linux/arch/x86/boot/compressed/kaslr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * kaslr.c
   4 *
   5 * This contains the routines needed to generate a reasonable level of
   6 * entropy to choose a randomized kernel base address offset in support
   7 * of Kernel Address Space Layout Randomization (KASLR). Additionally
   8 * handles walking the physical memory maps (and tracking memory regions
   9 * to avoid) in order to select a physical memory location that can
  10 * contain the entire properly aligned running kernel image.
  11 *
  12 */
  13
  14/*
  15 * isspace() in linux/ctype.h is expected by next_args() to filter
  16 * out "space/lf/tab". While boot/ctype.h conflicts with linux/ctype.h,
  17 * since isdigit() is implemented in both of them. Hence disable it
  18 * here.
  19 */
  20#define BOOT_CTYPE_H
  21
  22#include "misc.h"
  23#include "error.h"
  24#include "../string.h"
  25
  26#include <generated/compile.h>
  27#include <linux/module.h>
  28#include <linux/uts.h>
  29#include <linux/utsname.h>
  30#include <linux/ctype.h>
  31#include <linux/efi.h>
  32#include <generated/utsrelease.h>
  33#include <asm/efi.h>
  34
  35/* Macros used by the included decompressor code below. */
  36#define STATIC
  37#include <linux/decompress/mm.h>
  38
  39#define _SETUP
  40#include <asm/setup.h>  /* For COMMAND_LINE_SIZE */
  41#undef _SETUP
  42
  43extern unsigned long get_cmd_line_ptr(void);
  44
  45/* Simplified build-specific string for starting entropy. */
  46static const char build_str[] = UTS_RELEASE " (" LINUX_COMPILE_BY "@"
  47                LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION;
  48
  49static unsigned long rotate_xor(unsigned long hash, const void *area,
  50                                size_t size)
  51{
  52        size_t i;
  53        unsigned long *ptr = (unsigned long *)area;
  54
  55        for (i = 0; i < size / sizeof(hash); i++) {
  56                /* Rotate by odd number of bits and XOR. */
  57                hash = (hash << ((sizeof(hash) * 8) - 7)) | (hash >> 7);
  58                hash ^= ptr[i];
  59        }
  60
  61        return hash;
  62}
  63
  64/* Attempt to create a simple but unpredictable starting entropy. */
  65static unsigned long get_boot_seed(void)
  66{
  67        unsigned long hash = 0;
  68
  69        hash = rotate_xor(hash, build_str, sizeof(build_str));
  70        hash = rotate_xor(hash, boot_params, sizeof(*boot_params));
  71
  72        return hash;
  73}
  74
  75#define KASLR_COMPRESSED_BOOT
  76#include "../../lib/kaslr.c"
  77
  78
  79/* Only supporting at most 4 unusable memmap regions with kaslr */
  80#define MAX_MEMMAP_REGIONS      4
  81
  82static bool memmap_too_large;
  83
  84
  85/*
  86 * Store memory limit: MAXMEM on 64-bit and KERNEL_IMAGE_SIZE on 32-bit.
  87 * It may be reduced by "mem=nn[KMG]" or "memmap=nn[KMG]" command line options.
  88 */
  89static u64 mem_limit;
  90
  91/* Number of immovable memory regions */
  92static int num_immovable_mem;
  93
  94enum mem_avoid_index {
  95        MEM_AVOID_ZO_RANGE = 0,
  96        MEM_AVOID_INITRD,
  97        MEM_AVOID_CMDLINE,
  98        MEM_AVOID_BOOTPARAMS,
  99        MEM_AVOID_MEMMAP_BEGIN,
 100        MEM_AVOID_MEMMAP_END = MEM_AVOID_MEMMAP_BEGIN + MAX_MEMMAP_REGIONS - 1,
 101        MEM_AVOID_MAX,
 102};
 103
 104static struct mem_vector mem_avoid[MEM_AVOID_MAX];
 105
 106static bool mem_overlaps(struct mem_vector *one, struct mem_vector *two)
 107{
 108        /* Item one is entirely before item two. */
 109        if (one->start + one->size <= two->start)
 110                return false;
 111        /* Item one is entirely after item two. */
 112        if (one->start >= two->start + two->size)
 113                return false;
 114        return true;
 115}
 116
 117char *skip_spaces(const char *str)
 118{
 119        while (isspace(*str))
 120                ++str;
 121        return (char *)str;
 122}
 123#include "../../../../lib/ctype.c"
 124#include "../../../../lib/cmdline.c"
 125
 126enum parse_mode {
 127        PARSE_MEMMAP,
 128        PARSE_EFI,
 129};
 130
 131static int
 132parse_memmap(char *p, u64 *start, u64 *size, enum parse_mode mode)
 133{
 134        char *oldp;
 135
 136        if (!p)
 137                return -EINVAL;
 138
 139        /* We don't care about this option here */
 140        if (!strncmp(p, "exactmap", 8))
 141                return -EINVAL;
 142
 143        oldp = p;
 144        *size = memparse(p, &p);
 145        if (p == oldp)
 146                return -EINVAL;
 147
 148        switch (*p) {
 149        case '#':
 150        case '$':
 151        case '!':
 152                *start = memparse(p + 1, &p);
 153                return 0;
 154        case '@':
 155                if (mode == PARSE_MEMMAP) {
 156                        /*
 157                         * memmap=nn@ss specifies usable region, should
 158                         * be skipped
 159                         */
 160                        *size = 0;
 161                } else {
 162                        u64 flags;
 163
 164                        /*
 165                         * efi_fake_mem=nn@ss:attr the attr specifies
 166                         * flags that might imply a soft-reservation.
 167                         */
 168                        *start = memparse(p + 1, &p);
 169                        if (p && *p == ':') {
 170                                p++;
 171                                if (kstrtoull(p, 0, &flags) < 0)
 172                                        *size = 0;
 173                                else if (flags & EFI_MEMORY_SP)
 174                                        return 0;
 175                        }
 176                        *size = 0;
 177                }
 178                fallthrough;
 179        default:
 180                /*
 181                 * If w/o offset, only size specified, memmap=nn[KMG] has the
 182                 * same behaviour as mem=nn[KMG]. It limits the max address
 183                 * system can use. Region above the limit should be avoided.
 184                 */
 185                *start = 0;
 186                return 0;
 187        }
 188
 189        return -EINVAL;
 190}
 191
 192static void mem_avoid_memmap(enum parse_mode mode, char *str)
 193{
 194        static int i;
 195
 196        if (i >= MAX_MEMMAP_REGIONS)
 197                return;
 198
 199        while (str && (i < MAX_MEMMAP_REGIONS)) {
 200                int rc;
 201                u64 start, size;
 202                char *k = strchr(str, ',');
 203
 204                if (k)
 205                        *k++ = 0;
 206
 207                rc = parse_memmap(str, &start, &size, mode);
 208                if (rc < 0)
 209                        break;
 210                str = k;
 211
 212                if (start == 0) {
 213                        /* Store the specified memory limit if size > 0 */
 214                        if (size > 0 && size < mem_limit)
 215                                mem_limit = size;
 216
 217                        continue;
 218                }
 219
 220                mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].start = start;
 221                mem_avoid[MEM_AVOID_MEMMAP_BEGIN + i].size = size;
 222                i++;
 223        }
 224
 225        /* More than 4 memmaps, fail kaslr */
 226        if ((i >= MAX_MEMMAP_REGIONS) && str)
 227                memmap_too_large = true;
 228}
 229
 230/* Store the number of 1GB huge pages which users specified: */
 231static unsigned long max_gb_huge_pages;
 232
 233static void parse_gb_huge_pages(char *param, char *val)
 234{
 235        static bool gbpage_sz;
 236        char *p;
 237
 238        if (!strcmp(param, "hugepagesz")) {
 239                p = val;
 240                if (memparse(p, &p) != PUD_SIZE) {
 241                        gbpage_sz = false;
 242                        return;
 243                }
 244
 245                if (gbpage_sz)
 246                        warn("Repeatedly set hugeTLB page size of 1G!\n");
 247                gbpage_sz = true;
 248                return;
 249        }
 250
 251        if (!strcmp(param, "hugepages") && gbpage_sz) {
 252                p = val;
 253                max_gb_huge_pages = simple_strtoull(p, &p, 0);
 254                return;
 255        }
 256}
 257
 258static void handle_mem_options(void)
 259{
 260        char *args = (char *)get_cmd_line_ptr();
 261        size_t len;
 262        char *tmp_cmdline;
 263        char *param, *val;
 264        u64 mem_size;
 265
 266        if (!args)
 267                return;
 268
 269        len = strnlen(args, COMMAND_LINE_SIZE-1);
 270        tmp_cmdline = malloc(len + 1);
 271        if (!tmp_cmdline)
 272                error("Failed to allocate space for tmp_cmdline");
 273
 274        memcpy(tmp_cmdline, args, len);
 275        tmp_cmdline[len] = 0;
 276        args = tmp_cmdline;
 277
 278        /* Chew leading spaces */
 279        args = skip_spaces(args);
 280
 281        while (*args) {
 282                args = next_arg(args, &param, &val);
 283                /* Stop at -- */
 284                if (!val && strcmp(param, "--") == 0)
 285                        break;
 286
 287                if (!strcmp(param, "memmap")) {
 288                        mem_avoid_memmap(PARSE_MEMMAP, val);
 289                } else if (IS_ENABLED(CONFIG_X86_64) && strstr(param, "hugepages")) {
 290                        parse_gb_huge_pages(param, val);
 291                } else if (!strcmp(param, "mem")) {
 292                        char *p = val;
 293
 294                        if (!strcmp(p, "nopentium"))
 295                                continue;
 296                        mem_size = memparse(p, &p);
 297                        if (mem_size == 0)
 298                                break;
 299
 300                        if (mem_size < mem_limit)
 301                                mem_limit = mem_size;
 302                } else if (!strcmp(param, "efi_fake_mem")) {
 303                        mem_avoid_memmap(PARSE_EFI, val);
 304                }
 305        }
 306
 307        free(tmp_cmdline);
 308        return;
 309}
 310
 311/*
 312 * In theory, KASLR can put the kernel anywhere in the range of [16M, MAXMEM)
 313 * on 64-bit, and [16M, KERNEL_IMAGE_SIZE) on 32-bit.
 314 *
 315 * The mem_avoid array is used to store the ranges that need to be avoided
 316 * when KASLR searches for an appropriate random address. We must avoid any
 317 * regions that are unsafe to overlap with during decompression, and other
 318 * things like the initrd, cmdline and boot_params. This comment seeks to
 319 * explain mem_avoid as clearly as possible since incorrect mem_avoid
 320 * memory ranges lead to really hard to debug boot failures.
 321 *
 322 * The initrd, cmdline, and boot_params are trivial to identify for
 323 * avoiding. They are MEM_AVOID_INITRD, MEM_AVOID_CMDLINE, and
 324 * MEM_AVOID_BOOTPARAMS respectively below.
 325 *
 326 * What is not obvious how to avoid is the range of memory that is used
 327 * during decompression (MEM_AVOID_ZO_RANGE below). This range must cover
 328 * the compressed kernel (ZO) and its run space, which is used to extract
 329 * the uncompressed kernel (VO) and relocs.
 330 *
 331 * ZO's full run size sits against the end of the decompression buffer, so
 332 * we can calculate where text, data, bss, etc of ZO are positioned more
 333 * easily.
 334 *
 335 * For additional background, the decompression calculations can be found
 336 * in header.S, and the memory diagram is based on the one found in misc.c.
 337 *
 338 * The following conditions are already enforced by the image layouts and
 339 * associated code:
 340 *  - input + input_size >= output + output_size
 341 *  - kernel_total_size <= init_size
 342 *  - kernel_total_size <= output_size (see Note below)
 343 *  - output + init_size >= output + output_size
 344 *
 345 * (Note that kernel_total_size and output_size have no fundamental
 346 * relationship, but output_size is passed to choose_random_location
 347 * as a maximum of the two. The diagram is showing a case where
 348 * kernel_total_size is larger than output_size, but this case is
 349 * handled by bumping output_size.)
 350 *
 351 * The above conditions can be illustrated by a diagram:
 352 *
 353 * 0   output            input            input+input_size    output+init_size
 354 * |     |                 |                             |             |
 355 * |     |                 |                             |             |
 356 * |-----|--------|--------|--------------|-----------|--|-------------|
 357 *                |                       |           |
 358 *                |                       |           |
 359 * output+init_size-ZO_INIT_SIZE  output+output_size  output+kernel_total_size
 360 *
 361 * [output, output+init_size) is the entire memory range used for
 362 * extracting the compressed image.
 363 *
 364 * [output, output+kernel_total_size) is the range needed for the
 365 * uncompressed kernel (VO) and its run size (bss, brk, etc).
 366 *
 367 * [output, output+output_size) is VO plus relocs (i.e. the entire
 368 * uncompressed payload contained by ZO). This is the area of the buffer
 369 * written to during decompression.
 370 *
 371 * [output+init_size-ZO_INIT_SIZE, output+init_size) is the worst-case
 372 * range of the copied ZO and decompression code. (i.e. the range
 373 * covered backwards of size ZO_INIT_SIZE, starting from output+init_size.)
 374 *
 375 * [input, input+input_size) is the original copied compressed image (ZO)
 376 * (i.e. it does not include its run size). This range must be avoided
 377 * because it contains the data used for decompression.
 378 *
 379 * [input+input_size, output+init_size) is [_text, _end) for ZO. This
 380 * range includes ZO's heap and stack, and must be avoided since it
 381 * performs the decompression.
 382 *
 383 * Since the above two ranges need to be avoided and they are adjacent,
 384 * they can be merged, resulting in: [input, output+init_size) which
 385 * becomes the MEM_AVOID_ZO_RANGE below.
 386 */
 387static void mem_avoid_init(unsigned long input, unsigned long input_size,
 388                           unsigned long output)
 389{
 390        unsigned long init_size = boot_params->hdr.init_size;
 391        u64 initrd_start, initrd_size;
 392        unsigned long cmd_line, cmd_line_size;
 393
 394        /*
 395         * Avoid the region that is unsafe to overlap during
 396         * decompression.
 397         */
 398        mem_avoid[MEM_AVOID_ZO_RANGE].start = input;
 399        mem_avoid[MEM_AVOID_ZO_RANGE].size = (output + init_size) - input;
 400
 401        /* Avoid initrd. */
 402        initrd_start  = (u64)boot_params->ext_ramdisk_image << 32;
 403        initrd_start |= boot_params->hdr.ramdisk_image;
 404        initrd_size  = (u64)boot_params->ext_ramdisk_size << 32;
 405        initrd_size |= boot_params->hdr.ramdisk_size;
 406        mem_avoid[MEM_AVOID_INITRD].start = initrd_start;
 407        mem_avoid[MEM_AVOID_INITRD].size = initrd_size;
 408        /* No need to set mapping for initrd, it will be handled in VO. */
 409
 410        /* Avoid kernel command line. */
 411        cmd_line = get_cmd_line_ptr();
 412        /* Calculate size of cmd_line. */
 413        if (cmd_line) {
 414                cmd_line_size = strnlen((char *)cmd_line, COMMAND_LINE_SIZE-1) + 1;
 415                mem_avoid[MEM_AVOID_CMDLINE].start = cmd_line;
 416                mem_avoid[MEM_AVOID_CMDLINE].size = cmd_line_size;
 417        }
 418
 419        /* Avoid boot parameters. */
 420        mem_avoid[MEM_AVOID_BOOTPARAMS].start = (unsigned long)boot_params;
 421        mem_avoid[MEM_AVOID_BOOTPARAMS].size = sizeof(*boot_params);
 422
 423        /* We don't need to set a mapping for setup_data. */
 424
 425        /* Mark the memmap regions we need to avoid */
 426        handle_mem_options();
 427
 428        /* Enumerate the immovable memory regions */
 429        num_immovable_mem = count_immovable_mem_regions();
 430}
 431
 432/*
 433 * Does this memory vector overlap a known avoided area? If so, record the
 434 * overlap region with the lowest address.
 435 */
 436static bool mem_avoid_overlap(struct mem_vector *img,
 437                              struct mem_vector *overlap)
 438{
 439        int i;
 440        struct setup_data *ptr;
 441        u64 earliest = img->start + img->size;
 442        bool is_overlapping = false;
 443
 444        for (i = 0; i < MEM_AVOID_MAX; i++) {
 445                if (mem_overlaps(img, &mem_avoid[i]) &&
 446                    mem_avoid[i].start < earliest) {
 447                        *overlap = mem_avoid[i];
 448                        earliest = overlap->start;
 449                        is_overlapping = true;
 450                }
 451        }
 452
 453        /* Avoid all entries in the setup_data linked list. */
 454        ptr = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
 455        while (ptr) {
 456                struct mem_vector avoid;
 457
 458                avoid.start = (unsigned long)ptr;
 459                avoid.size = sizeof(*ptr) + ptr->len;
 460
 461                if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
 462                        *overlap = avoid;
 463                        earliest = overlap->start;
 464                        is_overlapping = true;
 465                }
 466
 467                if (ptr->type == SETUP_INDIRECT &&
 468                    ((struct setup_indirect *)ptr->data)->type != SETUP_INDIRECT) {
 469                        avoid.start = ((struct setup_indirect *)ptr->data)->addr;
 470                        avoid.size = ((struct setup_indirect *)ptr->data)->len;
 471
 472                        if (mem_overlaps(img, &avoid) && (avoid.start < earliest)) {
 473                                *overlap = avoid;
 474                                earliest = overlap->start;
 475                                is_overlapping = true;
 476                        }
 477                }
 478
 479                ptr = (struct setup_data *)(unsigned long)ptr->next;
 480        }
 481
 482        return is_overlapping;
 483}
 484
 485struct slot_area {
 486        u64 addr;
 487        unsigned long num;
 488};
 489
 490#define MAX_SLOT_AREA 100
 491
 492static struct slot_area slot_areas[MAX_SLOT_AREA];
 493static unsigned int slot_area_index;
 494static unsigned long slot_max;
 495
 496static void store_slot_info(struct mem_vector *region, unsigned long image_size)
 497{
 498        struct slot_area slot_area;
 499
 500        if (slot_area_index == MAX_SLOT_AREA)
 501                return;
 502
 503        slot_area.addr = region->start;
 504        slot_area.num = 1 + (region->size - image_size) / CONFIG_PHYSICAL_ALIGN;
 505
 506        slot_areas[slot_area_index++] = slot_area;
 507        slot_max += slot_area.num;
 508}
 509
 510/*
 511 * Skip as many 1GB huge pages as possible in the passed region
 512 * according to the number which users specified:
 513 */
 514static void
 515process_gb_huge_pages(struct mem_vector *region, unsigned long image_size)
 516{
 517        u64 pud_start, pud_end;
 518        unsigned long gb_huge_pages;
 519        struct mem_vector tmp;
 520
 521        if (!IS_ENABLED(CONFIG_X86_64) || !max_gb_huge_pages) {
 522                store_slot_info(region, image_size);
 523                return;
 524        }
 525
 526        /* Are there any 1GB pages in the region? */
 527        pud_start = ALIGN(region->start, PUD_SIZE);
 528        pud_end = ALIGN_DOWN(region->start + region->size, PUD_SIZE);
 529
 530        /* No good 1GB huge pages found: */
 531        if (pud_start >= pud_end) {
 532                store_slot_info(region, image_size);
 533                return;
 534        }
 535
 536        /* Check if the head part of the region is usable. */
 537        if (pud_start >= region->start + image_size) {
 538                tmp.start = region->start;
 539                tmp.size = pud_start - region->start;
 540                store_slot_info(&tmp, image_size);
 541        }
 542
 543        /* Skip the good 1GB pages. */
 544        gb_huge_pages = (pud_end - pud_start) >> PUD_SHIFT;
 545        if (gb_huge_pages > max_gb_huge_pages) {
 546                pud_end = pud_start + (max_gb_huge_pages << PUD_SHIFT);
 547                max_gb_huge_pages = 0;
 548        } else {
 549                max_gb_huge_pages -= gb_huge_pages;
 550        }
 551
 552        /* Check if the tail part of the region is usable. */
 553        if (region->start + region->size >= pud_end + image_size) {
 554                tmp.start = pud_end;
 555                tmp.size = region->start + region->size - pud_end;
 556                store_slot_info(&tmp, image_size);
 557        }
 558}
 559
 560static u64 slots_fetch_random(void)
 561{
 562        unsigned long slot;
 563        unsigned int i;
 564
 565        /* Handle case of no slots stored. */
 566        if (slot_max == 0)
 567                return 0;
 568
 569        slot = kaslr_get_random_long("Physical") % slot_max;
 570
 571        for (i = 0; i < slot_area_index; i++) {
 572                if (slot >= slot_areas[i].num) {
 573                        slot -= slot_areas[i].num;
 574                        continue;
 575                }
 576                return slot_areas[i].addr + ((u64)slot * CONFIG_PHYSICAL_ALIGN);
 577        }
 578
 579        if (i == slot_area_index)
 580                debug_putstr("slots_fetch_random() failed!?\n");
 581        return 0;
 582}
 583
 584static void __process_mem_region(struct mem_vector *entry,
 585                                 unsigned long minimum,
 586                                 unsigned long image_size)
 587{
 588        struct mem_vector region, overlap;
 589        u64 region_end;
 590
 591        /* Enforce minimum and memory limit. */
 592        region.start = max_t(u64, entry->start, minimum);
 593        region_end = min(entry->start + entry->size, mem_limit);
 594
 595        /* Give up if slot area array is full. */
 596        while (slot_area_index < MAX_SLOT_AREA) {
 597                /* Potentially raise address to meet alignment needs. */
 598                region.start = ALIGN(region.start, CONFIG_PHYSICAL_ALIGN);
 599
 600                /* Did we raise the address above the passed in memory entry? */
 601                if (region.start > region_end)
 602                        return;
 603
 604                /* Reduce size by any delta from the original address. */
 605                region.size = region_end - region.start;
 606
 607                /* Return if region can't contain decompressed kernel */
 608                if (region.size < image_size)
 609                        return;
 610
 611                /* If nothing overlaps, store the region and return. */
 612                if (!mem_avoid_overlap(&region, &overlap)) {
 613                        process_gb_huge_pages(&region, image_size);
 614                        return;
 615                }
 616
 617                /* Store beginning of region if holds at least image_size. */
 618                if (overlap.start >= region.start + image_size) {
 619                        region.size = overlap.start - region.start;
 620                        process_gb_huge_pages(&region, image_size);
 621                }
 622
 623                /* Clip off the overlapping region and start over. */
 624                region.start = overlap.start + overlap.size;
 625        }
 626}
 627
 628static bool process_mem_region(struct mem_vector *region,
 629                               unsigned long minimum,
 630                               unsigned long image_size)
 631{
 632        int i;
 633        /*
 634         * If no immovable memory found, or MEMORY_HOTREMOVE disabled,
 635         * use @region directly.
 636         */
 637        if (!num_immovable_mem) {
 638                __process_mem_region(region, minimum, image_size);
 639
 640                if (slot_area_index == MAX_SLOT_AREA) {
 641                        debug_putstr("Aborted e820/efi memmap scan (slot_areas full)!\n");
 642                        return true;
 643                }
 644                return false;
 645        }
 646
 647#if defined(CONFIG_MEMORY_HOTREMOVE) && defined(CONFIG_ACPI)
 648        /*
 649         * If immovable memory found, filter the intersection between
 650         * immovable memory and @region.
 651         */
 652        for (i = 0; i < num_immovable_mem; i++) {
 653                u64 start, end, entry_end, region_end;
 654                struct mem_vector entry;
 655
 656                if (!mem_overlaps(region, &immovable_mem[i]))
 657                        continue;
 658
 659                start = immovable_mem[i].start;
 660                end = start + immovable_mem[i].size;
 661                region_end = region->start + region->size;
 662
 663                entry.start = clamp(region->start, start, end);
 664                entry_end = clamp(region_end, start, end);
 665                entry.size = entry_end - entry.start;
 666
 667                __process_mem_region(&entry, minimum, image_size);
 668
 669                if (slot_area_index == MAX_SLOT_AREA) {
 670                        debug_putstr("Aborted e820/efi memmap scan when walking immovable regions(slot_areas full)!\n");
 671                        return 1;
 672                }
 673        }
 674#endif
 675        return 0;
 676}
 677
 678#ifdef CONFIG_EFI
 679/*
 680 * Returns true if we processed the EFI memmap, which we prefer over the E820
 681 * table if it is available.
 682 */
 683static bool
 684process_efi_entries(unsigned long minimum, unsigned long image_size)
 685{
 686        struct efi_info *e = &boot_params->efi_info;
 687        bool efi_mirror_found = false;
 688        struct mem_vector region;
 689        efi_memory_desc_t *md;
 690        unsigned long pmap;
 691        char *signature;
 692        u32 nr_desc;
 693        int i;
 694
 695        signature = (char *)&e->efi_loader_signature;
 696        if (strncmp(signature, EFI32_LOADER_SIGNATURE, 4) &&
 697            strncmp(signature, EFI64_LOADER_SIGNATURE, 4))
 698                return false;
 699
 700#ifdef CONFIG_X86_32
 701        /* Can't handle data above 4GB at this time */
 702        if (e->efi_memmap_hi) {
 703                warn("EFI memmap is above 4GB, can't be handled now on x86_32. EFI should be disabled.\n");
 704                return false;
 705        }
 706        pmap =  e->efi_memmap;
 707#else
 708        pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
 709#endif
 710
 711        nr_desc = e->efi_memmap_size / e->efi_memdesc_size;
 712        for (i = 0; i < nr_desc; i++) {
 713                md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
 714                if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
 715                        efi_mirror_found = true;
 716                        break;
 717                }
 718        }
 719
 720        for (i = 0; i < nr_desc; i++) {
 721                md = efi_early_memdesc_ptr(pmap, e->efi_memdesc_size, i);
 722
 723                /*
 724                 * Here we are more conservative in picking free memory than
 725                 * the EFI spec allows:
 726                 *
 727                 * According to the spec, EFI_BOOT_SERVICES_{CODE|DATA} are also
 728                 * free memory and thus available to place the kernel image into,
 729                 * but in practice there's firmware where using that memory leads
 730                 * to crashes.
 731                 *
 732                 * Only EFI_CONVENTIONAL_MEMORY is guaranteed to be free.
 733                 */
 734                if (md->type != EFI_CONVENTIONAL_MEMORY)
 735                        continue;
 736
 737                if (efi_soft_reserve_enabled() &&
 738                    (md->attribute & EFI_MEMORY_SP))
 739                        continue;
 740
 741                if (efi_mirror_found &&
 742                    !(md->attribute & EFI_MEMORY_MORE_RELIABLE))
 743                        continue;
 744
 745                region.start = md->phys_addr;
 746                region.size = md->num_pages << EFI_PAGE_SHIFT;
 747                if (process_mem_region(&region, minimum, image_size))
 748                        break;
 749        }
 750        return true;
 751}
 752#else
 753static inline bool
 754process_efi_entries(unsigned long minimum, unsigned long image_size)
 755{
 756        return false;
 757}
 758#endif
 759
 760static void process_e820_entries(unsigned long minimum,
 761                                 unsigned long image_size)
 762{
 763        int i;
 764        struct mem_vector region;
 765        struct boot_e820_entry *entry;
 766
 767        /* Verify potential e820 positions, appending to slots list. */
 768        for (i = 0; i < boot_params->e820_entries; i++) {
 769                entry = &boot_params->e820_table[i];
 770                /* Skip non-RAM entries. */
 771                if (entry->type != E820_TYPE_RAM)
 772                        continue;
 773                region.start = entry->addr;
 774                region.size = entry->size;
 775                if (process_mem_region(&region, minimum, image_size))
 776                        break;
 777        }
 778}
 779
 780static unsigned long find_random_phys_addr(unsigned long minimum,
 781                                           unsigned long image_size)
 782{
 783        u64 phys_addr;
 784
 785        /* Bail out early if it's impossible to succeed. */
 786        if (minimum + image_size > mem_limit)
 787                return 0;
 788
 789        /* Check if we had too many memmaps. */
 790        if (memmap_too_large) {
 791                debug_putstr("Aborted memory entries scan (more than 4 memmap= args)!\n");
 792                return 0;
 793        }
 794
 795        if (!process_efi_entries(minimum, image_size))
 796                process_e820_entries(minimum, image_size);
 797
 798        phys_addr = slots_fetch_random();
 799
 800        /* Perform a final check to make sure the address is in range. */
 801        if (phys_addr < minimum || phys_addr + image_size > mem_limit) {
 802                warn("Invalid physical address chosen!\n");
 803                return 0;
 804        }
 805
 806        return (unsigned long)phys_addr;
 807}
 808
 809static unsigned long find_random_virt_addr(unsigned long minimum,
 810                                           unsigned long image_size)
 811{
 812        unsigned long slots, random_addr;
 813
 814        /*
 815         * There are how many CONFIG_PHYSICAL_ALIGN-sized slots
 816         * that can hold image_size within the range of minimum to
 817         * KERNEL_IMAGE_SIZE?
 818         */
 819        slots = 1 + (KERNEL_IMAGE_SIZE - minimum - image_size) / CONFIG_PHYSICAL_ALIGN;
 820
 821        random_addr = kaslr_get_random_long("Virtual") % slots;
 822
 823        return random_addr * CONFIG_PHYSICAL_ALIGN + minimum;
 824}
 825
 826/*
 827 * Since this function examines addresses much more numerically,
 828 * it takes the input and output pointers as 'unsigned long'.
 829 */
 830void choose_random_location(unsigned long input,
 831                            unsigned long input_size,
 832                            unsigned long *output,
 833                            unsigned long output_size,
 834                            unsigned long *virt_addr)
 835{
 836        unsigned long random_addr, min_addr;
 837
 838        if (cmdline_find_option_bool("nokaslr")) {
 839                warn("KASLR disabled: 'nokaslr' on cmdline.");
 840                return;
 841        }
 842
 843        boot_params->hdr.loadflags |= KASLR_FLAG;
 844
 845        if (IS_ENABLED(CONFIG_X86_32))
 846                mem_limit = KERNEL_IMAGE_SIZE;
 847        else
 848                mem_limit = MAXMEM;
 849
 850        /* Record the various known unsafe memory ranges. */
 851        mem_avoid_init(input, input_size, *output);
 852
 853        /*
 854         * Low end of the randomization range should be the
 855         * smaller of 512M or the initial kernel image
 856         * location:
 857         */
 858        min_addr = min(*output, 512UL << 20);
 859        /* Make sure minimum is aligned. */
 860        min_addr = ALIGN(min_addr, CONFIG_PHYSICAL_ALIGN);
 861
 862        /* Walk available memory entries to find a random address. */
 863        random_addr = find_random_phys_addr(min_addr, output_size);
 864        if (!random_addr) {
 865                warn("Physical KASLR disabled: no suitable memory region!");
 866        } else {
 867                /* Update the new physical address location. */
 868                if (*output != random_addr)
 869                        *output = random_addr;
 870        }
 871
 872
 873        /* Pick random virtual address starting from LOAD_PHYSICAL_ADDR. */
 874        if (IS_ENABLED(CONFIG_X86_64))
 875                random_addr = find_random_virt_addr(LOAD_PHYSICAL_ADDR, output_size);
 876        *virt_addr = random_addr;
 877}
 878