linux/arch/ia64/kernel/mca.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * File:        mca.c
   4 * Purpose:     Generic MCA handling layer
   5 *
   6 * Copyright (C) 2003 Hewlett-Packard Co
   7 *      David Mosberger-Tang <davidm@hpl.hp.com>
   8 *
   9 * Copyright (C) 2002 Dell Inc.
  10 * Copyright (C) Matt Domsch <Matt_Domsch@dell.com>
  11 *
  12 * Copyright (C) 2002 Intel
  13 * Copyright (C) Jenna Hall <jenna.s.hall@intel.com>
  14 *
  15 * Copyright (C) 2001 Intel
  16 * Copyright (C) Fred Lewis <frederick.v.lewis@intel.com>
  17 *
  18 * Copyright (C) 2000 Intel
  19 * Copyright (C) Chuck Fleckenstein <cfleck@co.intel.com>
  20 *
  21 * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
  22 * Copyright (C) Vijay Chander <vijay@engr.sgi.com>
  23 *
  24 * Copyright (C) 2006 FUJITSU LIMITED
  25 * Copyright (C) Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
  26 *
  27 * 2000-03-29 Chuck Fleckenstein <cfleck@co.intel.com>
  28 *            Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
  29 *            added min save state dump, added INIT handler.
  30 *
  31 * 2001-01-03 Fred Lewis <frederick.v.lewis@intel.com>
  32 *            Added setup of CMCI and CPEI IRQs, logging of corrected platform
  33 *            errors, completed code for logging of corrected & uncorrected
  34 *            machine check errors, and updated for conformance with Nov. 2000
  35 *            revision of the SAL 3.0 spec.
  36 *
  37 * 2002-01-04 Jenna Hall <jenna.s.hall@intel.com>
  38 *            Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
  39 *            set SAL default return values, changed error record structure to
  40 *            linked list, added init call to sal_get_state_info_size().
  41 *
  42 * 2002-03-25 Matt Domsch <Matt_Domsch@dell.com>
  43 *            GUID cleanups.
  44 *
  45 * 2003-04-15 David Mosberger-Tang <davidm@hpl.hp.com>
  46 *            Added INIT backtrace support.
  47 *
  48 * 2003-12-08 Keith Owens <kaos@sgi.com>
  49 *            smp_call_function() must not be called from interrupt context
  50 *            (can deadlock on tasklist_lock).
  51 *            Use keventd to call smp_call_function().
  52 *
  53 * 2004-02-01 Keith Owens <kaos@sgi.com>
  54 *            Avoid deadlock when using printk() for MCA and INIT records.
  55 *            Delete all record printing code, moved to salinfo_decode in user
  56 *            space.  Mark variables and functions static where possible.
  57 *            Delete dead variables and functions.  Reorder to remove the need
  58 *            for forward declarations and to consolidate related code.
  59 *
  60 * 2005-08-12 Keith Owens <kaos@sgi.com>
  61 *            Convert MCA/INIT handlers to use per event stacks and SAL/OS
  62 *            state.
  63 *
  64 * 2005-10-07 Keith Owens <kaos@sgi.com>
  65 *            Add notify_die() hooks.
  66 *
  67 * 2006-09-15 Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
  68 *            Add printing support for MCA/INIT.
  69 *
  70 * 2007-04-27 Russ Anderson <rja@sgi.com>
  71 *            Support multiple cpus going through OS_MCA in the same event.
  72 */
  73#include <linux/jiffies.h>
  74#include <linux/types.h>
  75#include <linux/init.h>
  76#include <linux/sched/signal.h>
  77#include <linux/sched/debug.h>
  78#include <linux/sched/task.h>
  79#include <linux/interrupt.h>
  80#include <linux/irq.h>
  81#include <linux/memblock.h>
  82#include <linux/acpi.h>
  83#include <linux/timer.h>
  84#include <linux/module.h>
  85#include <linux/kernel.h>
  86#include <linux/smp.h>
  87#include <linux/workqueue.h>
  88#include <linux/cpumask.h>
  89#include <linux/kdebug.h>
  90#include <linux/cpu.h>
  91#include <linux/gfp.h>
  92
  93#include <asm/delay.h>
  94#include <asm/efi.h>
  95#include <asm/meminit.h>
  96#include <asm/page.h>
  97#include <asm/ptrace.h>
  98#include <asm/sal.h>
  99#include <asm/mca.h>
 100#include <asm/mca_asm.h>
 101#include <asm/kexec.h>
 102
 103#include <asm/irq.h>
 104#include <asm/hw_irq.h>
 105#include <asm/tlb.h>
 106
 107#include "mca_drv.h"
 108#include "entry.h"
 109#include "irq.h"
 110
 111#if defined(IA64_MCA_DEBUG_INFO)
 112# define IA64_MCA_DEBUG(fmt...) printk(fmt)
 113#else
 114# define IA64_MCA_DEBUG(fmt...) do {} while (0)
 115#endif
 116
 117#define NOTIFY_INIT(event, regs, arg, spin)                             \
 118do {                                                                    \
 119        if ((notify_die((event), "INIT", (regs), (arg), 0, 0)           \
 120                        == NOTIFY_STOP) && ((spin) == 1))               \
 121                ia64_mca_spin(__func__);                                \
 122} while (0)
 123
 124#define NOTIFY_MCA(event, regs, arg, spin)                              \
 125do {                                                                    \
 126        if ((notify_die((event), "MCA", (regs), (arg), 0, 0)            \
 127                        == NOTIFY_STOP) && ((spin) == 1))               \
 128                ia64_mca_spin(__func__);                                \
 129} while (0)
 130
 131/* Used by mca_asm.S */
 132DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
 133DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
 134DEFINE_PER_CPU(u64, ia64_mca_pal_pte);      /* PTE to map PAL code */
 135DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */
 136DEFINE_PER_CPU(u64, ia64_mca_tr_reload);   /* Flag for TR reload */
 137
 138unsigned long __per_cpu_mca[NR_CPUS];
 139
 140/* In mca_asm.S */
 141extern void                     ia64_os_init_dispatch_monarch (void);
 142extern void                     ia64_os_init_dispatch_slave (void);
 143
 144static int monarch_cpu = -1;
 145
 146static ia64_mc_info_t           ia64_mc_info;
 147
 148#define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
 149#define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */
 150#define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */
 151#define CPE_HISTORY_LENGTH    5
 152#define CMC_HISTORY_LENGTH    5
 153
 154static struct timer_list cpe_poll_timer;
 155static struct timer_list cmc_poll_timer;
 156/*
 157 * This variable tells whether we are currently in polling mode.
 158 * Start with this in the wrong state so we won't play w/ timers
 159 * before the system is ready.
 160 */
 161static int cmc_polling_enabled = 1;
 162
 163/*
 164 * Clearing this variable prevents CPE polling from getting activated
 165 * in mca_late_init.  Use it if your system doesn't provide a CPEI,
 166 * but encounters problems retrieving CPE logs.  This should only be
 167 * necessary for debugging.
 168 */
 169static int cpe_poll_enabled = 1;
 170
 171extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
 172
 173static int mca_init __initdata;
 174
 175/*
 176 * limited & delayed printing support for MCA/INIT handler
 177 */
 178
 179#define mprintk(fmt...) ia64_mca_printk(fmt)
 180
 181#define MLOGBUF_SIZE (512+256*NR_CPUS)
 182#define MLOGBUF_MSGMAX 256
 183static char mlogbuf[MLOGBUF_SIZE];
 184static DEFINE_SPINLOCK(mlogbuf_wlock);  /* mca context only */
 185static DEFINE_SPINLOCK(mlogbuf_rlock);  /* normal context only */
 186static unsigned long mlogbuf_start;
 187static unsigned long mlogbuf_end;
 188static unsigned int mlogbuf_finished = 0;
 189static unsigned long mlogbuf_timestamp = 0;
 190
 191static int loglevel_save = -1;
 192#define BREAK_LOGLEVEL(__console_loglevel)              \
 193        oops_in_progress = 1;                           \
 194        if (loglevel_save < 0)                          \
 195                loglevel_save = __console_loglevel;     \
 196        __console_loglevel = 15;
 197
 198#define RESTORE_LOGLEVEL(__console_loglevel)            \
 199        if (loglevel_save >= 0) {                       \
 200                __console_loglevel = loglevel_save;     \
 201                loglevel_save = -1;                     \
 202        }                                               \
 203        mlogbuf_finished = 0;                           \
 204        oops_in_progress = 0;
 205
 206/*
 207 * Push messages into buffer, print them later if not urgent.
 208 */
 209void ia64_mca_printk(const char *fmt, ...)
 210{
 211        va_list args;
 212        int printed_len;
 213        char temp_buf[MLOGBUF_MSGMAX];
 214        char *p;
 215
 216        va_start(args, fmt);
 217        printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
 218        va_end(args);
 219
 220        /* Copy the output into mlogbuf */
 221        if (oops_in_progress) {
 222                /* mlogbuf was abandoned, use printk directly instead. */
 223                printk("%s", temp_buf);
 224        } else {
 225                spin_lock(&mlogbuf_wlock);
 226                for (p = temp_buf; *p; p++) {
 227                        unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
 228                        if (next != mlogbuf_start) {
 229                                mlogbuf[mlogbuf_end] = *p;
 230                                mlogbuf_end = next;
 231                        } else {
 232                                /* buffer full */
 233                                break;
 234                        }
 235                }
 236                mlogbuf[mlogbuf_end] = '\0';
 237                spin_unlock(&mlogbuf_wlock);
 238        }
 239}
 240EXPORT_SYMBOL(ia64_mca_printk);
 241
 242/*
 243 * Print buffered messages.
 244 *  NOTE: call this after returning normal context. (ex. from salinfod)
 245 */
 246void ia64_mlogbuf_dump(void)
 247{
 248        char temp_buf[MLOGBUF_MSGMAX];
 249        char *p;
 250        unsigned long index;
 251        unsigned long flags;
 252        unsigned int printed_len;
 253
 254        /* Get output from mlogbuf */
 255        while (mlogbuf_start != mlogbuf_end) {
 256                temp_buf[0] = '\0';
 257                p = temp_buf;
 258                printed_len = 0;
 259
 260                spin_lock_irqsave(&mlogbuf_rlock, flags);
 261
 262                index = mlogbuf_start;
 263                while (index != mlogbuf_end) {
 264                        *p = mlogbuf[index];
 265                        index = (index + 1) % MLOGBUF_SIZE;
 266                        if (!*p)
 267                                break;
 268                        p++;
 269                        if (++printed_len >= MLOGBUF_MSGMAX - 1)
 270                                break;
 271                }
 272                *p = '\0';
 273                if (temp_buf[0])
 274                        printk("%s", temp_buf);
 275                mlogbuf_start = index;
 276
 277                mlogbuf_timestamp = 0;
 278                spin_unlock_irqrestore(&mlogbuf_rlock, flags);
 279        }
 280}
 281EXPORT_SYMBOL(ia64_mlogbuf_dump);
 282
 283/*
 284 * Call this if system is going to down or if immediate flushing messages to
 285 * console is required. (ex. recovery was failed, crash dump is going to be
 286 * invoked, long-wait rendezvous etc.)
 287 *  NOTE: this should be called from monarch.
 288 */
 289static void ia64_mlogbuf_finish(int wait)
 290{
 291        BREAK_LOGLEVEL(console_loglevel);
 292
 293        spin_lock_init(&mlogbuf_rlock);
 294        ia64_mlogbuf_dump();
 295        printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
 296                "MCA/INIT might be dodgy or fail.\n");
 297
 298        if (!wait)
 299                return;
 300
 301        /* wait for console */
 302        printk("Delaying for 5 seconds...\n");
 303        udelay(5*1000000);
 304
 305        mlogbuf_finished = 1;
 306}
 307
 308/*
 309 * Print buffered messages from INIT context.
 310 */
 311static void ia64_mlogbuf_dump_from_init(void)
 312{
 313        if (mlogbuf_finished)
 314                return;
 315
 316        if (mlogbuf_timestamp &&
 317                        time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
 318                printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
 319                        " and the system seems to be messed up.\n");
 320                ia64_mlogbuf_finish(0);
 321                return;
 322        }
 323
 324        if (!spin_trylock(&mlogbuf_rlock)) {
 325                printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
 326                        "Generated messages other than stack dump will be "
 327                        "buffered to mlogbuf and will be printed later.\n");
 328                printk(KERN_ERR "INIT: If messages would not printed after "
 329                        "this INIT, wait 30sec and assert INIT again.\n");
 330                if (!mlogbuf_timestamp)
 331                        mlogbuf_timestamp = jiffies;
 332                return;
 333        }
 334        spin_unlock(&mlogbuf_rlock);
 335        ia64_mlogbuf_dump();
 336}
 337
 338static inline void
 339ia64_mca_spin(const char *func)
 340{
 341        if (monarch_cpu == smp_processor_id())
 342                ia64_mlogbuf_finish(0);
 343        mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
 344        while (1)
 345                cpu_relax();
 346}
 347/*
 348 * IA64_MCA log support
 349 */
 350#define IA64_MAX_LOGS           2       /* Double-buffering for nested MCAs */
 351#define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */
 352
 353typedef struct ia64_state_log_s
 354{
 355        spinlock_t      isl_lock;
 356        int             isl_index;
 357        unsigned long   isl_count;
 358        ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
 359} ia64_state_log_t;
 360
 361static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
 362
 363#define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
 364#define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
 365#define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
 366#define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index
 367#define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index
 368#define IA64_LOG_INDEX_INC(it) \
 369    {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
 370    ia64_state_log[it].isl_count++;}
 371#define IA64_LOG_INDEX_DEC(it) \
 372    ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
 373#define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
 374#define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
 375#define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count
 376
 377static inline void ia64_log_allocate(int it, u64 size)
 378{
 379        ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] =
 380                (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
 381        if (!ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])
 382                panic("%s: Failed to allocate %llu bytes\n", __func__, size);
 383
 384        ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] =
 385                (ia64_err_rec_t *)memblock_alloc(size, SMP_CACHE_BYTES);
 386        if (!ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])
 387                panic("%s: Failed to allocate %llu bytes\n", __func__, size);
 388}
 389
 390/*
 391 * ia64_log_init
 392 *      Reset the OS ia64 log buffer
 393 * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 394 * Outputs      :       None
 395 */
 396static void __init
 397ia64_log_init(int sal_info_type)
 398{
 399        u64     max_size = 0;
 400
 401        IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
 402        IA64_LOG_LOCK_INIT(sal_info_type);
 403
 404        // SAL will tell us the maximum size of any error record of this type
 405        max_size = ia64_sal_get_state_info_size(sal_info_type);
 406        if (!max_size)
 407                /* alloc_bootmem() doesn't like zero-sized allocations! */
 408                return;
 409
 410        // set up OS data structures to hold error info
 411        ia64_log_allocate(sal_info_type, max_size);
 412}
 413
 414/*
 415 * ia64_log_get
 416 *
 417 *      Get the current MCA log from SAL and copy it into the OS log buffer.
 418 *
 419 *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
 420 *              irq_safe    whether you can use printk at this point
 421 *  Outputs :   size        (total record length)
 422 *              *buffer     (ptr to error record)
 423 *
 424 */
 425static u64
 426ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
 427{
 428        sal_log_record_header_t     *log_buffer;
 429        u64                         total_len = 0;
 430        unsigned long               s;
 431
 432        IA64_LOG_LOCK(sal_info_type);
 433
 434        /* Get the process state information */
 435        log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
 436
 437        total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
 438
 439        if (total_len) {
 440                IA64_LOG_INDEX_INC(sal_info_type);
 441                IA64_LOG_UNLOCK(sal_info_type);
 442                if (irq_safe) {
 443                        IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
 444                                       __func__, sal_info_type, total_len);
 445                }
 446                *buffer = (u8 *) log_buffer;
 447                return total_len;
 448        } else {
 449                IA64_LOG_UNLOCK(sal_info_type);
 450                return 0;
 451        }
 452}
 453
 454/*
 455 *  ia64_mca_log_sal_error_record
 456 *
 457 *  This function retrieves a specified error record type from SAL
 458 *  and wakes up any processes waiting for error records.
 459 *
 460 *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE)
 461 *              FIXME: remove MCA and irq_safe.
 462 */
 463static void
 464ia64_mca_log_sal_error_record(int sal_info_type)
 465{
 466        u8 *buffer;
 467        sal_log_record_header_t *rh;
 468        u64 size;
 469        int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
 470#ifdef IA64_MCA_DEBUG_INFO
 471        static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
 472#endif
 473
 474        size = ia64_log_get(sal_info_type, &buffer, irq_safe);
 475        if (!size)
 476                return;
 477
 478        salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
 479
 480        if (irq_safe)
 481                IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
 482                        smp_processor_id(),
 483                        sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
 484
 485        /* Clear logs from corrected errors in case there's no user-level logger */
 486        rh = (sal_log_record_header_t *)buffer;
 487        if (rh->severity == sal_log_severity_corrected)
 488                ia64_sal_clear_state_info(sal_info_type);
 489}
 490
 491/*
 492 * search_mca_table
 493 *  See if the MCA surfaced in an instruction range
 494 *  that has been tagged as recoverable.
 495 *
 496 *  Inputs
 497 *      first   First address range to check
 498 *      last    Last address range to check
 499 *      ip      Instruction pointer, address we are looking for
 500 *
 501 * Return value:
 502 *      1 on Success (in the table)/ 0 on Failure (not in the  table)
 503 */
 504int
 505search_mca_table (const struct mca_table_entry *first,
 506                const struct mca_table_entry *last,
 507                unsigned long ip)
 508{
 509        const struct mca_table_entry *curr;
 510        u64 curr_start, curr_end;
 511
 512        curr = first;
 513        while (curr <= last) {
 514                curr_start = (u64) &curr->start_addr + curr->start_addr;
 515                curr_end = (u64) &curr->end_addr + curr->end_addr;
 516
 517                if ((ip >= curr_start) && (ip <= curr_end)) {
 518                        return 1;
 519                }
 520                curr++;
 521        }
 522        return 0;
 523}
 524
 525/* Given an address, look for it in the mca tables. */
 526int mca_recover_range(unsigned long addr)
 527{
 528        extern struct mca_table_entry __start___mca_table[];
 529        extern struct mca_table_entry __stop___mca_table[];
 530
 531        return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
 532}
 533EXPORT_SYMBOL_GPL(mca_recover_range);
 534
 535int cpe_vector = -1;
 536int ia64_cpe_irq = -1;
 537
 538static irqreturn_t
 539ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
 540{
 541        static unsigned long    cpe_history[CPE_HISTORY_LENGTH];
 542        static int              index;
 543        static DEFINE_SPINLOCK(cpe_history_lock);
 544
 545        IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
 546                       __func__, cpe_irq, smp_processor_id());
 547
 548        /* SAL spec states this should run w/ interrupts enabled */
 549        local_irq_enable();
 550
 551        spin_lock(&cpe_history_lock);
 552        if (!cpe_poll_enabled && cpe_vector >= 0) {
 553
 554                int i, count = 1; /* we know 1 happened now */
 555                unsigned long now = jiffies;
 556
 557                for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
 558                        if (now - cpe_history[i] <= HZ)
 559                                count++;
 560                }
 561
 562                IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
 563                if (count >= CPE_HISTORY_LENGTH) {
 564
 565                        cpe_poll_enabled = 1;
 566                        spin_unlock(&cpe_history_lock);
 567                        disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
 568
 569                        /*
 570                         * Corrected errors will still be corrected, but
 571                         * make sure there's a log somewhere that indicates
 572                         * something is generating more than we can handle.
 573                         */
 574                        printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
 575
 576                        mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
 577
 578                        /* lock already released, get out now */
 579                        goto out;
 580                } else {
 581                        cpe_history[index++] = now;
 582                        if (index == CPE_HISTORY_LENGTH)
 583                                index = 0;
 584                }
 585        }
 586        spin_unlock(&cpe_history_lock);
 587out:
 588        /* Get the CPE error record and log it */
 589        ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
 590
 591        local_irq_disable();
 592
 593        return IRQ_HANDLED;
 594}
 595
 596/*
 597 * ia64_mca_register_cpev
 598 *
 599 *  Register the corrected platform error vector with SAL.
 600 *
 601 *  Inputs
 602 *      cpev        Corrected Platform Error Vector number
 603 *
 604 *  Outputs
 605 *      None
 606 */
 607void
 608ia64_mca_register_cpev (int cpev)
 609{
 610        /* Register the CPE interrupt vector with SAL */
 611        struct ia64_sal_retval isrv;
 612
 613        isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
 614        if (isrv.status) {
 615                printk(KERN_ERR "Failed to register Corrected Platform "
 616                       "Error interrupt vector with SAL (status %ld)\n", isrv.status);
 617                return;
 618        }
 619
 620        IA64_MCA_DEBUG("%s: corrected platform error "
 621                       "vector %#x registered\n", __func__, cpev);
 622}
 623
 624/*
 625 * ia64_mca_cmc_vector_setup
 626 *
 627 *  Setup the corrected machine check vector register in the processor.
 628 *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
 629 *  This function is invoked on a per-processor basis.
 630 *
 631 * Inputs
 632 *      None
 633 *
 634 * Outputs
 635 *      None
 636 */
 637void
 638ia64_mca_cmc_vector_setup (void)
 639{
 640        cmcv_reg_t      cmcv;
 641
 642        cmcv.cmcv_regval        = 0;
 643        cmcv.cmcv_mask          = 1;        /* Mask/disable interrupt at first */
 644        cmcv.cmcv_vector        = IA64_CMC_VECTOR;
 645        ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 646
 647        IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
 648                       __func__, smp_processor_id(), IA64_CMC_VECTOR);
 649
 650        IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
 651                       __func__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
 652}
 653
 654/*
 655 * ia64_mca_cmc_vector_disable
 656 *
 657 *  Mask the corrected machine check vector register in the processor.
 658 *  This function is invoked on a per-processor basis.
 659 *
 660 * Inputs
 661 *      dummy(unused)
 662 *
 663 * Outputs
 664 *      None
 665 */
 666static void
 667ia64_mca_cmc_vector_disable (void *dummy)
 668{
 669        cmcv_reg_t      cmcv;
 670
 671        cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
 672
 673        cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
 674        ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 675
 676        IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
 677                       __func__, smp_processor_id(), cmcv.cmcv_vector);
 678}
 679
 680/*
 681 * ia64_mca_cmc_vector_enable
 682 *
 683 *  Unmask the corrected machine check vector register in the processor.
 684 *  This function is invoked on a per-processor basis.
 685 *
 686 * Inputs
 687 *      dummy(unused)
 688 *
 689 * Outputs
 690 *      None
 691 */
 692static void
 693ia64_mca_cmc_vector_enable (void *dummy)
 694{
 695        cmcv_reg_t      cmcv;
 696
 697        cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
 698
 699        cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
 700        ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
 701
 702        IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
 703                       __func__, smp_processor_id(), cmcv.cmcv_vector);
 704}
 705
 706/*
 707 * ia64_mca_cmc_vector_disable_keventd
 708 *
 709 * Called via keventd (smp_call_function() is not safe in interrupt context) to
 710 * disable the cmc interrupt vector.
 711 */
 712static void
 713ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
 714{
 715        on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
 716}
 717
 718/*
 719 * ia64_mca_cmc_vector_enable_keventd
 720 *
 721 * Called via keventd (smp_call_function() is not safe in interrupt context) to
 722 * enable the cmc interrupt vector.
 723 */
 724static void
 725ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
 726{
 727        on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
 728}
 729
 730/*
 731 * ia64_mca_wakeup
 732 *
 733 *      Send an inter-cpu interrupt to wake-up a particular cpu.
 734 *
 735 *  Inputs  :   cpuid
 736 *  Outputs :   None
 737 */
 738static void
 739ia64_mca_wakeup(int cpu)
 740{
 741        ia64_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
 742}
 743
 744/*
 745 * ia64_mca_wakeup_all
 746 *
 747 *      Wakeup all the slave cpus which have rendez'ed previously.
 748 *
 749 *  Inputs  :   None
 750 *  Outputs :   None
 751 */
 752static void
 753ia64_mca_wakeup_all(void)
 754{
 755        int cpu;
 756
 757        /* Clear the Rendez checkin flag for all cpus */
 758        for_each_online_cpu(cpu) {
 759                if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
 760                        ia64_mca_wakeup(cpu);
 761        }
 762
 763}
 764
 765/*
 766 * ia64_mca_rendez_interrupt_handler
 767 *
 768 *      This is handler used to put slave processors into spinloop
 769 *      while the monarch processor does the mca handling and later
 770 *      wake each slave up once the monarch is done.  The state
 771 *      IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
 772 *      in SAL.  The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
 773 *      the cpu has come out of OS rendezvous.
 774 *
 775 *  Inputs  :   None
 776 *  Outputs :   None
 777 */
 778static irqreturn_t
 779ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
 780{
 781        unsigned long flags;
 782        int cpu = smp_processor_id();
 783        struct ia64_mca_notify_die nd =
 784                { .sos = NULL, .monarch_cpu = &monarch_cpu };
 785
 786        /* Mask all interrupts */
 787        local_irq_save(flags);
 788
 789        NOTIFY_MCA(DIE_MCA_RENDZVOUS_ENTER, get_irq_regs(), (long)&nd, 1);
 790
 791        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
 792        /* Register with the SAL monarch that the slave has
 793         * reached SAL
 794         */
 795        ia64_sal_mc_rendez();
 796
 797        NOTIFY_MCA(DIE_MCA_RENDZVOUS_PROCESS, get_irq_regs(), (long)&nd, 1);
 798
 799        /* Wait for the monarch cpu to exit. */
 800        while (monarch_cpu != -1)
 801               cpu_relax();     /* spin until monarch leaves */
 802
 803        NOTIFY_MCA(DIE_MCA_RENDZVOUS_LEAVE, get_irq_regs(), (long)&nd, 1);
 804
 805        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
 806        /* Enable all interrupts */
 807        local_irq_restore(flags);
 808        return IRQ_HANDLED;
 809}
 810
 811/*
 812 * ia64_mca_wakeup_int_handler
 813 *
 814 *      The interrupt handler for processing the inter-cpu interrupt to the
 815 *      slave cpu which was spinning in the rendez loop.
 816 *      Since this spinning is done by turning off the interrupts and
 817 *      polling on the wakeup-interrupt bit in the IRR, there is
 818 *      nothing useful to be done in the handler.
 819 *
 820 *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit)
 821 *      arg             (Interrupt handler specific argument)
 822 *  Outputs :   None
 823 *
 824 */
 825static irqreturn_t
 826ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
 827{
 828        return IRQ_HANDLED;
 829}
 830
 831/* Function pointer for extra MCA recovery */
 832int (*ia64_mca_ucmc_extension)
 833        (void*,struct ia64_sal_os_state*)
 834        = NULL;
 835
 836int
 837ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
 838{
 839        if (ia64_mca_ucmc_extension)
 840                return 1;
 841
 842        ia64_mca_ucmc_extension = fn;
 843        return 0;
 844}
 845
 846void
 847ia64_unreg_MCA_extension(void)
 848{
 849        if (ia64_mca_ucmc_extension)
 850                ia64_mca_ucmc_extension = NULL;
 851}
 852
 853EXPORT_SYMBOL(ia64_reg_MCA_extension);
 854EXPORT_SYMBOL(ia64_unreg_MCA_extension);
 855
 856
 857static inline void
 858copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
 859{
 860        u64 fslot, tslot, nat;
 861        *tr = *fr;
 862        fslot = ((unsigned long)fr >> 3) & 63;
 863        tslot = ((unsigned long)tr >> 3) & 63;
 864        *tnat &= ~(1UL << tslot);
 865        nat = (fnat >> fslot) & 1;
 866        *tnat |= (nat << tslot);
 867}
 868
 869/* Change the comm field on the MCA/INT task to include the pid that
 870 * was interrupted, it makes for easier debugging.  If that pid was 0
 871 * (swapper or nested MCA/INIT) then use the start of the previous comm
 872 * field suffixed with its cpu.
 873 */
 874
 875static void
 876ia64_mca_modify_comm(const struct task_struct *previous_current)
 877{
 878        char *p, comm[sizeof(current->comm)];
 879        if (previous_current->pid)
 880                snprintf(comm, sizeof(comm), "%s %d",
 881                        current->comm, previous_current->pid);
 882        else {
 883                int l;
 884                if ((p = strchr(previous_current->comm, ' ')))
 885                        l = p - previous_current->comm;
 886                else
 887                        l = strlen(previous_current->comm);
 888                snprintf(comm, sizeof(comm), "%s %*s %d",
 889                        current->comm, l, previous_current->comm,
 890                        task_thread_info(previous_current)->cpu);
 891        }
 892        memcpy(current->comm, comm, sizeof(current->comm));
 893}
 894
 895static void
 896finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
 897                unsigned long *nat)
 898{
 899        const struct pal_min_state_area *ms = sos->pal_min_state;
 900        const u64 *bank;
 901
 902        /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
 903         * pmsa_{xip,xpsr,xfs}
 904         */
 905        if (ia64_psr(regs)->ic) {
 906                regs->cr_iip = ms->pmsa_iip;
 907                regs->cr_ipsr = ms->pmsa_ipsr;
 908                regs->cr_ifs = ms->pmsa_ifs;
 909        } else {
 910                regs->cr_iip = ms->pmsa_xip;
 911                regs->cr_ipsr = ms->pmsa_xpsr;
 912                regs->cr_ifs = ms->pmsa_xfs;
 913
 914                sos->iip = ms->pmsa_iip;
 915                sos->ipsr = ms->pmsa_ipsr;
 916                sos->ifs = ms->pmsa_ifs;
 917        }
 918        regs->pr = ms->pmsa_pr;
 919        regs->b0 = ms->pmsa_br0;
 920        regs->ar_rsc = ms->pmsa_rsc;
 921        copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
 922        copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
 923        copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
 924        copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
 925        copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
 926        copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
 927        copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
 928        copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
 929        copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
 930        copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
 931        copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
 932        if (ia64_psr(regs)->bn)
 933                bank = ms->pmsa_bank1_gr;
 934        else
 935                bank = ms->pmsa_bank0_gr;
 936        copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
 937        copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
 938        copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
 939        copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
 940        copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
 941        copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
 942        copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
 943        copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
 944        copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
 945        copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
 946        copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
 947        copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
 948        copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
 949        copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
 950        copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
 951        copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
 952}
 953
 954/* On entry to this routine, we are running on the per cpu stack, see
 955 * mca_asm.h.  The original stack has not been touched by this event.  Some of
 956 * the original stack's registers will be in the RBS on this stack.  This stack
 957 * also contains a partial pt_regs and switch_stack, the rest of the data is in
 958 * PAL minstate.
 959 *
 960 * The first thing to do is modify the original stack to look like a blocked
 961 * task so we can run backtrace on the original task.  Also mark the per cpu
 962 * stack as current to ensure that we use the correct task state, it also means
 963 * that we can do backtrace on the MCA/INIT handler code itself.
 964 */
 965
 966static struct task_struct *
 967ia64_mca_modify_original_stack(struct pt_regs *regs,
 968                const struct switch_stack *sw,
 969                struct ia64_sal_os_state *sos,
 970                const char *type)
 971{
 972        char *p;
 973        ia64_va va;
 974        extern char ia64_leave_kernel[];        /* Need asm address, not function descriptor */
 975        const struct pal_min_state_area *ms = sos->pal_min_state;
 976        struct task_struct *previous_current;
 977        struct pt_regs *old_regs;
 978        struct switch_stack *old_sw;
 979        unsigned size = sizeof(struct pt_regs) +
 980                        sizeof(struct switch_stack) + 16;
 981        unsigned long *old_bspstore, *old_bsp;
 982        unsigned long *new_bspstore, *new_bsp;
 983        unsigned long old_unat, old_rnat, new_rnat, nat;
 984        u64 slots, loadrs = regs->loadrs;
 985        u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
 986        u64 ar_bspstore = regs->ar_bspstore;
 987        u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
 988        const char *msg;
 989        int cpu = smp_processor_id();
 990
 991        previous_current = curr_task(cpu);
 992        ia64_set_curr_task(cpu, current);
 993        if ((p = strchr(current->comm, ' ')))
 994                *p = '\0';
 995
 996        /* Best effort attempt to cope with MCA/INIT delivered while in
 997         * physical mode.
 998         */
 999        regs->cr_ipsr = ms->pmsa_ipsr;
1000        if (ia64_psr(regs)->dt == 0) {
1001                va.l = r12;
1002                if (va.f.reg == 0) {
1003                        va.f.reg = 7;
1004                        r12 = va.l;
1005                }
1006                va.l = r13;
1007                if (va.f.reg == 0) {
1008                        va.f.reg = 7;
1009                        r13 = va.l;
1010                }
1011        }
1012        if (ia64_psr(regs)->rt == 0) {
1013                va.l = ar_bspstore;
1014                if (va.f.reg == 0) {
1015                        va.f.reg = 7;
1016                        ar_bspstore = va.l;
1017                }
1018                va.l = ar_bsp;
1019                if (va.f.reg == 0) {
1020                        va.f.reg = 7;
1021                        ar_bsp = va.l;
1022                }
1023        }
1024
1025        /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1026         * have been copied to the old stack, the old stack may fail the
1027         * validation tests below.  So ia64_old_stack() must restore the dirty
1028         * registers from the new stack.  The old and new bspstore probably
1029         * have different alignments, so loadrs calculated on the old bsp
1030         * cannot be used to restore from the new bsp.  Calculate a suitable
1031         * loadrs for the new stack and save it in the new pt_regs, where
1032         * ia64_old_stack() can get it.
1033         */
1034        old_bspstore = (unsigned long *)ar_bspstore;
1035        old_bsp = (unsigned long *)ar_bsp;
1036        slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1037        new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1038        new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1039        regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1040
1041        /* Verify the previous stack state before we change it */
1042        if (user_mode(regs)) {
1043                msg = "occurred in user space";
1044                /* previous_current is guaranteed to be valid when the task was
1045                 * in user space, so ...
1046                 */
1047                ia64_mca_modify_comm(previous_current);
1048                goto no_mod;
1049        }
1050
1051        if (r13 != sos->prev_IA64_KR_CURRENT) {
1052                msg = "inconsistent previous current and r13";
1053                goto no_mod;
1054        }
1055
1056        if (!mca_recover_range(ms->pmsa_iip)) {
1057                if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1058                        msg = "inconsistent r12 and r13";
1059                        goto no_mod;
1060                }
1061                if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1062                        msg = "inconsistent ar.bspstore and r13";
1063                        goto no_mod;
1064                }
1065                va.p = old_bspstore;
1066                if (va.f.reg < 5) {
1067                        msg = "old_bspstore is in the wrong region";
1068                        goto no_mod;
1069                }
1070                if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1071                        msg = "inconsistent ar.bsp and r13";
1072                        goto no_mod;
1073                }
1074                size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1075                if (ar_bspstore + size > r12) {
1076                        msg = "no room for blocked state";
1077                        goto no_mod;
1078                }
1079        }
1080
1081        ia64_mca_modify_comm(previous_current);
1082
1083        /* Make the original task look blocked.  First stack a struct pt_regs,
1084         * describing the state at the time of interrupt.  mca_asm.S built a
1085         * partial pt_regs, copy it and fill in the blanks using minstate.
1086         */
1087        p = (char *)r12 - sizeof(*regs);
1088        old_regs = (struct pt_regs *)p;
1089        memcpy(old_regs, regs, sizeof(*regs));
1090        old_regs->loadrs = loadrs;
1091        old_unat = old_regs->ar_unat;
1092        finish_pt_regs(old_regs, sos, &old_unat);
1093
1094        /* Next stack a struct switch_stack.  mca_asm.S built a partial
1095         * switch_stack, copy it and fill in the blanks using pt_regs and
1096         * minstate.
1097         *
1098         * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1099         * ar.pfs is set to 0.
1100         *
1101         * unwind.c::unw_unwind() does special processing for interrupt frames.
1102         * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1103         * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not
1104         * that this is documented, of course.  Set PRED_NON_SYSCALL in the
1105         * switch_stack on the original stack so it will unwind correctly when
1106         * unwind.c reads pt_regs.
1107         *
1108         * thread.ksp is updated to point to the synthesized switch_stack.
1109         */
1110        p -= sizeof(struct switch_stack);
1111        old_sw = (struct switch_stack *)p;
1112        memcpy(old_sw, sw, sizeof(*sw));
1113        old_sw->caller_unat = old_unat;
1114        old_sw->ar_fpsr = old_regs->ar_fpsr;
1115        copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1116        copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1117        copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1118        copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1119        old_sw->b0 = (u64)ia64_leave_kernel;
1120        old_sw->b1 = ms->pmsa_br1;
1121        old_sw->ar_pfs = 0;
1122        old_sw->ar_unat = old_unat;
1123        old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1124        previous_current->thread.ksp = (u64)p - 16;
1125
1126        /* Finally copy the original stack's registers back to its RBS.
1127         * Registers from ar.bspstore through ar.bsp at the time of the event
1128         * are in the current RBS, copy them back to the original stack.  The
1129         * copy must be done register by register because the original bspstore
1130         * and the current one have different alignments, so the saved RNAT
1131         * data occurs at different places.
1132         *
1133         * mca_asm does cover, so the old_bsp already includes all registers at
1134         * the time of MCA/INIT.  It also does flushrs, so all registers before
1135         * this function have been written to backing store on the MCA/INIT
1136         * stack.
1137         */
1138        new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1139        old_rnat = regs->ar_rnat;
1140        while (slots--) {
1141                if (ia64_rse_is_rnat_slot(new_bspstore)) {
1142                        new_rnat = ia64_get_rnat(new_bspstore++);
1143                }
1144                if (ia64_rse_is_rnat_slot(old_bspstore)) {
1145                        *old_bspstore++ = old_rnat;
1146                        old_rnat = 0;
1147                }
1148                nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1149                old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1150                old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1151                *old_bspstore++ = *new_bspstore++;
1152        }
1153        old_sw->ar_bspstore = (unsigned long)old_bspstore;
1154        old_sw->ar_rnat = old_rnat;
1155
1156        sos->prev_task = previous_current;
1157        return previous_current;
1158
1159no_mod:
1160        mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1161                        smp_processor_id(), type, msg);
1162        old_unat = regs->ar_unat;
1163        finish_pt_regs(regs, sos, &old_unat);
1164        return previous_current;
1165}
1166
1167/* The monarch/slave interaction is based on monarch_cpu and requires that all
1168 * slaves have entered rendezvous before the monarch leaves.  If any cpu has
1169 * not entered rendezvous yet then wait a bit.  The assumption is that any
1170 * slave that has not rendezvoused after a reasonable time is never going to do
1171 * so.  In this context, slave includes cpus that respond to the MCA rendezvous
1172 * interrupt, as well as cpus that receive the INIT slave event.
1173 */
1174
1175static void
1176ia64_wait_for_slaves(int monarch, const char *type)
1177{
1178        int c, i , wait;
1179
1180        /*
1181         * wait 5 seconds total for slaves (arbitrary)
1182         */
1183        for (i = 0; i < 5000; i++) {
1184                wait = 0;
1185                for_each_online_cpu(c) {
1186                        if (c == monarch)
1187                                continue;
1188                        if (ia64_mc_info.imi_rendez_checkin[c]
1189                                        == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
1190                                udelay(1000);           /* short wait */
1191                                wait = 1;
1192                                break;
1193                        }
1194                }
1195                if (!wait)
1196                        goto all_in;
1197        }
1198
1199        /*
1200         * Maybe slave(s) dead. Print buffered messages immediately.
1201         */
1202        ia64_mlogbuf_finish(0);
1203        mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1204        for_each_online_cpu(c) {
1205                if (c == monarch)
1206                        continue;
1207                if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1208                        mprintk(" %d", c);
1209        }
1210        mprintk("\n");
1211        return;
1212
1213all_in:
1214        mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1215        return;
1216}
1217
1218/*  mca_insert_tr
1219 *
1220 *  Switch rid when TR reload and needed!
1221 *  iord: 1: itr, 2: itr;
1222 *
1223*/
1224static void mca_insert_tr(u64 iord)
1225{
1226
1227        int i;
1228        u64 old_rr;
1229        struct ia64_tr_entry *p;
1230        unsigned long psr;
1231        int cpu = smp_processor_id();
1232
1233        if (!ia64_idtrs[cpu])
1234                return;
1235
1236        psr = ia64_clear_ic();
1237        for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1238                p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1239                if (p->pte & 0x1) {
1240                        old_rr = ia64_get_rr(p->ifa);
1241                        if (old_rr != p->rr) {
1242                                ia64_set_rr(p->ifa, p->rr);
1243                                ia64_srlz_d();
1244                        }
1245                        ia64_ptr(iord, p->ifa, p->itir >> 2);
1246                        ia64_srlz_i();
1247                        if (iord & 0x1) {
1248                                ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1249                                ia64_srlz_i();
1250                        }
1251                        if (iord & 0x2) {
1252                                ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1253                                ia64_srlz_i();
1254                        }
1255                        if (old_rr != p->rr) {
1256                                ia64_set_rr(p->ifa, old_rr);
1257                                ia64_srlz_d();
1258                        }
1259                }
1260        }
1261        ia64_set_psr(psr);
1262}
1263
1264/*
1265 * ia64_mca_handler
1266 *
1267 *      This is uncorrectable machine check handler called from OS_MCA
1268 *      dispatch code which is in turn called from SAL_CHECK().
1269 *      This is the place where the core of OS MCA handling is done.
1270 *      Right now the logs are extracted and displayed in a well-defined
1271 *      format. This handler code is supposed to be run only on the
1272 *      monarch processor. Once the monarch is done with MCA handling
1273 *      further MCA logging is enabled by clearing logs.
1274 *      Monarch also has the duty of sending wakeup-IPIs to pull the
1275 *      slave processors out of rendezvous spinloop.
1276 *
1277 *      If multiple processors call into OS_MCA, the first will become
1278 *      the monarch.  Subsequent cpus will be recorded in the mca_cpu
1279 *      bitmask.  After the first monarch has processed its MCA, it
1280 *      will wake up the next cpu in the mca_cpu bitmask and then go
1281 *      into the rendezvous loop.  When all processors have serviced
1282 *      their MCA, the last monarch frees up the rest of the processors.
1283 */
1284void
1285ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1286                 struct ia64_sal_os_state *sos)
1287{
1288        int recover, cpu = smp_processor_id();
1289        struct task_struct *previous_current;
1290        struct ia64_mca_notify_die nd =
1291                { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1292        static atomic_t mca_count;
1293        static cpumask_t mca_cpu;
1294
1295        if (atomic_add_return(1, &mca_count) == 1) {
1296                monarch_cpu = cpu;
1297                sos->monarch = 1;
1298        } else {
1299                cpumask_set_cpu(cpu, &mca_cpu);
1300                sos->monarch = 0;
1301        }
1302        mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1303                "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1304
1305        previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1306
1307        NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1308
1309        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_CONCURRENT_MCA;
1310        if (sos->monarch) {
1311                ia64_wait_for_slaves(cpu, "MCA");
1312
1313                /* Wakeup all the processors which are spinning in the
1314                 * rendezvous loop.  They will leave SAL, then spin in the OS
1315                 * with interrupts disabled until this monarch cpu leaves the
1316                 * MCA handler.  That gets control back to the OS so we can
1317                 * backtrace the other cpus, backtrace when spinning in SAL
1318                 * does not work.
1319                 */
1320                ia64_mca_wakeup_all();
1321        } else {
1322                while (cpumask_test_cpu(cpu, &mca_cpu))
1323                        cpu_relax();    /* spin until monarch wakes us */
1324        }
1325
1326        NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1327
1328        /* Get the MCA error record and log it */
1329        ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1330
1331        /* MCA error recovery */
1332        recover = (ia64_mca_ucmc_extension
1333                && ia64_mca_ucmc_extension(
1334                        IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1335                        sos));
1336
1337        if (recover) {
1338                sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1339                rh->severity = sal_log_severity_corrected;
1340                ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1341                sos->os_status = IA64_MCA_CORRECTED;
1342        } else {
1343                /* Dump buffered message to console */
1344                ia64_mlogbuf_finish(1);
1345        }
1346
1347        if (__this_cpu_read(ia64_mca_tr_reload)) {
1348                mca_insert_tr(0x1); /*Reload dynamic itrs*/
1349                mca_insert_tr(0x2); /*Reload dynamic itrs*/
1350        }
1351
1352        NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1353
1354        if (atomic_dec_return(&mca_count) > 0) {
1355                int i;
1356
1357                /* wake up the next monarch cpu,
1358                 * and put this cpu in the rendez loop.
1359                 */
1360                for_each_online_cpu(i) {
1361                        if (cpumask_test_cpu(i, &mca_cpu)) {
1362                                monarch_cpu = i;
1363                                cpumask_clear_cpu(i, &mca_cpu); /* wake next cpu */
1364                                while (monarch_cpu != -1)
1365                                        cpu_relax();    /* spin until last cpu leaves */
1366                                ia64_set_curr_task(cpu, previous_current);
1367                                ia64_mc_info.imi_rendez_checkin[cpu]
1368                                                = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1369                                return;
1370                        }
1371                }
1372        }
1373        ia64_set_curr_task(cpu, previous_current);
1374        ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1375        monarch_cpu = -1;       /* This frees the slaves and previous monarchs */
1376}
1377
1378static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1379static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1380
1381/*
1382 * ia64_mca_cmc_int_handler
1383 *
1384 *  This is corrected machine check interrupt handler.
1385 *      Right now the logs are extracted and displayed in a well-defined
1386 *      format.
1387 *
1388 * Inputs
1389 *      interrupt number
1390 *      client data arg ptr
1391 *
1392 * Outputs
1393 *      None
1394 */
1395static irqreturn_t
1396ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1397{
1398        static unsigned long    cmc_history[CMC_HISTORY_LENGTH];
1399        static int              index;
1400        static DEFINE_SPINLOCK(cmc_history_lock);
1401
1402        IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1403                       __func__, cmc_irq, smp_processor_id());
1404
1405        /* SAL spec states this should run w/ interrupts enabled */
1406        local_irq_enable();
1407
1408        spin_lock(&cmc_history_lock);
1409        if (!cmc_polling_enabled) {
1410                int i, count = 1; /* we know 1 happened now */
1411                unsigned long now = jiffies;
1412
1413                for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1414                        if (now - cmc_history[i] <= HZ)
1415                                count++;
1416                }
1417
1418                IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1419                if (count >= CMC_HISTORY_LENGTH) {
1420
1421                        cmc_polling_enabled = 1;
1422                        spin_unlock(&cmc_history_lock);
1423                        /* If we're being hit with CMC interrupts, we won't
1424                         * ever execute the schedule_work() below.  Need to
1425                         * disable CMC interrupts on this processor now.
1426                         */
1427                        ia64_mca_cmc_vector_disable(NULL);
1428                        schedule_work(&cmc_disable_work);
1429
1430                        /*
1431                         * Corrected errors will still be corrected, but
1432                         * make sure there's a log somewhere that indicates
1433                         * something is generating more than we can handle.
1434                         */
1435                        printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1436
1437                        mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1438
1439                        /* lock already released, get out now */
1440                        goto out;
1441                } else {
1442                        cmc_history[index++] = now;
1443                        if (index == CMC_HISTORY_LENGTH)
1444                                index = 0;
1445                }
1446        }
1447        spin_unlock(&cmc_history_lock);
1448out:
1449        /* Get the CMC error record and log it */
1450        ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1451
1452        local_irq_disable();
1453
1454        return IRQ_HANDLED;
1455}
1456
1457/*
1458 *  ia64_mca_cmc_int_caller
1459 *
1460 *      Triggered by sw interrupt from CMC polling routine.  Calls
1461 *      real interrupt handler and either triggers a sw interrupt
1462 *      on the next cpu or does cleanup at the end.
1463 *
1464 * Inputs
1465 *      interrupt number
1466 *      client data arg ptr
1467 * Outputs
1468 *      handled
1469 */
1470static irqreturn_t
1471ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1472{
1473        static int start_count = -1;
1474        unsigned int cpuid;
1475
1476        cpuid = smp_processor_id();
1477
1478        /* If first cpu, update count */
1479        if (start_count == -1)
1480                start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1481
1482        ia64_mca_cmc_int_handler(cmc_irq, arg);
1483
1484        cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1485
1486        if (cpuid < nr_cpu_ids) {
1487                ia64_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1488        } else {
1489                /* If no log record, switch out of polling mode */
1490                if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1491
1492                        printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1493                        schedule_work(&cmc_enable_work);
1494                        cmc_polling_enabled = 0;
1495
1496                } else {
1497
1498                        mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1499                }
1500
1501                start_count = -1;
1502        }
1503
1504        return IRQ_HANDLED;
1505}
1506
1507/*
1508 *  ia64_mca_cmc_poll
1509 *
1510 *      Poll for Corrected Machine Checks (CMCs)
1511 *
1512 * Inputs   :   dummy(unused)
1513 * Outputs  :   None
1514 *
1515 */
1516static void
1517ia64_mca_cmc_poll (struct timer_list *unused)
1518{
1519        /* Trigger a CMC interrupt cascade  */
1520        ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1521                                                        IA64_IPI_DM_INT, 0);
1522}
1523
1524/*
1525 *  ia64_mca_cpe_int_caller
1526 *
1527 *      Triggered by sw interrupt from CPE polling routine.  Calls
1528 *      real interrupt handler and either triggers a sw interrupt
1529 *      on the next cpu or does cleanup at the end.
1530 *
1531 * Inputs
1532 *      interrupt number
1533 *      client data arg ptr
1534 * Outputs
1535 *      handled
1536 */
1537static irqreturn_t
1538ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1539{
1540        static int start_count = -1;
1541        static int poll_time = MIN_CPE_POLL_INTERVAL;
1542        unsigned int cpuid;
1543
1544        cpuid = smp_processor_id();
1545
1546        /* If first cpu, update count */
1547        if (start_count == -1)
1548                start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1549
1550        ia64_mca_cpe_int_handler(cpe_irq, arg);
1551
1552        cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1553
1554        if (cpuid < NR_CPUS) {
1555                ia64_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1556        } else {
1557                /*
1558                 * If a log was recorded, increase our polling frequency,
1559                 * otherwise, backoff or return to interrupt mode.
1560                 */
1561                if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1562                        poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1563                } else if (cpe_vector < 0) {
1564                        poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1565                } else {
1566                        poll_time = MIN_CPE_POLL_INTERVAL;
1567
1568                        printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1569                        enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1570                        cpe_poll_enabled = 0;
1571                }
1572
1573                if (cpe_poll_enabled)
1574                        mod_timer(&cpe_poll_timer, jiffies + poll_time);
1575                start_count = -1;
1576        }
1577
1578        return IRQ_HANDLED;
1579}
1580
1581/*
1582 *  ia64_mca_cpe_poll
1583 *
1584 *      Poll for Corrected Platform Errors (CPEs), trigger interrupt
1585 *      on first cpu, from there it will trickle through all the cpus.
1586 *
1587 * Inputs   :   dummy(unused)
1588 * Outputs  :   None
1589 *
1590 */
1591static void
1592ia64_mca_cpe_poll (struct timer_list *unused)
1593{
1594        /* Trigger a CPE interrupt cascade  */
1595        ia64_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1596                                                        IA64_IPI_DM_INT, 0);
1597}
1598
1599static int
1600default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1601{
1602        int c;
1603        struct task_struct *g, *t;
1604        if (val != DIE_INIT_MONARCH_PROCESS)
1605                return NOTIFY_DONE;
1606#ifdef CONFIG_KEXEC
1607        if (atomic_read(&kdump_in_progress))
1608                return NOTIFY_DONE;
1609#endif
1610
1611        /*
1612         * FIXME: mlogbuf will brim over with INIT stack dumps.
1613         * To enable show_stack from INIT, we use oops_in_progress which should
1614         * be used in real oops. This would cause something wrong after INIT.
1615         */
1616        BREAK_LOGLEVEL(console_loglevel);
1617        ia64_mlogbuf_dump_from_init();
1618
1619        printk(KERN_ERR "Processes interrupted by INIT -");
1620        for_each_online_cpu(c) {
1621                struct ia64_sal_os_state *s;
1622                t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1623                s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1624                g = s->prev_task;
1625                if (g) {
1626                        if (g->pid)
1627                                printk(" %d", g->pid);
1628                        else
1629                                printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1630                }
1631        }
1632        printk("\n\n");
1633        if (read_trylock(&tasklist_lock)) {
1634                do_each_thread (g, t) {
1635                        printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1636                        show_stack(t, NULL, KERN_DEFAULT);
1637                } while_each_thread (g, t);
1638                read_unlock(&tasklist_lock);
1639        }
1640        /* FIXME: This will not restore zapped printk locks. */
1641        RESTORE_LOGLEVEL(console_loglevel);
1642        return NOTIFY_DONE;
1643}
1644
1645/*
1646 * C portion of the OS INIT handler
1647 *
1648 * Called from ia64_os_init_dispatch
1649 *
1650 * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for
1651 * this event.  This code is used for both monarch and slave INIT events, see
1652 * sos->monarch.
1653 *
1654 * All INIT events switch to the INIT stack and change the previous process to
1655 * blocked status.  If one of the INIT events is the monarch then we are
1656 * probably processing the nmi button/command.  Use the monarch cpu to dump all
1657 * the processes.  The slave INIT events all spin until the monarch cpu
1658 * returns.  We can also get INIT slave events for MCA, in which case the MCA
1659 * process is the monarch.
1660 */
1661
1662void
1663ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1664                  struct ia64_sal_os_state *sos)
1665{
1666        static atomic_t slaves;
1667        static atomic_t monarchs;
1668        struct task_struct *previous_current;
1669        int cpu = smp_processor_id();
1670        struct ia64_mca_notify_die nd =
1671                { .sos = sos, .monarch_cpu = &monarch_cpu };
1672
1673        NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1674
1675        mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1676                sos->proc_state_param, cpu, sos->monarch);
1677        salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1678
1679        previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1680        sos->os_status = IA64_INIT_RESUME;
1681
1682        /* FIXME: Workaround for broken proms that drive all INIT events as
1683         * slaves.  The last slave that enters is promoted to be a monarch.
1684         * Remove this code in September 2006, that gives platforms a year to
1685         * fix their proms and get their customers updated.
1686         */
1687        if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1688                mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1689                        __func__, cpu);
1690                atomic_dec(&slaves);
1691                sos->monarch = 1;
1692        }
1693
1694        /* FIXME: Workaround for broken proms that drive all INIT events as
1695         * monarchs.  Second and subsequent monarchs are demoted to slaves.
1696         * Remove this code in September 2006, that gives platforms a year to
1697         * fix their proms and get their customers updated.
1698         */
1699        if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1700                mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1701                               __func__, cpu);
1702                atomic_dec(&monarchs);
1703                sos->monarch = 0;
1704        }
1705
1706        if (!sos->monarch) {
1707                ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1708
1709#ifdef CONFIG_KEXEC
1710                while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1711                        udelay(1000);
1712#else
1713                while (monarch_cpu == -1)
1714                        cpu_relax();    /* spin until monarch enters */
1715#endif
1716
1717                NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1718                NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1719
1720#ifdef CONFIG_KEXEC
1721                while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1722                        udelay(1000);
1723#else
1724                while (monarch_cpu != -1)
1725                        cpu_relax();    /* spin until monarch leaves */
1726#endif
1727
1728                NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1729
1730                mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1731                ia64_set_curr_task(cpu, previous_current);
1732                ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1733                atomic_dec(&slaves);
1734                return;
1735        }
1736
1737        monarch_cpu = cpu;
1738        NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1739
1740        /*
1741         * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1742         * generated via the BMC's command-line interface, but since the console is on the
1743         * same serial line, the user will need some time to switch out of the BMC before
1744         * the dump begins.
1745         */
1746        mprintk("Delaying for 5 seconds...\n");
1747        udelay(5*1000000);
1748        ia64_wait_for_slaves(cpu, "INIT");
1749        /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1750         * to default_monarch_init_process() above and just print all the
1751         * tasks.
1752         */
1753        NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1754        NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1755
1756        mprintk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu);
1757        atomic_dec(&monarchs);
1758        ia64_set_curr_task(cpu, previous_current);
1759        monarch_cpu = -1;
1760        return;
1761}
1762
1763static int __init
1764ia64_mca_disable_cpe_polling(char *str)
1765{
1766        cpe_poll_enabled = 0;
1767        return 1;
1768}
1769
1770__setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1771
1772/* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on
1773 * these stacks can never sleep, they cannot return from the kernel to user
1774 * space, they do not appear in a normal ps listing.  So there is no need to
1775 * format most of the fields.
1776 */
1777
1778static void
1779format_mca_init_stack(void *mca_data, unsigned long offset,
1780                const char *type, int cpu)
1781{
1782        struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1783        struct thread_info *ti;
1784        memset(p, 0, KERNEL_STACK_SIZE);
1785        ti = task_thread_info(p);
1786        ti->flags = _TIF_MCA_INIT;
1787        ti->preempt_count = 1;
1788        ti->task = p;
1789        ti->cpu = cpu;
1790        p->stack = ti;
1791        p->__state = TASK_UNINTERRUPTIBLE;
1792        cpumask_set_cpu(cpu, &p->cpus_mask);
1793        INIT_LIST_HEAD(&p->tasks);
1794        p->parent = p->real_parent = p->group_leader = p;
1795        INIT_LIST_HEAD(&p->children);
1796        INIT_LIST_HEAD(&p->sibling);
1797        strncpy(p->comm, type, sizeof(p->comm)-1);
1798}
1799
1800/* Caller prevents this from being called after init */
1801static void * __ref mca_bootmem(void)
1802{
1803        return memblock_alloc(sizeof(struct ia64_mca_cpu), KERNEL_STACK_SIZE);
1804}
1805
1806/* Do per-CPU MCA-related initialization.  */
1807void
1808ia64_mca_cpu_init(void *cpu_data)
1809{
1810        void *pal_vaddr;
1811        void *data;
1812        long sz = sizeof(struct ia64_mca_cpu);
1813        int cpu = smp_processor_id();
1814        static int first_time = 1;
1815
1816        /*
1817         * Structure will already be allocated if cpu has been online,
1818         * then offlined.
1819         */
1820        if (__per_cpu_mca[cpu]) {
1821                data = __va(__per_cpu_mca[cpu]);
1822        } else {
1823                if (first_time) {
1824                        data = mca_bootmem();
1825                        first_time = 0;
1826                } else
1827                        data = (void *)__get_free_pages(GFP_ATOMIC,
1828                                                        get_order(sz));
1829                if (!data)
1830                        panic("Could not allocate MCA memory for cpu %d\n",
1831                                        cpu);
1832        }
1833        format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1834                "MCA", cpu);
1835        format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1836                "INIT", cpu);
1837        __this_cpu_write(ia64_mca_data, (__per_cpu_mca[cpu] = __pa(data)));
1838
1839        /*
1840         * Stash away a copy of the PTE needed to map the per-CPU page.
1841         * We may need it during MCA recovery.
1842         */
1843        __this_cpu_write(ia64_mca_per_cpu_pte,
1844                pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)));
1845
1846        /*
1847         * Also, stash away a copy of the PAL address and the PTE
1848         * needed to map it.
1849         */
1850        pal_vaddr = efi_get_pal_addr();
1851        if (!pal_vaddr)
1852                return;
1853        __this_cpu_write(ia64_mca_pal_base,
1854                GRANULEROUNDDOWN((unsigned long) pal_vaddr));
1855        __this_cpu_write(ia64_mca_pal_pte, pte_val(mk_pte_phys(__pa(pal_vaddr),
1856                                                              PAGE_KERNEL)));
1857}
1858
1859static int ia64_mca_cpu_online(unsigned int cpu)
1860{
1861        unsigned long flags;
1862
1863        local_irq_save(flags);
1864        if (!cmc_polling_enabled)
1865                ia64_mca_cmc_vector_enable(NULL);
1866        local_irq_restore(flags);
1867        return 0;
1868}
1869
1870/*
1871 * ia64_mca_init
1872 *
1873 *  Do all the system level mca specific initialization.
1874 *
1875 *      1. Register spinloop and wakeup request interrupt vectors
1876 *
1877 *      2. Register OS_MCA handler entry point
1878 *
1879 *      3. Register OS_INIT handler entry point
1880 *
1881 *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1882 *
1883 *  Note that this initialization is done very early before some kernel
1884 *  services are available.
1885 *
1886 *  Inputs  :   None
1887 *
1888 *  Outputs :   None
1889 */
1890void __init
1891ia64_mca_init(void)
1892{
1893        ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1894        ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1895        ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1896        int i;
1897        long rc;
1898        struct ia64_sal_retval isrv;
1899        unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1900        static struct notifier_block default_init_monarch_nb = {
1901                .notifier_call = default_monarch_init_process,
1902                .priority = 0/* we need to notified last */
1903        };
1904
1905        IA64_MCA_DEBUG("%s: begin\n", __func__);
1906
1907        /* Clear the Rendez checkin flag for all cpus */
1908        for(i = 0 ; i < NR_CPUS; i++)
1909                ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1910
1911        /*
1912         * Register the rendezvous spinloop and wakeup mechanism with SAL
1913         */
1914
1915        /* Register the rendezvous interrupt vector with SAL */
1916        while (1) {
1917                isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1918                                              SAL_MC_PARAM_MECHANISM_INT,
1919                                              IA64_MCA_RENDEZ_VECTOR,
1920                                              timeout,
1921                                              SAL_MC_PARAM_RZ_ALWAYS);
1922                rc = isrv.status;
1923                if (rc == 0)
1924                        break;
1925                if (rc == -2) {
1926                        printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1927                                "%ld to %ld milliseconds\n", timeout, isrv.v0);
1928                        timeout = isrv.v0;
1929                        NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1930                        continue;
1931                }
1932                printk(KERN_ERR "Failed to register rendezvous interrupt "
1933                       "with SAL (status %ld)\n", rc);
1934                return;
1935        }
1936
1937        /* Register the wakeup interrupt vector with SAL */
1938        isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1939                                      SAL_MC_PARAM_MECHANISM_INT,
1940                                      IA64_MCA_WAKEUP_VECTOR,
1941                                      0, 0);
1942        rc = isrv.status;
1943        if (rc) {
1944                printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1945                       "(status %ld)\n", rc);
1946                return;
1947        }
1948
1949        IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
1950
1951        ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp);
1952        /*
1953         * XXX - disable SAL checksum by setting size to 0; should be
1954         *      ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1955         */
1956        ia64_mc_info.imi_mca_handler_size       = 0;
1957
1958        /* Register the os mca handler with SAL */
1959        if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1960                                       ia64_mc_info.imi_mca_handler,
1961                                       ia64_tpa(mca_hldlr_ptr->gp),
1962                                       ia64_mc_info.imi_mca_handler_size,
1963                                       0, 0, 0)))
1964        {
1965                printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1966                       "(status %ld)\n", rc);
1967                return;
1968        }
1969
1970        IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
1971                       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1972
1973        /*
1974         * XXX - disable SAL checksum by setting size to 0, should be
1975         * size of the actual init handler in mca_asm.S.
1976         */
1977        ia64_mc_info.imi_monarch_init_handler           = ia64_tpa(init_hldlr_ptr_monarch->fp);
1978        ia64_mc_info.imi_monarch_init_handler_size      = 0;
1979        ia64_mc_info.imi_slave_init_handler             = ia64_tpa(init_hldlr_ptr_slave->fp);
1980        ia64_mc_info.imi_slave_init_handler_size        = 0;
1981
1982        IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
1983                       ia64_mc_info.imi_monarch_init_handler);
1984
1985        /* Register the os init handler with SAL */
1986        if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1987                                       ia64_mc_info.imi_monarch_init_handler,
1988                                       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1989                                       ia64_mc_info.imi_monarch_init_handler_size,
1990                                       ia64_mc_info.imi_slave_init_handler,
1991                                       ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1992                                       ia64_mc_info.imi_slave_init_handler_size)))
1993        {
1994                printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1995                       "(status %ld)\n", rc);
1996                return;
1997        }
1998        if (register_die_notifier(&default_init_monarch_nb)) {
1999                printk(KERN_ERR "Failed to register default monarch INIT process\n");
2000                return;
2001        }
2002
2003        IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2004
2005        /* Initialize the areas set aside by the OS to buffer the
2006         * platform/processor error states for MCA/INIT/CMC
2007         * handling.
2008         */
2009        ia64_log_init(SAL_INFO_TYPE_MCA);
2010        ia64_log_init(SAL_INFO_TYPE_INIT);
2011        ia64_log_init(SAL_INFO_TYPE_CMC);
2012        ia64_log_init(SAL_INFO_TYPE_CPE);
2013
2014        mca_init = 1;
2015        printk(KERN_INFO "MCA related initialization done\n");
2016}
2017
2018
2019/*
2020 * These pieces cannot be done in ia64_mca_init() because it is called before
2021 * early_irq_init() which would wipe out our percpu irq registrations. But we
2022 * cannot leave them until ia64_mca_late_init() because by then all the other
2023 * processors have been brought online and have set their own CMC vectors to
2024 * point at a non-existant action. Called from arch_early_irq_init().
2025 */
2026void __init ia64_mca_irq_init(void)
2027{
2028        /*
2029         *  Configure the CMCI/P vector and handler. Interrupts for CMC are
2030         *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2031         */
2032        register_percpu_irq(IA64_CMC_VECTOR, ia64_mca_cmc_int_handler, 0,
2033                            "cmc_hndlr");
2034        register_percpu_irq(IA64_CMCP_VECTOR, ia64_mca_cmc_int_caller, 0,
2035                            "cmc_poll");
2036        ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */
2037
2038        /* Setup the MCA rendezvous interrupt vector */
2039        register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, ia64_mca_rendez_int_handler,
2040                            0, "mca_rdzv");
2041
2042        /* Setup the MCA wakeup interrupt vector */
2043        register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, ia64_mca_wakeup_int_handler,
2044                            0, "mca_wkup");
2045
2046        /* Setup the CPEI/P handler */
2047        register_percpu_irq(IA64_CPEP_VECTOR, ia64_mca_cpe_int_caller, 0,
2048                            "cpe_poll");
2049}
2050
2051/*
2052 * ia64_mca_late_init
2053 *
2054 *      Opportunity to setup things that require initialization later
2055 *      than ia64_mca_init.  Setup a timer to poll for CPEs if the
2056 *      platform doesn't support an interrupt driven mechanism.
2057 *
2058 *  Inputs  :   None
2059 *  Outputs :   Status
2060 */
2061static int __init
2062ia64_mca_late_init(void)
2063{
2064        if (!mca_init)
2065                return 0;
2066
2067        /* Setup the CMCI/P vector and handler */
2068        timer_setup(&cmc_poll_timer, ia64_mca_cmc_poll, 0);
2069
2070        /* Unmask/enable the vector */
2071        cmc_polling_enabled = 0;
2072        cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/mca:online",
2073                          ia64_mca_cpu_online, NULL);
2074        IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2075
2076        /* Setup the CPEI/P vector and handler */
2077        cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2078        timer_setup(&cpe_poll_timer, ia64_mca_cpe_poll, 0);
2079
2080        {
2081                unsigned int irq;
2082
2083                if (cpe_vector >= 0) {
2084                        /* If platform supports CPEI, enable the irq. */
2085                        irq = local_vector_to_irq(cpe_vector);
2086                        if (irq > 0) {
2087                                cpe_poll_enabled = 0;
2088                                irq_set_status_flags(irq, IRQ_PER_CPU);
2089                                if (request_irq(irq, ia64_mca_cpe_int_handler,
2090                                                0, "cpe_hndlr", NULL))
2091                                        pr_err("Failed to register cpe_hndlr interrupt\n");
2092                                ia64_cpe_irq = irq;
2093                                ia64_mca_register_cpev(cpe_vector);
2094                                IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2095                                        __func__);
2096                                return 0;
2097                        }
2098                        printk(KERN_ERR "%s: Failed to find irq for CPE "
2099                                        "interrupt handler, vector %d\n",
2100                                        __func__, cpe_vector);
2101                }
2102                /* If platform doesn't support CPEI, get the timer going. */
2103                if (cpe_poll_enabled) {
2104                        ia64_mca_cpe_poll(0UL);
2105                        IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2106                }
2107        }
2108
2109        return 0;
2110}
2111
2112device_initcall(ia64_mca_late_init);
2113