linux/arch/x86/events/core.c
<<
>>
Prefs
   1/*
   2 * Performance events x86 architecture code
   3 *
   4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
   6 *  Copyright (C) 2009 Jaswinder Singh Rajput
   7 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
   8 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
   9 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
  11 *
  12 *  For licencing details see kernel-base/COPYING
  13 */
  14
  15#include <linux/perf_event.h>
  16#include <linux/capability.h>
  17#include <linux/notifier.h>
  18#include <linux/hardirq.h>
  19#include <linux/kprobes.h>
  20#include <linux/export.h>
  21#include <linux/init.h>
  22#include <linux/kdebug.h>
  23#include <linux/sched/mm.h>
  24#include <linux/sched/clock.h>
  25#include <linux/uaccess.h>
  26#include <linux/slab.h>
  27#include <linux/cpu.h>
  28#include <linux/bitops.h>
  29#include <linux/device.h>
  30#include <linux/nospec.h>
  31#include <linux/static_call.h>
  32
  33#include <asm/apic.h>
  34#include <asm/stacktrace.h>
  35#include <asm/nmi.h>
  36#include <asm/smp.h>
  37#include <asm/alternative.h>
  38#include <asm/mmu_context.h>
  39#include <asm/tlbflush.h>
  40#include <asm/timer.h>
  41#include <asm/desc.h>
  42#include <asm/ldt.h>
  43#include <asm/unwind.h>
  44
  45#include "perf_event.h"
  46
  47struct x86_pmu x86_pmu __read_mostly;
  48static struct pmu pmu;
  49
  50DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  51        .enabled = 1,
  52        .pmu = &pmu,
  53};
  54
  55DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
  56DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
  57DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
  58
  59/*
  60 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
  61 * from just a typename, as opposed to an actual function.
  62 */
  63DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
  64DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
  65DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
  66DEFINE_STATIC_CALL_NULL(x86_pmu_enable,      *x86_pmu.enable);
  67DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
  68
  69DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
  70DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
  71DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
  72
  73DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
  74DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
  75DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
  76
  77DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
  78DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
  79DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
  80
  81DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
  82DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
  83
  84DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
  85DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
  86
  87/*
  88 * This one is magic, it will get called even when PMU init fails (because
  89 * there is no PMU), in which case it should simply return NULL.
  90 */
  91DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
  92
  93u64 __read_mostly hw_cache_event_ids
  94                                [PERF_COUNT_HW_CACHE_MAX]
  95                                [PERF_COUNT_HW_CACHE_OP_MAX]
  96                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
  97u64 __read_mostly hw_cache_extra_regs
  98                                [PERF_COUNT_HW_CACHE_MAX]
  99                                [PERF_COUNT_HW_CACHE_OP_MAX]
 100                                [PERF_COUNT_HW_CACHE_RESULT_MAX];
 101
 102/*
 103 * Propagate event elapsed time into the generic event.
 104 * Can only be executed on the CPU where the event is active.
 105 * Returns the delta events processed.
 106 */
 107u64 x86_perf_event_update(struct perf_event *event)
 108{
 109        struct hw_perf_event *hwc = &event->hw;
 110        int shift = 64 - x86_pmu.cntval_bits;
 111        u64 prev_raw_count, new_raw_count;
 112        u64 delta;
 113
 114        if (unlikely(!hwc->event_base))
 115                return 0;
 116
 117        if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
 118                return x86_pmu.update_topdown_event(event);
 119
 120        /*
 121         * Careful: an NMI might modify the previous event value.
 122         *
 123         * Our tactic to handle this is to first atomically read and
 124         * exchange a new raw count - then add that new-prev delta
 125         * count to the generic event atomically:
 126         */
 127again:
 128        prev_raw_count = local64_read(&hwc->prev_count);
 129        rdpmcl(hwc->event_base_rdpmc, new_raw_count);
 130
 131        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 132                                        new_raw_count) != prev_raw_count)
 133                goto again;
 134
 135        /*
 136         * Now we have the new raw value and have updated the prev
 137         * timestamp already. We can now calculate the elapsed delta
 138         * (event-)time and add that to the generic event.
 139         *
 140         * Careful, not all hw sign-extends above the physical width
 141         * of the count.
 142         */
 143        delta = (new_raw_count << shift) - (prev_raw_count << shift);
 144        delta >>= shift;
 145
 146        local64_add(delta, &event->count);
 147        local64_sub(delta, &hwc->period_left);
 148
 149        return new_raw_count;
 150}
 151
 152/*
 153 * Find and validate any extra registers to set up.
 154 */
 155static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
 156{
 157        struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
 158        struct hw_perf_event_extra *reg;
 159        struct extra_reg *er;
 160
 161        reg = &event->hw.extra_reg;
 162
 163        if (!extra_regs)
 164                return 0;
 165
 166        for (er = extra_regs; er->msr; er++) {
 167                if (er->event != (config & er->config_mask))
 168                        continue;
 169                if (event->attr.config1 & ~er->valid_mask)
 170                        return -EINVAL;
 171                /* Check if the extra msrs can be safely accessed*/
 172                if (!er->extra_msr_access)
 173                        return -ENXIO;
 174
 175                reg->idx = er->idx;
 176                reg->config = event->attr.config1;
 177                reg->reg = er->msr;
 178                break;
 179        }
 180        return 0;
 181}
 182
 183static atomic_t active_events;
 184static atomic_t pmc_refcount;
 185static DEFINE_MUTEX(pmc_reserve_mutex);
 186
 187#ifdef CONFIG_X86_LOCAL_APIC
 188
 189static inline int get_possible_num_counters(void)
 190{
 191        int i, num_counters = x86_pmu.num_counters;
 192
 193        if (!is_hybrid())
 194                return num_counters;
 195
 196        for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
 197                num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
 198
 199        return num_counters;
 200}
 201
 202static bool reserve_pmc_hardware(void)
 203{
 204        int i, num_counters = get_possible_num_counters();
 205
 206        for (i = 0; i < num_counters; i++) {
 207                if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
 208                        goto perfctr_fail;
 209        }
 210
 211        for (i = 0; i < num_counters; i++) {
 212                if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
 213                        goto eventsel_fail;
 214        }
 215
 216        return true;
 217
 218eventsel_fail:
 219        for (i--; i >= 0; i--)
 220                release_evntsel_nmi(x86_pmu_config_addr(i));
 221
 222        i = num_counters;
 223
 224perfctr_fail:
 225        for (i--; i >= 0; i--)
 226                release_perfctr_nmi(x86_pmu_event_addr(i));
 227
 228        return false;
 229}
 230
 231static void release_pmc_hardware(void)
 232{
 233        int i, num_counters = get_possible_num_counters();
 234
 235        for (i = 0; i < num_counters; i++) {
 236                release_perfctr_nmi(x86_pmu_event_addr(i));
 237                release_evntsel_nmi(x86_pmu_config_addr(i));
 238        }
 239}
 240
 241#else
 242
 243static bool reserve_pmc_hardware(void) { return true; }
 244static void release_pmc_hardware(void) {}
 245
 246#endif
 247
 248bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
 249{
 250        u64 val, val_fail = -1, val_new= ~0;
 251        int i, reg, reg_fail = -1, ret = 0;
 252        int bios_fail = 0;
 253        int reg_safe = -1;
 254
 255        /*
 256         * Check to see if the BIOS enabled any of the counters, if so
 257         * complain and bail.
 258         */
 259        for (i = 0; i < num_counters; i++) {
 260                reg = x86_pmu_config_addr(i);
 261                ret = rdmsrl_safe(reg, &val);
 262                if (ret)
 263                        goto msr_fail;
 264                if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
 265                        bios_fail = 1;
 266                        val_fail = val;
 267                        reg_fail = reg;
 268                } else {
 269                        reg_safe = i;
 270                }
 271        }
 272
 273        if (num_counters_fixed) {
 274                reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
 275                ret = rdmsrl_safe(reg, &val);
 276                if (ret)
 277                        goto msr_fail;
 278                for (i = 0; i < num_counters_fixed; i++) {
 279                        if (fixed_counter_disabled(i, pmu))
 280                                continue;
 281                        if (val & (0x03ULL << i*4)) {
 282                                bios_fail = 1;
 283                                val_fail = val;
 284                                reg_fail = reg;
 285                        }
 286                }
 287        }
 288
 289        /*
 290         * If all the counters are enabled, the below test will always
 291         * fail.  The tools will also become useless in this scenario.
 292         * Just fail and disable the hardware counters.
 293         */
 294
 295        if (reg_safe == -1) {
 296                reg = reg_safe;
 297                goto msr_fail;
 298        }
 299
 300        /*
 301         * Read the current value, change it and read it back to see if it
 302         * matches, this is needed to detect certain hardware emulators
 303         * (qemu/kvm) that don't trap on the MSR access and always return 0s.
 304         */
 305        reg = x86_pmu_event_addr(reg_safe);
 306        if (rdmsrl_safe(reg, &val))
 307                goto msr_fail;
 308        val ^= 0xffffUL;
 309        ret = wrmsrl_safe(reg, val);
 310        ret |= rdmsrl_safe(reg, &val_new);
 311        if (ret || val != val_new)
 312                goto msr_fail;
 313
 314        /*
 315         * We still allow the PMU driver to operate:
 316         */
 317        if (bios_fail) {
 318                pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
 319                pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
 320                              reg_fail, val_fail);
 321        }
 322
 323        return true;
 324
 325msr_fail:
 326        if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
 327                pr_cont("PMU not available due to virtualization, using software events only.\n");
 328        } else {
 329                pr_cont("Broken PMU hardware detected, using software events only.\n");
 330                pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
 331                       reg, val_new);
 332        }
 333
 334        return false;
 335}
 336
 337static void hw_perf_event_destroy(struct perf_event *event)
 338{
 339        x86_release_hardware();
 340        atomic_dec(&active_events);
 341}
 342
 343void hw_perf_lbr_event_destroy(struct perf_event *event)
 344{
 345        hw_perf_event_destroy(event);
 346
 347        /* undo the lbr/bts event accounting */
 348        x86_del_exclusive(x86_lbr_exclusive_lbr);
 349}
 350
 351static inline int x86_pmu_initialized(void)
 352{
 353        return x86_pmu.handle_irq != NULL;
 354}
 355
 356static inline int
 357set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
 358{
 359        struct perf_event_attr *attr = &event->attr;
 360        unsigned int cache_type, cache_op, cache_result;
 361        u64 config, val;
 362
 363        config = attr->config;
 364
 365        cache_type = (config >> 0) & 0xff;
 366        if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 367                return -EINVAL;
 368        cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
 369
 370        cache_op = (config >>  8) & 0xff;
 371        if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 372                return -EINVAL;
 373        cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
 374
 375        cache_result = (config >> 16) & 0xff;
 376        if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 377                return -EINVAL;
 378        cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
 379
 380        val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
 381        if (val == 0)
 382                return -ENOENT;
 383
 384        if (val == -1)
 385                return -EINVAL;
 386
 387        hwc->config |= val;
 388        attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
 389        return x86_pmu_extra_regs(val, event);
 390}
 391
 392int x86_reserve_hardware(void)
 393{
 394        int err = 0;
 395
 396        if (!atomic_inc_not_zero(&pmc_refcount)) {
 397                mutex_lock(&pmc_reserve_mutex);
 398                if (atomic_read(&pmc_refcount) == 0) {
 399                        if (!reserve_pmc_hardware()) {
 400                                err = -EBUSY;
 401                        } else {
 402                                reserve_ds_buffers();
 403                                reserve_lbr_buffers();
 404                        }
 405                }
 406                if (!err)
 407                        atomic_inc(&pmc_refcount);
 408                mutex_unlock(&pmc_reserve_mutex);
 409        }
 410
 411        return err;
 412}
 413
 414void x86_release_hardware(void)
 415{
 416        if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
 417                release_pmc_hardware();
 418                release_ds_buffers();
 419                release_lbr_buffers();
 420                mutex_unlock(&pmc_reserve_mutex);
 421        }
 422}
 423
 424/*
 425 * Check if we can create event of a certain type (that no conflicting events
 426 * are present).
 427 */
 428int x86_add_exclusive(unsigned int what)
 429{
 430        int i;
 431
 432        /*
 433         * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
 434         * LBR and BTS are still mutually exclusive.
 435         */
 436        if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
 437                goto out;
 438
 439        if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
 440                mutex_lock(&pmc_reserve_mutex);
 441                for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
 442                        if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
 443                                goto fail_unlock;
 444                }
 445                atomic_inc(&x86_pmu.lbr_exclusive[what]);
 446                mutex_unlock(&pmc_reserve_mutex);
 447        }
 448
 449out:
 450        atomic_inc(&active_events);
 451        return 0;
 452
 453fail_unlock:
 454        mutex_unlock(&pmc_reserve_mutex);
 455        return -EBUSY;
 456}
 457
 458void x86_del_exclusive(unsigned int what)
 459{
 460        atomic_dec(&active_events);
 461
 462        /*
 463         * See the comment in x86_add_exclusive().
 464         */
 465        if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
 466                return;
 467
 468        atomic_dec(&x86_pmu.lbr_exclusive[what]);
 469}
 470
 471int x86_setup_perfctr(struct perf_event *event)
 472{
 473        struct perf_event_attr *attr = &event->attr;
 474        struct hw_perf_event *hwc = &event->hw;
 475        u64 config;
 476
 477        if (!is_sampling_event(event)) {
 478                hwc->sample_period = x86_pmu.max_period;
 479                hwc->last_period = hwc->sample_period;
 480                local64_set(&hwc->period_left, hwc->sample_period);
 481        }
 482
 483        if (attr->type == event->pmu->type)
 484                return x86_pmu_extra_regs(event->attr.config, event);
 485
 486        if (attr->type == PERF_TYPE_HW_CACHE)
 487                return set_ext_hw_attr(hwc, event);
 488
 489        if (attr->config >= x86_pmu.max_events)
 490                return -EINVAL;
 491
 492        attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
 493
 494        /*
 495         * The generic map:
 496         */
 497        config = x86_pmu.event_map(attr->config);
 498
 499        if (config == 0)
 500                return -ENOENT;
 501
 502        if (config == -1LL)
 503                return -EINVAL;
 504
 505        hwc->config |= config;
 506
 507        return 0;
 508}
 509
 510/*
 511 * check that branch_sample_type is compatible with
 512 * settings needed for precise_ip > 1 which implies
 513 * using the LBR to capture ALL taken branches at the
 514 * priv levels of the measurement
 515 */
 516static inline int precise_br_compat(struct perf_event *event)
 517{
 518        u64 m = event->attr.branch_sample_type;
 519        u64 b = 0;
 520
 521        /* must capture all branches */
 522        if (!(m & PERF_SAMPLE_BRANCH_ANY))
 523                return 0;
 524
 525        m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
 526
 527        if (!event->attr.exclude_user)
 528                b |= PERF_SAMPLE_BRANCH_USER;
 529
 530        if (!event->attr.exclude_kernel)
 531                b |= PERF_SAMPLE_BRANCH_KERNEL;
 532
 533        /*
 534         * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
 535         */
 536
 537        return m == b;
 538}
 539
 540int x86_pmu_max_precise(void)
 541{
 542        int precise = 0;
 543
 544        /* Support for constant skid */
 545        if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
 546                precise++;
 547
 548                /* Support for IP fixup */
 549                if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
 550                        precise++;
 551
 552                if (x86_pmu.pebs_prec_dist)
 553                        precise++;
 554        }
 555        return precise;
 556}
 557
 558int x86_pmu_hw_config(struct perf_event *event)
 559{
 560        if (event->attr.precise_ip) {
 561                int precise = x86_pmu_max_precise();
 562
 563                if (event->attr.precise_ip > precise)
 564                        return -EOPNOTSUPP;
 565
 566                /* There's no sense in having PEBS for non sampling events: */
 567                if (!is_sampling_event(event))
 568                        return -EINVAL;
 569        }
 570        /*
 571         * check that PEBS LBR correction does not conflict with
 572         * whatever the user is asking with attr->branch_sample_type
 573         */
 574        if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
 575                u64 *br_type = &event->attr.branch_sample_type;
 576
 577                if (has_branch_stack(event)) {
 578                        if (!precise_br_compat(event))
 579                                return -EOPNOTSUPP;
 580
 581                        /* branch_sample_type is compatible */
 582
 583                } else {
 584                        /*
 585                         * user did not specify  branch_sample_type
 586                         *
 587                         * For PEBS fixups, we capture all
 588                         * the branches at the priv level of the
 589                         * event.
 590                         */
 591                        *br_type = PERF_SAMPLE_BRANCH_ANY;
 592
 593                        if (!event->attr.exclude_user)
 594                                *br_type |= PERF_SAMPLE_BRANCH_USER;
 595
 596                        if (!event->attr.exclude_kernel)
 597                                *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
 598                }
 599        }
 600
 601        if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
 602                event->attach_state |= PERF_ATTACH_TASK_DATA;
 603
 604        /*
 605         * Generate PMC IRQs:
 606         * (keep 'enabled' bit clear for now)
 607         */
 608        event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
 609
 610        /*
 611         * Count user and OS events unless requested not to
 612         */
 613        if (!event->attr.exclude_user)
 614                event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
 615        if (!event->attr.exclude_kernel)
 616                event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
 617
 618        if (event->attr.type == event->pmu->type)
 619                event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
 620
 621        if (event->attr.sample_period && x86_pmu.limit_period) {
 622                if (x86_pmu.limit_period(event, event->attr.sample_period) >
 623                                event->attr.sample_period)
 624                        return -EINVAL;
 625        }
 626
 627        /* sample_regs_user never support XMM registers */
 628        if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
 629                return -EINVAL;
 630        /*
 631         * Besides the general purpose registers, XMM registers may
 632         * be collected in PEBS on some platforms, e.g. Icelake
 633         */
 634        if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
 635                if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
 636                        return -EINVAL;
 637
 638                if (!event->attr.precise_ip)
 639                        return -EINVAL;
 640        }
 641
 642        return x86_setup_perfctr(event);
 643}
 644
 645/*
 646 * Setup the hardware configuration for a given attr_type
 647 */
 648static int __x86_pmu_event_init(struct perf_event *event)
 649{
 650        int err;
 651
 652        if (!x86_pmu_initialized())
 653                return -ENODEV;
 654
 655        err = x86_reserve_hardware();
 656        if (err)
 657                return err;
 658
 659        atomic_inc(&active_events);
 660        event->destroy = hw_perf_event_destroy;
 661
 662        event->hw.idx = -1;
 663        event->hw.last_cpu = -1;
 664        event->hw.last_tag = ~0ULL;
 665
 666        /* mark unused */
 667        event->hw.extra_reg.idx = EXTRA_REG_NONE;
 668        event->hw.branch_reg.idx = EXTRA_REG_NONE;
 669
 670        return x86_pmu.hw_config(event);
 671}
 672
 673void x86_pmu_disable_all(void)
 674{
 675        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 676        int idx;
 677
 678        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 679                struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
 680                u64 val;
 681
 682                if (!test_bit(idx, cpuc->active_mask))
 683                        continue;
 684                rdmsrl(x86_pmu_config_addr(idx), val);
 685                if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
 686                        continue;
 687                val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
 688                wrmsrl(x86_pmu_config_addr(idx), val);
 689                if (is_counter_pair(hwc))
 690                        wrmsrl(x86_pmu_config_addr(idx + 1), 0);
 691        }
 692}
 693
 694struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
 695{
 696        return static_call(x86_pmu_guest_get_msrs)(nr);
 697}
 698EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
 699
 700/*
 701 * There may be PMI landing after enabled=0. The PMI hitting could be before or
 702 * after disable_all.
 703 *
 704 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
 705 * It will not be re-enabled in the NMI handler again, because enabled=0. After
 706 * handling the NMI, disable_all will be called, which will not change the
 707 * state either. If PMI hits after disable_all, the PMU is already disabled
 708 * before entering NMI handler. The NMI handler will not change the state
 709 * either.
 710 *
 711 * So either situation is harmless.
 712 */
 713static void x86_pmu_disable(struct pmu *pmu)
 714{
 715        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 716
 717        if (!x86_pmu_initialized())
 718                return;
 719
 720        if (!cpuc->enabled)
 721                return;
 722
 723        cpuc->n_added = 0;
 724        cpuc->enabled = 0;
 725        barrier();
 726
 727        static_call(x86_pmu_disable_all)();
 728}
 729
 730void x86_pmu_enable_all(int added)
 731{
 732        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 733        int idx;
 734
 735        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 736                struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
 737
 738                if (!test_bit(idx, cpuc->active_mask))
 739                        continue;
 740
 741                __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
 742        }
 743}
 744
 745static inline int is_x86_event(struct perf_event *event)
 746{
 747        int i;
 748
 749        if (!is_hybrid())
 750                return event->pmu == &pmu;
 751
 752        for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
 753                if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
 754                        return true;
 755        }
 756
 757        return false;
 758}
 759
 760struct pmu *x86_get_pmu(unsigned int cpu)
 761{
 762        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
 763
 764        /*
 765         * All CPUs of the hybrid type have been offline.
 766         * The x86_get_pmu() should not be invoked.
 767         */
 768        if (WARN_ON_ONCE(!cpuc->pmu))
 769                return &pmu;
 770
 771        return cpuc->pmu;
 772}
 773/*
 774 * Event scheduler state:
 775 *
 776 * Assign events iterating over all events and counters, beginning
 777 * with events with least weights first. Keep the current iterator
 778 * state in struct sched_state.
 779 */
 780struct sched_state {
 781        int     weight;
 782        int     event;          /* event index */
 783        int     counter;        /* counter index */
 784        int     unassigned;     /* number of events to be assigned left */
 785        int     nr_gp;          /* number of GP counters used */
 786        u64     used;
 787};
 788
 789/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
 790#define SCHED_STATES_MAX        2
 791
 792struct perf_sched {
 793        int                     max_weight;
 794        int                     max_events;
 795        int                     max_gp;
 796        int                     saved_states;
 797        struct event_constraint **constraints;
 798        struct sched_state      state;
 799        struct sched_state      saved[SCHED_STATES_MAX];
 800};
 801
 802/*
 803 * Initialize iterator that runs through all events and counters.
 804 */
 805static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
 806                            int num, int wmin, int wmax, int gpmax)
 807{
 808        int idx;
 809
 810        memset(sched, 0, sizeof(*sched));
 811        sched->max_events       = num;
 812        sched->max_weight       = wmax;
 813        sched->max_gp           = gpmax;
 814        sched->constraints      = constraints;
 815
 816        for (idx = 0; idx < num; idx++) {
 817                if (constraints[idx]->weight == wmin)
 818                        break;
 819        }
 820
 821        sched->state.event      = idx;          /* start with min weight */
 822        sched->state.weight     = wmin;
 823        sched->state.unassigned = num;
 824}
 825
 826static void perf_sched_save_state(struct perf_sched *sched)
 827{
 828        if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
 829                return;
 830
 831        sched->saved[sched->saved_states] = sched->state;
 832        sched->saved_states++;
 833}
 834
 835static bool perf_sched_restore_state(struct perf_sched *sched)
 836{
 837        if (!sched->saved_states)
 838                return false;
 839
 840        sched->saved_states--;
 841        sched->state = sched->saved[sched->saved_states];
 842
 843        /* this assignment didn't work out */
 844        /* XXX broken vs EVENT_PAIR */
 845        sched->state.used &= ~BIT_ULL(sched->state.counter);
 846
 847        /* try the next one */
 848        sched->state.counter++;
 849
 850        return true;
 851}
 852
 853/*
 854 * Select a counter for the current event to schedule. Return true on
 855 * success.
 856 */
 857static bool __perf_sched_find_counter(struct perf_sched *sched)
 858{
 859        struct event_constraint *c;
 860        int idx;
 861
 862        if (!sched->state.unassigned)
 863                return false;
 864
 865        if (sched->state.event >= sched->max_events)
 866                return false;
 867
 868        c = sched->constraints[sched->state.event];
 869        /* Prefer fixed purpose counters */
 870        if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
 871                idx = INTEL_PMC_IDX_FIXED;
 872                for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
 873                        u64 mask = BIT_ULL(idx);
 874
 875                        if (sched->state.used & mask)
 876                                continue;
 877
 878                        sched->state.used |= mask;
 879                        goto done;
 880                }
 881        }
 882
 883        /* Grab the first unused counter starting with idx */
 884        idx = sched->state.counter;
 885        for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
 886                u64 mask = BIT_ULL(idx);
 887
 888                if (c->flags & PERF_X86_EVENT_PAIR)
 889                        mask |= mask << 1;
 890
 891                if (sched->state.used & mask)
 892                        continue;
 893
 894                if (sched->state.nr_gp++ >= sched->max_gp)
 895                        return false;
 896
 897                sched->state.used |= mask;
 898                goto done;
 899        }
 900
 901        return false;
 902
 903done:
 904        sched->state.counter = idx;
 905
 906        if (c->overlap)
 907                perf_sched_save_state(sched);
 908
 909        return true;
 910}
 911
 912static bool perf_sched_find_counter(struct perf_sched *sched)
 913{
 914        while (!__perf_sched_find_counter(sched)) {
 915                if (!perf_sched_restore_state(sched))
 916                        return false;
 917        }
 918
 919        return true;
 920}
 921
 922/*
 923 * Go through all unassigned events and find the next one to schedule.
 924 * Take events with the least weight first. Return true on success.
 925 */
 926static bool perf_sched_next_event(struct perf_sched *sched)
 927{
 928        struct event_constraint *c;
 929
 930        if (!sched->state.unassigned || !--sched->state.unassigned)
 931                return false;
 932
 933        do {
 934                /* next event */
 935                sched->state.event++;
 936                if (sched->state.event >= sched->max_events) {
 937                        /* next weight */
 938                        sched->state.event = 0;
 939                        sched->state.weight++;
 940                        if (sched->state.weight > sched->max_weight)
 941                                return false;
 942                }
 943                c = sched->constraints[sched->state.event];
 944        } while (c->weight != sched->state.weight);
 945
 946        sched->state.counter = 0;       /* start with first counter */
 947
 948        return true;
 949}
 950
 951/*
 952 * Assign a counter for each event.
 953 */
 954int perf_assign_events(struct event_constraint **constraints, int n,
 955                        int wmin, int wmax, int gpmax, int *assign)
 956{
 957        struct perf_sched sched;
 958
 959        perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
 960
 961        do {
 962                if (!perf_sched_find_counter(&sched))
 963                        break;  /* failed */
 964                if (assign)
 965                        assign[sched.state.event] = sched.state.counter;
 966        } while (perf_sched_next_event(&sched));
 967
 968        return sched.state.unassigned;
 969}
 970EXPORT_SYMBOL_GPL(perf_assign_events);
 971
 972int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
 973{
 974        int num_counters = hybrid(cpuc->pmu, num_counters);
 975        struct event_constraint *c;
 976        struct perf_event *e;
 977        int n0, i, wmin, wmax, unsched = 0;
 978        struct hw_perf_event *hwc;
 979        u64 used_mask = 0;
 980
 981        /*
 982         * Compute the number of events already present; see x86_pmu_add(),
 983         * validate_group() and x86_pmu_commit_txn(). For the former two
 984         * cpuc->n_events hasn't been updated yet, while for the latter
 985         * cpuc->n_txn contains the number of events added in the current
 986         * transaction.
 987         */
 988        n0 = cpuc->n_events;
 989        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
 990                n0 -= cpuc->n_txn;
 991
 992        static_call_cond(x86_pmu_start_scheduling)(cpuc);
 993
 994        for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
 995                c = cpuc->event_constraint[i];
 996
 997                /*
 998                 * Previously scheduled events should have a cached constraint,
 999                 * while new events should not have one.
1000                 */
1001                WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1002
1003                /*
1004                 * Request constraints for new events; or for those events that
1005                 * have a dynamic constraint -- for those the constraint can
1006                 * change due to external factors (sibling state, allow_tfa).
1007                 */
1008                if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1009                        c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1010                        cpuc->event_constraint[i] = c;
1011                }
1012
1013                wmin = min(wmin, c->weight);
1014                wmax = max(wmax, c->weight);
1015        }
1016
1017        /*
1018         * fastpath, try to reuse previous register
1019         */
1020        for (i = 0; i < n; i++) {
1021                u64 mask;
1022
1023                hwc = &cpuc->event_list[i]->hw;
1024                c = cpuc->event_constraint[i];
1025
1026                /* never assigned */
1027                if (hwc->idx == -1)
1028                        break;
1029
1030                /* constraint still honored */
1031                if (!test_bit(hwc->idx, c->idxmsk))
1032                        break;
1033
1034                mask = BIT_ULL(hwc->idx);
1035                if (is_counter_pair(hwc))
1036                        mask |= mask << 1;
1037
1038                /* not already used */
1039                if (used_mask & mask)
1040                        break;
1041
1042                used_mask |= mask;
1043
1044                if (assign)
1045                        assign[i] = hwc->idx;
1046        }
1047
1048        /* slow path */
1049        if (i != n) {
1050                int gpmax = num_counters;
1051
1052                /*
1053                 * Do not allow scheduling of more than half the available
1054                 * generic counters.
1055                 *
1056                 * This helps avoid counter starvation of sibling thread by
1057                 * ensuring at most half the counters cannot be in exclusive
1058                 * mode. There is no designated counters for the limits. Any
1059                 * N/2 counters can be used. This helps with events with
1060                 * specific counter constraints.
1061                 */
1062                if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1063                    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1064                        gpmax /= 2;
1065
1066                /*
1067                 * Reduce the amount of available counters to allow fitting
1068                 * the extra Merge events needed by large increment events.
1069                 */
1070                if (x86_pmu.flags & PMU_FL_PAIR) {
1071                        gpmax = num_counters - cpuc->n_pair;
1072                        WARN_ON(gpmax <= 0);
1073                }
1074
1075                unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1076                                             wmax, gpmax, assign);
1077        }
1078
1079        /*
1080         * In case of success (unsched = 0), mark events as committed,
1081         * so we do not put_constraint() in case new events are added
1082         * and fail to be scheduled
1083         *
1084         * We invoke the lower level commit callback to lock the resource
1085         *
1086         * We do not need to do all of this in case we are called to
1087         * validate an event group (assign == NULL)
1088         */
1089        if (!unsched && assign) {
1090                for (i = 0; i < n; i++) {
1091                        e = cpuc->event_list[i];
1092                        static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1093                }
1094        } else {
1095                for (i = n0; i < n; i++) {
1096                        e = cpuc->event_list[i];
1097
1098                        /*
1099                         * release events that failed scheduling
1100                         */
1101                        static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1102
1103                        cpuc->event_constraint[i] = NULL;
1104                }
1105        }
1106
1107        static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1108
1109        return unsched ? -EINVAL : 0;
1110}
1111
1112static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1113                               struct perf_event *event)
1114{
1115        if (is_metric_event(event)) {
1116                if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1117                        return -EINVAL;
1118                cpuc->n_metric++;
1119                cpuc->n_txn_metric++;
1120        }
1121
1122        return 0;
1123}
1124
1125static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1126                                struct perf_event *event)
1127{
1128        if (is_metric_event(event))
1129                cpuc->n_metric--;
1130}
1131
1132static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1133                         int max_count, int n)
1134{
1135        union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1136
1137        if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1138                return -EINVAL;
1139
1140        if (n >= max_count + cpuc->n_metric)
1141                return -EINVAL;
1142
1143        cpuc->event_list[n] = event;
1144        if (is_counter_pair(&event->hw)) {
1145                cpuc->n_pair++;
1146                cpuc->n_txn_pair++;
1147        }
1148
1149        return 0;
1150}
1151
1152/*
1153 * dogrp: true if must collect siblings events (group)
1154 * returns total number of events and error code
1155 */
1156static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1157{
1158        int num_counters = hybrid(cpuc->pmu, num_counters);
1159        int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1160        struct perf_event *event;
1161        int n, max_count;
1162
1163        max_count = num_counters + num_counters_fixed;
1164
1165        /* current number of events already accepted */
1166        n = cpuc->n_events;
1167        if (!cpuc->n_events)
1168                cpuc->pebs_output = 0;
1169
1170        if (!cpuc->is_fake && leader->attr.precise_ip) {
1171                /*
1172                 * For PEBS->PT, if !aux_event, the group leader (PT) went
1173                 * away, the group was broken down and this singleton event
1174                 * can't schedule any more.
1175                 */
1176                if (is_pebs_pt(leader) && !leader->aux_event)
1177                        return -EINVAL;
1178
1179                /*
1180                 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1181                 */
1182                if (cpuc->pebs_output &&
1183                    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1184                        return -EINVAL;
1185
1186                cpuc->pebs_output = is_pebs_pt(leader) + 1;
1187        }
1188
1189        if (is_x86_event(leader)) {
1190                if (collect_event(cpuc, leader, max_count, n))
1191                        return -EINVAL;
1192                n++;
1193        }
1194
1195        if (!dogrp)
1196                return n;
1197
1198        for_each_sibling_event(event, leader) {
1199                if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1200                        continue;
1201
1202                if (collect_event(cpuc, event, max_count, n))
1203                        return -EINVAL;
1204
1205                n++;
1206        }
1207        return n;
1208}
1209
1210static inline void x86_assign_hw_event(struct perf_event *event,
1211                                struct cpu_hw_events *cpuc, int i)
1212{
1213        struct hw_perf_event *hwc = &event->hw;
1214        int idx;
1215
1216        idx = hwc->idx = cpuc->assign[i];
1217        hwc->last_cpu = smp_processor_id();
1218        hwc->last_tag = ++cpuc->tags[i];
1219
1220        switch (hwc->idx) {
1221        case INTEL_PMC_IDX_FIXED_BTS:
1222        case INTEL_PMC_IDX_FIXED_VLBR:
1223                hwc->config_base = 0;
1224                hwc->event_base = 0;
1225                break;
1226
1227        case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1228                /* All the metric events are mapped onto the fixed counter 3. */
1229                idx = INTEL_PMC_IDX_FIXED_SLOTS;
1230                fallthrough;
1231        case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1232                hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1233                hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1234                                (idx - INTEL_PMC_IDX_FIXED);
1235                hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1236                                        INTEL_PMC_FIXED_RDPMC_BASE;
1237                break;
1238
1239        default:
1240                hwc->config_base = x86_pmu_config_addr(hwc->idx);
1241                hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1242                hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1243                break;
1244        }
1245}
1246
1247/**
1248 * x86_perf_rdpmc_index - Return PMC counter used for event
1249 * @event: the perf_event to which the PMC counter was assigned
1250 *
1251 * The counter assigned to this performance event may change if interrupts
1252 * are enabled. This counter should thus never be used while interrupts are
1253 * enabled. Before this function is used to obtain the assigned counter the
1254 * event should be checked for validity using, for example,
1255 * perf_event_read_local(), within the same interrupt disabled section in
1256 * which this counter is planned to be used.
1257 *
1258 * Return: The index of the performance monitoring counter assigned to
1259 * @perf_event.
1260 */
1261int x86_perf_rdpmc_index(struct perf_event *event)
1262{
1263        lockdep_assert_irqs_disabled();
1264
1265        return event->hw.event_base_rdpmc;
1266}
1267
1268static inline int match_prev_assignment(struct hw_perf_event *hwc,
1269                                        struct cpu_hw_events *cpuc,
1270                                        int i)
1271{
1272        return hwc->idx == cpuc->assign[i] &&
1273                hwc->last_cpu == smp_processor_id() &&
1274                hwc->last_tag == cpuc->tags[i];
1275}
1276
1277static void x86_pmu_start(struct perf_event *event, int flags);
1278
1279static void x86_pmu_enable(struct pmu *pmu)
1280{
1281        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1282        struct perf_event *event;
1283        struct hw_perf_event *hwc;
1284        int i, added = cpuc->n_added;
1285
1286        if (!x86_pmu_initialized())
1287                return;
1288
1289        if (cpuc->enabled)
1290                return;
1291
1292        if (cpuc->n_added) {
1293                int n_running = cpuc->n_events - cpuc->n_added;
1294                /*
1295                 * apply assignment obtained either from
1296                 * hw_perf_group_sched_in() or x86_pmu_enable()
1297                 *
1298                 * step1: save events moving to new counters
1299                 */
1300                for (i = 0; i < n_running; i++) {
1301                        event = cpuc->event_list[i];
1302                        hwc = &event->hw;
1303
1304                        /*
1305                         * we can avoid reprogramming counter if:
1306                         * - assigned same counter as last time
1307                         * - running on same CPU as last time
1308                         * - no other event has used the counter since
1309                         */
1310                        if (hwc->idx == -1 ||
1311                            match_prev_assignment(hwc, cpuc, i))
1312                                continue;
1313
1314                        /*
1315                         * Ensure we don't accidentally enable a stopped
1316                         * counter simply because we rescheduled.
1317                         */
1318                        if (hwc->state & PERF_HES_STOPPED)
1319                                hwc->state |= PERF_HES_ARCH;
1320
1321                        x86_pmu_stop(event, PERF_EF_UPDATE);
1322                }
1323
1324                /*
1325                 * step2: reprogram moved events into new counters
1326                 */
1327                for (i = 0; i < cpuc->n_events; i++) {
1328                        event = cpuc->event_list[i];
1329                        hwc = &event->hw;
1330
1331                        if (!match_prev_assignment(hwc, cpuc, i))
1332                                x86_assign_hw_event(event, cpuc, i);
1333                        else if (i < n_running)
1334                                continue;
1335
1336                        if (hwc->state & PERF_HES_ARCH)
1337                                continue;
1338
1339                        x86_pmu_start(event, PERF_EF_RELOAD);
1340                }
1341                cpuc->n_added = 0;
1342                perf_events_lapic_init();
1343        }
1344
1345        cpuc->enabled = 1;
1346        barrier();
1347
1348        static_call(x86_pmu_enable_all)(added);
1349}
1350
1351static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1352
1353/*
1354 * Set the next IRQ period, based on the hwc->period_left value.
1355 * To be called with the event disabled in hw:
1356 */
1357int x86_perf_event_set_period(struct perf_event *event)
1358{
1359        struct hw_perf_event *hwc = &event->hw;
1360        s64 left = local64_read(&hwc->period_left);
1361        s64 period = hwc->sample_period;
1362        int ret = 0, idx = hwc->idx;
1363
1364        if (unlikely(!hwc->event_base))
1365                return 0;
1366
1367        if (unlikely(is_topdown_count(event)) &&
1368            x86_pmu.set_topdown_event_period)
1369                return x86_pmu.set_topdown_event_period(event);
1370
1371        /*
1372         * If we are way outside a reasonable range then just skip forward:
1373         */
1374        if (unlikely(left <= -period)) {
1375                left = period;
1376                local64_set(&hwc->period_left, left);
1377                hwc->last_period = period;
1378                ret = 1;
1379        }
1380
1381        if (unlikely(left <= 0)) {
1382                left += period;
1383                local64_set(&hwc->period_left, left);
1384                hwc->last_period = period;
1385                ret = 1;
1386        }
1387        /*
1388         * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1389         */
1390        if (unlikely(left < 2))
1391                left = 2;
1392
1393        if (left > x86_pmu.max_period)
1394                left = x86_pmu.max_period;
1395
1396        if (x86_pmu.limit_period)
1397                left = x86_pmu.limit_period(event, left);
1398
1399        per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1400
1401        /*
1402         * The hw event starts counting from this event offset,
1403         * mark it to be able to extra future deltas:
1404         */
1405        local64_set(&hwc->prev_count, (u64)-left);
1406
1407        wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1408
1409        /*
1410         * Sign extend the Merge event counter's upper 16 bits since
1411         * we currently declare a 48-bit counter width
1412         */
1413        if (is_counter_pair(hwc))
1414                wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1415
1416        /*
1417         * Due to erratum on certan cpu we need
1418         * a second write to be sure the register
1419         * is updated properly
1420         */
1421        if (x86_pmu.perfctr_second_write) {
1422                wrmsrl(hwc->event_base,
1423                        (u64)(-left) & x86_pmu.cntval_mask);
1424        }
1425
1426        perf_event_update_userpage(event);
1427
1428        return ret;
1429}
1430
1431void x86_pmu_enable_event(struct perf_event *event)
1432{
1433        if (__this_cpu_read(cpu_hw_events.enabled))
1434                __x86_pmu_enable_event(&event->hw,
1435                                       ARCH_PERFMON_EVENTSEL_ENABLE);
1436}
1437
1438/*
1439 * Add a single event to the PMU.
1440 *
1441 * The event is added to the group of enabled events
1442 * but only if it can be scheduled with existing events.
1443 */
1444static int x86_pmu_add(struct perf_event *event, int flags)
1445{
1446        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1447        struct hw_perf_event *hwc;
1448        int assign[X86_PMC_IDX_MAX];
1449        int n, n0, ret;
1450
1451        hwc = &event->hw;
1452
1453        n0 = cpuc->n_events;
1454        ret = n = collect_events(cpuc, event, false);
1455        if (ret < 0)
1456                goto out;
1457
1458        hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1459        if (!(flags & PERF_EF_START))
1460                hwc->state |= PERF_HES_ARCH;
1461
1462        /*
1463         * If group events scheduling transaction was started,
1464         * skip the schedulability test here, it will be performed
1465         * at commit time (->commit_txn) as a whole.
1466         *
1467         * If commit fails, we'll call ->del() on all events
1468         * for which ->add() was called.
1469         */
1470        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1471                goto done_collect;
1472
1473        ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1474        if (ret)
1475                goto out;
1476        /*
1477         * copy new assignment, now we know it is possible
1478         * will be used by hw_perf_enable()
1479         */
1480        memcpy(cpuc->assign, assign, n*sizeof(int));
1481
1482done_collect:
1483        /*
1484         * Commit the collect_events() state. See x86_pmu_del() and
1485         * x86_pmu_*_txn().
1486         */
1487        cpuc->n_events = n;
1488        cpuc->n_added += n - n0;
1489        cpuc->n_txn += n - n0;
1490
1491        /*
1492         * This is before x86_pmu_enable() will call x86_pmu_start(),
1493         * so we enable LBRs before an event needs them etc..
1494         */
1495        static_call_cond(x86_pmu_add)(event);
1496
1497        ret = 0;
1498out:
1499        return ret;
1500}
1501
1502static void x86_pmu_start(struct perf_event *event, int flags)
1503{
1504        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1505        int idx = event->hw.idx;
1506
1507        if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1508                return;
1509
1510        if (WARN_ON_ONCE(idx == -1))
1511                return;
1512
1513        if (flags & PERF_EF_RELOAD) {
1514                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1515                x86_perf_event_set_period(event);
1516        }
1517
1518        event->hw.state = 0;
1519
1520        cpuc->events[idx] = event;
1521        __set_bit(idx, cpuc->active_mask);
1522        static_call(x86_pmu_enable)(event);
1523        perf_event_update_userpage(event);
1524}
1525
1526void perf_event_print_debug(void)
1527{
1528        u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1529        u64 pebs, debugctl;
1530        int cpu = smp_processor_id();
1531        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1532        int num_counters = hybrid(cpuc->pmu, num_counters);
1533        int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1534        struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1535        unsigned long flags;
1536        int idx;
1537
1538        if (!num_counters)
1539                return;
1540
1541        local_irq_save(flags);
1542
1543        if (x86_pmu.version >= 2) {
1544                rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1545                rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1546                rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1547                rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1548
1549                pr_info("\n");
1550                pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1551                pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1552                pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1553                pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1554                if (pebs_constraints) {
1555                        rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1556                        pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1557                }
1558                if (x86_pmu.lbr_nr) {
1559                        rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1560                        pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1561                }
1562        }
1563        pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1564
1565        for (idx = 0; idx < num_counters; idx++) {
1566                rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1567                rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1568
1569                prev_left = per_cpu(pmc_prev_left[idx], cpu);
1570
1571                pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1572                        cpu, idx, pmc_ctrl);
1573                pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1574                        cpu, idx, pmc_count);
1575                pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1576                        cpu, idx, prev_left);
1577        }
1578        for (idx = 0; idx < num_counters_fixed; idx++) {
1579                if (fixed_counter_disabled(idx, cpuc->pmu))
1580                        continue;
1581                rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1582
1583                pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1584                        cpu, idx, pmc_count);
1585        }
1586        local_irq_restore(flags);
1587}
1588
1589void x86_pmu_stop(struct perf_event *event, int flags)
1590{
1591        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1592        struct hw_perf_event *hwc = &event->hw;
1593
1594        if (test_bit(hwc->idx, cpuc->active_mask)) {
1595                static_call(x86_pmu_disable)(event);
1596                __clear_bit(hwc->idx, cpuc->active_mask);
1597                cpuc->events[hwc->idx] = NULL;
1598                WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1599                hwc->state |= PERF_HES_STOPPED;
1600        }
1601
1602        if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1603                /*
1604                 * Drain the remaining delta count out of a event
1605                 * that we are disabling:
1606                 */
1607                x86_perf_event_update(event);
1608                hwc->state |= PERF_HES_UPTODATE;
1609        }
1610}
1611
1612static void x86_pmu_del(struct perf_event *event, int flags)
1613{
1614        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1615        union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1616        int i;
1617
1618        /*
1619         * If we're called during a txn, we only need to undo x86_pmu.add.
1620         * The events never got scheduled and ->cancel_txn will truncate
1621         * the event_list.
1622         *
1623         * XXX assumes any ->del() called during a TXN will only be on
1624         * an event added during that same TXN.
1625         */
1626        if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1627                goto do_del;
1628
1629        __set_bit(event->hw.idx, cpuc->dirty);
1630
1631        /*
1632         * Not a TXN, therefore cleanup properly.
1633         */
1634        x86_pmu_stop(event, PERF_EF_UPDATE);
1635
1636        for (i = 0; i < cpuc->n_events; i++) {
1637                if (event == cpuc->event_list[i])
1638                        break;
1639        }
1640
1641        if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1642                return;
1643
1644        /* If we have a newly added event; make sure to decrease n_added. */
1645        if (i >= cpuc->n_events - cpuc->n_added)
1646                --cpuc->n_added;
1647
1648        static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1649
1650        /* Delete the array entry. */
1651        while (++i < cpuc->n_events) {
1652                cpuc->event_list[i-1] = cpuc->event_list[i];
1653                cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1654        }
1655        cpuc->event_constraint[i-1] = NULL;
1656        --cpuc->n_events;
1657        if (intel_cap.perf_metrics)
1658                del_nr_metric_event(cpuc, event);
1659
1660        perf_event_update_userpage(event);
1661
1662do_del:
1663
1664        /*
1665         * This is after x86_pmu_stop(); so we disable LBRs after any
1666         * event can need them etc..
1667         */
1668        static_call_cond(x86_pmu_del)(event);
1669}
1670
1671int x86_pmu_handle_irq(struct pt_regs *regs)
1672{
1673        struct perf_sample_data data;
1674        struct cpu_hw_events *cpuc;
1675        struct perf_event *event;
1676        int idx, handled = 0;
1677        u64 val;
1678
1679        cpuc = this_cpu_ptr(&cpu_hw_events);
1680
1681        /*
1682         * Some chipsets need to unmask the LVTPC in a particular spot
1683         * inside the nmi handler.  As a result, the unmasking was pushed
1684         * into all the nmi handlers.
1685         *
1686         * This generic handler doesn't seem to have any issues where the
1687         * unmasking occurs so it was left at the top.
1688         */
1689        apic_write(APIC_LVTPC, APIC_DM_NMI);
1690
1691        for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1692                if (!test_bit(idx, cpuc->active_mask))
1693                        continue;
1694
1695                event = cpuc->events[idx];
1696
1697                val = x86_perf_event_update(event);
1698                if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1699                        continue;
1700
1701                /*
1702                 * event overflow
1703                 */
1704                handled++;
1705                perf_sample_data_init(&data, 0, event->hw.last_period);
1706
1707                if (!x86_perf_event_set_period(event))
1708                        continue;
1709
1710                if (perf_event_overflow(event, &data, regs))
1711                        x86_pmu_stop(event, 0);
1712        }
1713
1714        if (handled)
1715                inc_irq_stat(apic_perf_irqs);
1716
1717        return handled;
1718}
1719
1720void perf_events_lapic_init(void)
1721{
1722        if (!x86_pmu.apic || !x86_pmu_initialized())
1723                return;
1724
1725        /*
1726         * Always use NMI for PMU
1727         */
1728        apic_write(APIC_LVTPC, APIC_DM_NMI);
1729}
1730
1731static int
1732perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1733{
1734        u64 start_clock;
1735        u64 finish_clock;
1736        int ret;
1737
1738        /*
1739         * All PMUs/events that share this PMI handler should make sure to
1740         * increment active_events for their events.
1741         */
1742        if (!atomic_read(&active_events))
1743                return NMI_DONE;
1744
1745        start_clock = sched_clock();
1746        ret = static_call(x86_pmu_handle_irq)(regs);
1747        finish_clock = sched_clock();
1748
1749        perf_sample_event_took(finish_clock - start_clock);
1750
1751        return ret;
1752}
1753NOKPROBE_SYMBOL(perf_event_nmi_handler);
1754
1755struct event_constraint emptyconstraint;
1756struct event_constraint unconstrained;
1757
1758static int x86_pmu_prepare_cpu(unsigned int cpu)
1759{
1760        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1761        int i;
1762
1763        for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1764                cpuc->kfree_on_online[i] = NULL;
1765        if (x86_pmu.cpu_prepare)
1766                return x86_pmu.cpu_prepare(cpu);
1767        return 0;
1768}
1769
1770static int x86_pmu_dead_cpu(unsigned int cpu)
1771{
1772        if (x86_pmu.cpu_dead)
1773                x86_pmu.cpu_dead(cpu);
1774        return 0;
1775}
1776
1777static int x86_pmu_online_cpu(unsigned int cpu)
1778{
1779        struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1780        int i;
1781
1782        for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1783                kfree(cpuc->kfree_on_online[i]);
1784                cpuc->kfree_on_online[i] = NULL;
1785        }
1786        return 0;
1787}
1788
1789static int x86_pmu_starting_cpu(unsigned int cpu)
1790{
1791        if (x86_pmu.cpu_starting)
1792                x86_pmu.cpu_starting(cpu);
1793        return 0;
1794}
1795
1796static int x86_pmu_dying_cpu(unsigned int cpu)
1797{
1798        if (x86_pmu.cpu_dying)
1799                x86_pmu.cpu_dying(cpu);
1800        return 0;
1801}
1802
1803static void __init pmu_check_apic(void)
1804{
1805        if (boot_cpu_has(X86_FEATURE_APIC))
1806                return;
1807
1808        x86_pmu.apic = 0;
1809        pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1810        pr_info("no hardware sampling interrupt available.\n");
1811
1812        /*
1813         * If we have a PMU initialized but no APIC
1814         * interrupts, we cannot sample hardware
1815         * events (user-space has to fall back and
1816         * sample via a hrtimer based software event):
1817         */
1818        pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1819
1820}
1821
1822static struct attribute_group x86_pmu_format_group __ro_after_init = {
1823        .name = "format",
1824        .attrs = NULL,
1825};
1826
1827ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1828{
1829        struct perf_pmu_events_attr *pmu_attr =
1830                container_of(attr, struct perf_pmu_events_attr, attr);
1831        u64 config = 0;
1832
1833        if (pmu_attr->id < x86_pmu.max_events)
1834                config = x86_pmu.event_map(pmu_attr->id);
1835
1836        /* string trumps id */
1837        if (pmu_attr->event_str)
1838                return sprintf(page, "%s", pmu_attr->event_str);
1839
1840        return x86_pmu.events_sysfs_show(page, config);
1841}
1842EXPORT_SYMBOL_GPL(events_sysfs_show);
1843
1844ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1845                          char *page)
1846{
1847        struct perf_pmu_events_ht_attr *pmu_attr =
1848                container_of(attr, struct perf_pmu_events_ht_attr, attr);
1849
1850        /*
1851         * Report conditional events depending on Hyper-Threading.
1852         *
1853         * This is overly conservative as usually the HT special
1854         * handling is not needed if the other CPU thread is idle.
1855         *
1856         * Note this does not (and cannot) handle the case when thread
1857         * siblings are invisible, for example with virtualization
1858         * if they are owned by some other guest.  The user tool
1859         * has to re-read when a thread sibling gets onlined later.
1860         */
1861        return sprintf(page, "%s",
1862                        topology_max_smt_threads() > 1 ?
1863                        pmu_attr->event_str_ht :
1864                        pmu_attr->event_str_noht);
1865}
1866
1867ssize_t events_hybrid_sysfs_show(struct device *dev,
1868                                 struct device_attribute *attr,
1869                                 char *page)
1870{
1871        struct perf_pmu_events_hybrid_attr *pmu_attr =
1872                container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1873        struct x86_hybrid_pmu *pmu;
1874        const char *str, *next_str;
1875        int i;
1876
1877        if (hweight64(pmu_attr->pmu_type) == 1)
1878                return sprintf(page, "%s", pmu_attr->event_str);
1879
1880        /*
1881         * Hybrid PMUs may support the same event name, but with different
1882         * event encoding, e.g., the mem-loads event on an Atom PMU has
1883         * different event encoding from a Core PMU.
1884         *
1885         * The event_str includes all event encodings. Each event encoding
1886         * is divided by ";". The order of the event encodings must follow
1887         * the order of the hybrid PMU index.
1888         */
1889        pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1890
1891        str = pmu_attr->event_str;
1892        for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1893                if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1894                        continue;
1895                if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1896                        next_str = strchr(str, ';');
1897                        if (next_str)
1898                                return snprintf(page, next_str - str + 1, "%s", str);
1899                        else
1900                                return sprintf(page, "%s", str);
1901                }
1902                str = strchr(str, ';');
1903                str++;
1904        }
1905
1906        return 0;
1907}
1908EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1909
1910EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1911EVENT_ATTR(instructions,                INSTRUCTIONS            );
1912EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1913EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1914EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1915EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1916EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1917EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1918EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1919EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1920
1921static struct attribute *empty_attrs;
1922
1923static struct attribute *events_attr[] = {
1924        EVENT_PTR(CPU_CYCLES),
1925        EVENT_PTR(INSTRUCTIONS),
1926        EVENT_PTR(CACHE_REFERENCES),
1927        EVENT_PTR(CACHE_MISSES),
1928        EVENT_PTR(BRANCH_INSTRUCTIONS),
1929        EVENT_PTR(BRANCH_MISSES),
1930        EVENT_PTR(BUS_CYCLES),
1931        EVENT_PTR(STALLED_CYCLES_FRONTEND),
1932        EVENT_PTR(STALLED_CYCLES_BACKEND),
1933        EVENT_PTR(REF_CPU_CYCLES),
1934        NULL,
1935};
1936
1937/*
1938 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1939 * out of events_attr attributes.
1940 */
1941static umode_t
1942is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1943{
1944        struct perf_pmu_events_attr *pmu_attr;
1945
1946        if (idx >= x86_pmu.max_events)
1947                return 0;
1948
1949        pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1950        /* str trumps id */
1951        return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1952}
1953
1954static struct attribute_group x86_pmu_events_group __ro_after_init = {
1955        .name = "events",
1956        .attrs = events_attr,
1957        .is_visible = is_visible,
1958};
1959
1960ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1961{
1962        u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1963        u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1964        bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1965        bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1966        bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1967        bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1968        ssize_t ret;
1969
1970        /*
1971        * We have whole page size to spend and just little data
1972        * to write, so we can safely use sprintf.
1973        */
1974        ret = sprintf(page, "event=0x%02llx", event);
1975
1976        if (umask)
1977                ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1978
1979        if (edge)
1980                ret += sprintf(page + ret, ",edge");
1981
1982        if (pc)
1983                ret += sprintf(page + ret, ",pc");
1984
1985        if (any)
1986                ret += sprintf(page + ret, ",any");
1987
1988        if (inv)
1989                ret += sprintf(page + ret, ",inv");
1990
1991        if (cmask)
1992                ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1993
1994        ret += sprintf(page + ret, "\n");
1995
1996        return ret;
1997}
1998
1999static struct attribute_group x86_pmu_attr_group;
2000static struct attribute_group x86_pmu_caps_group;
2001
2002static void x86_pmu_static_call_update(void)
2003{
2004        static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2005        static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2006        static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2007        static_call_update(x86_pmu_enable, x86_pmu.enable);
2008        static_call_update(x86_pmu_disable, x86_pmu.disable);
2009
2010        static_call_update(x86_pmu_add, x86_pmu.add);
2011        static_call_update(x86_pmu_del, x86_pmu.del);
2012        static_call_update(x86_pmu_read, x86_pmu.read);
2013
2014        static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2015        static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2016        static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2017
2018        static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2019        static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2020        static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2021
2022        static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2023        static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2024
2025        static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2026        static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2027
2028        static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2029}
2030
2031static void _x86_pmu_read(struct perf_event *event)
2032{
2033        x86_perf_event_update(event);
2034}
2035
2036void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2037                          u64 intel_ctrl)
2038{
2039        pr_info("... version:                %d\n",     x86_pmu.version);
2040        pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2041        pr_info("... generic registers:      %d\n",     num_counters);
2042        pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2043        pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2044        pr_info("... fixed-purpose events:   %lu\n",
2045                        hweight64((((1ULL << num_counters_fixed) - 1)
2046                                        << INTEL_PMC_IDX_FIXED) & intel_ctrl));
2047        pr_info("... event mask:             %016Lx\n", intel_ctrl);
2048}
2049
2050/*
2051 * The generic code is not hybrid friendly. The hybrid_pmu->pmu
2052 * of the first registered PMU is unconditionally assigned to
2053 * each possible cpuctx->ctx.pmu.
2054 * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
2055 */
2056void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
2057{
2058        struct perf_cpu_context *cpuctx;
2059
2060        if (!pmu->pmu_cpu_context)
2061                return;
2062
2063        cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2064        cpuctx->ctx.pmu = pmu;
2065}
2066
2067static int __init init_hw_perf_events(void)
2068{
2069        struct x86_pmu_quirk *quirk;
2070        int err;
2071
2072        pr_info("Performance Events: ");
2073
2074        switch (boot_cpu_data.x86_vendor) {
2075        case X86_VENDOR_INTEL:
2076                err = intel_pmu_init();
2077                break;
2078        case X86_VENDOR_AMD:
2079                err = amd_pmu_init();
2080                break;
2081        case X86_VENDOR_HYGON:
2082                err = amd_pmu_init();
2083                x86_pmu.name = "HYGON";
2084                break;
2085        case X86_VENDOR_ZHAOXIN:
2086        case X86_VENDOR_CENTAUR:
2087                err = zhaoxin_pmu_init();
2088                break;
2089        default:
2090                err = -ENOTSUPP;
2091        }
2092        if (err != 0) {
2093                pr_cont("no PMU driver, software events only.\n");
2094                return 0;
2095        }
2096
2097        pmu_check_apic();
2098
2099        /* sanity check that the hardware exists or is emulated */
2100        if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2101                return 0;
2102
2103        pr_cont("%s PMU driver.\n", x86_pmu.name);
2104
2105        x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2106
2107        for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2108                quirk->func();
2109
2110        if (!x86_pmu.intel_ctrl)
2111                x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2112
2113        perf_events_lapic_init();
2114        register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2115
2116        unconstrained = (struct event_constraint)
2117                __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2118                                   0, x86_pmu.num_counters, 0, 0);
2119
2120        x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2121
2122        if (!x86_pmu.events_sysfs_show)
2123                x86_pmu_events_group.attrs = &empty_attrs;
2124
2125        pmu.attr_update = x86_pmu.attr_update;
2126
2127        if (!is_hybrid()) {
2128                x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2129                                     x86_pmu.num_counters_fixed,
2130                                     x86_pmu.intel_ctrl);
2131        }
2132
2133        if (!x86_pmu.read)
2134                x86_pmu.read = _x86_pmu_read;
2135
2136        if (!x86_pmu.guest_get_msrs)
2137                x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2138
2139        x86_pmu_static_call_update();
2140
2141        /*
2142         * Install callbacks. Core will call them for each online
2143         * cpu.
2144         */
2145        err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2146                                x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2147        if (err)
2148                return err;
2149
2150        err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2151                                "perf/x86:starting", x86_pmu_starting_cpu,
2152                                x86_pmu_dying_cpu);
2153        if (err)
2154                goto out;
2155
2156        err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2157                                x86_pmu_online_cpu, NULL);
2158        if (err)
2159                goto out1;
2160
2161        if (!is_hybrid()) {
2162                err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2163                if (err)
2164                        goto out2;
2165        } else {
2166                u8 cpu_type = get_this_hybrid_cpu_type();
2167                struct x86_hybrid_pmu *hybrid_pmu;
2168                int i, j;
2169
2170                if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
2171                        cpu_type = x86_pmu.get_hybrid_cpu_type();
2172
2173                for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2174                        hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2175
2176                        hybrid_pmu->pmu = pmu;
2177                        hybrid_pmu->pmu.type = -1;
2178                        hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2179                        hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
2180                        hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2181
2182                        err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2183                                                (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2184                        if (err)
2185                                break;
2186
2187                        if (cpu_type == hybrid_pmu->cpu_type)
2188                                x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
2189                }
2190
2191                if (i < x86_pmu.num_hybrid_pmus) {
2192                        for (j = 0; j < i; j++)
2193                                perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2194                        pr_warn("Failed to register hybrid PMUs\n");
2195                        kfree(x86_pmu.hybrid_pmu);
2196                        x86_pmu.hybrid_pmu = NULL;
2197                        x86_pmu.num_hybrid_pmus = 0;
2198                        goto out2;
2199                }
2200        }
2201
2202        return 0;
2203
2204out2:
2205        cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2206out1:
2207        cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2208out:
2209        cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2210        return err;
2211}
2212early_initcall(init_hw_perf_events);
2213
2214static void x86_pmu_read(struct perf_event *event)
2215{
2216        static_call(x86_pmu_read)(event);
2217}
2218
2219/*
2220 * Start group events scheduling transaction
2221 * Set the flag to make pmu::enable() not perform the
2222 * schedulability test, it will be performed at commit time
2223 *
2224 * We only support PERF_PMU_TXN_ADD transactions. Save the
2225 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2226 * transactions.
2227 */
2228static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2229{
2230        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2231
2232        WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
2233
2234        cpuc->txn_flags = txn_flags;
2235        if (txn_flags & ~PERF_PMU_TXN_ADD)
2236                return;
2237
2238        perf_pmu_disable(pmu);
2239        __this_cpu_write(cpu_hw_events.n_txn, 0);
2240        __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2241        __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2242}
2243
2244/*
2245 * Stop group events scheduling transaction
2246 * Clear the flag and pmu::enable() will perform the
2247 * schedulability test.
2248 */
2249static void x86_pmu_cancel_txn(struct pmu *pmu)
2250{
2251        unsigned int txn_flags;
2252        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2253
2254        WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2255
2256        txn_flags = cpuc->txn_flags;
2257        cpuc->txn_flags = 0;
2258        if (txn_flags & ~PERF_PMU_TXN_ADD)
2259                return;
2260
2261        /*
2262         * Truncate collected array by the number of events added in this
2263         * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2264         */
2265        __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2266        __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2267        __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2268        __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2269        perf_pmu_enable(pmu);
2270}
2271
2272/*
2273 * Commit group events scheduling transaction
2274 * Perform the group schedulability test as a whole
2275 * Return 0 if success
2276 *
2277 * Does not cancel the transaction on failure; expects the caller to do this.
2278 */
2279static int x86_pmu_commit_txn(struct pmu *pmu)
2280{
2281        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2282        int assign[X86_PMC_IDX_MAX];
2283        int n, ret;
2284
2285        WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2286
2287        if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2288                cpuc->txn_flags = 0;
2289                return 0;
2290        }
2291
2292        n = cpuc->n_events;
2293
2294        if (!x86_pmu_initialized())
2295                return -EAGAIN;
2296
2297        ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2298        if (ret)
2299                return ret;
2300
2301        /*
2302         * copy new assignment, now we know it is possible
2303         * will be used by hw_perf_enable()
2304         */
2305        memcpy(cpuc->assign, assign, n*sizeof(int));
2306
2307        cpuc->txn_flags = 0;
2308        perf_pmu_enable(pmu);
2309        return 0;
2310}
2311/*
2312 * a fake_cpuc is used to validate event groups. Due to
2313 * the extra reg logic, we need to also allocate a fake
2314 * per_core and per_cpu structure. Otherwise, group events
2315 * using extra reg may conflict without the kernel being
2316 * able to catch this when the last event gets added to
2317 * the group.
2318 */
2319static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2320{
2321        intel_cpuc_finish(cpuc);
2322        kfree(cpuc);
2323}
2324
2325static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2326{
2327        struct cpu_hw_events *cpuc;
2328        int cpu;
2329
2330        cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2331        if (!cpuc)
2332                return ERR_PTR(-ENOMEM);
2333        cpuc->is_fake = 1;
2334
2335        if (is_hybrid()) {
2336                struct x86_hybrid_pmu *h_pmu;
2337
2338                h_pmu = hybrid_pmu(event_pmu);
2339                if (cpumask_empty(&h_pmu->supported_cpus))
2340                        goto error;
2341                cpu = cpumask_first(&h_pmu->supported_cpus);
2342        } else
2343                cpu = raw_smp_processor_id();
2344        cpuc->pmu = event_pmu;
2345
2346        if (intel_cpuc_prepare(cpuc, cpu))
2347                goto error;
2348
2349        return cpuc;
2350error:
2351        free_fake_cpuc(cpuc);
2352        return ERR_PTR(-ENOMEM);
2353}
2354
2355/*
2356 * validate that we can schedule this event
2357 */
2358static int validate_event(struct perf_event *event)
2359{
2360        struct cpu_hw_events *fake_cpuc;
2361        struct event_constraint *c;
2362        int ret = 0;
2363
2364        fake_cpuc = allocate_fake_cpuc(event->pmu);
2365        if (IS_ERR(fake_cpuc))
2366                return PTR_ERR(fake_cpuc);
2367
2368        c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2369
2370        if (!c || !c->weight)
2371                ret = -EINVAL;
2372
2373        if (x86_pmu.put_event_constraints)
2374                x86_pmu.put_event_constraints(fake_cpuc, event);
2375
2376        free_fake_cpuc(fake_cpuc);
2377
2378        return ret;
2379}
2380
2381/*
2382 * validate a single event group
2383 *
2384 * validation include:
2385 *      - check events are compatible which each other
2386 *      - events do not compete for the same counter
2387 *      - number of events <= number of counters
2388 *
2389 * validation ensures the group can be loaded onto the
2390 * PMU if it was the only group available.
2391 */
2392static int validate_group(struct perf_event *event)
2393{
2394        struct perf_event *leader = event->group_leader;
2395        struct cpu_hw_events *fake_cpuc;
2396        int ret = -EINVAL, n;
2397
2398        /*
2399         * Reject events from different hybrid PMUs.
2400         */
2401        if (is_hybrid()) {
2402                struct perf_event *sibling;
2403                struct pmu *pmu = NULL;
2404
2405                if (is_x86_event(leader))
2406                        pmu = leader->pmu;
2407
2408                for_each_sibling_event(sibling, leader) {
2409                        if (!is_x86_event(sibling))
2410                                continue;
2411                        if (!pmu)
2412                                pmu = sibling->pmu;
2413                        else if (pmu != sibling->pmu)
2414                                return ret;
2415                }
2416        }
2417
2418        fake_cpuc = allocate_fake_cpuc(event->pmu);
2419        if (IS_ERR(fake_cpuc))
2420                return PTR_ERR(fake_cpuc);
2421        /*
2422         * the event is not yet connected with its
2423         * siblings therefore we must first collect
2424         * existing siblings, then add the new event
2425         * before we can simulate the scheduling
2426         */
2427        n = collect_events(fake_cpuc, leader, true);
2428        if (n < 0)
2429                goto out;
2430
2431        fake_cpuc->n_events = n;
2432        n = collect_events(fake_cpuc, event, false);
2433        if (n < 0)
2434                goto out;
2435
2436        fake_cpuc->n_events = 0;
2437        ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2438
2439out:
2440        free_fake_cpuc(fake_cpuc);
2441        return ret;
2442}
2443
2444static int x86_pmu_event_init(struct perf_event *event)
2445{
2446        struct x86_hybrid_pmu *pmu = NULL;
2447        int err;
2448
2449        if ((event->attr.type != event->pmu->type) &&
2450            (event->attr.type != PERF_TYPE_HARDWARE) &&
2451            (event->attr.type != PERF_TYPE_HW_CACHE))
2452                return -ENOENT;
2453
2454        if (is_hybrid() && (event->cpu != -1)) {
2455                pmu = hybrid_pmu(event->pmu);
2456                if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2457                        return -ENOENT;
2458        }
2459
2460        err = __x86_pmu_event_init(event);
2461        if (!err) {
2462                if (event->group_leader != event)
2463                        err = validate_group(event);
2464                else
2465                        err = validate_event(event);
2466        }
2467        if (err) {
2468                if (event->destroy)
2469                        event->destroy(event);
2470        }
2471
2472        if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2473            !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2474                event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2475
2476        return err;
2477}
2478
2479void perf_clear_dirty_counters(void)
2480{
2481        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2482        int i;
2483
2484         /* Don't need to clear the assigned counter. */
2485        for (i = 0; i < cpuc->n_events; i++)
2486                __clear_bit(cpuc->assign[i], cpuc->dirty);
2487
2488        if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2489                return;
2490
2491        for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2492                if (i >= INTEL_PMC_IDX_FIXED) {
2493                        /* Metrics and fake events don't have corresponding HW counters. */
2494                        if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2495                                continue;
2496
2497                        wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2498                } else {
2499                        wrmsrl(x86_pmu_event_addr(i), 0);
2500                }
2501        }
2502
2503        bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2504}
2505
2506static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2507{
2508        if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2509                return;
2510
2511        /*
2512         * This function relies on not being called concurrently in two
2513         * tasks in the same mm.  Otherwise one task could observe
2514         * perf_rdpmc_allowed > 1 and return all the way back to
2515         * userspace with CR4.PCE clear while another task is still
2516         * doing on_each_cpu_mask() to propagate CR4.PCE.
2517         *
2518         * For now, this can't happen because all callers hold mmap_lock
2519         * for write.  If this changes, we'll need a different solution.
2520         */
2521        mmap_assert_write_locked(mm);
2522
2523        if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2524                on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2525}
2526
2527static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2528{
2529        if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2530                return;
2531
2532        if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2533                on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2534}
2535
2536static int x86_pmu_event_idx(struct perf_event *event)
2537{
2538        struct hw_perf_event *hwc = &event->hw;
2539
2540        if (!(hwc->flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2541                return 0;
2542
2543        if (is_metric_idx(hwc->idx))
2544                return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2545        else
2546                return hwc->event_base_rdpmc + 1;
2547}
2548
2549static ssize_t get_attr_rdpmc(struct device *cdev,
2550                              struct device_attribute *attr,
2551                              char *buf)
2552{
2553        return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2554}
2555
2556static ssize_t set_attr_rdpmc(struct device *cdev,
2557                              struct device_attribute *attr,
2558                              const char *buf, size_t count)
2559{
2560        unsigned long val;
2561        ssize_t ret;
2562
2563        ret = kstrtoul(buf, 0, &val);
2564        if (ret)
2565                return ret;
2566
2567        if (val > 2)
2568                return -EINVAL;
2569
2570        if (x86_pmu.attr_rdpmc_broken)
2571                return -ENOTSUPP;
2572
2573        if (val != x86_pmu.attr_rdpmc) {
2574                /*
2575                 * Changing into or out of never available or always available,
2576                 * aka perf-event-bypassing mode. This path is extremely slow,
2577                 * but only root can trigger it, so it's okay.
2578                 */
2579                if (val == 0)
2580                        static_branch_inc(&rdpmc_never_available_key);
2581                else if (x86_pmu.attr_rdpmc == 0)
2582                        static_branch_dec(&rdpmc_never_available_key);
2583
2584                if (val == 2)
2585                        static_branch_inc(&rdpmc_always_available_key);
2586                else if (x86_pmu.attr_rdpmc == 2)
2587                        static_branch_dec(&rdpmc_always_available_key);
2588
2589                on_each_cpu(cr4_update_pce, NULL, 1);
2590                x86_pmu.attr_rdpmc = val;
2591        }
2592
2593        return count;
2594}
2595
2596static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2597
2598static struct attribute *x86_pmu_attrs[] = {
2599        &dev_attr_rdpmc.attr,
2600        NULL,
2601};
2602
2603static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2604        .attrs = x86_pmu_attrs,
2605};
2606
2607static ssize_t max_precise_show(struct device *cdev,
2608                                  struct device_attribute *attr,
2609                                  char *buf)
2610{
2611        return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2612}
2613
2614static DEVICE_ATTR_RO(max_precise);
2615
2616static struct attribute *x86_pmu_caps_attrs[] = {
2617        &dev_attr_max_precise.attr,
2618        NULL
2619};
2620
2621static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2622        .name = "caps",
2623        .attrs = x86_pmu_caps_attrs,
2624};
2625
2626static const struct attribute_group *x86_pmu_attr_groups[] = {
2627        &x86_pmu_attr_group,
2628        &x86_pmu_format_group,
2629        &x86_pmu_events_group,
2630        &x86_pmu_caps_group,
2631        NULL,
2632};
2633
2634static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2635{
2636        static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2637}
2638
2639static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2640                                  struct perf_event_context *next)
2641{
2642        static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2643}
2644
2645void perf_check_microcode(void)
2646{
2647        if (x86_pmu.check_microcode)
2648                x86_pmu.check_microcode();
2649}
2650
2651static int x86_pmu_check_period(struct perf_event *event, u64 value)
2652{
2653        if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2654                return -EINVAL;
2655
2656        if (value && x86_pmu.limit_period) {
2657                if (x86_pmu.limit_period(event, value) > value)
2658                        return -EINVAL;
2659        }
2660
2661        return 0;
2662}
2663
2664static int x86_pmu_aux_output_match(struct perf_event *event)
2665{
2666        if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2667                return 0;
2668
2669        if (x86_pmu.aux_output_match)
2670                return x86_pmu.aux_output_match(event);
2671
2672        return 0;
2673}
2674
2675static int x86_pmu_filter_match(struct perf_event *event)
2676{
2677        if (x86_pmu.filter_match)
2678                return x86_pmu.filter_match(event);
2679
2680        return 1;
2681}
2682
2683static struct pmu pmu = {
2684        .pmu_enable             = x86_pmu_enable,
2685        .pmu_disable            = x86_pmu_disable,
2686
2687        .attr_groups            = x86_pmu_attr_groups,
2688
2689        .event_init             = x86_pmu_event_init,
2690
2691        .event_mapped           = x86_pmu_event_mapped,
2692        .event_unmapped         = x86_pmu_event_unmapped,
2693
2694        .add                    = x86_pmu_add,
2695        .del                    = x86_pmu_del,
2696        .start                  = x86_pmu_start,
2697        .stop                   = x86_pmu_stop,
2698        .read                   = x86_pmu_read,
2699
2700        .start_txn              = x86_pmu_start_txn,
2701        .cancel_txn             = x86_pmu_cancel_txn,
2702        .commit_txn             = x86_pmu_commit_txn,
2703
2704        .event_idx              = x86_pmu_event_idx,
2705        .sched_task             = x86_pmu_sched_task,
2706        .swap_task_ctx          = x86_pmu_swap_task_ctx,
2707        .check_period           = x86_pmu_check_period,
2708
2709        .aux_output_match       = x86_pmu_aux_output_match,
2710
2711        .filter_match           = x86_pmu_filter_match,
2712};
2713
2714void arch_perf_update_userpage(struct perf_event *event,
2715                               struct perf_event_mmap_page *userpg, u64 now)
2716{
2717        struct cyc2ns_data data;
2718        u64 offset;
2719
2720        userpg->cap_user_time = 0;
2721        userpg->cap_user_time_zero = 0;
2722        userpg->cap_user_rdpmc =
2723                !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2724        userpg->pmc_width = x86_pmu.cntval_bits;
2725
2726        if (!using_native_sched_clock() || !sched_clock_stable())
2727                return;
2728
2729        cyc2ns_read_begin(&data);
2730
2731        offset = data.cyc2ns_offset + __sched_clock_offset;
2732
2733        /*
2734         * Internal timekeeping for enabled/running/stopped times
2735         * is always in the local_clock domain.
2736         */
2737        userpg->cap_user_time = 1;
2738        userpg->time_mult = data.cyc2ns_mul;
2739        userpg->time_shift = data.cyc2ns_shift;
2740        userpg->time_offset = offset - now;
2741
2742        /*
2743         * cap_user_time_zero doesn't make sense when we're using a different
2744         * time base for the records.
2745         */
2746        if (!event->attr.use_clockid) {
2747                userpg->cap_user_time_zero = 1;
2748                userpg->time_zero = offset;
2749        }
2750
2751        cyc2ns_read_end();
2752}
2753
2754/*
2755 * Determine whether the regs were taken from an irq/exception handler rather
2756 * than from perf_arch_fetch_caller_regs().
2757 */
2758static bool perf_hw_regs(struct pt_regs *regs)
2759{
2760        return regs->flags & X86_EFLAGS_FIXED;
2761}
2762
2763void
2764perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2765{
2766        struct unwind_state state;
2767        unsigned long addr;
2768
2769        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2770                /* TODO: We don't support guest os callchain now */
2771                return;
2772        }
2773
2774        if (perf_callchain_store(entry, regs->ip))
2775                return;
2776
2777        if (perf_hw_regs(regs))
2778                unwind_start(&state, current, regs, NULL);
2779        else
2780                unwind_start(&state, current, NULL, (void *)regs->sp);
2781
2782        for (; !unwind_done(&state); unwind_next_frame(&state)) {
2783                addr = unwind_get_return_address(&state);
2784                if (!addr || perf_callchain_store(entry, addr))
2785                        return;
2786        }
2787}
2788
2789static inline int
2790valid_user_frame(const void __user *fp, unsigned long size)
2791{
2792        return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2793}
2794
2795static unsigned long get_segment_base(unsigned int segment)
2796{
2797        struct desc_struct *desc;
2798        unsigned int idx = segment >> 3;
2799
2800        if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2801#ifdef CONFIG_MODIFY_LDT_SYSCALL
2802                struct ldt_struct *ldt;
2803
2804                /* IRQs are off, so this synchronizes with smp_store_release */
2805                ldt = READ_ONCE(current->active_mm->context.ldt);
2806                if (!ldt || idx >= ldt->nr_entries)
2807                        return 0;
2808
2809                desc = &ldt->entries[idx];
2810#else
2811                return 0;
2812#endif
2813        } else {
2814                if (idx >= GDT_ENTRIES)
2815                        return 0;
2816
2817                desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2818        }
2819
2820        return get_desc_base(desc);
2821}
2822
2823#ifdef CONFIG_IA32_EMULATION
2824
2825#include <linux/compat.h>
2826
2827static inline int
2828perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2829{
2830        /* 32-bit process in 64-bit kernel. */
2831        unsigned long ss_base, cs_base;
2832        struct stack_frame_ia32 frame;
2833        const struct stack_frame_ia32 __user *fp;
2834
2835        if (user_64bit_mode(regs))
2836                return 0;
2837
2838        cs_base = get_segment_base(regs->cs);
2839        ss_base = get_segment_base(regs->ss);
2840
2841        fp = compat_ptr(ss_base + regs->bp);
2842        pagefault_disable();
2843        while (entry->nr < entry->max_stack) {
2844                if (!valid_user_frame(fp, sizeof(frame)))
2845                        break;
2846
2847                if (__get_user(frame.next_frame, &fp->next_frame))
2848                        break;
2849                if (__get_user(frame.return_address, &fp->return_address))
2850                        break;
2851
2852                perf_callchain_store(entry, cs_base + frame.return_address);
2853                fp = compat_ptr(ss_base + frame.next_frame);
2854        }
2855        pagefault_enable();
2856        return 1;
2857}
2858#else
2859static inline int
2860perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2861{
2862    return 0;
2863}
2864#endif
2865
2866void
2867perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2868{
2869        struct stack_frame frame;
2870        const struct stack_frame __user *fp;
2871
2872        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2873                /* TODO: We don't support guest os callchain now */
2874                return;
2875        }
2876
2877        /*
2878         * We don't know what to do with VM86 stacks.. ignore them for now.
2879         */
2880        if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2881                return;
2882
2883        fp = (void __user *)regs->bp;
2884
2885        perf_callchain_store(entry, regs->ip);
2886
2887        if (!nmi_uaccess_okay())
2888                return;
2889
2890        if (perf_callchain_user32(regs, entry))
2891                return;
2892
2893        pagefault_disable();
2894        while (entry->nr < entry->max_stack) {
2895                if (!valid_user_frame(fp, sizeof(frame)))
2896                        break;
2897
2898                if (__get_user(frame.next_frame, &fp->next_frame))
2899                        break;
2900                if (__get_user(frame.return_address, &fp->return_address))
2901                        break;
2902
2903                perf_callchain_store(entry, frame.return_address);
2904                fp = (void __user *)frame.next_frame;
2905        }
2906        pagefault_enable();
2907}
2908
2909/*
2910 * Deal with code segment offsets for the various execution modes:
2911 *
2912 *   VM86 - the good olde 16 bit days, where the linear address is
2913 *          20 bits and we use regs->ip + 0x10 * regs->cs.
2914 *
2915 *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2916 *          to figure out what the 32bit base address is.
2917 *
2918 *    X32 - has TIF_X32 set, but is running in x86_64
2919 *
2920 * X86_64 - CS,DS,SS,ES are all zero based.
2921 */
2922static unsigned long code_segment_base(struct pt_regs *regs)
2923{
2924        /*
2925         * For IA32 we look at the GDT/LDT segment base to convert the
2926         * effective IP to a linear address.
2927         */
2928
2929#ifdef CONFIG_X86_32
2930        /*
2931         * If we are in VM86 mode, add the segment offset to convert to a
2932         * linear address.
2933         */
2934        if (regs->flags & X86_VM_MASK)
2935                return 0x10 * regs->cs;
2936
2937        if (user_mode(regs) && regs->cs != __USER_CS)
2938                return get_segment_base(regs->cs);
2939#else
2940        if (user_mode(regs) && !user_64bit_mode(regs) &&
2941            regs->cs != __USER32_CS)
2942                return get_segment_base(regs->cs);
2943#endif
2944        return 0;
2945}
2946
2947unsigned long perf_instruction_pointer(struct pt_regs *regs)
2948{
2949        if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2950                return perf_guest_cbs->get_guest_ip();
2951
2952        return regs->ip + code_segment_base(regs);
2953}
2954
2955unsigned long perf_misc_flags(struct pt_regs *regs)
2956{
2957        int misc = 0;
2958
2959        if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2960                if (perf_guest_cbs->is_user_mode())
2961                        misc |= PERF_RECORD_MISC_GUEST_USER;
2962                else
2963                        misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2964        } else {
2965                if (user_mode(regs))
2966                        misc |= PERF_RECORD_MISC_USER;
2967                else
2968                        misc |= PERF_RECORD_MISC_KERNEL;
2969        }
2970
2971        if (regs->flags & PERF_EFLAGS_EXACT)
2972                misc |= PERF_RECORD_MISC_EXACT_IP;
2973
2974        return misc;
2975}
2976
2977void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2978{
2979        cap->version            = x86_pmu.version;
2980        /*
2981         * KVM doesn't support the hybrid PMU yet.
2982         * Return the common value in global x86_pmu,
2983         * which available for all cores.
2984         */
2985        cap->num_counters_gp    = x86_pmu.num_counters;
2986        cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2987        cap->bit_width_gp       = x86_pmu.cntval_bits;
2988        cap->bit_width_fixed    = x86_pmu.cntval_bits;
2989        cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2990        cap->events_mask_len    = x86_pmu.events_mask_len;
2991}
2992EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2993