linux/arch/powerpc/kernel/watchdog.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Watchdog support on powerpc systems.
   4 *
   5 * Copyright 2017, IBM Corporation.
   6 *
   7 * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
   8 */
   9
  10#define pr_fmt(fmt) "watchdog: " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/param.h>
  14#include <linux/init.h>
  15#include <linux/percpu.h>
  16#include <linux/cpu.h>
  17#include <linux/nmi.h>
  18#include <linux/module.h>
  19#include <linux/export.h>
  20#include <linux/kprobes.h>
  21#include <linux/hardirq.h>
  22#include <linux/reboot.h>
  23#include <linux/slab.h>
  24#include <linux/kdebug.h>
  25#include <linux/sched/debug.h>
  26#include <linux/delay.h>
  27#include <linux/processor.h>
  28#include <linux/smp.h>
  29
  30#include <asm/interrupt.h>
  31#include <asm/paca.h>
  32#include <asm/nmi.h>
  33
  34/*
  35 * The powerpc watchdog ensures that each CPU is able to service timers.
  36 * The watchdog sets up a simple timer on each CPU to run once per timer
  37 * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
  38 * the heartbeat.
  39 *
  40 * Then there are two systems to check that the heartbeat is still running.
  41 * The local soft-NMI, and the SMP checker.
  42 *
  43 * The soft-NMI checker can detect lockups on the local CPU. When interrupts
  44 * are disabled with local_irq_disable(), platforms that use soft-masking
  45 * can leave hardware interrupts enabled and handle them with a masked
  46 * interrupt handler. The masked handler can send the timer interrupt to the
  47 * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
  48 * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
  49 *
  50 * The soft-NMI checker will compare the heartbeat timestamp for this CPU
  51 * with the current time, and take action if the difference exceeds the
  52 * watchdog threshold.
  53 *
  54 * The limitation of the soft-NMI watchdog is that it does not work when
  55 * interrupts are hard disabled or otherwise not being serviced. This is
  56 * solved by also having a SMP watchdog where all CPUs check all other
  57 * CPUs heartbeat.
  58 *
  59 * The SMP checker can detect lockups on other CPUs. A gobal "pending"
  60 * cpumask is kept, containing all CPUs which enable the watchdog. Each
  61 * CPU clears their pending bit in their heartbeat timer. When the bitmask
  62 * becomes empty, the last CPU to clear its pending bit updates a global
  63 * timestamp and refills the pending bitmask.
  64 *
  65 * In the heartbeat timer, if any CPU notices that the global timestamp has
  66 * not been updated for a period exceeding the watchdog threshold, then it
  67 * means the CPU(s) with their bit still set in the pending mask have had
  68 * their heartbeat stop, and action is taken.
  69 *
  70 * Some platforms implement true NMI IPIs, which can be used by the SMP
  71 * watchdog to detect an unresponsive CPU and pull it out of its stuck
  72 * state with the NMI IPI, to get crash/debug data from it. This way the
  73 * SMP watchdog can detect hardware interrupts off lockups.
  74 */
  75
  76static cpumask_t wd_cpus_enabled __read_mostly;
  77
  78static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
  79static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
  80
  81static u64 wd_timer_period_ms __read_mostly;  /* interval between heartbeat */
  82
  83static DEFINE_PER_CPU(struct hrtimer, wd_hrtimer);
  84static DEFINE_PER_CPU(u64, wd_timer_tb);
  85
  86/* SMP checker bits */
  87static unsigned long __wd_smp_lock;
  88static cpumask_t wd_smp_cpus_pending;
  89static cpumask_t wd_smp_cpus_stuck;
  90static u64 wd_smp_last_reset_tb;
  91
  92static inline void wd_smp_lock(unsigned long *flags)
  93{
  94        /*
  95         * Avoid locking layers if possible.
  96         * This may be called from low level interrupt handlers at some
  97         * point in future.
  98         */
  99        raw_local_irq_save(*flags);
 100        hard_irq_disable(); /* Make it soft-NMI safe */
 101        while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
 102                raw_local_irq_restore(*flags);
 103                spin_until_cond(!test_bit(0, &__wd_smp_lock));
 104                raw_local_irq_save(*flags);
 105                hard_irq_disable();
 106        }
 107}
 108
 109static inline void wd_smp_unlock(unsigned long *flags)
 110{
 111        clear_bit_unlock(0, &__wd_smp_lock);
 112        raw_local_irq_restore(*flags);
 113}
 114
 115static void wd_lockup_ipi(struct pt_regs *regs)
 116{
 117        int cpu = raw_smp_processor_id();
 118        u64 tb = get_tb();
 119
 120        pr_emerg("CPU %d Hard LOCKUP\n", cpu);
 121        pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
 122                 cpu, tb, per_cpu(wd_timer_tb, cpu),
 123                 tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
 124        print_modules();
 125        print_irqtrace_events(current);
 126        if (regs)
 127                show_regs(regs);
 128        else
 129                dump_stack();
 130
 131        /* Do not panic from here because that can recurse into NMI IPI layer */
 132}
 133
 134static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
 135{
 136        cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
 137        cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
 138        if (cpumask_empty(&wd_smp_cpus_pending)) {
 139                wd_smp_last_reset_tb = tb;
 140                cpumask_andnot(&wd_smp_cpus_pending,
 141                                &wd_cpus_enabled,
 142                                &wd_smp_cpus_stuck);
 143        }
 144}
 145static void set_cpu_stuck(int cpu, u64 tb)
 146{
 147        set_cpumask_stuck(cpumask_of(cpu), tb);
 148}
 149
 150static void watchdog_smp_panic(int cpu, u64 tb)
 151{
 152        unsigned long flags;
 153        int c;
 154
 155        wd_smp_lock(&flags);
 156        /* Double check some things under lock */
 157        if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
 158                goto out;
 159        if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
 160                goto out;
 161        if (cpumask_weight(&wd_smp_cpus_pending) == 0)
 162                goto out;
 163
 164        pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
 165                 cpu, cpumask_pr_args(&wd_smp_cpus_pending));
 166        pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
 167                 cpu, tb, wd_smp_last_reset_tb,
 168                 tb_to_ns(tb - wd_smp_last_reset_tb) / 1000000);
 169
 170        if (!sysctl_hardlockup_all_cpu_backtrace) {
 171                /*
 172                 * Try to trigger the stuck CPUs, unless we are going to
 173                 * get a backtrace on all of them anyway.
 174                 */
 175                for_each_cpu(c, &wd_smp_cpus_pending) {
 176                        if (c == cpu)
 177                                continue;
 178                        smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
 179                }
 180        }
 181
 182        /* Take the stuck CPUs out of the watch group */
 183        set_cpumask_stuck(&wd_smp_cpus_pending, tb);
 184
 185        wd_smp_unlock(&flags);
 186
 187        printk_safe_flush();
 188        /*
 189         * printk_safe_flush() seems to require another print
 190         * before anything actually goes out to console.
 191         */
 192        if (sysctl_hardlockup_all_cpu_backtrace)
 193                trigger_allbutself_cpu_backtrace();
 194
 195        if (hardlockup_panic)
 196                nmi_panic(NULL, "Hard LOCKUP");
 197
 198        return;
 199
 200out:
 201        wd_smp_unlock(&flags);
 202}
 203
 204static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
 205{
 206        if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
 207                if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
 208                        struct pt_regs *regs = get_irq_regs();
 209                        unsigned long flags;
 210
 211                        wd_smp_lock(&flags);
 212
 213                        pr_emerg("CPU %d became unstuck TB:%lld\n",
 214                                 cpu, tb);
 215                        print_irqtrace_events(current);
 216                        if (regs)
 217                                show_regs(regs);
 218                        else
 219                                dump_stack();
 220
 221                        cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
 222                        wd_smp_unlock(&flags);
 223                }
 224                return;
 225        }
 226        cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
 227        if (cpumask_empty(&wd_smp_cpus_pending)) {
 228                unsigned long flags;
 229
 230                wd_smp_lock(&flags);
 231                if (cpumask_empty(&wd_smp_cpus_pending)) {
 232                        wd_smp_last_reset_tb = tb;
 233                        cpumask_andnot(&wd_smp_cpus_pending,
 234                                        &wd_cpus_enabled,
 235                                        &wd_smp_cpus_stuck);
 236                }
 237                wd_smp_unlock(&flags);
 238        }
 239}
 240
 241static void watchdog_timer_interrupt(int cpu)
 242{
 243        u64 tb = get_tb();
 244
 245        per_cpu(wd_timer_tb, cpu) = tb;
 246
 247        wd_smp_clear_cpu_pending(cpu, tb);
 248
 249        if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
 250                watchdog_smp_panic(cpu, tb);
 251}
 252
 253DEFINE_INTERRUPT_HANDLER_NMI(soft_nmi_interrupt)
 254{
 255        unsigned long flags;
 256        int cpu = raw_smp_processor_id();
 257        u64 tb;
 258
 259        /* should only arrive from kernel, with irqs disabled */
 260        WARN_ON_ONCE(!arch_irq_disabled_regs(regs));
 261
 262        if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
 263                return 0;
 264
 265        __this_cpu_inc(irq_stat.soft_nmi_irqs);
 266
 267        tb = get_tb();
 268        if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
 269                wd_smp_lock(&flags);
 270                if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
 271                        wd_smp_unlock(&flags);
 272                        return 0;
 273                }
 274                set_cpu_stuck(cpu, tb);
 275
 276                pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
 277                         cpu, (void *)regs->nip);
 278                pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
 279                         cpu, tb, per_cpu(wd_timer_tb, cpu),
 280                         tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
 281                print_modules();
 282                print_irqtrace_events(current);
 283                show_regs(regs);
 284
 285                wd_smp_unlock(&flags);
 286
 287                if (sysctl_hardlockup_all_cpu_backtrace)
 288                        trigger_allbutself_cpu_backtrace();
 289
 290                if (hardlockup_panic)
 291                        nmi_panic(regs, "Hard LOCKUP");
 292        }
 293        if (wd_panic_timeout_tb < 0x7fffffff)
 294                mtspr(SPRN_DEC, wd_panic_timeout_tb);
 295
 296        return 0;
 297}
 298
 299static enum hrtimer_restart watchdog_timer_fn(struct hrtimer *hrtimer)
 300{
 301        int cpu = smp_processor_id();
 302
 303        if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
 304                return HRTIMER_NORESTART;
 305
 306        if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
 307                return HRTIMER_NORESTART;
 308
 309        watchdog_timer_interrupt(cpu);
 310
 311        hrtimer_forward_now(hrtimer, ms_to_ktime(wd_timer_period_ms));
 312
 313        return HRTIMER_RESTART;
 314}
 315
 316void arch_touch_nmi_watchdog(void)
 317{
 318        unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
 319        int cpu = smp_processor_id();
 320        u64 tb = get_tb();
 321
 322        if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
 323                per_cpu(wd_timer_tb, cpu) = tb;
 324                wd_smp_clear_cpu_pending(cpu, tb);
 325        }
 326}
 327EXPORT_SYMBOL(arch_touch_nmi_watchdog);
 328
 329static void start_watchdog(void *arg)
 330{
 331        struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
 332        int cpu = smp_processor_id();
 333        unsigned long flags;
 334
 335        if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
 336                WARN_ON(1);
 337                return;
 338        }
 339
 340        if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
 341                return;
 342
 343        if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
 344                return;
 345
 346        wd_smp_lock(&flags);
 347        cpumask_set_cpu(cpu, &wd_cpus_enabled);
 348        if (cpumask_weight(&wd_cpus_enabled) == 1) {
 349                cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
 350                wd_smp_last_reset_tb = get_tb();
 351        }
 352        wd_smp_unlock(&flags);
 353
 354        *this_cpu_ptr(&wd_timer_tb) = get_tb();
 355
 356        hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 357        hrtimer->function = watchdog_timer_fn;
 358        hrtimer_start(hrtimer, ms_to_ktime(wd_timer_period_ms),
 359                      HRTIMER_MODE_REL_PINNED);
 360}
 361
 362static int start_watchdog_on_cpu(unsigned int cpu)
 363{
 364        return smp_call_function_single(cpu, start_watchdog, NULL, true);
 365}
 366
 367static void stop_watchdog(void *arg)
 368{
 369        struct hrtimer *hrtimer = this_cpu_ptr(&wd_hrtimer);
 370        int cpu = smp_processor_id();
 371        unsigned long flags;
 372
 373        if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
 374                return; /* Can happen in CPU unplug case */
 375
 376        hrtimer_cancel(hrtimer);
 377
 378        wd_smp_lock(&flags);
 379        cpumask_clear_cpu(cpu, &wd_cpus_enabled);
 380        wd_smp_unlock(&flags);
 381
 382        wd_smp_clear_cpu_pending(cpu, get_tb());
 383}
 384
 385static int stop_watchdog_on_cpu(unsigned int cpu)
 386{
 387        return smp_call_function_single(cpu, stop_watchdog, NULL, true);
 388}
 389
 390static void watchdog_calc_timeouts(void)
 391{
 392        wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
 393
 394        /* Have the SMP detector trigger a bit later */
 395        wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
 396
 397        /* 2/5 is the factor that the perf based detector uses */
 398        wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
 399}
 400
 401void watchdog_nmi_stop(void)
 402{
 403        int cpu;
 404
 405        for_each_cpu(cpu, &wd_cpus_enabled)
 406                stop_watchdog_on_cpu(cpu);
 407}
 408
 409void watchdog_nmi_start(void)
 410{
 411        int cpu;
 412
 413        watchdog_calc_timeouts();
 414        for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
 415                start_watchdog_on_cpu(cpu);
 416}
 417
 418/*
 419 * Invoked from core watchdog init.
 420 */
 421int __init watchdog_nmi_probe(void)
 422{
 423        int err;
 424
 425        err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 426                                        "powerpc/watchdog:online",
 427                                        start_watchdog_on_cpu,
 428                                        stop_watchdog_on_cpu);
 429        if (err < 0) {
 430                pr_warn("could not be initialized");
 431                return err;
 432        }
 433        return 0;
 434}
 435