linux/arch/powerpc/mm/book3s64/slb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * PowerPC64 SLB support.
   4 *
   5 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
   6 * Based on earlier code written by:
   7 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
   8 *    Copyright (c) 2001 Dave Engebretsen
   9 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
  10 */
  11
  12#include <asm/asm-prototypes.h>
  13#include <asm/interrupt.h>
  14#include <asm/mmu.h>
  15#include <asm/mmu_context.h>
  16#include <asm/paca.h>
  17#include <asm/ppc-opcode.h>
  18#include <asm/cputable.h>
  19#include <asm/cacheflush.h>
  20#include <asm/smp.h>
  21#include <linux/compiler.h>
  22#include <linux/context_tracking.h>
  23#include <linux/mm_types.h>
  24#include <linux/pgtable.h>
  25
  26#include <asm/udbg.h>
  27#include <asm/code-patching.h>
  28
  29#include "internal.h"
  30
  31
  32static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
  33
  34bool stress_slb_enabled __initdata;
  35
  36static int __init parse_stress_slb(char *p)
  37{
  38        stress_slb_enabled = true;
  39        return 0;
  40}
  41early_param("stress_slb", parse_stress_slb);
  42
  43__ro_after_init DEFINE_STATIC_KEY_FALSE(stress_slb_key);
  44
  45static void assert_slb_presence(bool present, unsigned long ea)
  46{
  47#ifdef CONFIG_DEBUG_VM
  48        unsigned long tmp;
  49
  50        WARN_ON_ONCE(mfmsr() & MSR_EE);
  51
  52        if (!cpu_has_feature(CPU_FTR_ARCH_206))
  53                return;
  54
  55        /*
  56         * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
  57         * ignores all other bits from 0-27, so just clear them all.
  58         */
  59        ea &= ~((1UL << SID_SHIFT) - 1);
  60        asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
  61
  62        WARN_ON(present == (tmp == 0));
  63#endif
  64}
  65
  66static inline void slb_shadow_update(unsigned long ea, int ssize,
  67                                     unsigned long flags,
  68                                     enum slb_index index)
  69{
  70        struct slb_shadow *p = get_slb_shadow();
  71
  72        /*
  73         * Clear the ESID first so the entry is not valid while we are
  74         * updating it.  No write barriers are needed here, provided
  75         * we only update the current CPU's SLB shadow buffer.
  76         */
  77        WRITE_ONCE(p->save_area[index].esid, 0);
  78        WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
  79        WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
  80}
  81
  82static inline void slb_shadow_clear(enum slb_index index)
  83{
  84        WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
  85}
  86
  87static inline void create_shadowed_slbe(unsigned long ea, int ssize,
  88                                        unsigned long flags,
  89                                        enum slb_index index)
  90{
  91        /*
  92         * Updating the shadow buffer before writing the SLB ensures
  93         * we don't get a stale entry here if we get preempted by PHYP
  94         * between these two statements.
  95         */
  96        slb_shadow_update(ea, ssize, flags, index);
  97
  98        assert_slb_presence(false, ea);
  99        asm volatile("slbmte  %0,%1" :
 100                     : "r" (mk_vsid_data(ea, ssize, flags)),
 101                       "r" (mk_esid_data(ea, ssize, index))
 102                     : "memory" );
 103}
 104
 105/*
 106 * Insert bolted entries into SLB (which may not be empty, so don't clear
 107 * slb_cache_ptr).
 108 */
 109void __slb_restore_bolted_realmode(void)
 110{
 111        struct slb_shadow *p = get_slb_shadow();
 112        enum slb_index index;
 113
 114         /* No isync needed because realmode. */
 115        for (index = 0; index < SLB_NUM_BOLTED; index++) {
 116                asm volatile("slbmte  %0,%1" :
 117                     : "r" (be64_to_cpu(p->save_area[index].vsid)),
 118                       "r" (be64_to_cpu(p->save_area[index].esid)));
 119        }
 120
 121        assert_slb_presence(true, local_paca->kstack);
 122}
 123
 124/*
 125 * Insert the bolted entries into an empty SLB.
 126 */
 127void slb_restore_bolted_realmode(void)
 128{
 129        __slb_restore_bolted_realmode();
 130        get_paca()->slb_cache_ptr = 0;
 131
 132        get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
 133        get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
 134}
 135
 136/*
 137 * This flushes all SLB entries including 0, so it must be realmode.
 138 */
 139void slb_flush_all_realmode(void)
 140{
 141        asm volatile("slbmte %0,%0; slbia" : : "r" (0));
 142}
 143
 144static __always_inline void __slb_flush_and_restore_bolted(bool preserve_kernel_lookaside)
 145{
 146        struct slb_shadow *p = get_slb_shadow();
 147        unsigned long ksp_esid_data, ksp_vsid_data;
 148        u32 ih;
 149
 150        /*
 151         * SLBIA IH=1 on ISA v2.05 and newer processors may preserve lookaside
 152         * information created with Class=0 entries, which we use for kernel
 153         * SLB entries (the SLB entries themselves are still invalidated).
 154         *
 155         * Older processors will ignore this optimisation. Over-invalidation
 156         * is fine because we never rely on lookaside information existing.
 157         */
 158        if (preserve_kernel_lookaside)
 159                ih = 1;
 160        else
 161                ih = 0;
 162
 163        ksp_esid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
 164        ksp_vsid_data = be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
 165
 166        asm volatile(PPC_SLBIA(%0)"     \n"
 167                     "slbmte    %1, %2  \n"
 168                     :: "i" (ih),
 169                        "r" (ksp_vsid_data),
 170                        "r" (ksp_esid_data)
 171                     : "memory");
 172}
 173
 174/*
 175 * This flushes non-bolted entries, it can be run in virtual mode. Must
 176 * be called with interrupts disabled.
 177 */
 178void slb_flush_and_restore_bolted(void)
 179{
 180        BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
 181
 182        WARN_ON(!irqs_disabled());
 183
 184        /*
 185         * We can't take a PMU exception in the following code, so hard
 186         * disable interrupts.
 187         */
 188        hard_irq_disable();
 189
 190        isync();
 191        __slb_flush_and_restore_bolted(false);
 192        isync();
 193
 194        assert_slb_presence(true, get_paca()->kstack);
 195
 196        get_paca()->slb_cache_ptr = 0;
 197
 198        get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
 199        get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
 200}
 201
 202void slb_save_contents(struct slb_entry *slb_ptr)
 203{
 204        int i;
 205        unsigned long e, v;
 206
 207        /* Save slb_cache_ptr value. */
 208        get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
 209
 210        if (!slb_ptr)
 211                return;
 212
 213        for (i = 0; i < mmu_slb_size; i++) {
 214                asm volatile("slbmfee  %0,%1" : "=r" (e) : "r" (i));
 215                asm volatile("slbmfev  %0,%1" : "=r" (v) : "r" (i));
 216                slb_ptr->esid = e;
 217                slb_ptr->vsid = v;
 218                slb_ptr++;
 219        }
 220}
 221
 222void slb_dump_contents(struct slb_entry *slb_ptr)
 223{
 224        int i, n;
 225        unsigned long e, v;
 226        unsigned long llp;
 227
 228        if (!slb_ptr)
 229                return;
 230
 231        pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
 232
 233        for (i = 0; i < mmu_slb_size; i++) {
 234                e = slb_ptr->esid;
 235                v = slb_ptr->vsid;
 236                slb_ptr++;
 237
 238                if (!e && !v)
 239                        continue;
 240
 241                pr_err("%02d %016lx %016lx %s\n", i, e, v,
 242                                (e & SLB_ESID_V) ? "VALID" : "NOT VALID");
 243
 244                if (!(e & SLB_ESID_V))
 245                        continue;
 246
 247                llp = v & SLB_VSID_LLP;
 248                if (v & SLB_VSID_B_1T) {
 249                        pr_err("     1T ESID=%9lx VSID=%13lx LLP:%3lx\n",
 250                               GET_ESID_1T(e),
 251                               (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
 252                } else {
 253                        pr_err("   256M ESID=%9lx VSID=%13lx LLP:%3lx\n",
 254                               GET_ESID(e),
 255                               (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
 256                }
 257        }
 258
 259        if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) {
 260                /* RR is not so useful as it's often not used for allocation */
 261                pr_err("SLB RR allocator index %d\n", get_paca()->stab_rr);
 262
 263                /* Dump slb cache entires as well. */
 264                pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
 265                pr_err("Valid SLB cache entries:\n");
 266                n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
 267                for (i = 0; i < n; i++)
 268                        pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
 269                pr_err("Rest of SLB cache entries:\n");
 270                for (i = n; i < SLB_CACHE_ENTRIES; i++)
 271                        pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
 272        }
 273}
 274
 275void slb_vmalloc_update(void)
 276{
 277        /*
 278         * vmalloc is not bolted, so just have to flush non-bolted.
 279         */
 280        slb_flush_and_restore_bolted();
 281}
 282
 283static bool preload_hit(struct thread_info *ti, unsigned long esid)
 284{
 285        unsigned char i;
 286
 287        for (i = 0; i < ti->slb_preload_nr; i++) {
 288                unsigned char idx;
 289
 290                idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
 291                if (esid == ti->slb_preload_esid[idx])
 292                        return true;
 293        }
 294        return false;
 295}
 296
 297static bool preload_add(struct thread_info *ti, unsigned long ea)
 298{
 299        unsigned char idx;
 300        unsigned long esid;
 301
 302        if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
 303                /* EAs are stored >> 28 so 256MB segments don't need clearing */
 304                if (ea & ESID_MASK_1T)
 305                        ea &= ESID_MASK_1T;
 306        }
 307
 308        esid = ea >> SID_SHIFT;
 309
 310        if (preload_hit(ti, esid))
 311                return false;
 312
 313        idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
 314        ti->slb_preload_esid[idx] = esid;
 315        if (ti->slb_preload_nr == SLB_PRELOAD_NR)
 316                ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
 317        else
 318                ti->slb_preload_nr++;
 319
 320        return true;
 321}
 322
 323static void preload_age(struct thread_info *ti)
 324{
 325        if (!ti->slb_preload_nr)
 326                return;
 327        ti->slb_preload_nr--;
 328        ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
 329}
 330
 331void slb_setup_new_exec(void)
 332{
 333        struct thread_info *ti = current_thread_info();
 334        struct mm_struct *mm = current->mm;
 335        unsigned long exec = 0x10000000;
 336
 337        WARN_ON(irqs_disabled());
 338
 339        /*
 340         * preload cache can only be used to determine whether a SLB
 341         * entry exists if it does not start to overflow.
 342         */
 343        if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
 344                return;
 345
 346        hard_irq_disable();
 347
 348        /*
 349         * We have no good place to clear the slb preload cache on exec,
 350         * flush_thread is about the earliest arch hook but that happens
 351         * after we switch to the mm and have aleady preloaded the SLBEs.
 352         *
 353         * For the most part that's probably okay to use entries from the
 354         * previous exec, they will age out if unused. It may turn out to
 355         * be an advantage to clear the cache before switching to it,
 356         * however.
 357         */
 358
 359        /*
 360         * preload some userspace segments into the SLB.
 361         * Almost all 32 and 64bit PowerPC executables are linked at
 362         * 0x10000000 so it makes sense to preload this segment.
 363         */
 364        if (!is_kernel_addr(exec)) {
 365                if (preload_add(ti, exec))
 366                        slb_allocate_user(mm, exec);
 367        }
 368
 369        /* Libraries and mmaps. */
 370        if (!is_kernel_addr(mm->mmap_base)) {
 371                if (preload_add(ti, mm->mmap_base))
 372                        slb_allocate_user(mm, mm->mmap_base);
 373        }
 374
 375        /* see switch_slb */
 376        asm volatile("isync" : : : "memory");
 377
 378        local_irq_enable();
 379}
 380
 381void preload_new_slb_context(unsigned long start, unsigned long sp)
 382{
 383        struct thread_info *ti = current_thread_info();
 384        struct mm_struct *mm = current->mm;
 385        unsigned long heap = mm->start_brk;
 386
 387        WARN_ON(irqs_disabled());
 388
 389        /* see above */
 390        if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
 391                return;
 392
 393        hard_irq_disable();
 394
 395        /* Userspace entry address. */
 396        if (!is_kernel_addr(start)) {
 397                if (preload_add(ti, start))
 398                        slb_allocate_user(mm, start);
 399        }
 400
 401        /* Top of stack, grows down. */
 402        if (!is_kernel_addr(sp)) {
 403                if (preload_add(ti, sp))
 404                        slb_allocate_user(mm, sp);
 405        }
 406
 407        /* Bottom of heap, grows up. */
 408        if (heap && !is_kernel_addr(heap)) {
 409                if (preload_add(ti, heap))
 410                        slb_allocate_user(mm, heap);
 411        }
 412
 413        /* see switch_slb */
 414        asm volatile("isync" : : : "memory");
 415
 416        local_irq_enable();
 417}
 418
 419static void slb_cache_slbie_kernel(unsigned int index)
 420{
 421        unsigned long slbie_data = get_paca()->slb_cache[index];
 422        unsigned long ksp = get_paca()->kstack;
 423
 424        slbie_data <<= SID_SHIFT;
 425        slbie_data |= 0xc000000000000000ULL;
 426        if ((ksp & slb_esid_mask(mmu_kernel_ssize)) == slbie_data)
 427                return;
 428        slbie_data |= mmu_kernel_ssize << SLBIE_SSIZE_SHIFT;
 429
 430        asm volatile("slbie %0" : : "r" (slbie_data));
 431}
 432
 433static void slb_cache_slbie_user(unsigned int index)
 434{
 435        unsigned long slbie_data = get_paca()->slb_cache[index];
 436
 437        slbie_data <<= SID_SHIFT;
 438        slbie_data |= user_segment_size(slbie_data) << SLBIE_SSIZE_SHIFT;
 439        slbie_data |= SLBIE_C; /* user slbs have C=1 */
 440
 441        asm volatile("slbie %0" : : "r" (slbie_data));
 442}
 443
 444/* Flush all user entries from the segment table of the current processor. */
 445void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
 446{
 447        struct thread_info *ti = task_thread_info(tsk);
 448        unsigned char i;
 449
 450        /*
 451         * We need interrupts hard-disabled here, not just soft-disabled,
 452         * so that a PMU interrupt can't occur, which might try to access
 453         * user memory (to get a stack trace) and possible cause an SLB miss
 454         * which would update the slb_cache/slb_cache_ptr fields in the PACA.
 455         */
 456        hard_irq_disable();
 457        isync();
 458        if (stress_slb()) {
 459                __slb_flush_and_restore_bolted(false);
 460                isync();
 461                get_paca()->slb_cache_ptr = 0;
 462                get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
 463
 464        } else if (cpu_has_feature(CPU_FTR_ARCH_300)) {
 465                /*
 466                 * SLBIA IH=3 invalidates all Class=1 SLBEs and their
 467                 * associated lookaside structures, which matches what
 468                 * switch_slb wants. So ARCH_300 does not use the slb
 469                 * cache.
 470                 */
 471                asm volatile(PPC_SLBIA(3));
 472
 473        } else {
 474                unsigned long offset = get_paca()->slb_cache_ptr;
 475
 476                if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
 477                    offset <= SLB_CACHE_ENTRIES) {
 478                        /*
 479                         * Could assert_slb_presence(true) here, but
 480                         * hypervisor or machine check could have come
 481                         * in and removed the entry at this point.
 482                         */
 483
 484                        for (i = 0; i < offset; i++)
 485                                slb_cache_slbie_user(i);
 486
 487                        /* Workaround POWER5 < DD2.1 issue */
 488                        if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
 489                                slb_cache_slbie_user(0);
 490
 491                } else {
 492                        /* Flush but retain kernel lookaside information */
 493                        __slb_flush_and_restore_bolted(true);
 494                        isync();
 495
 496                        get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
 497                }
 498
 499                get_paca()->slb_cache_ptr = 0;
 500        }
 501        get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
 502
 503        copy_mm_to_paca(mm);
 504
 505        /*
 506         * We gradually age out SLBs after a number of context switches to
 507         * reduce reload overhead of unused entries (like we do with FP/VEC
 508         * reload). Each time we wrap 256 switches, take an entry out of the
 509         * SLB preload cache.
 510         */
 511        tsk->thread.load_slb++;
 512        if (!tsk->thread.load_slb) {
 513                unsigned long pc = KSTK_EIP(tsk);
 514
 515                preload_age(ti);
 516                preload_add(ti, pc);
 517        }
 518
 519        for (i = 0; i < ti->slb_preload_nr; i++) {
 520                unsigned char idx;
 521                unsigned long ea;
 522
 523                idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
 524                ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
 525
 526                slb_allocate_user(mm, ea);
 527        }
 528
 529        /*
 530         * Synchronize slbmte preloads with possible subsequent user memory
 531         * address accesses by the kernel (user mode won't happen until
 532         * rfid, which is safe).
 533         */
 534        isync();
 535}
 536
 537void slb_set_size(u16 size)
 538{
 539        mmu_slb_size = size;
 540}
 541
 542void slb_initialize(void)
 543{
 544        unsigned long linear_llp, vmalloc_llp, io_llp;
 545        unsigned long lflags;
 546        static int slb_encoding_inited;
 547#ifdef CONFIG_SPARSEMEM_VMEMMAP
 548        unsigned long vmemmap_llp;
 549#endif
 550
 551        /* Prepare our SLB miss handler based on our page size */
 552        linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
 553        io_llp = mmu_psize_defs[mmu_io_psize].sllp;
 554        vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
 555        get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
 556#ifdef CONFIG_SPARSEMEM_VMEMMAP
 557        vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
 558#endif
 559        if (!slb_encoding_inited) {
 560                slb_encoding_inited = 1;
 561                pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
 562                pr_devel("SLB: io      LLP = %04lx\n", io_llp);
 563#ifdef CONFIG_SPARSEMEM_VMEMMAP
 564                pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
 565#endif
 566        }
 567
 568        get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
 569        get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
 570        get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
 571
 572        lflags = SLB_VSID_KERNEL | linear_llp;
 573
 574        /* Invalidate the entire SLB (even entry 0) & all the ERATS */
 575        asm volatile("isync":::"memory");
 576        asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
 577        asm volatile("isync; slbia; isync":::"memory");
 578        create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
 579
 580        /*
 581         * For the boot cpu, we're running on the stack in init_thread_union,
 582         * which is in the first segment of the linear mapping, and also
 583         * get_paca()->kstack hasn't been initialized yet.
 584         * For secondary cpus, we need to bolt the kernel stack entry now.
 585         */
 586        slb_shadow_clear(KSTACK_INDEX);
 587        if (raw_smp_processor_id() != boot_cpuid &&
 588            (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
 589                create_shadowed_slbe(get_paca()->kstack,
 590                                     mmu_kernel_ssize, lflags, KSTACK_INDEX);
 591
 592        asm volatile("isync":::"memory");
 593}
 594
 595static void slb_cache_update(unsigned long esid_data)
 596{
 597        int slb_cache_index;
 598
 599        if (cpu_has_feature(CPU_FTR_ARCH_300))
 600                return; /* ISAv3.0B and later does not use slb_cache */
 601
 602        if (stress_slb())
 603                return;
 604
 605        /*
 606         * Now update slb cache entries
 607         */
 608        slb_cache_index = local_paca->slb_cache_ptr;
 609        if (slb_cache_index < SLB_CACHE_ENTRIES) {
 610                /*
 611                 * We have space in slb cache for optimized switch_slb().
 612                 * Top 36 bits from esid_data as per ISA
 613                 */
 614                local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
 615                local_paca->slb_cache_ptr++;
 616        } else {
 617                /*
 618                 * Our cache is full and the current cache content strictly
 619                 * doesn't indicate the active SLB conents. Bump the ptr
 620                 * so that switch_slb() will ignore the cache.
 621                 */
 622                local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
 623        }
 624}
 625
 626static enum slb_index alloc_slb_index(bool kernel)
 627{
 628        enum slb_index index;
 629
 630        /*
 631         * The allocation bitmaps can become out of synch with the SLB
 632         * when the _switch code does slbie when bolting a new stack
 633         * segment and it must not be anywhere else in the SLB. This leaves
 634         * a kernel allocated entry that is unused in the SLB. With very
 635         * large systems or small segment sizes, the bitmaps could slowly
 636         * fill with these entries. They will eventually be cleared out
 637         * by the round robin allocator in that case, so it's probably not
 638         * worth accounting for.
 639         */
 640
 641        /*
 642         * SLBs beyond 32 entries are allocated with stab_rr only
 643         * POWER7/8/9 have 32 SLB entries, this could be expanded if a
 644         * future CPU has more.
 645         */
 646        if (local_paca->slb_used_bitmap != U32_MAX) {
 647                index = ffz(local_paca->slb_used_bitmap);
 648                local_paca->slb_used_bitmap |= 1U << index;
 649                if (kernel)
 650                        local_paca->slb_kern_bitmap |= 1U << index;
 651        } else {
 652                /* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
 653                index = local_paca->stab_rr;
 654                if (index < (mmu_slb_size - 1))
 655                        index++;
 656                else
 657                        index = SLB_NUM_BOLTED;
 658                local_paca->stab_rr = index;
 659                if (index < 32) {
 660                        if (kernel)
 661                                local_paca->slb_kern_bitmap |= 1U << index;
 662                        else
 663                                local_paca->slb_kern_bitmap &= ~(1U << index);
 664                }
 665        }
 666        BUG_ON(index < SLB_NUM_BOLTED);
 667
 668        return index;
 669}
 670
 671static long slb_insert_entry(unsigned long ea, unsigned long context,
 672                                unsigned long flags, int ssize, bool kernel)
 673{
 674        unsigned long vsid;
 675        unsigned long vsid_data, esid_data;
 676        enum slb_index index;
 677
 678        vsid = get_vsid(context, ea, ssize);
 679        if (!vsid)
 680                return -EFAULT;
 681
 682        /*
 683         * There must not be a kernel SLB fault in alloc_slb_index or before
 684         * slbmte here or the allocation bitmaps could get out of whack with
 685         * the SLB.
 686         *
 687         * User SLB faults or preloads take this path which might get inlined
 688         * into the caller, so add compiler barriers here to ensure unsafe
 689         * memory accesses do not come between.
 690         */
 691        barrier();
 692
 693        index = alloc_slb_index(kernel);
 694
 695        vsid_data = __mk_vsid_data(vsid, ssize, flags);
 696        esid_data = mk_esid_data(ea, ssize, index);
 697
 698        /*
 699         * No need for an isync before or after this slbmte. The exception
 700         * we enter with and the rfid we exit with are context synchronizing.
 701         * User preloads should add isync afterwards in case the kernel
 702         * accesses user memory before it returns to userspace with rfid.
 703         */
 704        assert_slb_presence(false, ea);
 705        if (stress_slb()) {
 706                int slb_cache_index = local_paca->slb_cache_ptr;
 707
 708                /*
 709                 * stress_slb() does not use slb cache, repurpose as a
 710                 * cache of inserted (non-bolted) kernel SLB entries. All
 711                 * non-bolted kernel entries are flushed on any user fault,
 712                 * or if there are already 3 non-boled kernel entries.
 713                 */
 714                BUILD_BUG_ON(SLB_CACHE_ENTRIES < 3);
 715                if (!kernel || slb_cache_index == 3) {
 716                        int i;
 717
 718                        for (i = 0; i < slb_cache_index; i++)
 719                                slb_cache_slbie_kernel(i);
 720                        slb_cache_index = 0;
 721                }
 722
 723                if (kernel)
 724                        local_paca->slb_cache[slb_cache_index++] = esid_data >> SID_SHIFT;
 725                local_paca->slb_cache_ptr = slb_cache_index;
 726        }
 727        asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
 728
 729        barrier();
 730
 731        if (!kernel)
 732                slb_cache_update(esid_data);
 733
 734        return 0;
 735}
 736
 737static long slb_allocate_kernel(unsigned long ea, unsigned long id)
 738{
 739        unsigned long context;
 740        unsigned long flags;
 741        int ssize;
 742
 743        if (id == LINEAR_MAP_REGION_ID) {
 744
 745                /* We only support upto H_MAX_PHYSMEM_BITS */
 746                if ((ea & EA_MASK) > (1UL << H_MAX_PHYSMEM_BITS))
 747                        return -EFAULT;
 748
 749                flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
 750
 751#ifdef CONFIG_SPARSEMEM_VMEMMAP
 752        } else if (id == VMEMMAP_REGION_ID) {
 753
 754                if (ea >= H_VMEMMAP_END)
 755                        return -EFAULT;
 756
 757                flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
 758#endif
 759        } else if (id == VMALLOC_REGION_ID) {
 760
 761                if (ea >= H_VMALLOC_END)
 762                        return -EFAULT;
 763
 764                flags = local_paca->vmalloc_sllp;
 765
 766        } else if (id == IO_REGION_ID) {
 767
 768                if (ea >= H_KERN_IO_END)
 769                        return -EFAULT;
 770
 771                flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
 772
 773        } else {
 774                return -EFAULT;
 775        }
 776
 777        ssize = MMU_SEGSIZE_1T;
 778        if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
 779                ssize = MMU_SEGSIZE_256M;
 780
 781        context = get_kernel_context(ea);
 782
 783        return slb_insert_entry(ea, context, flags, ssize, true);
 784}
 785
 786static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
 787{
 788        unsigned long context;
 789        unsigned long flags;
 790        int bpsize;
 791        int ssize;
 792
 793        /*
 794         * consider this as bad access if we take a SLB miss
 795         * on an address above addr limit.
 796         */
 797        if (ea >= mm_ctx_slb_addr_limit(&mm->context))
 798                return -EFAULT;
 799
 800        context = get_user_context(&mm->context, ea);
 801        if (!context)
 802                return -EFAULT;
 803
 804        if (unlikely(ea >= H_PGTABLE_RANGE)) {
 805                WARN_ON(1);
 806                return -EFAULT;
 807        }
 808
 809        ssize = user_segment_size(ea);
 810
 811        bpsize = get_slice_psize(mm, ea);
 812        flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
 813
 814        return slb_insert_entry(ea, context, flags, ssize, false);
 815}
 816
 817DEFINE_INTERRUPT_HANDLER_RAW(do_slb_fault)
 818{
 819        unsigned long ea = regs->dar;
 820        unsigned long id = get_region_id(ea);
 821
 822        /* IRQs are not reconciled here, so can't check irqs_disabled */
 823        VM_WARN_ON(mfmsr() & MSR_EE);
 824
 825        if (unlikely(!(regs->msr & MSR_RI)))
 826                return -EINVAL;
 827
 828        /*
 829         * SLB kernel faults must be very careful not to touch anything that is
 830         * not bolted. E.g., PACA and global variables are okay, mm->context
 831         * stuff is not. SLB user faults may access all of memory (and induce
 832         * one recursive SLB kernel fault), so the kernel fault must not
 833         * trample on the user fault state at those points.
 834         */
 835
 836        /*
 837         * This is a raw interrupt handler, for performance, so that
 838         * fast_interrupt_return can be used. The handler must not touch local
 839         * irq state, or schedule. We could test for usermode and upgrade to a
 840         * normal process context (synchronous) interrupt for those, which
 841         * would make them first-class kernel code and able to be traced and
 842         * instrumented, although performance would suffer a bit, it would
 843         * probably be a good tradeoff.
 844         */
 845        if (id >= LINEAR_MAP_REGION_ID) {
 846                long err;
 847#ifdef CONFIG_DEBUG_VM
 848                /* Catch recursive kernel SLB faults. */
 849                BUG_ON(local_paca->in_kernel_slb_handler);
 850                local_paca->in_kernel_slb_handler = 1;
 851#endif
 852                err = slb_allocate_kernel(ea, id);
 853#ifdef CONFIG_DEBUG_VM
 854                local_paca->in_kernel_slb_handler = 0;
 855#endif
 856                return err;
 857        } else {
 858                struct mm_struct *mm = current->mm;
 859                long err;
 860
 861                if (unlikely(!mm))
 862                        return -EFAULT;
 863
 864                err = slb_allocate_user(mm, ea);
 865                if (!err)
 866                        preload_add(current_thread_info(), ea);
 867
 868                return err;
 869        }
 870}
 871
 872DEFINE_INTERRUPT_HANDLER(do_bad_slb_fault)
 873{
 874        int err = regs->result;
 875
 876        if (err == -EFAULT) {
 877                if (user_mode(regs))
 878                        _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
 879                else
 880                        bad_page_fault(regs, SIGSEGV);
 881        } else if (err == -EINVAL) {
 882                unrecoverable_exception(regs);
 883        } else {
 884                BUG();
 885        }
 886}
 887