */
1721static __init int setup_clearcpuid(char *arg)
1722{
1723        return 1;
1724}
1725__setup("clearcpuid=", setup_clearcpuid);
1726
1727#ifdef CONFIG_X86_64
1728DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1729                     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1730EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1731
1732/*
1733 * The following percpu variables are hot.  Align current_task to
1734 * cacheline size such that they fall in the same cacheline.
1735 */
1736DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1737        &init_task;
1738EXPORT_PER_CPU_SYMBOL(current_task);
1739
1740DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1741DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1742
1743DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1744EXPORT_PER_CPU_SYMBOL(__preempt_count);
1745
1746DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1747
1748/* May not be marked __init: used by software suspend */
1749void syscall_init(void)
1750{
1751        wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1752        wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1753
1754#ifdef CONFIG_IA32_EMULATION
1755        wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1756        /*
1757         * This only works on Intel CPUs.
1758         * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1759         * This does not cause SYSENTER to jump to the wrong location, because
1760         * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1761         */
1762        wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1763        wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1764                    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1765        wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1766#else
1767        wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1768        wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1769        wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1770        wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1771#endif
1772
1773        /*
1774         * Flags to clear on syscall; clear as much as possible
1775         * to minimize user space-kernel interference.
1776         */
1777        wrmsrl(MSR_SYSCALL_MASK,
1778               X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1779               X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1780               X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1781               X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1782               X86_EFLAGS_AC|X86_EFLAGS_ID);
1783}
1784
1785#else   /* CONFIG_X86_64 */
1786
1787DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1788EXPORT_PER_CPU_SYMBOL(current_task);
1789DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1790EXPORT_PER_CPU_SYMBOL(__preempt_count);
1791
1792/*
1793 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1794 * the top of the kernel stack.  Use an extra percpu variable to track the
1795 * top of the kernel stack directly.
1796 */
1797DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1798        (unsigned long)&init_thread_union + THREAD_SIZE;
1799EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1800
1801#ifdef CONFIG_STACKPROTECTOR
1802DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1803EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1804#endif
1805
1806#endif  /* CONFIG_X86_64 */
1807
1808/*
1809 * Clear all 6 debug registers:
1810 */
1811static void clear_all_debug_regs(void)
1812{
1813        int i;
1814
1815        for (i = 0; i < 8; i++) {
1816                /* Ignore db4, db5 */
1817                if ((i == 4) || (i == 5))
1818                        continue;
1819
1820                set_debugreg(0, i);
1821        }
1822}
1823
1824#ifdef CONFIG_KGDB
1825/*
1826 * Restore debug regs if using kgdbwait and you have a kernel debugger
1827 * connection established.
1828 */
1829static void dbg_restore_debug_regs(void)
1830{
1831        if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1832                arch_kgdb_ops.correct_hw_break();
1833}
1834#else /* ! CONFIG_KGDB */
1835#define dbg_restore_debug_regs()
1836#endif /* ! CONFIG_KGDB */
1837
1838static void wait_for_master_cpu(int cpu)
1839{
1840#ifdef CONFIG_SMP
1841        /*
1842         * wait for ACK from master CPU before continuing
1843         * with AP initialization
1844         */
1845        WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1846        while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1847                cpu_relax();
1848#endif
1849}
1850
1851#ifdef CONFIG_X86_64
1852static inline void setup_getcpu(int cpu)
1853{
1854        unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1855        struct desc_struct d = { };
1856
1857        if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1858                wrmsr(MSR_TSC_AUX, cpudata, 0);
1859
1860        /* Store CPU and node number in limit. */
1861        d.limit0 = cpudata;
1862        d.limit1 = cpudata >> 16;
1863
1864        d.type = 5;             /* RO data, expand down, accessed */
1865        d.dpl = 3;              /* Visible to user code */
1866        d.s = 1;                /* Not a system segment */
1867        d.p = 1;                /* Present */
1868        d.d = 1;                /* 32-bit */
1869
1870        write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1871}
1872
1873static inline void ucode_cpu_init(int cpu)
1874{
1875        if (cpu)
1876                load_ucode_ap();
1877}
1878
1879static inline void tss_setup_ist(struct tss_struct *tss)
1880{
1881        /* Set up the per-CPU TSS IST stacks */
1882        tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1883        tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1884        tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1885        tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1886        /* Only mapped when SEV-ES is active */
1887        tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1888}
1889
1890#else /* CONFIG_X86_64 */
1891
1892static inline void setup_getcpu(int cpu) { }
1893
1894static inline void ucode_cpu_init(int cpu)
1895{
1896        show_ucode_info_early();
1897}
1898
1899static inline void tss_setup_ist(struct tss_struct *tss) { }
1900
1901#endif /* !CONFIG_X86_64 */
1902
1903static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1904{
1905        tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1906
1907#ifdef CONFIG_X86_IOPL_IOPERM
1908        tss->io_bitmap.prev_max = 0;
1909        tss->io_bitmap.prev_sequence = 0;
1910        memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1911        /*
1912         * Invalidate the extra array entry past the end of the all
1913         * permission bitmap as required by the hardware.
1914         */
1915        tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1916#endif
1917}
1918
1919/*
1920 * Setup everything needed to handle exceptions from the IDT, including the IST
1921 * exceptions which use paranoid_entry().
1922 */
1923void cpu_init_exception_handling(void)
1924{
1925        struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1926        int cpu = raw_smp_processor_id();
1927
1928        /* paranoid_entry() gets the CPU number from the GDT */
1929        setup_getcpu(cpu);
1930
1931        /* IST vectors need TSS to be set up. */
1932        tss_setup_ist(tss);
1933        tss_setup_io_bitmap(tss);
1934        set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1935
1936        load_TR_desc();
1937
1938        /* Finally load the IDT */
1939        load_current_idt();
1940}
1941
1942/*
1943 * cpu_init() initializes state that is per-CPU. Some data is already
1944 * initialized (naturally) in the bootstrap process, such as the GDT.  We
1945 * reload it nevertheless, this function acts as a 'CPU state barrier',
1946 * nothing should get across.
1947 */
1948void cpu_init(void)
1949{
1950        struct task_struct *cur = current;
1951        int cpu = raw_smp_processor_id();
1952
1953        wait_for_master_cpu(cpu);
1954
1955        ucode_cpu_init(cpu);
1956
1957#ifdef CONFIG_NUMA
1958        if (this_cpu_read(numa_node) == 0 &&
1959            early_cpu_to_node(cpu) != NUMA_NO_NODE)
1960                set_numa_node(early_cpu_to_node(cpu));
1961#endif
1962        pr_debug("Initializing CPU#%d\n", cpu);
1963
1964        if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1965            boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1966                cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1967
1968        /*
1969         * Initialize the per-CPU GDT with the boot GDT,
1970         * and set up the GDT descriptor:
1971         */
1972        switch_to_new_gdt(cpu);
1973
1974        if (IS_ENABLED(CONFIG_X86_64)) {
1975                loadsegment(fs, 0);
1976                memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1977                syscall_init();
1978
1979                wrmsrl(MSR_FS_BASE, 0);
1980                wrmsrl(MSR_KERNEL_GS_BASE, 0);
1981                barrier();
1982
1983                x2apic_setup();
1984        }
1985
1986        mmgrab(&init_mm);
1987        cur->active_mm = &init_mm;
1988        BUG_ON(cur->mm);
1989        initialize_tlbstate_and_flush();
1990        enter_lazy_tlb(&init_mm, cur);
1991
1992        /*
1993         * sp0 points to the entry trampoline stack regardless of what task
1994         * is running.
1995         */
1996        load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1997
1998        load_mm_ldt(&init_mm);
1999
2000        clear_all_debug_regs();
2001        dbg_restore_debug_regs();
2002
2003        doublefault_init_cpu_tss();
2004
2005        fpu__init_cpu();
2006
2007        if (is_uv_system())
2008                uv_cpu_init();
2009
2010        load_fixmap_gdt(cpu);
2011}
2012
2013#ifdef CONFIG_SMP
2014void cpu_init_secondary(void)
2015{
2016        /*
2017         * Relies on the BP having set-up the IDT tables, which are loaded
2018         * on this CPU in cpu_init_exception_handling().
2019         */
2020        cpu_init_exception_handling();
2021        cpu_init();
2022}
2023#endif
2024
2025/*
2026 * The microcode loader calls this upon late microcode load to recheck features,
2027 * only when microcode has been updated. Caller holds microcode_mutex and CPU
2028 * hotplug lock.
2029 */
2030void microcode_check(void)
2031{
2032        struct cpuinfo_x86 info;
2033
2034        perf_check_microcode();
2035
2036        /* Reload CPUID max function as it might've changed. */
2037        info.cpuid_level = cpuid_eax(0);
2038
2039        /*
2040         * Copy all capability leafs to pick up the synthetic ones so that
2041         * memcmp() below doesn't fail on that. The ones coming from CPUID will
2042         * get overwritten in get_cpu_cap().
2043         */
2044        memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2045
2046        get_cpu_cap(&info);
2047
2048        if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2049                return;
2050
2051        pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2052        pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2053}
2054
2055/*
2056 * Invoked from core CPU hotplug code after hotplug operations
2057 */
2058void arch_smt_update(void)
2059{
2060        /* Handle the speculative execution misfeatures */
2061        cpu_bugs_smt_update();
2062        /* Check whether IPI broadcasting can be enabled */
2063        apic_smt_update();
2064}
2065