linux/drivers/pwm/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Generic pwmlib implementation
   4 *
   5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   6 * Copyright (C) 2011-2012 Avionic Design GmbH
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/module.h>
  11#include <linux/pwm.h>
  12#include <linux/radix-tree.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/debugfs.h>
  19#include <linux/seq_file.h>
  20
  21#include <dt-bindings/pwm/pwm.h>
  22
  23#define CREATE_TRACE_POINTS
  24#include <trace/events/pwm.h>
  25
  26#define MAX_PWMS 1024
  27
  28static DEFINE_MUTEX(pwm_lookup_lock);
  29static LIST_HEAD(pwm_lookup_list);
  30static DEFINE_MUTEX(pwm_lock);
  31static LIST_HEAD(pwm_chips);
  32static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  33static RADIX_TREE(pwm_tree, GFP_KERNEL);
  34
  35static struct pwm_device *pwm_to_device(unsigned int pwm)
  36{
  37        return radix_tree_lookup(&pwm_tree, pwm);
  38}
  39
  40static int alloc_pwms(unsigned int count)
  41{
  42        unsigned int start;
  43
  44        start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
  45                                           count, 0);
  46
  47        if (start + count > MAX_PWMS)
  48                return -ENOSPC;
  49
  50        return start;
  51}
  52
  53static void free_pwms(struct pwm_chip *chip)
  54{
  55        unsigned int i;
  56
  57        for (i = 0; i < chip->npwm; i++) {
  58                struct pwm_device *pwm = &chip->pwms[i];
  59
  60                radix_tree_delete(&pwm_tree, pwm->pwm);
  61        }
  62
  63        bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  64
  65        kfree(chip->pwms);
  66        chip->pwms = NULL;
  67}
  68
  69static struct pwm_chip *pwmchip_find_by_name(const char *name)
  70{
  71        struct pwm_chip *chip;
  72
  73        if (!name)
  74                return NULL;
  75
  76        mutex_lock(&pwm_lock);
  77
  78        list_for_each_entry(chip, &pwm_chips, list) {
  79                const char *chip_name = dev_name(chip->dev);
  80
  81                if (chip_name && strcmp(chip_name, name) == 0) {
  82                        mutex_unlock(&pwm_lock);
  83                        return chip;
  84                }
  85        }
  86
  87        mutex_unlock(&pwm_lock);
  88
  89        return NULL;
  90}
  91
  92static int pwm_device_request(struct pwm_device *pwm, const char *label)
  93{
  94        int err;
  95
  96        if (test_bit(PWMF_REQUESTED, &pwm->flags))
  97                return -EBUSY;
  98
  99        if (!try_module_get(pwm->chip->ops->owner))
 100                return -ENODEV;
 101
 102        if (pwm->chip->ops->request) {
 103                err = pwm->chip->ops->request(pwm->chip, pwm);
 104                if (err) {
 105                        module_put(pwm->chip->ops->owner);
 106                        return err;
 107                }
 108        }
 109
 110        if (pwm->chip->ops->get_state) {
 111                pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
 112                trace_pwm_get(pwm, &pwm->state);
 113
 114                if (IS_ENABLED(CONFIG_PWM_DEBUG))
 115                        pwm->last = pwm->state;
 116        }
 117
 118        set_bit(PWMF_REQUESTED, &pwm->flags);
 119        pwm->label = label;
 120
 121        return 0;
 122}
 123
 124struct pwm_device *
 125of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 126{
 127        struct pwm_device *pwm;
 128
 129        if (pc->of_pwm_n_cells < 2)
 130                return ERR_PTR(-EINVAL);
 131
 132        /* flags in the third cell are optional */
 133        if (args->args_count < 2)
 134                return ERR_PTR(-EINVAL);
 135
 136        if (args->args[0] >= pc->npwm)
 137                return ERR_PTR(-EINVAL);
 138
 139        pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 140        if (IS_ERR(pwm))
 141                return pwm;
 142
 143        pwm->args.period = args->args[1];
 144        pwm->args.polarity = PWM_POLARITY_NORMAL;
 145
 146        if (pc->of_pwm_n_cells >= 3) {
 147                if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 148                        pwm->args.polarity = PWM_POLARITY_INVERSED;
 149        }
 150
 151        return pwm;
 152}
 153EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 154
 155static void of_pwmchip_add(struct pwm_chip *chip)
 156{
 157        if (!chip->dev || !chip->dev->of_node)
 158                return;
 159
 160        if (!chip->of_xlate) {
 161                u32 pwm_cells;
 162
 163                if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
 164                                         &pwm_cells))
 165                        pwm_cells = 2;
 166
 167                chip->of_xlate = of_pwm_xlate_with_flags;
 168                chip->of_pwm_n_cells = pwm_cells;
 169        }
 170
 171        of_node_get(chip->dev->of_node);
 172}
 173
 174static void of_pwmchip_remove(struct pwm_chip *chip)
 175{
 176        if (chip->dev)
 177                of_node_put(chip->dev->of_node);
 178}
 179
 180/**
 181 * pwm_set_chip_data() - set private chip data for a PWM
 182 * @pwm: PWM device
 183 * @data: pointer to chip-specific data
 184 *
 185 * Returns: 0 on success or a negative error code on failure.
 186 */
 187int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 188{
 189        if (!pwm)
 190                return -EINVAL;
 191
 192        pwm->chip_data = data;
 193
 194        return 0;
 195}
 196EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 197
 198/**
 199 * pwm_get_chip_data() - get private chip data for a PWM
 200 * @pwm: PWM device
 201 *
 202 * Returns: A pointer to the chip-private data for the PWM device.
 203 */
 204void *pwm_get_chip_data(struct pwm_device *pwm)
 205{
 206        return pwm ? pwm->chip_data : NULL;
 207}
 208EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 209
 210static bool pwm_ops_check(const struct pwm_chip *chip)
 211{
 212
 213        const struct pwm_ops *ops = chip->ops;
 214
 215        /* driver supports legacy, non-atomic operation */
 216        if (ops->config && ops->enable && ops->disable) {
 217                if (IS_ENABLED(CONFIG_PWM_DEBUG))
 218                        dev_warn(chip->dev,
 219                                 "Driver needs updating to atomic API\n");
 220
 221                return true;
 222        }
 223
 224        if (!ops->apply)
 225                return false;
 226
 227        if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
 228                dev_warn(chip->dev,
 229                         "Please implement the .get_state() callback\n");
 230
 231        return true;
 232}
 233
 234/**
 235 * pwmchip_add() - register a new PWM chip
 236 * @chip: the PWM chip to add
 237 *
 238 * Register a new PWM chip.
 239 *
 240 * Returns: 0 on success or a negative error code on failure.
 241 */
 242int pwmchip_add(struct pwm_chip *chip)
 243{
 244        struct pwm_device *pwm;
 245        unsigned int i;
 246        int ret;
 247
 248        if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 249                return -EINVAL;
 250
 251        if (!pwm_ops_check(chip))
 252                return -EINVAL;
 253
 254        mutex_lock(&pwm_lock);
 255
 256        ret = alloc_pwms(chip->npwm);
 257        if (ret < 0)
 258                goto out;
 259
 260        chip->base = ret;
 261
 262        chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 263        if (!chip->pwms) {
 264                ret = -ENOMEM;
 265                goto out;
 266        }
 267
 268        for (i = 0; i < chip->npwm; i++) {
 269                pwm = &chip->pwms[i];
 270
 271                pwm->chip = chip;
 272                pwm->pwm = chip->base + i;
 273                pwm->hwpwm = i;
 274
 275                radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 276        }
 277
 278        bitmap_set(allocated_pwms, chip->base, chip->npwm);
 279
 280        INIT_LIST_HEAD(&chip->list);
 281        list_add(&chip->list, &pwm_chips);
 282
 283        ret = 0;
 284
 285        if (IS_ENABLED(CONFIG_OF))
 286                of_pwmchip_add(chip);
 287
 288out:
 289        mutex_unlock(&pwm_lock);
 290
 291        if (!ret)
 292                pwmchip_sysfs_export(chip);
 293
 294        return ret;
 295}
 296EXPORT_SYMBOL_GPL(pwmchip_add);
 297
 298/**
 299 * pwmchip_remove() - remove a PWM chip
 300 * @chip: the PWM chip to remove
 301 *
 302 * Removes a PWM chip. This function may return busy if the PWM chip provides
 303 * a PWM device that is still requested.
 304 *
 305 * Returns: 0 on success or a negative error code on failure.
 306 */
 307int pwmchip_remove(struct pwm_chip *chip)
 308{
 309        pwmchip_sysfs_unexport(chip);
 310
 311        mutex_lock(&pwm_lock);
 312
 313        list_del_init(&chip->list);
 314
 315        if (IS_ENABLED(CONFIG_OF))
 316                of_pwmchip_remove(chip);
 317
 318        free_pwms(chip);
 319
 320        mutex_unlock(&pwm_lock);
 321
 322        return 0;
 323}
 324EXPORT_SYMBOL_GPL(pwmchip_remove);
 325
 326static void devm_pwmchip_remove(void *data)
 327{
 328        struct pwm_chip *chip = data;
 329
 330        pwmchip_remove(chip);
 331}
 332
 333int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
 334{
 335        int ret;
 336
 337        ret = pwmchip_add(chip);
 338        if (ret)
 339                return ret;
 340
 341        return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
 342}
 343EXPORT_SYMBOL_GPL(devm_pwmchip_add);
 344
 345/**
 346 * pwm_request() - request a PWM device
 347 * @pwm: global PWM device index
 348 * @label: PWM device label
 349 *
 350 * This function is deprecated, use pwm_get() instead.
 351 *
 352 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 353 * failure.
 354 */
 355struct pwm_device *pwm_request(int pwm, const char *label)
 356{
 357        struct pwm_device *dev;
 358        int err;
 359
 360        if (pwm < 0 || pwm >= MAX_PWMS)
 361                return ERR_PTR(-EINVAL);
 362
 363        mutex_lock(&pwm_lock);
 364
 365        dev = pwm_to_device(pwm);
 366        if (!dev) {
 367                dev = ERR_PTR(-EPROBE_DEFER);
 368                goto out;
 369        }
 370
 371        err = pwm_device_request(dev, label);
 372        if (err < 0)
 373                dev = ERR_PTR(err);
 374
 375out:
 376        mutex_unlock(&pwm_lock);
 377
 378        return dev;
 379}
 380EXPORT_SYMBOL_GPL(pwm_request);
 381
 382/**
 383 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 384 * @chip: PWM chip
 385 * @index: per-chip index of the PWM to request
 386 * @label: a literal description string of this PWM
 387 *
 388 * Returns: A pointer to the PWM device at the given index of the given PWM
 389 * chip. A negative error code is returned if the index is not valid for the
 390 * specified PWM chip or if the PWM device cannot be requested.
 391 */
 392struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 393                                         unsigned int index,
 394                                         const char *label)
 395{
 396        struct pwm_device *pwm;
 397        int err;
 398
 399        if (!chip || index >= chip->npwm)
 400                return ERR_PTR(-EINVAL);
 401
 402        mutex_lock(&pwm_lock);
 403        pwm = &chip->pwms[index];
 404
 405        err = pwm_device_request(pwm, label);
 406        if (err < 0)
 407                pwm = ERR_PTR(err);
 408
 409        mutex_unlock(&pwm_lock);
 410        return pwm;
 411}
 412EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 413
 414/**
 415 * pwm_free() - free a PWM device
 416 * @pwm: PWM device
 417 *
 418 * This function is deprecated, use pwm_put() instead.
 419 */
 420void pwm_free(struct pwm_device *pwm)
 421{
 422        pwm_put(pwm);
 423}
 424EXPORT_SYMBOL_GPL(pwm_free);
 425
 426static void pwm_apply_state_debug(struct pwm_device *pwm,
 427                                  const struct pwm_state *state)
 428{
 429        struct pwm_state *last = &pwm->last;
 430        struct pwm_chip *chip = pwm->chip;
 431        struct pwm_state s1, s2;
 432        int err;
 433
 434        if (!IS_ENABLED(CONFIG_PWM_DEBUG))
 435                return;
 436
 437        /* No reasonable diagnosis possible without .get_state() */
 438        if (!chip->ops->get_state)
 439                return;
 440
 441        /*
 442         * *state was just applied. Read out the hardware state and do some
 443         * checks.
 444         */
 445
 446        chip->ops->get_state(chip, pwm, &s1);
 447        trace_pwm_get(pwm, &s1);
 448
 449        /*
 450         * The lowlevel driver either ignored .polarity (which is a bug) or as
 451         * best effort inverted .polarity and fixed .duty_cycle respectively.
 452         * Undo this inversion and fixup for further tests.
 453         */
 454        if (s1.enabled && s1.polarity != state->polarity) {
 455                s2.polarity = state->polarity;
 456                s2.duty_cycle = s1.period - s1.duty_cycle;
 457                s2.period = s1.period;
 458                s2.enabled = s1.enabled;
 459        } else {
 460                s2 = s1;
 461        }
 462
 463        if (s2.polarity != state->polarity &&
 464            state->duty_cycle < state->period)
 465                dev_warn(chip->dev, ".apply ignored .polarity\n");
 466
 467        if (state->enabled &&
 468            last->polarity == state->polarity &&
 469            last->period > s2.period &&
 470            last->period <= state->period)
 471                dev_warn(chip->dev,
 472                         ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
 473                         state->period, s2.period, last->period);
 474
 475        if (state->enabled && state->period < s2.period)
 476                dev_warn(chip->dev,
 477                         ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
 478                         state->period, s2.period);
 479
 480        if (state->enabled &&
 481            last->polarity == state->polarity &&
 482            last->period == s2.period &&
 483            last->duty_cycle > s2.duty_cycle &&
 484            last->duty_cycle <= state->duty_cycle)
 485                dev_warn(chip->dev,
 486                         ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
 487                         state->duty_cycle, state->period,
 488                         s2.duty_cycle, s2.period,
 489                         last->duty_cycle, last->period);
 490
 491        if (state->enabled && state->duty_cycle < s2.duty_cycle)
 492                dev_warn(chip->dev,
 493                         ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
 494                         state->duty_cycle, state->period,
 495                         s2.duty_cycle, s2.period);
 496
 497        if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
 498                dev_warn(chip->dev,
 499                         "requested disabled, but yielded enabled with duty > 0\n");
 500
 501        /* reapply the state that the driver reported being configured. */
 502        err = chip->ops->apply(chip, pwm, &s1);
 503        if (err) {
 504                *last = s1;
 505                dev_err(chip->dev, "failed to reapply current setting\n");
 506                return;
 507        }
 508
 509        trace_pwm_apply(pwm, &s1);
 510
 511        chip->ops->get_state(chip, pwm, last);
 512        trace_pwm_get(pwm, last);
 513
 514        /* reapplication of the current state should give an exact match */
 515        if (s1.enabled != last->enabled ||
 516            s1.polarity != last->polarity ||
 517            (s1.enabled && s1.period != last->period) ||
 518            (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
 519                dev_err(chip->dev,
 520                        ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
 521                        s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
 522                        last->enabled, last->polarity, last->duty_cycle,
 523                        last->period);
 524        }
 525}
 526
 527/**
 528 * pwm_apply_state() - atomically apply a new state to a PWM device
 529 * @pwm: PWM device
 530 * @state: new state to apply
 531 */
 532int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
 533{
 534        struct pwm_chip *chip;
 535        int err;
 536
 537        if (!pwm || !state || !state->period ||
 538            state->duty_cycle > state->period)
 539                return -EINVAL;
 540
 541        chip = pwm->chip;
 542
 543        if (state->period == pwm->state.period &&
 544            state->duty_cycle == pwm->state.duty_cycle &&
 545            state->polarity == pwm->state.polarity &&
 546            state->enabled == pwm->state.enabled &&
 547            state->usage_power == pwm->state.usage_power)
 548                return 0;
 549
 550        if (chip->ops->apply) {
 551                err = chip->ops->apply(chip, pwm, state);
 552                if (err)
 553                        return err;
 554
 555                trace_pwm_apply(pwm, state);
 556
 557                pwm->state = *state;
 558
 559                /*
 560                 * only do this after pwm->state was applied as some
 561                 * implementations of .get_state depend on this
 562                 */
 563                pwm_apply_state_debug(pwm, state);
 564        } else {
 565                /*
 566                 * FIXME: restore the initial state in case of error.
 567                 */
 568                if (state->polarity != pwm->state.polarity) {
 569                        if (!chip->ops->set_polarity)
 570                                return -EINVAL;
 571
 572                        /*
 573                         * Changing the polarity of a running PWM is
 574                         * only allowed when the PWM driver implements
 575                         * ->apply().
 576                         */
 577                        if (pwm->state.enabled) {
 578                                chip->ops->disable(chip, pwm);
 579                                pwm->state.enabled = false;
 580                        }
 581
 582                        err = chip->ops->set_polarity(chip, pwm,
 583                                                      state->polarity);
 584                        if (err)
 585                                return err;
 586
 587                        pwm->state.polarity = state->polarity;
 588                }
 589
 590                if (state->period != pwm->state.period ||
 591                    state->duty_cycle != pwm->state.duty_cycle) {
 592                        err = chip->ops->config(pwm->chip, pwm,
 593                                                state->duty_cycle,
 594                                                state->period);
 595                        if (err)
 596                                return err;
 597
 598                        pwm->state.duty_cycle = state->duty_cycle;
 599                        pwm->state.period = state->period;
 600                }
 601
 602                if (state->enabled != pwm->state.enabled) {
 603                        if (state->enabled) {
 604                                err = chip->ops->enable(chip, pwm);
 605                                if (err)
 606                                        return err;
 607                        } else {
 608                                chip->ops->disable(chip, pwm);
 609                        }
 610
 611                        pwm->state.enabled = state->enabled;
 612                }
 613        }
 614
 615        return 0;
 616}
 617EXPORT_SYMBOL_GPL(pwm_apply_state);
 618
 619/**
 620 * pwm_capture() - capture and report a PWM signal
 621 * @pwm: PWM device
 622 * @result: structure to fill with capture result
 623 * @timeout: time to wait, in milliseconds, before giving up on capture
 624 *
 625 * Returns: 0 on success or a negative error code on failure.
 626 */
 627int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 628                unsigned long timeout)
 629{
 630        int err;
 631
 632        if (!pwm || !pwm->chip->ops)
 633                return -EINVAL;
 634
 635        if (!pwm->chip->ops->capture)
 636                return -ENOSYS;
 637
 638        mutex_lock(&pwm_lock);
 639        err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 640        mutex_unlock(&pwm_lock);
 641
 642        return err;
 643}
 644EXPORT_SYMBOL_GPL(pwm_capture);
 645
 646/**
 647 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 648 * @pwm: PWM device
 649 *
 650 * This function will adjust the PWM config to the PWM arguments provided
 651 * by the DT or PWM lookup table. This is particularly useful to adapt
 652 * the bootloader config to the Linux one.
 653 */
 654int pwm_adjust_config(struct pwm_device *pwm)
 655{
 656        struct pwm_state state;
 657        struct pwm_args pargs;
 658
 659        pwm_get_args(pwm, &pargs);
 660        pwm_get_state(pwm, &state);
 661
 662        /*
 663         * If the current period is zero it means that either the PWM driver
 664         * does not support initial state retrieval or the PWM has not yet
 665         * been configured.
 666         *
 667         * In either case, we setup the new period and polarity, and assign a
 668         * duty cycle of 0.
 669         */
 670        if (!state.period) {
 671                state.duty_cycle = 0;
 672                state.period = pargs.period;
 673                state.polarity = pargs.polarity;
 674
 675                return pwm_apply_state(pwm, &state);
 676        }
 677
 678        /*
 679         * Adjust the PWM duty cycle/period based on the period value provided
 680         * in PWM args.
 681         */
 682        if (pargs.period != state.period) {
 683                u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 684
 685                do_div(dutycycle, state.period);
 686                state.duty_cycle = dutycycle;
 687                state.period = pargs.period;
 688        }
 689
 690        /*
 691         * If the polarity changed, we should also change the duty cycle.
 692         */
 693        if (pargs.polarity != state.polarity) {
 694                state.polarity = pargs.polarity;
 695                state.duty_cycle = state.period - state.duty_cycle;
 696        }
 697
 698        return pwm_apply_state(pwm, &state);
 699}
 700EXPORT_SYMBOL_GPL(pwm_adjust_config);
 701
 702static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
 703{
 704        struct pwm_chip *chip;
 705
 706        mutex_lock(&pwm_lock);
 707
 708        list_for_each_entry(chip, &pwm_chips, list)
 709                if (chip->dev && dev_fwnode(chip->dev) == fwnode) {
 710                        mutex_unlock(&pwm_lock);
 711                        return chip;
 712                }
 713
 714        mutex_unlock(&pwm_lock);
 715
 716        return ERR_PTR(-EPROBE_DEFER);
 717}
 718
 719static struct device_link *pwm_device_link_add(struct device *dev,
 720                                               struct pwm_device *pwm)
 721{
 722        struct device_link *dl;
 723
 724        if (!dev) {
 725                /*
 726                 * No device for the PWM consumer has been provided. It may
 727                 * impact the PM sequence ordering: the PWM supplier may get
 728                 * suspended before the consumer.
 729                 */
 730                dev_warn(pwm->chip->dev,
 731                         "No consumer device specified to create a link to\n");
 732                return NULL;
 733        }
 734
 735        dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
 736        if (!dl) {
 737                dev_err(dev, "failed to create device link to %s\n",
 738                        dev_name(pwm->chip->dev));
 739                return ERR_PTR(-EINVAL);
 740        }
 741
 742        return dl;
 743}
 744
 745/**
 746 * of_pwm_get() - request a PWM via the PWM framework
 747 * @dev: device for PWM consumer
 748 * @np: device node to get the PWM from
 749 * @con_id: consumer name
 750 *
 751 * Returns the PWM device parsed from the phandle and index specified in the
 752 * "pwms" property of a device tree node or a negative error-code on failure.
 753 * Values parsed from the device tree are stored in the returned PWM device
 754 * object.
 755 *
 756 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 757 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 758 * lookup of the PWM index. This also means that the "pwm-names" property
 759 * becomes mandatory for devices that look up the PWM device via the con_id
 760 * parameter.
 761 *
 762 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 763 * error code on failure.
 764 */
 765struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
 766                              const char *con_id)
 767{
 768        struct pwm_device *pwm = NULL;
 769        struct of_phandle_args args;
 770        struct device_link *dl;
 771        struct pwm_chip *pc;
 772        int index = 0;
 773        int err;
 774
 775        if (con_id) {
 776                index = of_property_match_string(np, "pwm-names", con_id);
 777                if (index < 0)
 778                        return ERR_PTR(index);
 779        }
 780
 781        err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 782                                         &args);
 783        if (err) {
 784                pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 785                return ERR_PTR(err);
 786        }
 787
 788        pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
 789        if (IS_ERR(pc)) {
 790                if (PTR_ERR(pc) != -EPROBE_DEFER)
 791                        pr_err("%s(): PWM chip not found\n", __func__);
 792
 793                pwm = ERR_CAST(pc);
 794                goto put;
 795        }
 796
 797        pwm = pc->of_xlate(pc, &args);
 798        if (IS_ERR(pwm))
 799                goto put;
 800
 801        dl = pwm_device_link_add(dev, pwm);
 802        if (IS_ERR(dl)) {
 803                /* of_xlate ended up calling pwm_request_from_chip() */
 804                pwm_free(pwm);
 805                pwm = ERR_CAST(dl);
 806                goto put;
 807        }
 808
 809        /*
 810         * If a consumer name was not given, try to look it up from the
 811         * "pwm-names" property if it exists. Otherwise use the name of
 812         * the user device node.
 813         */
 814        if (!con_id) {
 815                err = of_property_read_string_index(np, "pwm-names", index,
 816                                                    &con_id);
 817                if (err < 0)
 818                        con_id = np->name;
 819        }
 820
 821        pwm->label = con_id;
 822
 823put:
 824        of_node_put(args.np);
 825
 826        return pwm;
 827}
 828EXPORT_SYMBOL_GPL(of_pwm_get);
 829
 830/**
 831 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
 832 * @fwnode: firmware node to get the "pwms" property from
 833 *
 834 * Returns the PWM device parsed from the fwnode and index specified in the
 835 * "pwms" property or a negative error-code on failure.
 836 * Values parsed from the device tree are stored in the returned PWM device
 837 * object.
 838 *
 839 * This is analogous to of_pwm_get() except con_id is not yet supported.
 840 * ACPI entries must look like
 841 * Package () {"pwms", Package ()
 842 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
 843 *
 844 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 845 * error code on failure.
 846 */
 847static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
 848{
 849        struct pwm_device *pwm;
 850        struct fwnode_reference_args args;
 851        struct pwm_chip *chip;
 852        int ret;
 853
 854        memset(&args, 0, sizeof(args));
 855
 856        ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
 857        if (ret < 0)
 858                return ERR_PTR(ret);
 859
 860        if (args.nargs < 2)
 861                return ERR_PTR(-EPROTO);
 862
 863        chip = fwnode_to_pwmchip(args.fwnode);
 864        if (IS_ERR(chip))
 865                return ERR_CAST(chip);
 866
 867        pwm = pwm_request_from_chip(chip, args.args[0], NULL);
 868        if (IS_ERR(pwm))
 869                return pwm;
 870
 871        pwm->args.period = args.args[1];
 872        pwm->args.polarity = PWM_POLARITY_NORMAL;
 873
 874        if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
 875                pwm->args.polarity = PWM_POLARITY_INVERSED;
 876
 877        return pwm;
 878}
 879
 880/**
 881 * pwm_add_table() - register PWM device consumers
 882 * @table: array of consumers to register
 883 * @num: number of consumers in table
 884 */
 885void pwm_add_table(struct pwm_lookup *table, size_t num)
 886{
 887        mutex_lock(&pwm_lookup_lock);
 888
 889        while (num--) {
 890                list_add_tail(&table->list, &pwm_lookup_list);
 891                table++;
 892        }
 893
 894        mutex_unlock(&pwm_lookup_lock);
 895}
 896
 897/**
 898 * pwm_remove_table() - unregister PWM device consumers
 899 * @table: array of consumers to unregister
 900 * @num: number of consumers in table
 901 */
 902void pwm_remove_table(struct pwm_lookup *table, size_t num)
 903{
 904        mutex_lock(&pwm_lookup_lock);
 905
 906        while (num--) {
 907                list_del(&table->list);
 908                table++;
 909        }
 910
 911        mutex_unlock(&pwm_lookup_lock);
 912}
 913
 914/**
 915 * pwm_get() - look up and request a PWM device
 916 * @dev: device for PWM consumer
 917 * @con_id: consumer name
 918 *
 919 * Lookup is first attempted using DT. If the device was not instantiated from
 920 * a device tree, a PWM chip and a relative index is looked up via a table
 921 * supplied by board setup code (see pwm_add_table()).
 922 *
 923 * Once a PWM chip has been found the specified PWM device will be requested
 924 * and is ready to be used.
 925 *
 926 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 927 * error code on failure.
 928 */
 929struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 930{
 931        const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 932        const char *dev_id = dev ? dev_name(dev) : NULL;
 933        struct pwm_device *pwm;
 934        struct pwm_chip *chip;
 935        struct device_link *dl;
 936        unsigned int best = 0;
 937        struct pwm_lookup *p, *chosen = NULL;
 938        unsigned int match;
 939        int err;
 940
 941        /* look up via DT first */
 942        if (is_of_node(fwnode))
 943                return of_pwm_get(dev, to_of_node(fwnode), con_id);
 944
 945        /* then lookup via ACPI */
 946        if (is_acpi_node(fwnode)) {
 947                pwm = acpi_pwm_get(fwnode);
 948                if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
 949                        return pwm;
 950        }
 951
 952        /*
 953         * We look up the provider in the static table typically provided by
 954         * board setup code. We first try to lookup the consumer device by
 955         * name. If the consumer device was passed in as NULL or if no match
 956         * was found, we try to find the consumer by directly looking it up
 957         * by name.
 958         *
 959         * If a match is found, the provider PWM chip is looked up by name
 960         * and a PWM device is requested using the PWM device per-chip index.
 961         *
 962         * The lookup algorithm was shamelessly taken from the clock
 963         * framework:
 964         *
 965         * We do slightly fuzzy matching here:
 966         *  An entry with a NULL ID is assumed to be a wildcard.
 967         *  If an entry has a device ID, it must match
 968         *  If an entry has a connection ID, it must match
 969         * Then we take the most specific entry - with the following order
 970         * of precedence: dev+con > dev only > con only.
 971         */
 972        mutex_lock(&pwm_lookup_lock);
 973
 974        list_for_each_entry(p, &pwm_lookup_list, list) {
 975                match = 0;
 976
 977                if (p->dev_id) {
 978                        if (!dev_id || strcmp(p->dev_id, dev_id))
 979                                continue;
 980
 981                        match += 2;
 982                }
 983
 984                if (p->con_id) {
 985                        if (!con_id || strcmp(p->con_id, con_id))
 986                                continue;
 987
 988                        match += 1;
 989                }
 990
 991                if (match > best) {
 992                        chosen = p;
 993
 994                        if (match != 3)
 995                                best = match;
 996                        else
 997                                break;
 998                }
 999        }
1000
1001        mutex_unlock(&pwm_lookup_lock);
1002
1003        if (!chosen)
1004                return ERR_PTR(-ENODEV);
1005
1006        chip = pwmchip_find_by_name(chosen->provider);
1007
1008        /*
1009         * If the lookup entry specifies a module, load the module and retry
1010         * the PWM chip lookup. This can be used to work around driver load
1011         * ordering issues if driver's can't be made to properly support the
1012         * deferred probe mechanism.
1013         */
1014        if (!chip && chosen->module) {
1015                err = request_module(chosen->module);
1016                if (err == 0)
1017                        chip = pwmchip_find_by_name(chosen->provider);
1018        }
1019
1020        if (!chip)
1021                return ERR_PTR(-EPROBE_DEFER);
1022
1023        pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1024        if (IS_ERR(pwm))
1025                return pwm;
1026
1027        dl = pwm_device_link_add(dev, pwm);
1028        if (IS_ERR(dl)) {
1029                pwm_free(pwm);
1030                return ERR_CAST(dl);
1031        }
1032
1033        pwm->args.period = chosen->period;
1034        pwm->args.polarity = chosen->polarity;
1035
1036        return pwm;
1037}
1038EXPORT_SYMBOL_GPL(pwm_get);
1039
1040/**
1041 * pwm_put() - release a PWM device
1042 * @pwm: PWM device
1043 */
1044void pwm_put(struct pwm_device *pwm)
1045{
1046        if (!pwm)
1047                return;
1048
1049        mutex_lock(&pwm_lock);
1050
1051        if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1052                pr_warn("PWM device already freed\n");
1053                goto out;
1054        }
1055
1056        if (pwm->chip->ops->free)
1057                pwm->chip->ops->free(pwm->chip, pwm);
1058
1059        pwm_set_chip_data(pwm, NULL);
1060        pwm->label = NULL;
1061
1062        module_put(pwm->chip->ops->owner);
1063out:
1064        mutex_unlock(&pwm_lock);
1065}
1066EXPORT_SYMBOL_GPL(pwm_put);
1067
1068static void devm_pwm_release(void *pwm)
1069{
1070        pwm_put(pwm);
1071}
1072
1073/**
1074 * devm_pwm_get() - resource managed pwm_get()
1075 * @dev: device for PWM consumer
1076 * @con_id: consumer name
1077 *
1078 * This function performs like pwm_get() but the acquired PWM device will
1079 * automatically be released on driver detach.
1080 *
1081 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1082 * error code on failure.
1083 */
1084struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1085{
1086        struct pwm_device *pwm;
1087        int ret;
1088
1089        pwm = pwm_get(dev, con_id);
1090        if (IS_ERR(pwm))
1091                return pwm;
1092
1093        ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1094        if (ret)
1095                return ERR_PTR(ret);
1096
1097        return pwm;
1098}
1099EXPORT_SYMBOL_GPL(devm_pwm_get);
1100
1101/**
1102 * devm_of_pwm_get() - resource managed of_pwm_get()
1103 * @dev: device for PWM consumer
1104 * @np: device node to get the PWM from
1105 * @con_id: consumer name
1106 *
1107 * This function performs like of_pwm_get() but the acquired PWM device will
1108 * automatically be released on driver detach.
1109 *
1110 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1111 * error code on failure.
1112 */
1113struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1114                                   const char *con_id)
1115{
1116        struct pwm_device *pwm;
1117        int ret;
1118
1119        pwm = of_pwm_get(dev, np, con_id);
1120        if (IS_ERR(pwm))
1121                return pwm;
1122
1123        ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1124        if (ret)
1125                return ERR_PTR(ret);
1126
1127        return pwm;
1128}
1129EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1130
1131/**
1132 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1133 * @dev: device for PWM consumer
1134 * @fwnode: firmware node to get the PWM from
1135 * @con_id: consumer name
1136 *
1137 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1138 * acpi_pwm_get() for a detailed description.
1139 *
1140 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1141 * error code on failure.
1142 */
1143struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1144                                       struct fwnode_handle *fwnode,
1145                                       const char *con_id)
1146{
1147        struct pwm_device *pwm = ERR_PTR(-ENODEV);
1148        int ret;
1149
1150        if (is_of_node(fwnode))
1151                pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1152        else if (is_acpi_node(fwnode))
1153                pwm = acpi_pwm_get(fwnode);
1154        if (IS_ERR(pwm))
1155                return pwm;
1156
1157        ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1158        if (ret)
1159                return ERR_PTR(ret);
1160
1161        return pwm;
1162}
1163EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1164
1165#ifdef CONFIG_DEBUG_FS
1166static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1167{
1168        unsigned int i;
1169
1170        for (i = 0; i < chip->npwm; i++) {
1171                struct pwm_device *pwm = &chip->pwms[i];
1172                struct pwm_state state;
1173
1174                pwm_get_state(pwm, &state);
1175
1176                seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1177
1178                if (test_bit(PWMF_REQUESTED, &pwm->flags))
1179                        seq_puts(s, " requested");
1180
1181                if (state.enabled)
1182                        seq_puts(s, " enabled");
1183
1184                seq_printf(s, " period: %llu ns", state.period);
1185                seq_printf(s, " duty: %llu ns", state.duty_cycle);
1186                seq_printf(s, " polarity: %s",
1187                           state.polarity ? "inverse" : "normal");
1188
1189                if (state.usage_power)
1190                        seq_puts(s, " usage_power");
1191
1192                seq_puts(s, "\n");
1193        }
1194}
1195
1196static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1197{
1198        mutex_lock(&pwm_lock);
1199        s->private = "";
1200
1201        return seq_list_start(&pwm_chips, *pos);
1202}
1203
1204static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1205{
1206        s->private = "\n";
1207
1208        return seq_list_next(v, &pwm_chips, pos);
1209}
1210
1211static void pwm_seq_stop(struct seq_file *s, void *v)
1212{
1213        mutex_unlock(&pwm_lock);
1214}
1215
1216static int pwm_seq_show(struct seq_file *s, void *v)
1217{
1218        struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1219
1220        seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1221                   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1222                   dev_name(chip->dev), chip->npwm,
1223                   (chip->npwm != 1) ? "s" : "");
1224
1225        pwm_dbg_show(chip, s);
1226
1227        return 0;
1228}
1229
1230static const struct seq_operations pwm_debugfs_sops = {
1231        .start = pwm_seq_start,
1232        .next = pwm_seq_next,
1233        .stop = pwm_seq_stop,
1234        .show = pwm_seq_show,
1235};
1236
1237DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1238
1239static int __init pwm_debugfs_init(void)
1240{
1241        debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL,
1242                            &pwm_debugfs_fops);
1243
1244        return 0;
1245}
1246subsys_initcall(pwm_debugfs_init);
1247#endif /* CONFIG_DEBUG_FS */
1248