linux/drivers/pci/pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
  32#include <asm/dma.h>
  33#include <linux/aer.h>
  34#include "pci.h"
  35
  36DEFINE_MUTEX(pci_slot_mutex);
  37
  38const char *pci_power_names[] = {
  39        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  40};
  41EXPORT_SYMBOL_GPL(pci_power_names);
  42
  43int isa_dma_bridge_buggy;
  44EXPORT_SYMBOL(isa_dma_bridge_buggy);
  45
  46int pci_pci_problems;
  47EXPORT_SYMBOL(pci_pci_problems);
  48
  49unsigned int pci_pm_d3hot_delay;
  50
  51static void pci_pme_list_scan(struct work_struct *work);
  52
  53static LIST_HEAD(pci_pme_list);
  54static DEFINE_MUTEX(pci_pme_list_mutex);
  55static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  56
  57struct pci_pme_device {
  58        struct list_head list;
  59        struct pci_dev *dev;
  60};
  61
  62#define PME_TIMEOUT 1000 /* How long between PME checks */
  63
  64static void pci_dev_d3_sleep(struct pci_dev *dev)
  65{
  66        unsigned int delay = dev->d3hot_delay;
  67
  68        if (delay < pci_pm_d3hot_delay)
  69                delay = pci_pm_d3hot_delay;
  70
  71        if (delay)
  72                msleep(delay);
  73}
  74
  75#ifdef CONFIG_PCI_DOMAINS
  76int pci_domains_supported = 1;
  77#endif
  78
  79#define DEFAULT_CARDBUS_IO_SIZE         (256)
  80#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  81/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  82unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  83unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  84
  85#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  86#define DEFAULT_HOTPLUG_MMIO_SIZE       (2*1024*1024)
  87#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE  (2*1024*1024)
  88/* hpiosize=nn can override this */
  89unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  90/*
  91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
  92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
  93 * pci=hpmemsize=nnM overrides both
  94 */
  95unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
  96unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
  97
  98#define DEFAULT_HOTPLUG_BUS_SIZE        1
  99unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 100
 101
 102/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 103#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 105#elif defined CONFIG_PCIE_BUS_SAFE
 106enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 107#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 108enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 109#elif defined CONFIG_PCIE_BUS_PEER2PEER
 110enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 111#else
 112enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 113#endif
 114
 115/*
 116 * The default CLS is used if arch didn't set CLS explicitly and not
 117 * all pci devices agree on the same value.  Arch can override either
 118 * the dfl or actual value as it sees fit.  Don't forget this is
 119 * measured in 32-bit words, not bytes.
 120 */
 121u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 122u8 pci_cache_line_size;
 123
 124/*
 125 * If we set up a device for bus mastering, we need to check the latency
 126 * timer as certain BIOSes forget to set it properly.
 127 */
 128unsigned int pcibios_max_latency = 255;
 129
 130/* If set, the PCIe ARI capability will not be used. */
 131static bool pcie_ari_disabled;
 132
 133/* If set, the PCIe ATS capability will not be used. */
 134static bool pcie_ats_disabled;
 135
 136/* If set, the PCI config space of each device is printed during boot. */
 137bool pci_early_dump;
 138
 139bool pci_ats_disabled(void)
 140{
 141        return pcie_ats_disabled;
 142}
 143EXPORT_SYMBOL_GPL(pci_ats_disabled);
 144
 145/* Disable bridge_d3 for all PCIe ports */
 146static bool pci_bridge_d3_disable;
 147/* Force bridge_d3 for all PCIe ports */
 148static bool pci_bridge_d3_force;
 149
 150static int __init pcie_port_pm_setup(char *str)
 151{
 152        if (!strcmp(str, "off"))
 153                pci_bridge_d3_disable = true;
 154        else if (!strcmp(str, "force"))
 155                pci_bridge_d3_force = true;
 156        return 1;
 157}
 158__setup("pcie_port_pm=", pcie_port_pm_setup);
 159
 160/* Time to wait after a reset for device to become responsive */
 161#define PCIE_RESET_READY_POLL_MS 60000
 162
 163/**
 164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 165 * @bus: pointer to PCI bus structure to search
 166 *
 167 * Given a PCI bus, returns the highest PCI bus number present in the set
 168 * including the given PCI bus and its list of child PCI buses.
 169 */
 170unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 171{
 172        struct pci_bus *tmp;
 173        unsigned char max, n;
 174
 175        max = bus->busn_res.end;
 176        list_for_each_entry(tmp, &bus->children, node) {
 177                n = pci_bus_max_busnr(tmp);
 178                if (n > max)
 179                        max = n;
 180        }
 181        return max;
 182}
 183EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 184
 185/**
 186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 187 * @pdev: the PCI device
 188 *
 189 * Returns error bits set in PCI_STATUS and clears them.
 190 */
 191int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 192{
 193        u16 status;
 194        int ret;
 195
 196        ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 197        if (ret != PCIBIOS_SUCCESSFUL)
 198                return -EIO;
 199
 200        status &= PCI_STATUS_ERROR_BITS;
 201        if (status)
 202                pci_write_config_word(pdev, PCI_STATUS, status);
 203
 204        return status;
 205}
 206EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 207
 208#ifdef CONFIG_HAS_IOMEM
 209void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 210{
 211        struct resource *res = &pdev->resource[bar];
 212
 213        /*
 214         * Make sure the BAR is actually a memory resource, not an IO resource
 215         */
 216        if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 217                pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 218                return NULL;
 219        }
 220        return ioremap(res->start, resource_size(res));
 221}
 222EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 223
 224void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 225{
 226        /*
 227         * Make sure the BAR is actually a memory resource, not an IO resource
 228         */
 229        if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 230                WARN_ON(1);
 231                return NULL;
 232        }
 233        return ioremap_wc(pci_resource_start(pdev, bar),
 234                          pci_resource_len(pdev, bar));
 235}
 236EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 237#endif
 238
 239/**
 240 * pci_dev_str_match_path - test if a path string matches a device
 241 * @dev: the PCI device to test
 242 * @path: string to match the device against
 243 * @endptr: pointer to the string after the match
 244 *
 245 * Test if a string (typically from a kernel parameter) formatted as a
 246 * path of device/function addresses matches a PCI device. The string must
 247 * be of the form:
 248 *
 249 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 250 *
 251 * A path for a device can be obtained using 'lspci -t'.  Using a path
 252 * is more robust against bus renumbering than using only a single bus,
 253 * device and function address.
 254 *
 255 * Returns 1 if the string matches the device, 0 if it does not and
 256 * a negative error code if it fails to parse the string.
 257 */
 258static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 259                                  const char **endptr)
 260{
 261        int ret;
 262        int seg, bus, slot, func;
 263        char *wpath, *p;
 264        char end;
 265
 266        *endptr = strchrnul(path, ';');
 267
 268        wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
 269        if (!wpath)
 270                return -ENOMEM;
 271
 272        while (1) {
 273                p = strrchr(wpath, '/');
 274                if (!p)
 275                        break;
 276                ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 277                if (ret != 2) {
 278                        ret = -EINVAL;
 279                        goto free_and_exit;
 280                }
 281
 282                if (dev->devfn != PCI_DEVFN(slot, func)) {
 283                        ret = 0;
 284                        goto free_and_exit;
 285                }
 286
 287                /*
 288                 * Note: we don't need to get a reference to the upstream
 289                 * bridge because we hold a reference to the top level
 290                 * device which should hold a reference to the bridge,
 291                 * and so on.
 292                 */
 293                dev = pci_upstream_bridge(dev);
 294                if (!dev) {
 295                        ret = 0;
 296                        goto free_and_exit;
 297                }
 298
 299                *p = 0;
 300        }
 301
 302        ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 303                     &func, &end);
 304        if (ret != 4) {
 305                seg = 0;
 306                ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 307                if (ret != 3) {
 308                        ret = -EINVAL;
 309                        goto free_and_exit;
 310                }
 311        }
 312
 313        ret = (seg == pci_domain_nr(dev->bus) &&
 314               bus == dev->bus->number &&
 315               dev->devfn == PCI_DEVFN(slot, func));
 316
 317free_and_exit:
 318        kfree(wpath);
 319        return ret;
 320}
 321
 322/**
 323 * pci_dev_str_match - test if a string matches a device
 324 * @dev: the PCI device to test
 325 * @p: string to match the device against
 326 * @endptr: pointer to the string after the match
 327 *
 328 * Test if a string (typically from a kernel parameter) matches a specified
 329 * PCI device. The string may be of one of the following formats:
 330 *
 331 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 332 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 333 *
 334 * The first format specifies a PCI bus/device/function address which
 335 * may change if new hardware is inserted, if motherboard firmware changes,
 336 * or due to changes caused in kernel parameters. If the domain is
 337 * left unspecified, it is taken to be 0.  In order to be robust against
 338 * bus renumbering issues, a path of PCI device/function numbers may be used
 339 * to address the specific device.  The path for a device can be determined
 340 * through the use of 'lspci -t'.
 341 *
 342 * The second format matches devices using IDs in the configuration
 343 * space which may match multiple devices in the system. A value of 0
 344 * for any field will match all devices. (Note: this differs from
 345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 346 * legacy reasons and convenience so users don't have to specify
 347 * FFFFFFFFs on the command line.)
 348 *
 349 * Returns 1 if the string matches the device, 0 if it does not and
 350 * a negative error code if the string cannot be parsed.
 351 */
 352static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 353                             const char **endptr)
 354{
 355        int ret;
 356        int count;
 357        unsigned short vendor, device, subsystem_vendor, subsystem_device;
 358
 359        if (strncmp(p, "pci:", 4) == 0) {
 360                /* PCI vendor/device (subvendor/subdevice) IDs are specified */
 361                p += 4;
 362                ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 363                             &subsystem_vendor, &subsystem_device, &count);
 364                if (ret != 4) {
 365                        ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 366                        if (ret != 2)
 367                                return -EINVAL;
 368
 369                        subsystem_vendor = 0;
 370                        subsystem_device = 0;
 371                }
 372
 373                p += count;
 374
 375                if ((!vendor || vendor == dev->vendor) &&
 376                    (!device || device == dev->device) &&
 377                    (!subsystem_vendor ||
 378                            subsystem_vendor == dev->subsystem_vendor) &&
 379                    (!subsystem_device ||
 380                            subsystem_device == dev->subsystem_device))
 381                        goto found;
 382        } else {
 383                /*
 384                 * PCI Bus, Device, Function IDs are specified
 385                 * (optionally, may include a path of devfns following it)
 386                 */
 387                ret = pci_dev_str_match_path(dev, p, &p);
 388                if (ret < 0)
 389                        return ret;
 390                else if (ret)
 391                        goto found;
 392        }
 393
 394        *endptr = p;
 395        return 0;
 396
 397found:
 398        *endptr = p;
 399        return 1;
 400}
 401
 402static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 403                                  u8 pos, int cap, int *ttl)
 404{
 405        u8 id;
 406        u16 ent;
 407
 408        pci_bus_read_config_byte(bus, devfn, pos, &pos);
 409
 410        while ((*ttl)--) {
 411                if (pos < 0x40)
 412                        break;
 413                pos &= ~3;
 414                pci_bus_read_config_word(bus, devfn, pos, &ent);
 415
 416                id = ent & 0xff;
 417                if (id == 0xff)
 418                        break;
 419                if (id == cap)
 420                        return pos;
 421                pos = (ent >> 8);
 422        }
 423        return 0;
 424}
 425
 426static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 427                              u8 pos, int cap)
 428{
 429        int ttl = PCI_FIND_CAP_TTL;
 430
 431        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 432}
 433
 434u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 435{
 436        return __pci_find_next_cap(dev->bus, dev->devfn,
 437                                   pos + PCI_CAP_LIST_NEXT, cap);
 438}
 439EXPORT_SYMBOL_GPL(pci_find_next_capability);
 440
 441static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 442                                    unsigned int devfn, u8 hdr_type)
 443{
 444        u16 status;
 445
 446        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 447        if (!(status & PCI_STATUS_CAP_LIST))
 448                return 0;
 449
 450        switch (hdr_type) {
 451        case PCI_HEADER_TYPE_NORMAL:
 452        case PCI_HEADER_TYPE_BRIDGE:
 453                return PCI_CAPABILITY_LIST;
 454        case PCI_HEADER_TYPE_CARDBUS:
 455                return PCI_CB_CAPABILITY_LIST;
 456        }
 457
 458        return 0;
 459}
 460
 461/**
 462 * pci_find_capability - query for devices' capabilities
 463 * @dev: PCI device to query
 464 * @cap: capability code
 465 *
 466 * Tell if a device supports a given PCI capability.
 467 * Returns the address of the requested capability structure within the
 468 * device's PCI configuration space or 0 in case the device does not
 469 * support it.  Possible values for @cap include:
 470 *
 471 *  %PCI_CAP_ID_PM           Power Management
 472 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 473 *  %PCI_CAP_ID_VPD          Vital Product Data
 474 *  %PCI_CAP_ID_SLOTID       Slot Identification
 475 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 476 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 477 *  %PCI_CAP_ID_PCIX         PCI-X
 478 *  %PCI_CAP_ID_EXP          PCI Express
 479 */
 480u8 pci_find_capability(struct pci_dev *dev, int cap)
 481{
 482        u8 pos;
 483
 484        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 485        if (pos)
 486                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 487
 488        return pos;
 489}
 490EXPORT_SYMBOL(pci_find_capability);
 491
 492/**
 493 * pci_bus_find_capability - query for devices' capabilities
 494 * @bus: the PCI bus to query
 495 * @devfn: PCI device to query
 496 * @cap: capability code
 497 *
 498 * Like pci_find_capability() but works for PCI devices that do not have a
 499 * pci_dev structure set up yet.
 500 *
 501 * Returns the address of the requested capability structure within the
 502 * device's PCI configuration space or 0 in case the device does not
 503 * support it.
 504 */
 505u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 506{
 507        u8 hdr_type, pos;
 508
 509        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 510
 511        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 512        if (pos)
 513                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 514
 515        return pos;
 516}
 517EXPORT_SYMBOL(pci_bus_find_capability);
 518
 519/**
 520 * pci_find_next_ext_capability - Find an extended capability
 521 * @dev: PCI device to query
 522 * @start: address at which to start looking (0 to start at beginning of list)
 523 * @cap: capability code
 524 *
 525 * Returns the address of the next matching extended capability structure
 526 * within the device's PCI configuration space or 0 if the device does
 527 * not support it.  Some capabilities can occur several times, e.g., the
 528 * vendor-specific capability, and this provides a way to find them all.
 529 */
 530u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 531{
 532        u32 header;
 533        int ttl;
 534        u16 pos = PCI_CFG_SPACE_SIZE;
 535
 536        /* minimum 8 bytes per capability */
 537        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 538
 539        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 540                return 0;
 541
 542        if (start)
 543                pos = start;
 544
 545        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 546                return 0;
 547
 548        /*
 549         * If we have no capabilities, this is indicated by cap ID,
 550         * cap version and next pointer all being 0.
 551         */
 552        if (header == 0)
 553                return 0;
 554
 555        while (ttl-- > 0) {
 556                if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 557                        return pos;
 558
 559                pos = PCI_EXT_CAP_NEXT(header);
 560                if (pos < PCI_CFG_SPACE_SIZE)
 561                        break;
 562
 563                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 564                        break;
 565        }
 566
 567        return 0;
 568}
 569EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 570
 571/**
 572 * pci_find_ext_capability - Find an extended capability
 573 * @dev: PCI device to query
 574 * @cap: capability code
 575 *
 576 * Returns the address of the requested extended capability structure
 577 * within the device's PCI configuration space or 0 if the device does
 578 * not support it.  Possible values for @cap include:
 579 *
 580 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 581 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 582 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 583 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 584 */
 585u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 586{
 587        return pci_find_next_ext_capability(dev, 0, cap);
 588}
 589EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 590
 591/**
 592 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 593 * @dev: PCI device to query
 594 *
 595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 596 * Number.
 597 *
 598 * Returns the DSN, or zero if the capability does not exist.
 599 */
 600u64 pci_get_dsn(struct pci_dev *dev)
 601{
 602        u32 dword;
 603        u64 dsn;
 604        int pos;
 605
 606        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 607        if (!pos)
 608                return 0;
 609
 610        /*
 611         * The Device Serial Number is two dwords offset 4 bytes from the
 612         * capability position. The specification says that the first dword is
 613         * the lower half, and the second dword is the upper half.
 614         */
 615        pos += 4;
 616        pci_read_config_dword(dev, pos, &dword);
 617        dsn = (u64)dword;
 618        pci_read_config_dword(dev, pos + 4, &dword);
 619        dsn |= ((u64)dword) << 32;
 620
 621        return dsn;
 622}
 623EXPORT_SYMBOL_GPL(pci_get_dsn);
 624
 625static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 626{
 627        int rc, ttl = PCI_FIND_CAP_TTL;
 628        u8 cap, mask;
 629
 630        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 631                mask = HT_3BIT_CAP_MASK;
 632        else
 633                mask = HT_5BIT_CAP_MASK;
 634
 635        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 636                                      PCI_CAP_ID_HT, &ttl);
 637        while (pos) {
 638                rc = pci_read_config_byte(dev, pos + 3, &cap);
 639                if (rc != PCIBIOS_SUCCESSFUL)
 640                        return 0;
 641
 642                if ((cap & mask) == ht_cap)
 643                        return pos;
 644
 645                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 646                                              pos + PCI_CAP_LIST_NEXT,
 647                                              PCI_CAP_ID_HT, &ttl);
 648        }
 649
 650        return 0;
 651}
 652
 653/**
 654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 655 * @dev: PCI device to query
 656 * @pos: Position from which to continue searching
 657 * @ht_cap: HyperTransport capability code
 658 *
 659 * To be used in conjunction with pci_find_ht_capability() to search for
 660 * all capabilities matching @ht_cap. @pos should always be a value returned
 661 * from pci_find_ht_capability().
 662 *
 663 * NB. To be 100% safe against broken PCI devices, the caller should take
 664 * steps to avoid an infinite loop.
 665 */
 666u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 667{
 668        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 669}
 670EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 671
 672/**
 673 * pci_find_ht_capability - query a device's HyperTransport capabilities
 674 * @dev: PCI device to query
 675 * @ht_cap: HyperTransport capability code
 676 *
 677 * Tell if a device supports a given HyperTransport capability.
 678 * Returns an address within the device's PCI configuration space
 679 * or 0 in case the device does not support the request capability.
 680 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 681 * which has a HyperTransport capability matching @ht_cap.
 682 */
 683u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 684{
 685        u8 pos;
 686
 687        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 688        if (pos)
 689                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 690
 691        return pos;
 692}
 693EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 694
 695/**
 696 * pci_find_vsec_capability - Find a vendor-specific extended capability
 697 * @dev: PCI device to query
 698 * @vendor: Vendor ID for which capability is defined
 699 * @cap: Vendor-specific capability ID
 700 *
 701 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 702 * VSEC ID @cap. If found, return the capability offset in
 703 * config space; otherwise return 0.
 704 */
 705u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
 706{
 707        u16 vsec = 0;
 708        u32 header;
 709
 710        if (vendor != dev->vendor)
 711                return 0;
 712
 713        while ((vsec = pci_find_next_ext_capability(dev, vsec,
 714                                                     PCI_EXT_CAP_ID_VNDR))) {
 715                if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
 716                                          &header) == PCIBIOS_SUCCESSFUL &&
 717                    PCI_VNDR_HEADER_ID(header) == cap)
 718                        return vsec;
 719        }
 720
 721        return 0;
 722}
 723EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
 724
 725/**
 726 * pci_find_parent_resource - return resource region of parent bus of given
 727 *                            region
 728 * @dev: PCI device structure contains resources to be searched
 729 * @res: child resource record for which parent is sought
 730 *
 731 * For given resource region of given device, return the resource region of
 732 * parent bus the given region is contained in.
 733 */
 734struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 735                                          struct resource *res)
 736{
 737        const struct pci_bus *bus = dev->bus;
 738        struct resource *r;
 739        int i;
 740
 741        pci_bus_for_each_resource(bus, r, i) {
 742                if (!r)
 743                        continue;
 744                if (resource_contains(r, res)) {
 745
 746                        /*
 747                         * If the window is prefetchable but the BAR is
 748                         * not, the allocator made a mistake.
 749                         */
 750                        if (r->flags & IORESOURCE_PREFETCH &&
 751                            !(res->flags & IORESOURCE_PREFETCH))
 752                                return NULL;
 753
 754                        /*
 755                         * If we're below a transparent bridge, there may
 756                         * be both a positively-decoded aperture and a
 757                         * subtractively-decoded region that contain the BAR.
 758                         * We want the positively-decoded one, so this depends
 759                         * on pci_bus_for_each_resource() giving us those
 760                         * first.
 761                         */
 762                        return r;
 763                }
 764        }
 765        return NULL;
 766}
 767EXPORT_SYMBOL(pci_find_parent_resource);
 768
 769/**
 770 * pci_find_resource - Return matching PCI device resource
 771 * @dev: PCI device to query
 772 * @res: Resource to look for
 773 *
 774 * Goes over standard PCI resources (BARs) and checks if the given resource
 775 * is partially or fully contained in any of them. In that case the
 776 * matching resource is returned, %NULL otherwise.
 777 */
 778struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 779{
 780        int i;
 781
 782        for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 783                struct resource *r = &dev->resource[i];
 784
 785                if (r->start && resource_contains(r, res))
 786                        return r;
 787        }
 788
 789        return NULL;
 790}
 791EXPORT_SYMBOL(pci_find_resource);
 792
 793/**
 794 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 795 * @dev: the PCI device to operate on
 796 * @pos: config space offset of status word
 797 * @mask: mask of bit(s) to care about in status word
 798 *
 799 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 800 */
 801int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 802{
 803        int i;
 804
 805        /* Wait for Transaction Pending bit clean */
 806        for (i = 0; i < 4; i++) {
 807                u16 status;
 808                if (i)
 809                        msleep((1 << (i - 1)) * 100);
 810
 811                pci_read_config_word(dev, pos, &status);
 812                if (!(status & mask))
 813                        return 1;
 814        }
 815
 816        return 0;
 817}
 818
 819static int pci_acs_enable;
 820
 821/**
 822 * pci_request_acs - ask for ACS to be enabled if supported
 823 */
 824void pci_request_acs(void)
 825{
 826        pci_acs_enable = 1;
 827}
 828
 829static const char *disable_acs_redir_param;
 830
 831/**
 832 * pci_disable_acs_redir - disable ACS redirect capabilities
 833 * @dev: the PCI device
 834 *
 835 * For only devices specified in the disable_acs_redir parameter.
 836 */
 837static void pci_disable_acs_redir(struct pci_dev *dev)
 838{
 839        int ret = 0;
 840        const char *p;
 841        int pos;
 842        u16 ctrl;
 843
 844        if (!disable_acs_redir_param)
 845                return;
 846
 847        p = disable_acs_redir_param;
 848        while (*p) {
 849                ret = pci_dev_str_match(dev, p, &p);
 850                if (ret < 0) {
 851                        pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 852                                     disable_acs_redir_param);
 853
 854                        break;
 855                } else if (ret == 1) {
 856                        /* Found a match */
 857                        break;
 858                }
 859
 860                if (*p != ';' && *p != ',') {
 861                        /* End of param or invalid format */
 862                        break;
 863                }
 864                p++;
 865        }
 866
 867        if (ret != 1)
 868                return;
 869
 870        if (!pci_dev_specific_disable_acs_redir(dev))
 871                return;
 872
 873        pos = dev->acs_cap;
 874        if (!pos) {
 875                pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 876                return;
 877        }
 878
 879        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 880
 881        /* P2P Request & Completion Redirect */
 882        ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
 883
 884        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 885
 886        pci_info(dev, "disabled ACS redirect\n");
 887}
 888
 889/**
 890 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
 891 * @dev: the PCI device
 892 */
 893static void pci_std_enable_acs(struct pci_dev *dev)
 894{
 895        int pos;
 896        u16 cap;
 897        u16 ctrl;
 898
 899        pos = dev->acs_cap;
 900        if (!pos)
 901                return;
 902
 903        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
 904        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 905
 906        /* Source Validation */
 907        ctrl |= (cap & PCI_ACS_SV);
 908
 909        /* P2P Request Redirect */
 910        ctrl |= (cap & PCI_ACS_RR);
 911
 912        /* P2P Completion Redirect */
 913        ctrl |= (cap & PCI_ACS_CR);
 914
 915        /* Upstream Forwarding */
 916        ctrl |= (cap & PCI_ACS_UF);
 917
 918        /* Enable Translation Blocking for external devices */
 919        if (dev->external_facing || dev->untrusted)
 920                ctrl |= (cap & PCI_ACS_TB);
 921
 922        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 923}
 924
 925/**
 926 * pci_enable_acs - enable ACS if hardware support it
 927 * @dev: the PCI device
 928 */
 929static void pci_enable_acs(struct pci_dev *dev)
 930{
 931        if (!pci_acs_enable)
 932                goto disable_acs_redir;
 933
 934        if (!pci_dev_specific_enable_acs(dev))
 935                goto disable_acs_redir;
 936
 937        pci_std_enable_acs(dev);
 938
 939disable_acs_redir:
 940        /*
 941         * Note: pci_disable_acs_redir() must be called even if ACS was not
 942         * enabled by the kernel because it may have been enabled by
 943         * platform firmware.  So if we are told to disable it, we should
 944         * always disable it after setting the kernel's default
 945         * preferences.
 946         */
 947        pci_disable_acs_redir(dev);
 948}
 949
 950/**
 951 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 952 * @dev: PCI device to have its BARs restored
 953 *
 954 * Restore the BAR values for a given device, so as to make it
 955 * accessible by its driver.
 956 */
 957static void pci_restore_bars(struct pci_dev *dev)
 958{
 959        int i;
 960
 961        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 962                pci_update_resource(dev, i);
 963}
 964
 965static const struct pci_platform_pm_ops *pci_platform_pm;
 966
 967int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 968{
 969        if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 970            !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 971                return -EINVAL;
 972        pci_platform_pm = ops;
 973        return 0;
 974}
 975
 976static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 977{
 978        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 979}
 980
 981static inline int platform_pci_set_power_state(struct pci_dev *dev,
 982                                               pci_power_t t)
 983{
 984        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 985}
 986
 987static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 988{
 989        return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 990}
 991
 992static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
 993{
 994        if (pci_platform_pm && pci_platform_pm->refresh_state)
 995                pci_platform_pm->refresh_state(dev);
 996}
 997
 998static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 999{
1000        return pci_platform_pm ?
1001                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
1002}
1003
1004static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1005{
1006        return pci_platform_pm ?
1007                        pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
1008}
1009
1010static inline bool platform_pci_need_resume(struct pci_dev *dev)
1011{
1012        return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
1013}
1014
1015static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1016{
1017        if (pci_platform_pm && pci_platform_pm->bridge_d3)
1018                return pci_platform_pm->bridge_d3(dev);
1019        return false;
1020}
1021
1022/**
1023 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
1024 *                           given PCI device
1025 * @dev: PCI device to handle.
1026 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1027 *
1028 * RETURN VALUE:
1029 * -EINVAL if the requested state is invalid.
1030 * -EIO if device does not support PCI PM or its PM capabilities register has a
1031 * wrong version, or device doesn't support the requested state.
1032 * 0 if device already is in the requested state.
1033 * 0 if device's power state has been successfully changed.
1034 */
1035static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1036{
1037        u16 pmcsr;
1038        bool need_restore = false;
1039
1040        /* Check if we're already there */
1041        if (dev->current_state == state)
1042                return 0;
1043
1044        if (!dev->pm_cap)
1045                return -EIO;
1046
1047        if (state < PCI_D0 || state > PCI_D3hot)
1048                return -EINVAL;
1049
1050        /*
1051         * Validate transition: We can enter D0 from any state, but if
1052         * we're already in a low-power state, we can only go deeper.  E.g.,
1053         * we can go from D1 to D3, but we can't go directly from D3 to D1;
1054         * we'd have to go from D3 to D0, then to D1.
1055         */
1056        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1057            && dev->current_state > state) {
1058                pci_err(dev, "invalid power transition (from %s to %s)\n",
1059                        pci_power_name(dev->current_state),
1060                        pci_power_name(state));
1061                return -EINVAL;
1062        }
1063
1064        /* Check if this device supports the desired state */
1065        if ((state == PCI_D1 && !dev->d1_support)
1066           || (state == PCI_D2 && !dev->d2_support))
1067                return -EIO;
1068
1069        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1070        if (pmcsr == (u16) ~0) {
1071                pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1072                        pci_power_name(dev->current_state),
1073                        pci_power_name(state));
1074                return -EIO;
1075        }
1076
1077        /*
1078         * If we're (effectively) in D3, force entire word to 0.
1079         * This doesn't affect PME_Status, disables PME_En, and
1080         * sets PowerState to 0.
1081         */
1082        switch (dev->current_state) {
1083        case PCI_D0:
1084        case PCI_D1:
1085        case PCI_D2:
1086                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1087                pmcsr |= state;
1088                break;
1089        case PCI_D3hot:
1090        case PCI_D3cold:
1091        case PCI_UNKNOWN: /* Boot-up */
1092                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1093                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1094                        need_restore = true;
1095                fallthrough;    /* force to D0 */
1096        default:
1097                pmcsr = 0;
1098                break;
1099        }
1100
1101        /* Enter specified state */
1102        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1103
1104        /*
1105         * Mandatory power management transition delays; see PCI PM 1.1
1106         * 5.6.1 table 18
1107         */
1108        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1109                pci_dev_d3_sleep(dev);
1110        else if (state == PCI_D2 || dev->current_state == PCI_D2)
1111                udelay(PCI_PM_D2_DELAY);
1112
1113        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1114        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1115        if (dev->current_state != state)
1116                pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1117                         pci_power_name(dev->current_state),
1118                         pci_power_name(state));
1119
1120        /*
1121         * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1122         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1123         * from D3hot to D0 _may_ perform an internal reset, thereby
1124         * going to "D0 Uninitialized" rather than "D0 Initialized".
1125         * For example, at least some versions of the 3c905B and the
1126         * 3c556B exhibit this behaviour.
1127         *
1128         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1129         * devices in a D3hot state at boot.  Consequently, we need to
1130         * restore at least the BARs so that the device will be
1131         * accessible to its driver.
1132         */
1133        if (need_restore)
1134                pci_restore_bars(dev);
1135
1136        if (dev->bus->self)
1137                pcie_aspm_pm_state_change(dev->bus->self);
1138
1139        return 0;
1140}
1141
1142/**
1143 * pci_update_current_state - Read power state of given device and cache it
1144 * @dev: PCI device to handle.
1145 * @state: State to cache in case the device doesn't have the PM capability
1146 *
1147 * The power state is read from the PMCSR register, which however is
1148 * inaccessible in D3cold.  The platform firmware is therefore queried first
1149 * to detect accessibility of the register.  In case the platform firmware
1150 * reports an incorrect state or the device isn't power manageable by the
1151 * platform at all, we try to detect D3cold by testing accessibility of the
1152 * vendor ID in config space.
1153 */
1154void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1155{
1156        if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1157            !pci_device_is_present(dev)) {
1158                dev->current_state = PCI_D3cold;
1159        } else if (dev->pm_cap) {
1160                u16 pmcsr;
1161
1162                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1163                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1164        } else {
1165                dev->current_state = state;
1166        }
1167}
1168
1169/**
1170 * pci_refresh_power_state - Refresh the given device's power state data
1171 * @dev: Target PCI device.
1172 *
1173 * Ask the platform to refresh the devices power state information and invoke
1174 * pci_update_current_state() to update its current PCI power state.
1175 */
1176void pci_refresh_power_state(struct pci_dev *dev)
1177{
1178        if (platform_pci_power_manageable(dev))
1179                platform_pci_refresh_power_state(dev);
1180
1181        pci_update_current_state(dev, dev->current_state);
1182}
1183
1184/**
1185 * pci_platform_power_transition - Use platform to change device power state
1186 * @dev: PCI device to handle.
1187 * @state: State to put the device into.
1188 */
1189int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1190{
1191        int error;
1192
1193        if (platform_pci_power_manageable(dev)) {
1194                error = platform_pci_set_power_state(dev, state);
1195                if (!error)
1196                        pci_update_current_state(dev, state);
1197        } else
1198                error = -ENODEV;
1199
1200        if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1201                dev->current_state = PCI_D0;
1202
1203        return error;
1204}
1205EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1206
1207static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1208{
1209        pm_request_resume(&pci_dev->dev);
1210        return 0;
1211}
1212
1213/**
1214 * pci_resume_bus - Walk given bus and runtime resume devices on it
1215 * @bus: Top bus of the subtree to walk.
1216 */
1217void pci_resume_bus(struct pci_bus *bus)
1218{
1219        if (bus)
1220                pci_walk_bus(bus, pci_resume_one, NULL);
1221}
1222
1223static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1224{
1225        int delay = 1;
1226        u32 id;
1227
1228        /*
1229         * After reset, the device should not silently discard config
1230         * requests, but it may still indicate that it needs more time by
1231         * responding to them with CRS completions.  The Root Port will
1232         * generally synthesize ~0 data to complete the read (except when
1233         * CRS SV is enabled and the read was for the Vendor ID; in that
1234         * case it synthesizes 0x0001 data).
1235         *
1236         * Wait for the device to return a non-CRS completion.  Read the
1237         * Command register instead of Vendor ID so we don't have to
1238         * contend with the CRS SV value.
1239         */
1240        pci_read_config_dword(dev, PCI_COMMAND, &id);
1241        while (id == ~0) {
1242                if (delay > timeout) {
1243                        pci_warn(dev, "not ready %dms after %s; giving up\n",
1244                                 delay - 1, reset_type);
1245                        return -ENOTTY;
1246                }
1247
1248                if (delay > 1000)
1249                        pci_info(dev, "not ready %dms after %s; waiting\n",
1250                                 delay - 1, reset_type);
1251
1252                msleep(delay);
1253                delay *= 2;
1254                pci_read_config_dword(dev, PCI_COMMAND, &id);
1255        }
1256
1257        if (delay > 1000)
1258                pci_info(dev, "ready %dms after %s\n", delay - 1,
1259                         reset_type);
1260
1261        return 0;
1262}
1263
1264/**
1265 * pci_power_up - Put the given device into D0
1266 * @dev: PCI device to power up
1267 */
1268int pci_power_up(struct pci_dev *dev)
1269{
1270        pci_platform_power_transition(dev, PCI_D0);
1271
1272        /*
1273         * Mandatory power management transition delays are handled in
1274         * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1275         * corresponding bridge.
1276         */
1277        if (dev->runtime_d3cold) {
1278                /*
1279                 * When powering on a bridge from D3cold, the whole hierarchy
1280                 * may be powered on into D0uninitialized state, resume them to
1281                 * give them a chance to suspend again
1282                 */
1283                pci_resume_bus(dev->subordinate);
1284        }
1285
1286        return pci_raw_set_power_state(dev, PCI_D0);
1287}
1288
1289/**
1290 * __pci_dev_set_current_state - Set current state of a PCI device
1291 * @dev: Device to handle
1292 * @data: pointer to state to be set
1293 */
1294static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1295{
1296        pci_power_t state = *(pci_power_t *)data;
1297
1298        dev->current_state = state;
1299        return 0;
1300}
1301
1302/**
1303 * pci_bus_set_current_state - Walk given bus and set current state of devices
1304 * @bus: Top bus of the subtree to walk.
1305 * @state: state to be set
1306 */
1307void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1308{
1309        if (bus)
1310                pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1311}
1312
1313/**
1314 * pci_set_power_state - Set the power state of a PCI device
1315 * @dev: PCI device to handle.
1316 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1317 *
1318 * Transition a device to a new power state, using the platform firmware and/or
1319 * the device's PCI PM registers.
1320 *
1321 * RETURN VALUE:
1322 * -EINVAL if the requested state is invalid.
1323 * -EIO if device does not support PCI PM or its PM capabilities register has a
1324 * wrong version, or device doesn't support the requested state.
1325 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1326 * 0 if device already is in the requested state.
1327 * 0 if the transition is to D3 but D3 is not supported.
1328 * 0 if device's power state has been successfully changed.
1329 */
1330int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1331{
1332        int error;
1333
1334        /* Bound the state we're entering */
1335        if (state > PCI_D3cold)
1336                state = PCI_D3cold;
1337        else if (state < PCI_D0)
1338                state = PCI_D0;
1339        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1340
1341                /*
1342                 * If the device or the parent bridge do not support PCI
1343                 * PM, ignore the request if we're doing anything other
1344                 * than putting it into D0 (which would only happen on
1345                 * boot).
1346                 */
1347                return 0;
1348
1349        /* Check if we're already there */
1350        if (dev->current_state == state)
1351                return 0;
1352
1353        if (state == PCI_D0)
1354                return pci_power_up(dev);
1355
1356        /*
1357         * This device is quirked not to be put into D3, so don't put it in
1358         * D3
1359         */
1360        if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1361                return 0;
1362
1363        /*
1364         * To put device in D3cold, we put device into D3hot in native
1365         * way, then put device into D3cold with platform ops
1366         */
1367        error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1368                                        PCI_D3hot : state);
1369
1370        if (pci_platform_power_transition(dev, state))
1371                return error;
1372
1373        /* Powering off a bridge may power off the whole hierarchy */
1374        if (state == PCI_D3cold)
1375                pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1376
1377        return 0;
1378}
1379EXPORT_SYMBOL(pci_set_power_state);
1380
1381/**
1382 * pci_choose_state - Choose the power state of a PCI device
1383 * @dev: PCI device to be suspended
1384 * @state: target sleep state for the whole system. This is the value
1385 *         that is passed to suspend() function.
1386 *
1387 * Returns PCI power state suitable for given device and given system
1388 * message.
1389 */
1390pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1391{
1392        pci_power_t ret;
1393
1394        if (!dev->pm_cap)
1395                return PCI_D0;
1396
1397        ret = platform_pci_choose_state(dev);
1398        if (ret != PCI_POWER_ERROR)
1399                return ret;
1400
1401        switch (state.event) {
1402        case PM_EVENT_ON:
1403                return PCI_D0;
1404        case PM_EVENT_FREEZE:
1405        case PM_EVENT_PRETHAW:
1406                /* REVISIT both freeze and pre-thaw "should" use D0 */
1407        case PM_EVENT_SUSPEND:
1408        case PM_EVENT_HIBERNATE:
1409                return PCI_D3hot;
1410        default:
1411                pci_info(dev, "unrecognized suspend event %d\n",
1412                         state.event);
1413                BUG();
1414        }
1415        return PCI_D0;
1416}
1417EXPORT_SYMBOL(pci_choose_state);
1418
1419#define PCI_EXP_SAVE_REGS       7
1420
1421static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1422                                                       u16 cap, bool extended)
1423{
1424        struct pci_cap_saved_state *tmp;
1425
1426        hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1427                if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1428                        return tmp;
1429        }
1430        return NULL;
1431}
1432
1433struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1434{
1435        return _pci_find_saved_cap(dev, cap, false);
1436}
1437
1438struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1439{
1440        return _pci_find_saved_cap(dev, cap, true);
1441}
1442
1443static int pci_save_pcie_state(struct pci_dev *dev)
1444{
1445        int i = 0;
1446        struct pci_cap_saved_state *save_state;
1447        u16 *cap;
1448
1449        if (!pci_is_pcie(dev))
1450                return 0;
1451
1452        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1453        if (!save_state) {
1454                pci_err(dev, "buffer not found in %s\n", __func__);
1455                return -ENOMEM;
1456        }
1457
1458        cap = (u16 *)&save_state->cap.data[0];
1459        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1460        pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1461        pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1462        pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1463        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1464        pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1465        pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1466
1467        return 0;
1468}
1469
1470static void pci_restore_pcie_state(struct pci_dev *dev)
1471{
1472        int i = 0;
1473        struct pci_cap_saved_state *save_state;
1474        u16 *cap;
1475
1476        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1477        if (!save_state)
1478                return;
1479
1480        cap = (u16 *)&save_state->cap.data[0];
1481        pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1482        pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1483        pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1484        pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1485        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1486        pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1487        pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1488}
1489
1490static int pci_save_pcix_state(struct pci_dev *dev)
1491{
1492        int pos;
1493        struct pci_cap_saved_state *save_state;
1494
1495        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1496        if (!pos)
1497                return 0;
1498
1499        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1500        if (!save_state) {
1501                pci_err(dev, "buffer not found in %s\n", __func__);
1502                return -ENOMEM;
1503        }
1504
1505        pci_read_config_word(dev, pos + PCI_X_CMD,
1506                             (u16 *)save_state->cap.data);
1507
1508        return 0;
1509}
1510
1511static void pci_restore_pcix_state(struct pci_dev *dev)
1512{
1513        int i = 0, pos;
1514        struct pci_cap_saved_state *save_state;
1515        u16 *cap;
1516
1517        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1518        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1519        if (!save_state || !pos)
1520                return;
1521        cap = (u16 *)&save_state->cap.data[0];
1522
1523        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1524}
1525
1526static void pci_save_ltr_state(struct pci_dev *dev)
1527{
1528        int ltr;
1529        struct pci_cap_saved_state *save_state;
1530        u16 *cap;
1531
1532        if (!pci_is_pcie(dev))
1533                return;
1534
1535        ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1536        if (!ltr)
1537                return;
1538
1539        save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1540        if (!save_state) {
1541                pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1542                return;
1543        }
1544
1545        cap = (u16 *)&save_state->cap.data[0];
1546        pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1547        pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1548}
1549
1550static void pci_restore_ltr_state(struct pci_dev *dev)
1551{
1552        struct pci_cap_saved_state *save_state;
1553        int ltr;
1554        u16 *cap;
1555
1556        save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1557        ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1558        if (!save_state || !ltr)
1559                return;
1560
1561        cap = (u16 *)&save_state->cap.data[0];
1562        pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1563        pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1564}
1565
1566/**
1567 * pci_save_state - save the PCI configuration space of a device before
1568 *                  suspending
1569 * @dev: PCI device that we're dealing with
1570 */
1571int pci_save_state(struct pci_dev *dev)
1572{
1573        int i;
1574        /* XXX: 100% dword access ok here? */
1575        for (i = 0; i < 16; i++) {
1576                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1577                pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1578                        i * 4, dev->saved_config_space[i]);
1579        }
1580        dev->state_saved = true;
1581
1582        i = pci_save_pcie_state(dev);
1583        if (i != 0)
1584                return i;
1585
1586        i = pci_save_pcix_state(dev);
1587        if (i != 0)
1588                return i;
1589
1590        pci_save_ltr_state(dev);
1591        pci_save_dpc_state(dev);
1592        pci_save_aer_state(dev);
1593        pci_save_ptm_state(dev);
1594        return pci_save_vc_state(dev);
1595}
1596EXPORT_SYMBOL(pci_save_state);
1597
1598static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1599                                     u32 saved_val, int retry, bool force)
1600{
1601        u32 val;
1602
1603        pci_read_config_dword(pdev, offset, &val);
1604        if (!force && val == saved_val)
1605                return;
1606
1607        for (;;) {
1608                pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1609                        offset, val, saved_val);
1610                pci_write_config_dword(pdev, offset, saved_val);
1611                if (retry-- <= 0)
1612                        return;
1613
1614                pci_read_config_dword(pdev, offset, &val);
1615                if (val == saved_val)
1616                        return;
1617
1618                mdelay(1);
1619        }
1620}
1621
1622static void pci_restore_config_space_range(struct pci_dev *pdev,
1623                                           int start, int end, int retry,
1624                                           bool force)
1625{
1626        int index;
1627
1628        for (index = end; index >= start; index--)
1629                pci_restore_config_dword(pdev, 4 * index,
1630                                         pdev->saved_config_space[index],
1631                                         retry, force);
1632}
1633
1634static void pci_restore_config_space(struct pci_dev *pdev)
1635{
1636        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1637                pci_restore_config_space_range(pdev, 10, 15, 0, false);
1638                /* Restore BARs before the command register. */
1639                pci_restore_config_space_range(pdev, 4, 9, 10, false);
1640                pci_restore_config_space_range(pdev, 0, 3, 0, false);
1641        } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1642                pci_restore_config_space_range(pdev, 12, 15, 0, false);
1643
1644                /*
1645                 * Force rewriting of prefetch registers to avoid S3 resume
1646                 * issues on Intel PCI bridges that occur when these
1647                 * registers are not explicitly written.
1648                 */
1649                pci_restore_config_space_range(pdev, 9, 11, 0, true);
1650                pci_restore_config_space_range(pdev, 0, 8, 0, false);
1651        } else {
1652                pci_restore_config_space_range(pdev, 0, 15, 0, false);
1653        }
1654}
1655
1656static void pci_restore_rebar_state(struct pci_dev *pdev)
1657{
1658        unsigned int pos, nbars, i;
1659        u32 ctrl;
1660
1661        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1662        if (!pos)
1663                return;
1664
1665        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1666        nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1667                    PCI_REBAR_CTRL_NBAR_SHIFT;
1668
1669        for (i = 0; i < nbars; i++, pos += 8) {
1670                struct resource *res;
1671                int bar_idx, size;
1672
1673                pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1674                bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1675                res = pdev->resource + bar_idx;
1676                size = pci_rebar_bytes_to_size(resource_size(res));
1677                ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1678                ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1679                pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1680        }
1681}
1682
1683/**
1684 * pci_restore_state - Restore the saved state of a PCI device
1685 * @dev: PCI device that we're dealing with
1686 */
1687void pci_restore_state(struct pci_dev *dev)
1688{
1689        if (!dev->state_saved)
1690                return;
1691
1692        /*
1693         * Restore max latencies (in the LTR capability) before enabling
1694         * LTR itself (in the PCIe capability).
1695         */
1696        pci_restore_ltr_state(dev);
1697
1698        pci_restore_pcie_state(dev);
1699        pci_restore_pasid_state(dev);
1700        pci_restore_pri_state(dev);
1701        pci_restore_ats_state(dev);
1702        pci_restore_vc_state(dev);
1703        pci_restore_rebar_state(dev);
1704        pci_restore_dpc_state(dev);
1705        pci_restore_ptm_state(dev);
1706
1707        pci_aer_clear_status(dev);
1708        pci_restore_aer_state(dev);
1709
1710        pci_restore_config_space(dev);
1711
1712        pci_restore_pcix_state(dev);
1713        pci_restore_msi_state(dev);
1714
1715        /* Restore ACS and IOV configuration state */
1716        pci_enable_acs(dev);
1717        pci_restore_iov_state(dev);
1718
1719        dev->state_saved = false;
1720}
1721EXPORT_SYMBOL(pci_restore_state);
1722
1723struct pci_saved_state {
1724        u32 config_space[16];
1725        struct pci_cap_saved_data cap[];
1726};
1727
1728/**
1729 * pci_store_saved_state - Allocate and return an opaque struct containing
1730 *                         the device saved state.
1731 * @dev: PCI device that we're dealing with
1732 *
1733 * Return NULL if no state or error.
1734 */
1735struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1736{
1737        struct pci_saved_state *state;
1738        struct pci_cap_saved_state *tmp;
1739        struct pci_cap_saved_data *cap;
1740        size_t size;
1741
1742        if (!dev->state_saved)
1743                return NULL;
1744
1745        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1746
1747        hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1748                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1749
1750        state = kzalloc(size, GFP_KERNEL);
1751        if (!state)
1752                return NULL;
1753
1754        memcpy(state->config_space, dev->saved_config_space,
1755               sizeof(state->config_space));
1756
1757        cap = state->cap;
1758        hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1759                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1760                memcpy(cap, &tmp->cap, len);
1761                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1762        }
1763        /* Empty cap_save terminates list */
1764
1765        return state;
1766}
1767EXPORT_SYMBOL_GPL(pci_store_saved_state);
1768
1769/**
1770 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1771 * @dev: PCI device that we're dealing with
1772 * @state: Saved state returned from pci_store_saved_state()
1773 */
1774int pci_load_saved_state(struct pci_dev *dev,
1775                         struct pci_saved_state *state)
1776{
1777        struct pci_cap_saved_data *cap;
1778
1779        dev->state_saved = false;
1780
1781        if (!state)
1782                return 0;
1783
1784        memcpy(dev->saved_config_space, state->config_space,
1785               sizeof(state->config_space));
1786
1787        cap = state->cap;
1788        while (cap->size) {
1789                struct pci_cap_saved_state *tmp;
1790
1791                tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1792                if (!tmp || tmp->cap.size != cap->size)
1793                        return -EINVAL;
1794
1795                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1796                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1797                       sizeof(struct pci_cap_saved_data) + cap->size);
1798        }
1799
1800        dev->state_saved = true;
1801        return 0;
1802}
1803EXPORT_SYMBOL_GPL(pci_load_saved_state);
1804
1805/**
1806 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1807 *                                 and free the memory allocated for it.
1808 * @dev: PCI device that we're dealing with
1809 * @state: Pointer to saved state returned from pci_store_saved_state()
1810 */
1811int pci_load_and_free_saved_state(struct pci_dev *dev,
1812                                  struct pci_saved_state **state)
1813{
1814        int ret = pci_load_saved_state(dev, *state);
1815        kfree(*state);
1816        *state = NULL;
1817        return ret;
1818}
1819EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1820
1821int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1822{
1823        return pci_enable_resources(dev, bars);
1824}
1825
1826static int do_pci_enable_device(struct pci_dev *dev, int bars)
1827{
1828        int err;
1829        struct pci_dev *bridge;
1830        u16 cmd;
1831        u8 pin;
1832
1833        err = pci_set_power_state(dev, PCI_D0);
1834        if (err < 0 && err != -EIO)
1835                return err;
1836
1837        bridge = pci_upstream_bridge(dev);
1838        if (bridge)
1839                pcie_aspm_powersave_config_link(bridge);
1840
1841        err = pcibios_enable_device(dev, bars);
1842        if (err < 0)
1843                return err;
1844        pci_fixup_device(pci_fixup_enable, dev);
1845
1846        if (dev->msi_enabled || dev->msix_enabled)
1847                return 0;
1848
1849        pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1850        if (pin) {
1851                pci_read_config_word(dev, PCI_COMMAND, &cmd);
1852                if (cmd & PCI_COMMAND_INTX_DISABLE)
1853                        pci_write_config_word(dev, PCI_COMMAND,
1854                                              cmd & ~PCI_COMMAND_INTX_DISABLE);
1855        }
1856
1857        return 0;
1858}
1859
1860/**
1861 * pci_reenable_device - Resume abandoned device
1862 * @dev: PCI device to be resumed
1863 *
1864 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1865 * to be called by normal code, write proper resume handler and use it instead.
1866 */
1867int pci_reenable_device(struct pci_dev *dev)
1868{
1869        if (pci_is_enabled(dev))
1870                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1871        return 0;
1872}
1873EXPORT_SYMBOL(pci_reenable_device);
1874
1875static void pci_enable_bridge(struct pci_dev *dev)
1876{
1877        struct pci_dev *bridge;
1878        int retval;
1879
1880        bridge = pci_upstream_bridge(dev);
1881        if (bridge)
1882                pci_enable_bridge(bridge);
1883
1884        if (pci_is_enabled(dev)) {
1885                if (!dev->is_busmaster)
1886                        pci_set_master(dev);
1887                return;
1888        }
1889
1890        retval = pci_enable_device(dev);
1891        if (retval)
1892                pci_err(dev, "Error enabling bridge (%d), continuing\n",
1893                        retval);
1894        pci_set_master(dev);
1895}
1896
1897static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1898{
1899        struct pci_dev *bridge;
1900        int err;
1901        int i, bars = 0;
1902
1903        /*
1904         * Power state could be unknown at this point, either due to a fresh
1905         * boot or a device removal call.  So get the current power state
1906         * so that things like MSI message writing will behave as expected
1907         * (e.g. if the device really is in D0 at enable time).
1908         */
1909        if (dev->pm_cap) {
1910                u16 pmcsr;
1911                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1912                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1913        }
1914
1915        if (atomic_inc_return(&dev->enable_cnt) > 1)
1916                return 0;               /* already enabled */
1917
1918        bridge = pci_upstream_bridge(dev);
1919        if (bridge)
1920                pci_enable_bridge(bridge);
1921
1922        /* only skip sriov related */
1923        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1924                if (dev->resource[i].flags & flags)
1925                        bars |= (1 << i);
1926        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1927                if (dev->resource[i].flags & flags)
1928                        bars |= (1 << i);
1929
1930        err = do_pci_enable_device(dev, bars);
1931        if (err < 0)
1932                atomic_dec(&dev->enable_cnt);
1933        return err;
1934}
1935
1936/**
1937 * pci_enable_device_io - Initialize a device for use with IO space
1938 * @dev: PCI device to be initialized
1939 *
1940 * Initialize device before it's used by a driver. Ask low-level code
1941 * to enable I/O resources. Wake up the device if it was suspended.
1942 * Beware, this function can fail.
1943 */
1944int pci_enable_device_io(struct pci_dev *dev)
1945{
1946        return pci_enable_device_flags(dev, IORESOURCE_IO);
1947}
1948EXPORT_SYMBOL(pci_enable_device_io);
1949
1950/**
1951 * pci_enable_device_mem - Initialize a device for use with Memory space
1952 * @dev: PCI device to be initialized
1953 *
1954 * Initialize device before it's used by a driver. Ask low-level code
1955 * to enable Memory resources. Wake up the device if it was suspended.
1956 * Beware, this function can fail.
1957 */
1958int pci_enable_device_mem(struct pci_dev *dev)
1959{
1960        return pci_enable_device_flags(dev, IORESOURCE_MEM);
1961}
1962EXPORT_SYMBOL(pci_enable_device_mem);
1963
1964/**
1965 * pci_enable_device - Initialize device before it's used by a driver.
1966 * @dev: PCI device to be initialized
1967 *
1968 * Initialize device before it's used by a driver. Ask low-level code
1969 * to enable I/O and memory. Wake up the device if it was suspended.
1970 * Beware, this function can fail.
1971 *
1972 * Note we don't actually enable the device many times if we call
1973 * this function repeatedly (we just increment the count).
1974 */
1975int pci_enable_device(struct pci_dev *dev)
1976{
1977        return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1978}
1979EXPORT_SYMBOL(pci_enable_device);
1980
1981/*
1982 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1983 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1984 * there's no need to track it separately.  pci_devres is initialized
1985 * when a device is enabled using managed PCI device enable interface.
1986 */
1987struct pci_devres {
1988        unsigned int enabled:1;
1989        unsigned int pinned:1;
1990        unsigned int orig_intx:1;
1991        unsigned int restore_intx:1;
1992        unsigned int mwi:1;
1993        u32 region_mask;
1994};
1995
1996static void pcim_release(struct device *gendev, void *res)
1997{
1998        struct pci_dev *dev = to_pci_dev(gendev);
1999        struct pci_devres *this = res;
2000        int i;
2001
2002        if (dev->msi_enabled)
2003                pci_disable_msi(dev);
2004        if (dev->msix_enabled)
2005                pci_disable_msix(dev);
2006
2007        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2008                if (this->region_mask & (1 << i))
2009                        pci_release_region(dev, i);
2010
2011        if (this->mwi)
2012                pci_clear_mwi(dev);
2013
2014        if (this->restore_intx)
2015                pci_intx(dev, this->orig_intx);
2016
2017        if (this->enabled && !this->pinned)
2018                pci_disable_device(dev);
2019}
2020
2021static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2022{
2023        struct pci_devres *dr, *new_dr;
2024
2025        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2026        if (dr)
2027                return dr;
2028
2029        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2030        if (!new_dr)
2031                return NULL;
2032        return devres_get(&pdev->dev, new_dr, NULL, NULL);
2033}
2034
2035static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2036{
2037        if (pci_is_managed(pdev))
2038                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2039        return NULL;
2040}
2041
2042/**
2043 * pcim_enable_device - Managed pci_enable_device()
2044 * @pdev: PCI device to be initialized
2045 *
2046 * Managed pci_enable_device().
2047 */
2048int pcim_enable_device(struct pci_dev *pdev)
2049{
2050        struct pci_devres *dr;
2051        int rc;
2052
2053        dr = get_pci_dr(pdev);
2054        if (unlikely(!dr))
2055                return -ENOMEM;
2056        if (dr->enabled)
2057                return 0;
2058
2059        rc = pci_enable_device(pdev);
2060        if (!rc) {
2061                pdev->is_managed = 1;
2062                dr->enabled = 1;
2063        }
2064        return rc;
2065}
2066EXPORT_SYMBOL(pcim_enable_device);
2067
2068/**
2069 * pcim_pin_device - Pin managed PCI device
2070 * @pdev: PCI device to pin
2071 *
2072 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2073 * driver detach.  @pdev must have been enabled with
2074 * pcim_enable_device().
2075 */
2076void pcim_pin_device(struct pci_dev *pdev)
2077{
2078        struct pci_devres *dr;
2079
2080        dr = find_pci_dr(pdev);
2081        WARN_ON(!dr || !dr->enabled);
2082        if (dr)
2083                dr->pinned = 1;
2084}
2085EXPORT_SYMBOL(pcim_pin_device);
2086
2087/*
2088 * pcibios_add_device - provide arch specific hooks when adding device dev
2089 * @dev: the PCI device being added
2090 *
2091 * Permits the platform to provide architecture specific functionality when
2092 * devices are added. This is the default implementation. Architecture
2093 * implementations can override this.
2094 */
2095int __weak pcibios_add_device(struct pci_dev *dev)
2096{
2097        return 0;
2098}
2099
2100/**
2101 * pcibios_release_device - provide arch specific hooks when releasing
2102 *                          device dev
2103 * @dev: the PCI device being released
2104 *
2105 * Permits the platform to provide architecture specific functionality when
2106 * devices are released. This is the default implementation. Architecture
2107 * implementations can override this.
2108 */
2109void __weak pcibios_release_device(struct pci_dev *dev) {}
2110
2111/**
2112 * pcibios_disable_device - disable arch specific PCI resources for device dev
2113 * @dev: the PCI device to disable
2114 *
2115 * Disables architecture specific PCI resources for the device. This
2116 * is the default implementation. Architecture implementations can
2117 * override this.
2118 */
2119void __weak pcibios_disable_device(struct pci_dev *dev) {}
2120
2121/**
2122 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2123 * @irq: ISA IRQ to penalize
2124 * @active: IRQ active or not
2125 *
2126 * Permits the platform to provide architecture-specific functionality when
2127 * penalizing ISA IRQs. This is the default implementation. Architecture
2128 * implementations can override this.
2129 */
2130void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2131
2132static void do_pci_disable_device(struct pci_dev *dev)
2133{
2134        u16 pci_command;
2135
2136        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2137        if (pci_command & PCI_COMMAND_MASTER) {
2138                pci_command &= ~PCI_COMMAND_MASTER;
2139                pci_write_config_word(dev, PCI_COMMAND, pci_command);
2140        }
2141
2142        pcibios_disable_device(dev);
2143}
2144
2145/**
2146 * pci_disable_enabled_device - Disable device without updating enable_cnt
2147 * @dev: PCI device to disable
2148 *
2149 * NOTE: This function is a backend of PCI power management routines and is
2150 * not supposed to be called drivers.
2151 */
2152void pci_disable_enabled_device(struct pci_dev *dev)
2153{
2154        if (pci_is_enabled(dev))
2155                do_pci_disable_device(dev);
2156}
2157
2158/**
2159 * pci_disable_device - Disable PCI device after use
2160 * @dev: PCI device to be disabled
2161 *
2162 * Signal to the system that the PCI device is not in use by the system
2163 * anymore.  This only involves disabling PCI bus-mastering, if active.
2164 *
2165 * Note we don't actually disable the device until all callers of
2166 * pci_enable_device() have called pci_disable_device().
2167 */
2168void pci_disable_device(struct pci_dev *dev)
2169{
2170        struct pci_devres *dr;
2171
2172        dr = find_pci_dr(dev);
2173        if (dr)
2174                dr->enabled = 0;
2175
2176        dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2177                      "disabling already-disabled device");
2178
2179        if (atomic_dec_return(&dev->enable_cnt) != 0)
2180                return;
2181
2182        do_pci_disable_device(dev);
2183
2184        dev->is_busmaster = 0;
2185}
2186EXPORT_SYMBOL(pci_disable_device);
2187
2188/**
2189 * pcibios_set_pcie_reset_state - set reset state for device dev
2190 * @dev: the PCIe device reset
2191 * @state: Reset state to enter into
2192 *
2193 * Set the PCIe reset state for the device. This is the default
2194 * implementation. Architecture implementations can override this.
2195 */
2196int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2197                                        enum pcie_reset_state state)
2198{
2199        return -EINVAL;
2200}
2201
2202/**
2203 * pci_set_pcie_reset_state - set reset state for device dev
2204 * @dev: the PCIe device reset
2205 * @state: Reset state to enter into
2206 *
2207 * Sets the PCI reset state for the device.
2208 */
2209int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2210{
2211        return pcibios_set_pcie_reset_state(dev, state);
2212}
2213EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2214
2215void pcie_clear_device_status(struct pci_dev *dev)
2216{
2217        u16 sta;
2218
2219        pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2220        pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2221}
2222
2223/**
2224 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2225 * @dev: PCIe root port or event collector.
2226 */
2227void pcie_clear_root_pme_status(struct pci_dev *dev)
2228{
2229        pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2230}
2231
2232/**
2233 * pci_check_pme_status - Check if given device has generated PME.
2234 * @dev: Device to check.
2235 *
2236 * Check the PME status of the device and if set, clear it and clear PME enable
2237 * (if set).  Return 'true' if PME status and PME enable were both set or
2238 * 'false' otherwise.
2239 */
2240bool pci_check_pme_status(struct pci_dev *dev)
2241{
2242        int pmcsr_pos;
2243        u16 pmcsr;
2244        bool ret = false;
2245
2246        if (!dev->pm_cap)
2247                return false;
2248
2249        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2250        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2251        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2252                return false;
2253
2254        /* Clear PME status. */
2255        pmcsr |= PCI_PM_CTRL_PME_STATUS;
2256        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2257                /* Disable PME to avoid interrupt flood. */
2258                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2259                ret = true;
2260        }
2261
2262        pci_write_config_word(dev, pmcsr_pos, pmcsr);
2263
2264        return ret;
2265}
2266
2267/**
2268 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2269 * @dev: Device to handle.
2270 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2271 *
2272 * Check if @dev has generated PME and queue a resume request for it in that
2273 * case.
2274 */
2275static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2276{
2277        if (pme_poll_reset && dev->pme_poll)
2278                dev->pme_poll = false;
2279
2280        if (pci_check_pme_status(dev)) {
2281                pci_wakeup_event(dev);
2282                pm_request_resume(&dev->dev);
2283        }
2284        return 0;
2285}
2286
2287/**
2288 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2289 * @bus: Top bus of the subtree to walk.
2290 */
2291void pci_pme_wakeup_bus(struct pci_bus *bus)
2292{
2293        if (bus)
2294                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2295}
2296
2297
2298/**
2299 * pci_pme_capable - check the capability of PCI device to generate PME#
2300 * @dev: PCI device to handle.
2301 * @state: PCI state from which device will issue PME#.
2302 */
2303bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2304{
2305        if (!dev->pm_cap)
2306                return false;
2307
2308        return !!(dev->pme_support & (1 << state));
2309}
2310EXPORT_SYMBOL(pci_pme_capable);
2311
2312static void pci_pme_list_scan(struct work_struct *work)
2313{
2314        struct pci_pme_device *pme_dev, *n;
2315
2316        mutex_lock(&pci_pme_list_mutex);
2317        list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2318                if (pme_dev->dev->pme_poll) {
2319                        struct pci_dev *bridge;
2320
2321                        bridge = pme_dev->dev->bus->self;
2322                        /*
2323                         * If bridge is in low power state, the
2324                         * configuration space of subordinate devices
2325                         * may be not accessible
2326                         */
2327                        if (bridge && bridge->current_state != PCI_D0)
2328                                continue;
2329                        /*
2330                         * If the device is in D3cold it should not be
2331                         * polled either.
2332                         */
2333                        if (pme_dev->dev->current_state == PCI_D3cold)
2334                                continue;
2335
2336                        pci_pme_wakeup(pme_dev->dev, NULL);
2337                } else {
2338                        list_del(&pme_dev->list);
2339                        kfree(pme_dev);
2340                }
2341        }
2342        if (!list_empty(&pci_pme_list))
2343                queue_delayed_work(system_freezable_wq, &pci_pme_work,
2344                                   msecs_to_jiffies(PME_TIMEOUT));
2345        mutex_unlock(&pci_pme_list_mutex);
2346}
2347
2348static void __pci_pme_active(struct pci_dev *dev, bool enable)
2349{
2350        u16 pmcsr;
2351
2352        if (!dev->pme_support)
2353                return;
2354
2355        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2356        /* Clear PME_Status by writing 1 to it and enable PME# */
2357        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2358        if (!enable)
2359                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2360
2361        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2362}
2363
2364/**
2365 * pci_pme_restore - Restore PME configuration after config space restore.
2366 * @dev: PCI device to update.
2367 */
2368void pci_pme_restore(struct pci_dev *dev)
2369{
2370        u16 pmcsr;
2371
2372        if (!dev->pme_support)
2373                return;
2374
2375        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2376        if (dev->wakeup_prepared) {
2377                pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2378                pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2379        } else {
2380                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2381                pmcsr |= PCI_PM_CTRL_PME_STATUS;
2382        }
2383        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2384}
2385
2386/**
2387 * pci_pme_active - enable or disable PCI device's PME# function
2388 * @dev: PCI device to handle.
2389 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2390 *
2391 * The caller must verify that the device is capable of generating PME# before
2392 * calling this function with @enable equal to 'true'.
2393 */
2394void pci_pme_active(struct pci_dev *dev, bool enable)
2395{
2396        __pci_pme_active(dev, enable);
2397
2398        /*
2399         * PCI (as opposed to PCIe) PME requires that the device have
2400         * its PME# line hooked up correctly. Not all hardware vendors
2401         * do this, so the PME never gets delivered and the device
2402         * remains asleep. The easiest way around this is to
2403         * periodically walk the list of suspended devices and check
2404         * whether any have their PME flag set. The assumption is that
2405         * we'll wake up often enough anyway that this won't be a huge
2406         * hit, and the power savings from the devices will still be a
2407         * win.
2408         *
2409         * Although PCIe uses in-band PME message instead of PME# line
2410         * to report PME, PME does not work for some PCIe devices in
2411         * reality.  For example, there are devices that set their PME
2412         * status bits, but don't really bother to send a PME message;
2413         * there are PCI Express Root Ports that don't bother to
2414         * trigger interrupts when they receive PME messages from the
2415         * devices below.  So PME poll is used for PCIe devices too.
2416         */
2417
2418        if (dev->pme_poll) {
2419                struct pci_pme_device *pme_dev;
2420                if (enable) {
2421                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
2422                                          GFP_KERNEL);
2423                        if (!pme_dev) {
2424                                pci_warn(dev, "can't enable PME#\n");
2425                                return;
2426                        }
2427                        pme_dev->dev = dev;
2428                        mutex_lock(&pci_pme_list_mutex);
2429                        list_add(&pme_dev->list, &pci_pme_list);
2430                        if (list_is_singular(&pci_pme_list))
2431                                queue_delayed_work(system_freezable_wq,
2432                                                   &pci_pme_work,
2433                                                   msecs_to_jiffies(PME_TIMEOUT));
2434                        mutex_unlock(&pci_pme_list_mutex);
2435                } else {
2436                        mutex_lock(&pci_pme_list_mutex);
2437                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
2438                                if (pme_dev->dev == dev) {
2439                                        list_del(&pme_dev->list);
2440                                        kfree(pme_dev);
2441                                        break;
2442                                }
2443                        }
2444                        mutex_unlock(&pci_pme_list_mutex);
2445                }
2446        }
2447
2448        pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2449}
2450EXPORT_SYMBOL(pci_pme_active);
2451
2452/**
2453 * __pci_enable_wake - enable PCI device as wakeup event source
2454 * @dev: PCI device affected
2455 * @state: PCI state from which device will issue wakeup events
2456 * @enable: True to enable event generation; false to disable
2457 *
2458 * This enables the device as a wakeup event source, or disables it.
2459 * When such events involves platform-specific hooks, those hooks are
2460 * called automatically by this routine.
2461 *
2462 * Devices with legacy power management (no standard PCI PM capabilities)
2463 * always require such platform hooks.
2464 *
2465 * RETURN VALUE:
2466 * 0 is returned on success
2467 * -EINVAL is returned if device is not supposed to wake up the system
2468 * Error code depending on the platform is returned if both the platform and
2469 * the native mechanism fail to enable the generation of wake-up events
2470 */
2471static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2472{
2473        int ret = 0;
2474
2475        /*
2476         * Bridges that are not power-manageable directly only signal
2477         * wakeup on behalf of subordinate devices which is set up
2478         * elsewhere, so skip them. However, bridges that are
2479         * power-manageable may signal wakeup for themselves (for example,
2480         * on a hotplug event) and they need to be covered here.
2481         */
2482        if (!pci_power_manageable(dev))
2483                return 0;
2484
2485        /* Don't do the same thing twice in a row for one device. */
2486        if (!!enable == !!dev->wakeup_prepared)
2487                return 0;
2488
2489        /*
2490         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2491         * Anderson we should be doing PME# wake enable followed by ACPI wake
2492         * enable.  To disable wake-up we call the platform first, for symmetry.
2493         */
2494
2495        if (enable) {
2496                int error;
2497
2498                /*
2499                 * Enable PME signaling if the device can signal PME from
2500                 * D3cold regardless of whether or not it can signal PME from
2501                 * the current target state, because that will allow it to
2502                 * signal PME when the hierarchy above it goes into D3cold and
2503                 * the device itself ends up in D3cold as a result of that.
2504                 */
2505                if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2506                        pci_pme_active(dev, true);
2507                else
2508                        ret = 1;
2509                error = platform_pci_set_wakeup(dev, true);
2510                if (ret)
2511                        ret = error;
2512                if (!ret)
2513                        dev->wakeup_prepared = true;
2514        } else {
2515                platform_pci_set_wakeup(dev, false);
2516                pci_pme_active(dev, false);
2517                dev->wakeup_prepared = false;
2518        }
2519
2520        return ret;
2521}
2522
2523/**
2524 * pci_enable_wake - change wakeup settings for a PCI device
2525 * @pci_dev: Target device
2526 * @state: PCI state from which device will issue wakeup events
2527 * @enable: Whether or not to enable event generation
2528 *
2529 * If @enable is set, check device_may_wakeup() for the device before calling
2530 * __pci_enable_wake() for it.
2531 */
2532int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2533{
2534        if (enable && !device_may_wakeup(&pci_dev->dev))
2535                return -EINVAL;
2536
2537        return __pci_enable_wake(pci_dev, state, enable);
2538}
2539EXPORT_SYMBOL(pci_enable_wake);
2540
2541/**
2542 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2543 * @dev: PCI device to prepare
2544 * @enable: True to enable wake-up event generation; false to disable
2545 *
2546 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2547 * and this function allows them to set that up cleanly - pci_enable_wake()
2548 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2549 * ordering constraints.
2550 *
2551 * This function only returns error code if the device is not allowed to wake
2552 * up the system from sleep or it is not capable of generating PME# from both
2553 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2554 */
2555int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2556{
2557        return pci_pme_capable(dev, PCI_D3cold) ?
2558                        pci_enable_wake(dev, PCI_D3cold, enable) :
2559                        pci_enable_wake(dev, PCI_D3hot, enable);
2560}
2561EXPORT_SYMBOL(pci_wake_from_d3);
2562
2563/**
2564 * pci_target_state - find an appropriate low power state for a given PCI dev
2565 * @dev: PCI device
2566 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2567 *
2568 * Use underlying platform code to find a supported low power state for @dev.
2569 * If the platform can't manage @dev, return the deepest state from which it
2570 * can generate wake events, based on any available PME info.
2571 */
2572static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2573{
2574        pci_power_t target_state = PCI_D3hot;
2575
2576        if (platform_pci_power_manageable(dev)) {
2577                /*
2578                 * Call the platform to find the target state for the device.
2579                 */
2580                pci_power_t state = platform_pci_choose_state(dev);
2581
2582                switch (state) {
2583                case PCI_POWER_ERROR:
2584                case PCI_UNKNOWN:
2585                        break;
2586                case PCI_D1:
2587                case PCI_D2:
2588                        if (pci_no_d1d2(dev))
2589                                break;
2590                        fallthrough;
2591                default:
2592                        target_state = state;
2593                }
2594
2595                return target_state;
2596        }
2597
2598        if (!dev->pm_cap)
2599                target_state = PCI_D0;
2600
2601        /*
2602         * If the device is in D3cold even though it's not power-manageable by
2603         * the platform, it may have been powered down by non-standard means.
2604         * Best to let it slumber.
2605         */
2606        if (dev->current_state == PCI_D3cold)
2607                target_state = PCI_D3cold;
2608
2609        if (wakeup && dev->pme_support) {
2610                pci_power_t state = target_state;
2611
2612                /*
2613                 * Find the deepest state from which the device can generate
2614                 * PME#.
2615                 */
2616                while (state && !(dev->pme_support & (1 << state)))
2617                        state--;
2618
2619                if (state)
2620                        return state;
2621                else if (dev->pme_support & 1)
2622                        return PCI_D0;
2623        }
2624
2625        return target_state;
2626}
2627
2628/**
2629 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2630 *                        into a sleep state
2631 * @dev: Device to handle.
2632 *
2633 * Choose the power state appropriate for the device depending on whether
2634 * it can wake up the system and/or is power manageable by the platform
2635 * (PCI_D3hot is the default) and put the device into that state.
2636 */
2637int pci_prepare_to_sleep(struct pci_dev *dev)
2638{
2639        bool wakeup = device_may_wakeup(&dev->dev);
2640        pci_power_t target_state = pci_target_state(dev, wakeup);
2641        int error;
2642
2643        if (target_state == PCI_POWER_ERROR)
2644                return -EIO;
2645
2646        /*
2647         * There are systems (for example, Intel mobile chips since Coffee
2648         * Lake) where the power drawn while suspended can be significantly
2649         * reduced by disabling PTM on PCIe root ports as this allows the
2650         * port to enter a lower-power PM state and the SoC to reach a
2651         * lower-power idle state as a whole.
2652         */
2653        if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2654                pci_disable_ptm(dev);
2655
2656        pci_enable_wake(dev, target_state, wakeup);
2657
2658        error = pci_set_power_state(dev, target_state);
2659
2660        if (error) {
2661                pci_enable_wake(dev, target_state, false);
2662                pci_restore_ptm_state(dev);
2663        }
2664
2665        return error;
2666}
2667EXPORT_SYMBOL(pci_prepare_to_sleep);
2668
2669/**
2670 * pci_back_from_sleep - turn PCI device on during system-wide transition
2671 *                       into working state
2672 * @dev: Device to handle.
2673 *
2674 * Disable device's system wake-up capability and put it into D0.
2675 */
2676int pci_back_from_sleep(struct pci_dev *dev)
2677{
2678        pci_enable_wake(dev, PCI_D0, false);
2679        return pci_set_power_state(dev, PCI_D0);
2680}
2681EXPORT_SYMBOL(pci_back_from_sleep);
2682
2683/**
2684 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2685 * @dev: PCI device being suspended.
2686 *
2687 * Prepare @dev to generate wake-up events at run time and put it into a low
2688 * power state.
2689 */
2690int pci_finish_runtime_suspend(struct pci_dev *dev)
2691{
2692        pci_power_t target_state;
2693        int error;
2694
2695        target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2696        if (target_state == PCI_POWER_ERROR)
2697                return -EIO;
2698
2699        dev->runtime_d3cold = target_state == PCI_D3cold;
2700
2701        /*
2702         * There are systems (for example, Intel mobile chips since Coffee
2703         * Lake) where the power drawn while suspended can be significantly
2704         * reduced by disabling PTM on PCIe root ports as this allows the
2705         * port to enter a lower-power PM state and the SoC to reach a
2706         * lower-power idle state as a whole.
2707         */
2708        if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2709                pci_disable_ptm(dev);
2710
2711        __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2712
2713        error = pci_set_power_state(dev, target_state);
2714
2715        if (error) {
2716                pci_enable_wake(dev, target_state, false);
2717                pci_restore_ptm_state(dev);
2718                dev->runtime_d3cold = false;
2719        }
2720
2721        return error;
2722}
2723
2724/**
2725 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2726 * @dev: Device to check.
2727 *
2728 * Return true if the device itself is capable of generating wake-up events
2729 * (through the platform or using the native PCIe PME) or if the device supports
2730 * PME and one of its upstream bridges can generate wake-up events.
2731 */
2732bool pci_dev_run_wake(struct pci_dev *dev)
2733{
2734        struct pci_bus *bus = dev->bus;
2735
2736        if (!dev->pme_support)
2737                return false;
2738
2739        /* PME-capable in principle, but not from the target power state */
2740        if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2741                return false;
2742
2743        if (device_can_wakeup(&dev->dev))
2744                return true;
2745
2746        while (bus->parent) {
2747                struct pci_dev *bridge = bus->self;
2748
2749                if (device_can_wakeup(&bridge->dev))
2750                        return true;
2751
2752                bus = bus->parent;
2753        }
2754
2755        /* We have reached the root bus. */
2756        if (bus->bridge)
2757                return device_can_wakeup(bus->bridge);
2758
2759        return false;
2760}
2761EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2762
2763/**
2764 * pci_dev_need_resume - Check if it is necessary to resume the device.
2765 * @pci_dev: Device to check.
2766 *
2767 * Return 'true' if the device is not runtime-suspended or it has to be
2768 * reconfigured due to wakeup settings difference between system and runtime
2769 * suspend, or the current power state of it is not suitable for the upcoming
2770 * (system-wide) transition.
2771 */
2772bool pci_dev_need_resume(struct pci_dev *pci_dev)
2773{
2774        struct device *dev = &pci_dev->dev;
2775        pci_power_t target_state;
2776
2777        if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2778                return true;
2779
2780        target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2781
2782        /*
2783         * If the earlier platform check has not triggered, D3cold is just power
2784         * removal on top of D3hot, so no need to resume the device in that
2785         * case.
2786         */
2787        return target_state != pci_dev->current_state &&
2788                target_state != PCI_D3cold &&
2789                pci_dev->current_state != PCI_D3hot;
2790}
2791
2792/**
2793 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2794 * @pci_dev: Device to check.
2795 *
2796 * If the device is suspended and it is not configured for system wakeup,
2797 * disable PME for it to prevent it from waking up the system unnecessarily.
2798 *
2799 * Note that if the device's power state is D3cold and the platform check in
2800 * pci_dev_need_resume() has not triggered, the device's configuration need not
2801 * be changed.
2802 */
2803void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2804{
2805        struct device *dev = &pci_dev->dev;
2806
2807        spin_lock_irq(&dev->power.lock);
2808
2809        if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2810            pci_dev->current_state < PCI_D3cold)
2811                __pci_pme_active(pci_dev, false);
2812
2813        spin_unlock_irq(&dev->power.lock);
2814}
2815
2816/**
2817 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2818 * @pci_dev: Device to handle.
2819 *
2820 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2821 * it might have been disabled during the prepare phase of system suspend if
2822 * the device was not configured for system wakeup.
2823 */
2824void pci_dev_complete_resume(struct pci_dev *pci_dev)
2825{
2826        struct device *dev = &pci_dev->dev;
2827
2828        if (!pci_dev_run_wake(pci_dev))
2829                return;
2830
2831        spin_lock_irq(&dev->power.lock);
2832
2833        if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2834                __pci_pme_active(pci_dev, true);
2835
2836        spin_unlock_irq(&dev->power.lock);
2837}
2838
2839void pci_config_pm_runtime_get(struct pci_dev *pdev)
2840{
2841        struct device *dev = &pdev->dev;
2842        struct device *parent = dev->parent;
2843
2844        if (parent)
2845                pm_runtime_get_sync(parent);
2846        pm_runtime_get_noresume(dev);
2847        /*
2848         * pdev->current_state is set to PCI_D3cold during suspending,
2849         * so wait until suspending completes
2850         */
2851        pm_runtime_barrier(dev);
2852        /*
2853         * Only need to resume devices in D3cold, because config
2854         * registers are still accessible for devices suspended but
2855         * not in D3cold.
2856         */
2857        if (pdev->current_state == PCI_D3cold)
2858                pm_runtime_resume(dev);
2859}
2860
2861void pci_config_pm_runtime_put(struct pci_dev *pdev)
2862{
2863        struct device *dev = &pdev->dev;
2864        struct device *parent = dev->parent;
2865
2866        pm_runtime_put(dev);
2867        if (parent)
2868                pm_runtime_put_sync(parent);
2869}
2870
2871static const struct dmi_system_id bridge_d3_blacklist[] = {
2872#ifdef CONFIG_X86
2873        {
2874                /*
2875                 * Gigabyte X299 root port is not marked as hotplug capable
2876                 * which allows Linux to power manage it.  However, this
2877                 * confuses the BIOS SMI handler so don't power manage root
2878                 * ports on that system.
2879                 */
2880                .ident = "X299 DESIGNARE EX-CF",
2881                .matches = {
2882                        DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2883                        DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2884                },
2885        },
2886#endif
2887        { }
2888};
2889
2890/**
2891 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2892 * @bridge: Bridge to check
2893 *
2894 * This function checks if it is possible to move the bridge to D3.
2895 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2896 */
2897bool pci_bridge_d3_possible(struct pci_dev *bridge)
2898{
2899        if (!pci_is_pcie(bridge))
2900                return false;
2901
2902        switch (pci_pcie_type(bridge)) {
2903        case PCI_EXP_TYPE_ROOT_PORT:
2904        case PCI_EXP_TYPE_UPSTREAM:
2905        case PCI_EXP_TYPE_DOWNSTREAM:
2906                if (pci_bridge_d3_disable)
2907                        return false;
2908
2909                /*
2910                 * Hotplug ports handled by firmware in System Management Mode
2911                 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2912                 */
2913                if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2914                        return false;
2915
2916                if (pci_bridge_d3_force)
2917                        return true;
2918
2919                /* Even the oldest 2010 Thunderbolt controller supports D3. */
2920                if (bridge->is_thunderbolt)
2921                        return true;
2922
2923                /* Platform might know better if the bridge supports D3 */
2924                if (platform_pci_bridge_d3(bridge))
2925                        return true;
2926
2927                /*
2928                 * Hotplug ports handled natively by the OS were not validated
2929                 * by vendors for runtime D3 at least until 2018 because there
2930                 * was no OS support.
2931                 */
2932                if (bridge->is_hotplug_bridge)
2933                        return false;
2934
2935                if (dmi_check_system(bridge_d3_blacklist))
2936                        return false;
2937
2938                /*
2939                 * It should be safe to put PCIe ports from 2015 or newer
2940                 * to D3.
2941                 */
2942                if (dmi_get_bios_year() >= 2015)
2943                        return true;
2944                break;
2945        }
2946
2947        return false;
2948}
2949
2950static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2951{
2952        bool *d3cold_ok = data;
2953
2954        if (/* The device needs to be allowed to go D3cold ... */
2955            dev->no_d3cold || !dev->d3cold_allowed ||
2956
2957            /* ... and if it is wakeup capable to do so from D3cold. */
2958            (device_may_wakeup(&dev->dev) &&
2959             !pci_pme_capable(dev, PCI_D3cold)) ||
2960
2961            /* If it is a bridge it must be allowed to go to D3. */
2962            !pci_power_manageable(dev))
2963
2964                *d3cold_ok = false;
2965
2966        return !*d3cold_ok;
2967}
2968
2969/*
2970 * pci_bridge_d3_update - Update bridge D3 capabilities
2971 * @dev: PCI device which is changed
2972 *
2973 * Update upstream bridge PM capabilities accordingly depending on if the
2974 * device PM configuration was changed or the device is being removed.  The
2975 * change is also propagated upstream.
2976 */
2977void pci_bridge_d3_update(struct pci_dev *dev)
2978{
2979        bool remove = !device_is_registered(&dev->dev);
2980        struct pci_dev *bridge;
2981        bool d3cold_ok = true;
2982
2983        bridge = pci_upstream_bridge(dev);
2984        if (!bridge || !pci_bridge_d3_possible(bridge))
2985                return;
2986
2987        /*
2988         * If D3 is currently allowed for the bridge, removing one of its
2989         * children won't change that.
2990         */
2991        if (remove && bridge->bridge_d3)
2992                return;
2993
2994        /*
2995         * If D3 is currently allowed for the bridge and a child is added or
2996         * changed, disallowance of D3 can only be caused by that child, so
2997         * we only need to check that single device, not any of its siblings.
2998         *
2999         * If D3 is currently not allowed for the bridge, checking the device
3000         * first may allow us to skip checking its siblings.
3001         */
3002        if (!remove)
3003                pci_dev_check_d3cold(dev, &d3cold_ok);
3004
3005        /*
3006         * If D3 is currently not allowed for the bridge, this may be caused
3007         * either by the device being changed/removed or any of its siblings,
3008         * so we need to go through all children to find out if one of them
3009         * continues to block D3.
3010         */
3011        if (d3cold_ok && !bridge->bridge_d3)
3012                pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3013                             &d3cold_ok);
3014
3015        if (bridge->bridge_d3 != d3cold_ok) {
3016                bridge->bridge_d3 = d3cold_ok;
3017                /* Propagate change to upstream bridges */
3018                pci_bridge_d3_update(bridge);
3019        }
3020}
3021
3022/**
3023 * pci_d3cold_enable - Enable D3cold for device
3024 * @dev: PCI device to handle
3025 *
3026 * This function can be used in drivers to enable D3cold from the device
3027 * they handle.  It also updates upstream PCI bridge PM capabilities
3028 * accordingly.
3029 */
3030void pci_d3cold_enable(struct pci_dev *dev)
3031{
3032        if (dev->no_d3cold) {
3033                dev->no_d3cold = false;
3034                pci_bridge_d3_update(dev);
3035        }
3036}
3037EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3038
3039/**
3040 * pci_d3cold_disable - Disable D3cold for device
3041 * @dev: PCI device to handle
3042 *
3043 * This function can be used in drivers to disable D3cold from the device
3044 * they handle.  It also updates upstream PCI bridge PM capabilities
3045 * accordingly.
3046 */
3047void pci_d3cold_disable(struct pci_dev *dev)
3048{
3049        if (!dev->no_d3cold) {
3050                dev->no_d3cold = true;
3051                pci_bridge_d3_update(dev);
3052        }
3053}
3054EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3055
3056/**
3057 * pci_pm_init - Initialize PM functions of given PCI device
3058 * @dev: PCI device to handle.
3059 */
3060void pci_pm_init(struct pci_dev *dev)
3061{
3062        int pm;
3063        u16 status;
3064        u16 pmc;
3065
3066        pm_runtime_forbid(&dev->dev);
3067        pm_runtime_set_active(&dev->dev);
3068        pm_runtime_enable(&dev->dev);
3069        device_enable_async_suspend(&dev->dev);
3070        dev->wakeup_prepared = false;
3071
3072        dev->pm_cap = 0;
3073        dev->pme_support = 0;
3074
3075        /* find PCI PM capability in list */
3076        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3077        if (!pm)
3078                return;
3079        /* Check device's ability to generate PME# */
3080        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3081
3082        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3083                pci_err(dev, "unsupported PM cap regs version (%u)\n",
3084                        pmc & PCI_PM_CAP_VER_MASK);
3085                return;
3086        }
3087
3088        dev->pm_cap = pm;
3089        dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3090        dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3091        dev->bridge_d3 = pci_bridge_d3_possible(dev);
3092        dev->d3cold_allowed = true;
3093
3094        dev->d1_support = false;
3095        dev->d2_support = false;
3096        if (!pci_no_d1d2(dev)) {
3097                if (pmc & PCI_PM_CAP_D1)
3098                        dev->d1_support = true;
3099                if (pmc & PCI_PM_CAP_D2)
3100                        dev->d2_support = true;
3101
3102                if (dev->d1_support || dev->d2_support)
3103                        pci_info(dev, "supports%s%s\n",
3104                                   dev->d1_support ? " D1" : "",
3105                                   dev->d2_support ? " D2" : "");
3106        }
3107
3108        pmc &= PCI_PM_CAP_PME_MASK;
3109        if (pmc) {
3110                pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3111                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3112                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3113                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3114                         (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3115                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3116                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3117                dev->pme_poll = true;
3118                /*
3119                 * Make device's PM flags reflect the wake-up capability, but
3120                 * let the user space enable it to wake up the system as needed.
3121                 */
3122                device_set_wakeup_capable(&dev->dev, true);
3123                /* Disable the PME# generation functionality */
3124                pci_pme_active(dev, false);
3125        }
3126
3127        pci_read_config_word(dev, PCI_STATUS, &status);
3128        if (status & PCI_STATUS_IMM_READY)
3129                dev->imm_ready = 1;
3130}
3131
3132static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3133{
3134        unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3135
3136        switch (prop) {
3137        case PCI_EA_P_MEM:
3138        case PCI_EA_P_VF_MEM:
3139                flags |= IORESOURCE_MEM;
3140                break;
3141        case PCI_EA_P_MEM_PREFETCH:
3142        case PCI_EA_P_VF_MEM_PREFETCH:
3143                flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3144                break;
3145        case PCI_EA_P_IO:
3146                flags |= IORESOURCE_IO;
3147                break;
3148        default:
3149                return 0;
3150        }
3151
3152        return flags;
3153}
3154
3155static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3156                                            u8 prop)
3157{
3158        if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3159                return &dev->resource[bei];
3160#ifdef CONFIG_PCI_IOV
3161        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3162                 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3163                return &dev->resource[PCI_IOV_RESOURCES +
3164                                      bei - PCI_EA_BEI_VF_BAR0];
3165#endif
3166        else if (bei == PCI_EA_BEI_ROM)
3167                return &dev->resource[PCI_ROM_RESOURCE];
3168        else
3169                return NULL;
3170}
3171
3172/* Read an Enhanced Allocation (EA) entry */
3173static int pci_ea_read(struct pci_dev *dev, int offset)
3174{
3175        struct resource *res;
3176        int ent_size, ent_offset = offset;
3177        resource_size_t start, end;
3178        unsigned long flags;
3179        u32 dw0, bei, base, max_offset;
3180        u8 prop;
3181        bool support_64 = (sizeof(resource_size_t) >= 8);
3182
3183        pci_read_config_dword(dev, ent_offset, &dw0);
3184        ent_offset += 4;
3185
3186        /* Entry size field indicates DWORDs after 1st */
3187        ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3188
3189        if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3190                goto out;
3191
3192        bei = (dw0 & PCI_EA_BEI) >> 4;
3193        prop = (dw0 & PCI_EA_PP) >> 8;
3194
3195        /*
3196         * If the Property is in the reserved range, try the Secondary
3197         * Property instead.
3198         */
3199        if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3200                prop = (dw0 & PCI_EA_SP) >> 16;
3201        if (prop > PCI_EA_P_BRIDGE_IO)
3202                goto out;
3203
3204        res = pci_ea_get_resource(dev, bei, prop);
3205        if (!res) {
3206                pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3207                goto out;
3208        }
3209
3210        flags = pci_ea_flags(dev, prop);
3211        if (!flags) {
3212                pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3213                goto out;
3214        }
3215
3216        /* Read Base */
3217        pci_read_config_dword(dev, ent_offset, &base);
3218        start = (base & PCI_EA_FIELD_MASK);
3219        ent_offset += 4;
3220
3221        /* Read MaxOffset */
3222        pci_read_config_dword(dev, ent_offset, &max_offset);
3223        ent_offset += 4;
3224
3225        /* Read Base MSBs (if 64-bit entry) */
3226        if (base & PCI_EA_IS_64) {
3227                u32 base_upper;
3228
3229                pci_read_config_dword(dev, ent_offset, &base_upper);
3230                ent_offset += 4;
3231
3232                flags |= IORESOURCE_MEM_64;
3233
3234                /* entry starts above 32-bit boundary, can't use */
3235                if (!support_64 && base_upper)
3236                        goto out;
3237
3238                if (support_64)
3239                        start |= ((u64)base_upper << 32);
3240        }
3241
3242        end = start + (max_offset | 0x03);
3243
3244        /* Read MaxOffset MSBs (if 64-bit entry) */
3245        if (max_offset & PCI_EA_IS_64) {
3246                u32 max_offset_upper;
3247
3248                pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3249                ent_offset += 4;
3250
3251                flags |= IORESOURCE_MEM_64;
3252
3253                /* entry too big, can't use */
3254                if (!support_64 && max_offset_upper)
3255                        goto out;
3256
3257                if (support_64)
3258                        end += ((u64)max_offset_upper << 32);
3259        }
3260
3261        if (end < start) {
3262                pci_err(dev, "EA Entry crosses address boundary\n");
3263                goto out;
3264        }
3265
3266        if (ent_size != ent_offset - offset) {
3267                pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3268                        ent_size, ent_offset - offset);
3269                goto out;
3270        }
3271
3272        res->name = pci_name(dev);
3273        res->start = start;
3274        res->end = end;
3275        res->flags = flags;
3276
3277        if (bei <= PCI_EA_BEI_BAR5)
3278                pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3279                           bei, res, prop);
3280        else if (bei == PCI_EA_BEI_ROM)
3281                pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3282                           res, prop);
3283        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3284                pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3285                           bei - PCI_EA_BEI_VF_BAR0, res, prop);
3286        else
3287                pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3288                           bei, res, prop);
3289
3290out:
3291        return offset + ent_size;
3292}
3293
3294/* Enhanced Allocation Initialization */
3295void pci_ea_init(struct pci_dev *dev)
3296{
3297        int ea;
3298        u8 num_ent;
3299        int offset;
3300        int i;
3301
3302        /* find PCI EA capability in list */
3303        ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3304        if (!ea)
3305                return;
3306
3307        /* determine the number of entries */
3308        pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3309                                        &num_ent);
3310        num_ent &= PCI_EA_NUM_ENT_MASK;
3311
3312        offset = ea + PCI_EA_FIRST_ENT;
3313
3314        /* Skip DWORD 2 for type 1 functions */
3315        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3316                offset += 4;
3317
3318        /* parse each EA entry */
3319        for (i = 0; i < num_ent; ++i)
3320                offset = pci_ea_read(dev, offset);
3321}
3322
3323static void pci_add_saved_cap(struct pci_dev *pci_dev,
3324        struct pci_cap_saved_state *new_cap)
3325{
3326        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3327}
3328
3329/**
3330 * _pci_add_cap_save_buffer - allocate buffer for saving given
3331 *                            capability registers
3332 * @dev: the PCI device
3333 * @cap: the capability to allocate the buffer for
3334 * @extended: Standard or Extended capability ID
3335 * @size: requested size of the buffer
3336 */
3337static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3338                                    bool extended, unsigned int size)
3339{
3340        int pos;
3341        struct pci_cap_saved_state *save_state;
3342
3343        if (extended)
3344                pos = pci_find_ext_capability(dev, cap);
3345        else
3346                pos = pci_find_capability(dev, cap);
3347
3348        if (!pos)
3349                return 0;
3350
3351        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3352        if (!save_state)
3353                return -ENOMEM;
3354
3355        save_state->cap.cap_nr = cap;
3356        save_state->cap.cap_extended = extended;
3357        save_state->cap.size = size;
3358        pci_add_saved_cap(dev, save_state);
3359
3360        return 0;
3361}
3362
3363int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3364{
3365        return _pci_add_cap_save_buffer(dev, cap, false, size);
3366}
3367
3368int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3369{
3370        return _pci_add_cap_save_buffer(dev, cap, true, size);
3371}
3372
3373/**
3374 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3375 * @dev: the PCI device
3376 */
3377void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3378{
3379        int error;
3380
3381        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3382                                        PCI_EXP_SAVE_REGS * sizeof(u16));
3383        if (error)
3384                pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3385
3386        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3387        if (error)
3388                pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3389
3390        error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3391                                            2 * sizeof(u16));
3392        if (error)
3393                pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3394
3395        pci_allocate_vc_save_buffers(dev);
3396}
3397
3398void pci_free_cap_save_buffers(struct pci_dev *dev)
3399{
3400        struct pci_cap_saved_state *tmp;
3401        struct hlist_node *n;
3402
3403        hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3404                kfree(tmp);
3405}
3406
3407/**
3408 * pci_configure_ari - enable or disable ARI forwarding
3409 * @dev: the PCI device
3410 *
3411 * If @dev and its upstream bridge both support ARI, enable ARI in the
3412 * bridge.  Otherwise, disable ARI in the bridge.
3413 */
3414void pci_configure_ari(struct pci_dev *dev)
3415{
3416        u32 cap;
3417        struct pci_dev *bridge;
3418
3419        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3420                return;
3421
3422        bridge = dev->bus->self;
3423        if (!bridge)
3424                return;
3425
3426        pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3427        if (!(cap & PCI_EXP_DEVCAP2_ARI))
3428                return;
3429
3430        if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3431                pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3432                                         PCI_EXP_DEVCTL2_ARI);
3433                bridge->ari_enabled = 1;
3434        } else {
3435                pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3436                                           PCI_EXP_DEVCTL2_ARI);
3437                bridge->ari_enabled = 0;
3438        }
3439}
3440
3441static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3442{
3443        int pos;
3444        u16 cap, ctrl;
3445
3446        pos = pdev->acs_cap;
3447        if (!pos)
3448                return false;
3449
3450        /*
3451         * Except for egress control, capabilities are either required
3452         * or only required if controllable.  Features missing from the
3453         * capability field can therefore be assumed as hard-wired enabled.
3454         */
3455        pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3456        acs_flags &= (cap | PCI_ACS_EC);
3457
3458        pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3459        return (ctrl & acs_flags) == acs_flags;
3460}
3461
3462/**
3463 * pci_acs_enabled - test ACS against required flags for a given device
3464 * @pdev: device to test
3465 * @acs_flags: required PCI ACS flags
3466 *
3467 * Return true if the device supports the provided flags.  Automatically
3468 * filters out flags that are not implemented on multifunction devices.
3469 *
3470 * Note that this interface checks the effective ACS capabilities of the
3471 * device rather than the actual capabilities.  For instance, most single
3472 * function endpoints are not required to support ACS because they have no
3473 * opportunity for peer-to-peer access.  We therefore return 'true'
3474 * regardless of whether the device exposes an ACS capability.  This makes
3475 * it much easier for callers of this function to ignore the actual type
3476 * or topology of the device when testing ACS support.
3477 */
3478bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3479{
3480        int ret;
3481
3482        ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3483        if (ret >= 0)
3484                return ret > 0;
3485
3486        /*
3487         * Conventional PCI and PCI-X devices never support ACS, either
3488         * effectively or actually.  The shared bus topology implies that
3489         * any device on the bus can receive or snoop DMA.
3490         */
3491        if (!pci_is_pcie(pdev))
3492                return false;
3493
3494        switch (pci_pcie_type(pdev)) {
3495        /*
3496         * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3497         * but since their primary interface is PCI/X, we conservatively
3498         * handle them as we would a non-PCIe device.
3499         */
3500        case PCI_EXP_TYPE_PCIE_BRIDGE:
3501        /*
3502         * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3503         * applicable... must never implement an ACS Extended Capability...".
3504         * This seems arbitrary, but we take a conservative interpretation
3505         * of this statement.
3506         */
3507        case PCI_EXP_TYPE_PCI_BRIDGE:
3508        case PCI_EXP_TYPE_RC_EC:
3509                return false;
3510        /*
3511         * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3512         * implement ACS in order to indicate their peer-to-peer capabilities,
3513         * regardless of whether they are single- or multi-function devices.
3514         */
3515        case PCI_EXP_TYPE_DOWNSTREAM:
3516        case PCI_EXP_TYPE_ROOT_PORT:
3517                return pci_acs_flags_enabled(pdev, acs_flags);
3518        /*
3519         * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3520         * implemented by the remaining PCIe types to indicate peer-to-peer
3521         * capabilities, but only when they are part of a multifunction
3522         * device.  The footnote for section 6.12 indicates the specific
3523         * PCIe types included here.
3524         */
3525        case PCI_EXP_TYPE_ENDPOINT:
3526        case PCI_EXP_TYPE_UPSTREAM:
3527        case PCI_EXP_TYPE_LEG_END:
3528        case PCI_EXP_TYPE_RC_END:
3529                if (!pdev->multifunction)
3530                        break;
3531
3532                return pci_acs_flags_enabled(pdev, acs_flags);
3533        }
3534
3535        /*
3536         * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3537         * to single function devices with the exception of downstream ports.
3538         */
3539        return true;
3540}
3541
3542/**
3543 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3544 * @start: starting downstream device
3545 * @end: ending upstream device or NULL to search to the root bus
3546 * @acs_flags: required flags
3547 *
3548 * Walk up a device tree from start to end testing PCI ACS support.  If
3549 * any step along the way does not support the required flags, return false.
3550 */
3551bool pci_acs_path_enabled(struct pci_dev *start,
3552                          struct pci_dev *end, u16 acs_flags)
3553{
3554        struct pci_dev *pdev, *parent = start;
3555
3556        do {
3557                pdev = parent;
3558
3559                if (!pci_acs_enabled(pdev, acs_flags))
3560                        return false;
3561
3562                if (pci_is_root_bus(pdev->bus))
3563                        return (end == NULL);
3564
3565                parent = pdev->bus->self;
3566        } while (pdev != end);
3567
3568        return true;
3569}
3570
3571/**
3572 * pci_acs_init - Initialize ACS if hardware supports it
3573 * @dev: the PCI device
3574 */
3575void pci_acs_init(struct pci_dev *dev)
3576{
3577        dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3578
3579        /*
3580         * Attempt to enable ACS regardless of capability because some Root
3581         * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3582         * the standard ACS capability but still support ACS via those
3583         * quirks.
3584         */
3585        pci_enable_acs(dev);
3586}
3587
3588/**
3589 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3590 * @pdev: PCI device
3591 * @bar: BAR to find
3592 *
3593 * Helper to find the position of the ctrl register for a BAR.
3594 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3595 * Returns -ENOENT if no ctrl register for the BAR could be found.
3596 */
3597static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3598{
3599        unsigned int pos, nbars, i;
3600        u32 ctrl;
3601
3602        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3603        if (!pos)
3604                return -ENOTSUPP;
3605
3606        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3607        nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3608                    PCI_REBAR_CTRL_NBAR_SHIFT;
3609
3610        for (i = 0; i < nbars; i++, pos += 8) {
3611                int bar_idx;
3612
3613                pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3614                bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3615                if (bar_idx == bar)
3616                        return pos;
3617        }
3618
3619        return -ENOENT;
3620}
3621
3622/**
3623 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3624 * @pdev: PCI device
3625 * @bar: BAR to query
3626 *
3627 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3628 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3629 */
3630u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3631{
3632        int pos;
3633        u32 cap;
3634
3635        pos = pci_rebar_find_pos(pdev, bar);
3636        if (pos < 0)
3637                return 0;
3638
3639        pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3640        cap &= PCI_REBAR_CAP_SIZES;
3641
3642        /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3643        if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3644            bar == 0 && cap == 0x7000)
3645                cap = 0x3f000;
3646
3647        return cap >> 4;
3648}
3649EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3650
3651/**
3652 * pci_rebar_get_current_size - get the current size of a BAR
3653 * @pdev: PCI device
3654 * @bar: BAR to set size to
3655 *
3656 * Read the size of a BAR from the resizable BAR config.
3657 * Returns size if found or negative error code.
3658 */
3659int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3660{
3661        int pos;
3662        u32 ctrl;
3663
3664        pos = pci_rebar_find_pos(pdev, bar);
3665        if (pos < 0)
3666                return pos;
3667
3668        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3669        return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3670}
3671
3672/**
3673 * pci_rebar_set_size - set a new size for a BAR
3674 * @pdev: PCI device
3675 * @bar: BAR to set size to
3676 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3677 *
3678 * Set the new size of a BAR as defined in the spec.
3679 * Returns zero if resizing was successful, error code otherwise.
3680 */
3681int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3682{
3683        int pos;
3684        u32 ctrl;
3685
3686        pos = pci_rebar_find_pos(pdev, bar);
3687        if (pos < 0)
3688                return pos;
3689
3690        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3691        ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3692        ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3693        pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3694        return 0;
3695}
3696
3697/**
3698 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3699 * @dev: the PCI device
3700 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3701 *      PCI_EXP_DEVCAP2_ATOMIC_COMP32
3702 *      PCI_EXP_DEVCAP2_ATOMIC_COMP64
3703 *      PCI_EXP_DEVCAP2_ATOMIC_COMP128
3704 *
3705 * Return 0 if all upstream bridges support AtomicOp routing, egress
3706 * blocking is disabled on all upstream ports, and the root port supports
3707 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3708 * AtomicOp completion), or negative otherwise.
3709 */
3710int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3711{
3712        struct pci_bus *bus = dev->bus;
3713        struct pci_dev *bridge;
3714        u32 cap, ctl2;
3715
3716        if (!pci_is_pcie(dev))
3717                return -EINVAL;
3718
3719        /*
3720         * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3721         * AtomicOp requesters.  For now, we only support endpoints as
3722         * requesters and root ports as completers.  No endpoints as
3723         * completers, and no peer-to-peer.
3724         */
3725
3726        switch (pci_pcie_type(dev)) {
3727        case PCI_EXP_TYPE_ENDPOINT:
3728        case PCI_EXP_TYPE_LEG_END:
3729        case PCI_EXP_TYPE_RC_END:
3730                break;
3731        default:
3732                return -EINVAL;
3733        }
3734
3735        while (bus->parent) {
3736                bridge = bus->self;
3737
3738                pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3739
3740                switch (pci_pcie_type(bridge)) {
3741                /* Ensure switch ports support AtomicOp routing */
3742                case PCI_EXP_TYPE_UPSTREAM:
3743                case PCI_EXP_TYPE_DOWNSTREAM:
3744                        if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3745                                return -EINVAL;
3746                        break;
3747
3748                /* Ensure root port supports all the sizes we care about */
3749                case PCI_EXP_TYPE_ROOT_PORT:
3750                        if ((cap & cap_mask) != cap_mask)
3751                                return -EINVAL;
3752                        break;
3753                }
3754
3755                /* Ensure upstream ports don't block AtomicOps on egress */
3756                if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3757                        pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3758                                                   &ctl2);
3759                        if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3760                                return -EINVAL;
3761                }
3762
3763                bus = bus->parent;
3764        }
3765
3766        pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3767                                 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3768        return 0;
3769}
3770EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3771
3772/**
3773 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3774 * @dev: the PCI device
3775 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3776 *
3777 * Perform INTx swizzling for a device behind one level of bridge.  This is
3778 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3779 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3780 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3781 * the PCI Express Base Specification, Revision 2.1)
3782 */
3783u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3784{
3785        int slot;
3786
3787        if (pci_ari_enabled(dev->bus))
3788                slot = 0;
3789        else
3790                slot = PCI_SLOT(dev->devfn);
3791
3792        return (((pin - 1) + slot) % 4) + 1;
3793}
3794
3795int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3796{
3797        u8 pin;
3798
3799        pin = dev->pin;
3800        if (!pin)
3801                return -1;
3802
3803        while (!pci_is_root_bus(dev->bus)) {
3804                pin = pci_swizzle_interrupt_pin(dev, pin);
3805                dev = dev->bus->self;
3806        }
3807        *bridge = dev;
3808        return pin;
3809}
3810
3811/**
3812 * pci_common_swizzle - swizzle INTx all the way to root bridge
3813 * @dev: the PCI device
3814 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3815 *
3816 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3817 * bridges all the way up to a PCI root bus.
3818 */
3819u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3820{
3821        u8 pin = *pinp;
3822
3823        while (!pci_is_root_bus(dev->bus)) {
3824                pin = pci_swizzle_interrupt_pin(dev, pin);
3825                dev = dev->bus->self;
3826        }
3827        *pinp = pin;
3828        return PCI_SLOT(dev->devfn);
3829}
3830EXPORT_SYMBOL_GPL(pci_common_swizzle);
3831
3832/**
3833 * pci_release_region - Release a PCI bar
3834 * @pdev: PCI device whose resources were previously reserved by
3835 *        pci_request_region()
3836 * @bar: BAR to release
3837 *
3838 * Releases the PCI I/O and memory resources previously reserved by a
3839 * successful call to pci_request_region().  Call this function only
3840 * after all use of the PCI regions has ceased.
3841 */
3842void pci_release_region(struct pci_dev *pdev, int bar)
3843{
3844        struct pci_devres *dr;
3845
3846        if (pci_resource_len(pdev, bar) == 0)
3847                return;
3848        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3849                release_region(pci_resource_start(pdev, bar),
3850                                pci_resource_len(pdev, bar));
3851        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3852                release_mem_region(pci_resource_start(pdev, bar),
3853                                pci_resource_len(pdev, bar));
3854
3855        dr = find_pci_dr(pdev);
3856        if (dr)
3857                dr->region_mask &= ~(1 << bar);
3858}
3859EXPORT_SYMBOL(pci_release_region);
3860
3861/**
3862 * __pci_request_region - Reserved PCI I/O and memory resource
3863 * @pdev: PCI device whose resources are to be reserved
3864 * @bar: BAR to be reserved
3865 * @res_name: Name to be associated with resource.
3866 * @exclusive: whether the region access is exclusive or not
3867 *
3868 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3869 * being reserved by owner @res_name.  Do not access any
3870 * address inside the PCI regions unless this call returns
3871 * successfully.
3872 *
3873 * If @exclusive is set, then the region is marked so that userspace
3874 * is explicitly not allowed to map the resource via /dev/mem or
3875 * sysfs MMIO access.
3876 *
3877 * Returns 0 on success, or %EBUSY on error.  A warning
3878 * message is also printed on failure.
3879 */
3880static int __pci_request_region(struct pci_dev *pdev, int bar,
3881                                const char *res_name, int exclusive)
3882{
3883        struct pci_devres *dr;
3884
3885        if (pci_resource_len(pdev, bar) == 0)
3886                return 0;
3887
3888        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3889                if (!request_region(pci_resource_start(pdev, bar),
3890                            pci_resource_len(pdev, bar), res_name))
3891                        goto err_out;
3892        } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3893                if (!__request_mem_region(pci_resource_start(pdev, bar),
3894                                        pci_resource_len(pdev, bar), res_name,
3895                                        exclusive))
3896                        goto err_out;
3897        }
3898
3899        dr = find_pci_dr(pdev);
3900        if (dr)
3901                dr->region_mask |= 1 << bar;
3902
3903        return 0;
3904
3905err_out:
3906        pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3907                 &pdev->resource[bar]);
3908        return -EBUSY;
3909}
3910
3911/**
3912 * pci_request_region - Reserve PCI I/O and memory resource
3913 * @pdev: PCI device whose resources are to be reserved
3914 * @bar: BAR to be reserved
3915 * @res_name: Name to be associated with resource
3916 *
3917 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3918 * being reserved by owner @res_name.  Do not access any
3919 * address inside the PCI regions unless this call returns
3920 * successfully.
3921 *
3922 * Returns 0 on success, or %EBUSY on error.  A warning
3923 * message is also printed on failure.
3924 */
3925int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3926{
3927        return __pci_request_region(pdev, bar, res_name, 0);
3928}
3929EXPORT_SYMBOL(pci_request_region);
3930
3931/**
3932 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3933 * @pdev: PCI device whose resources were previously reserved
3934 * @bars: Bitmask of BARs to be released
3935 *
3936 * Release selected PCI I/O and memory resources previously reserved.
3937 * Call this function only after all use of the PCI regions has ceased.
3938 */
3939void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3940{
3941        int i;
3942
3943        for (i = 0; i < PCI_STD_NUM_BARS; i++)
3944                if (bars & (1 << i))
3945                        pci_release_region(pdev, i);
3946}
3947EXPORT_SYMBOL(pci_release_selected_regions);
3948
3949static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3950                                          const char *res_name, int excl)
3951{
3952        int i;
3953
3954        for (i = 0; i < PCI_STD_NUM_BARS; i++)
3955                if (bars & (1 << i))
3956                        if (__pci_request_region(pdev, i, res_name, excl))
3957                                goto err_out;
3958        return 0;
3959
3960err_out:
3961        while (--i >= 0)
3962                if (bars & (1 << i))
3963                        pci_release_region(pdev, i);
3964
3965        return -EBUSY;
3966}
3967
3968
3969/**
3970 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3971 * @pdev: PCI device whose resources are to be reserved
3972 * @bars: Bitmask of BARs to be requested
3973 * @res_name: Name to be associated with resource
3974 */
3975int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3976                                 const char *res_name)
3977{
3978        return __pci_request_selected_regions(pdev, bars, res_name, 0);
3979}
3980EXPORT_SYMBOL(pci_request_selected_regions);
3981
3982int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3983                                           const char *res_name)
3984{
3985        return __pci_request_selected_regions(pdev, bars, res_name,
3986                        IORESOURCE_EXCLUSIVE);
3987}
3988EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3989
3990/**
3991 * pci_release_regions - Release reserved PCI I/O and memory resources
3992 * @pdev: PCI device whose resources were previously reserved by
3993 *        pci_request_regions()
3994 *
3995 * Releases all PCI I/O and memory resources previously reserved by a
3996 * successful call to pci_request_regions().  Call this function only
3997 * after all use of the PCI regions has ceased.
3998 */
3999
4000void pci_release_regions(struct pci_dev *pdev)
4001{
4002        pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4003}
4004EXPORT_SYMBOL(pci_release_regions);
4005
4006/**
4007 * pci_request_regions - Reserve PCI I/O and memory resources
4008 * @pdev: PCI device whose resources are to be reserved
4009 * @res_name: Name to be associated with resource.
4010 *
4011 * Mark all PCI regions associated with PCI device @pdev as
4012 * being reserved by owner @res_name.  Do not access any
4013 * address inside the PCI regions unless this call returns
4014 * successfully.
4015 *
4016 * Returns 0 on success, or %EBUSY on error.  A warning
4017 * message is also printed on failure.
4018 */
4019int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4020{
4021        return pci_request_selected_regions(pdev,
4022                        ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4023}
4024EXPORT_SYMBOL(pci_request_regions);
4025
4026/**
4027 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4028 * @pdev: PCI device whose resources are to be reserved
4029 * @res_name: Name to be associated with resource.
4030 *
4031 * Mark all PCI regions associated with PCI device @pdev as being reserved
4032 * by owner @res_name.  Do not access any address inside the PCI regions
4033 * unless this call returns successfully.
4034 *
4035 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4036 * and the sysfs MMIO access will not be allowed.
4037 *
4038 * Returns 0 on success, or %EBUSY on error.  A warning message is also
4039 * printed on failure.
4040 */
4041int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4042{
4043        return pci_request_selected_regions_exclusive(pdev,
4044                                ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4045}
4046EXPORT_SYMBOL(pci_request_regions_exclusive);
4047
4048/*
4049 * Record the PCI IO range (expressed as CPU physical address + size).
4050 * Return a negative value if an error has occurred, zero otherwise
4051 */
4052int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4053                        resource_size_t size)
4054{
4055        int ret = 0;
4056#ifdef PCI_IOBASE
4057        struct logic_pio_hwaddr *range;
4058
4059        if (!size || addr + size < addr)
4060                return -EINVAL;
4061
4062        range = kzalloc(sizeof(*range), GFP_ATOMIC);
4063        if (!range)
4064                return -ENOMEM;
4065
4066        range->fwnode = fwnode;
4067        range->size = size;
4068        range->hw_start = addr;
4069        range->flags = LOGIC_PIO_CPU_MMIO;
4070
4071        ret = logic_pio_register_range(range);
4072        if (ret)
4073                kfree(range);
4074
4075        /* Ignore duplicates due to deferred probing */
4076        if (ret == -EEXIST)
4077                ret = 0;
4078#endif
4079
4080        return ret;
4081}
4082
4083phys_addr_t pci_pio_to_address(unsigned long pio)
4084{
4085        phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4086
4087#ifdef PCI_IOBASE
4088        if (pio >= MMIO_UPPER_LIMIT)
4089                return address;
4090
4091        address = logic_pio_to_hwaddr(pio);
4092#endif
4093
4094        return address;
4095}
4096EXPORT_SYMBOL_GPL(pci_pio_to_address);
4097
4098unsigned long __weak pci_address_to_pio(phys_addr_t address)
4099{
4100#ifdef PCI_IOBASE
4101        return logic_pio_trans_cpuaddr(address);
4102#else
4103        if (address > IO_SPACE_LIMIT)
4104                return (unsigned long)-1;
4105
4106        return (unsigned long) address;
4107#endif
4108}
4109
4110/**
4111 * pci_remap_iospace - Remap the memory mapped I/O space
4112 * @res: Resource describing the I/O space
4113 * @phys_addr: physical address of range to be mapped
4114 *
4115 * Remap the memory mapped I/O space described by the @res and the CPU
4116 * physical address @phys_addr into virtual address space.  Only
4117 * architectures that have memory mapped IO functions defined (and the
4118 * PCI_IOBASE value defined) should call this function.
4119 */
4120int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4121{
4122#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4123        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4124
4125        if (!(res->flags & IORESOURCE_IO))
4126                return -EINVAL;
4127
4128        if (res->end > IO_SPACE_LIMIT)
4129                return -EINVAL;
4130
4131        return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4132                                  pgprot_device(PAGE_KERNEL));
4133#else
4134        /*
4135         * This architecture does not have memory mapped I/O space,
4136         * so this function should never be called
4137         */
4138        WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4139        return -ENODEV;
4140#endif
4141}
4142EXPORT_SYMBOL(pci_remap_iospace);
4143
4144/**
4145 * pci_unmap_iospace - Unmap the memory mapped I/O space
4146 * @res: resource to be unmapped
4147 *
4148 * Unmap the CPU virtual address @res from virtual address space.  Only
4149 * architectures that have memory mapped IO functions defined (and the
4150 * PCI_IOBASE value defined) should call this function.
4151 */
4152void pci_unmap_iospace(struct resource *res)
4153{
4154#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4155        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4156
4157        vunmap_range(vaddr, vaddr + resource_size(res));
4158#endif
4159}
4160EXPORT_SYMBOL(pci_unmap_iospace);
4161
4162static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4163{
4164        struct resource **res = ptr;
4165
4166        pci_unmap_iospace(*res);
4167}
4168
4169/**
4170 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4171 * @dev: Generic device to remap IO address for
4172 * @res: Resource describing the I/O space
4173 * @phys_addr: physical address of range to be mapped
4174 *
4175 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4176 * detach.
4177 */
4178int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4179                           phys_addr_t phys_addr)
4180{
4181        const struct resource **ptr;
4182        int error;
4183
4184        ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4185        if (!ptr)
4186                return -ENOMEM;
4187
4188        error = pci_remap_iospace(res, phys_addr);
4189        if (error) {
4190                devres_free(ptr);
4191        } else  {
4192                *ptr = res;
4193                devres_add(dev, ptr);
4194        }
4195
4196        return error;
4197}
4198EXPORT_SYMBOL(devm_pci_remap_iospace);
4199
4200/**
4201 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4202 * @dev: Generic device to remap IO address for
4203 * @offset: Resource address to map
4204 * @size: Size of map
4205 *
4206 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4207 * detach.
4208 */
4209void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4210                                      resource_size_t offset,
4211                                      resource_size_t size)
4212{
4213        void __iomem **ptr, *addr;
4214
4215        ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4216        if (!ptr)
4217                return NULL;
4218
4219        addr = pci_remap_cfgspace(offset, size);
4220        if (addr) {
4221                *ptr = addr;
4222                devres_add(dev, ptr);
4223        } else
4224                devres_free(ptr);
4225
4226        return addr;
4227}
4228EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4229
4230/**
4231 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4232 * @dev: generic device to handle the resource for
4233 * @res: configuration space resource to be handled
4234 *
4235 * Checks that a resource is a valid memory region, requests the memory
4236 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4237 * proper PCI configuration space memory attributes are guaranteed.
4238 *
4239 * All operations are managed and will be undone on driver detach.
4240 *
4241 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4242 * on failure. Usage example::
4243 *
4244 *      res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4245 *      base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4246 *      if (IS_ERR(base))
4247 *              return PTR_ERR(base);
4248 */
4249void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4250                                          struct resource *res)
4251{
4252        resource_size_t size;
4253        const char *name;
4254        void __iomem *dest_ptr;
4255
4256        BUG_ON(!dev);
4257
4258        if (!res || resource_type(res) != IORESOURCE_MEM) {
4259                dev_err(dev, "invalid resource\n");
4260                return IOMEM_ERR_PTR(-EINVAL);
4261        }
4262
4263        size = resource_size(res);
4264
4265        if (res->name)
4266                name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4267                                      res->name);
4268        else
4269                name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4270        if (!name)
4271                return IOMEM_ERR_PTR(-ENOMEM);
4272
4273        if (!devm_request_mem_region(dev, res->start, size, name)) {
4274                dev_err(dev, "can't request region for resource %pR\n", res);
4275                return IOMEM_ERR_PTR(-EBUSY);
4276        }
4277
4278        dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4279        if (!dest_ptr) {
4280                dev_err(dev, "ioremap failed for resource %pR\n", res);
4281                devm_release_mem_region(dev, res->start, size);
4282                dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4283        }
4284
4285        return dest_ptr;
4286}
4287EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4288
4289static void __pci_set_master(struct pci_dev *dev, bool enable)
4290{
4291        u16 old_cmd, cmd;
4292
4293        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4294        if (enable)
4295                cmd = old_cmd | PCI_COMMAND_MASTER;
4296        else
4297                cmd = old_cmd & ~PCI_COMMAND_MASTER;
4298        if (cmd != old_cmd) {
4299                pci_dbg(dev, "%s bus mastering\n",
4300                        enable ? "enabling" : "disabling");
4301                pci_write_config_word(dev, PCI_COMMAND, cmd);
4302        }
4303        dev->is_busmaster = enable;
4304}
4305
4306/**
4307 * pcibios_setup - process "pci=" kernel boot arguments
4308 * @str: string used to pass in "pci=" kernel boot arguments
4309 *
4310 * Process kernel boot arguments.  This is the default implementation.
4311 * Architecture specific implementations can override this as necessary.
4312 */
4313char * __weak __init pcibios_setup(char *str)
4314{
4315        return str;
4316}
4317
4318/**
4319 * pcibios_set_master - enable PCI bus-mastering for device dev
4320 * @dev: the PCI device to enable
4321 *
4322 * Enables PCI bus-mastering for the device.  This is the default
4323 * implementation.  Architecture specific implementations can override
4324 * this if necessary.
4325 */
4326void __weak pcibios_set_master(struct pci_dev *dev)
4327{
4328        u8 lat;
4329
4330        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4331        if (pci_is_pcie(dev))
4332                return;
4333
4334        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4335        if (lat < 16)
4336                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4337        else if (lat > pcibios_max_latency)
4338                lat = pcibios_max_latency;
4339        else
4340                return;
4341
4342        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4343}
4344
4345/**
4346 * pci_set_master - enables bus-mastering for device dev
4347 * @dev: the PCI device to enable
4348 *
4349 * Enables bus-mastering on the device and calls pcibios_set_master()
4350 * to do the needed arch specific settings.
4351 */
4352void pci_set_master(struct pci_dev *dev)
4353{
4354        __pci_set_master(dev, true);
4355        pcibios_set_master(dev);
4356}
4357EXPORT_SYMBOL(pci_set_master);
4358
4359/**
4360 * pci_clear_master - disables bus-mastering for device dev
4361 * @dev: the PCI device to disable
4362 */
4363void pci_clear_master(struct pci_dev *dev)
4364{
4365        __pci_set_master(dev, false);
4366}
4367EXPORT_SYMBOL(pci_clear_master);
4368
4369/**
4370 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4371 * @dev: the PCI device for which MWI is to be enabled
4372 *
4373 * Helper function for pci_set_mwi.
4374 * Originally copied from drivers/net/acenic.c.
4375 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4376 *
4377 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4378 */
4379int pci_set_cacheline_size(struct pci_dev *dev)
4380{
4381        u8 cacheline_size;
4382
4383        if (!pci_cache_line_size)
4384                return -EINVAL;
4385
4386        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4387           equal to or multiple of the right value. */
4388        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4389        if (cacheline_size >= pci_cache_line_size &&
4390            (cacheline_size % pci_cache_line_size) == 0)
4391                return 0;
4392
4393        /* Write the correct value. */
4394        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4395        /* Read it back. */
4396        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4397        if (cacheline_size == pci_cache_line_size)
4398                return 0;
4399
4400        pci_dbg(dev, "cache line size of %d is not supported\n",
4401                   pci_cache_line_size << 2);
4402
4403        return -EINVAL;
4404}
4405EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4406
4407/**
4408 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4409 * @dev: the PCI device for which MWI is enabled
4410 *
4411 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4412 *
4413 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4414 */
4415int pci_set_mwi(struct pci_dev *dev)
4416{
4417#ifdef PCI_DISABLE_MWI
4418        return 0;
4419#else
4420        int rc;
4421        u16 cmd;
4422
4423        rc = pci_set_cacheline_size(dev);
4424        if (rc)
4425                return rc;
4426
4427        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4428        if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4429                pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4430                cmd |= PCI_COMMAND_INVALIDATE;
4431                pci_write_config_word(dev, PCI_COMMAND, cmd);
4432        }
4433        return 0;
4434#endif
4435}
4436EXPORT_SYMBOL(pci_set_mwi);
4437
4438/**
4439 * pcim_set_mwi - a device-managed pci_set_mwi()
4440 * @dev: the PCI device for which MWI is enabled
4441 *
4442 * Managed pci_set_mwi().
4443 *
4444 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4445 */
4446int pcim_set_mwi(struct pci_dev *dev)
4447{
4448        struct pci_devres *dr;
4449
4450        dr = find_pci_dr(dev);
4451        if (!dr)
4452                return -ENOMEM;
4453
4454        dr->mwi = 1;
4455        return pci_set_mwi(dev);
4456}
4457EXPORT_SYMBOL(pcim_set_mwi);
4458
4459/**
4460 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4461 * @dev: the PCI device for which MWI is enabled
4462 *
4463 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4464 * Callers are not required to check the return value.
4465 *
4466 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4467 */
4468int pci_try_set_mwi(struct pci_dev *dev)
4469{
4470#ifdef PCI_DISABLE_MWI
4471        return 0;
4472#else
4473        return pci_set_mwi(dev);
4474#endif
4475}
4476EXPORT_SYMBOL(pci_try_set_mwi);
4477
4478/**
4479 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4480 * @dev: the PCI device to disable
4481 *
4482 * Disables PCI Memory-Write-Invalidate transaction on the device
4483 */
4484void pci_clear_mwi(struct pci_dev *dev)
4485{
4486#ifndef PCI_DISABLE_MWI
4487        u16 cmd;
4488
4489        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4490        if (cmd & PCI_COMMAND_INVALIDATE) {
4491                cmd &= ~PCI_COMMAND_INVALIDATE;
4492                pci_write_config_word(dev, PCI_COMMAND, cmd);
4493        }
4494#endif
4495}
4496EXPORT_SYMBOL(pci_clear_mwi);
4497
4498/**
4499 * pci_disable_parity - disable parity checking for device
4500 * @dev: the PCI device to operate on
4501 *
4502 * Disable parity checking for device @dev
4503 */
4504void pci_disable_parity(struct pci_dev *dev)
4505{
4506        u16 cmd;
4507
4508        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4509        if (cmd & PCI_COMMAND_PARITY) {
4510                cmd &= ~PCI_COMMAND_PARITY;
4511                pci_write_config_word(dev, PCI_COMMAND, cmd);
4512        }
4513}
4514
4515/**
4516 * pci_intx - enables/disables PCI INTx for device dev
4517 * @pdev: the PCI device to operate on
4518 * @enable: boolean: whether to enable or disable PCI INTx
4519 *
4520 * Enables/disables PCI INTx for device @pdev
4521 */
4522void pci_intx(struct pci_dev *pdev, int enable)
4523{
4524        u16 pci_command, new;
4525
4526        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4527
4528        if (enable)
4529                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4530        else
4531                new = pci_command | PCI_COMMAND_INTX_DISABLE;
4532
4533        if (new != pci_command) {
4534                struct pci_devres *dr;
4535
4536                pci_write_config_word(pdev, PCI_COMMAND, new);
4537
4538                dr = find_pci_dr(pdev);
4539                if (dr && !dr->restore_intx) {
4540                        dr->restore_intx = 1;
4541                        dr->orig_intx = !enable;
4542                }
4543        }
4544}
4545EXPORT_SYMBOL_GPL(pci_intx);
4546
4547static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4548{
4549        struct pci_bus *bus = dev->bus;
4550        bool mask_updated = true;
4551        u32 cmd_status_dword;
4552        u16 origcmd, newcmd;
4553        unsigned long flags;
4554        bool irq_pending;
4555
4556        /*
4557         * We do a single dword read to retrieve both command and status.
4558         * Document assumptions that make this possible.
4559         */
4560        BUILD_BUG_ON(PCI_COMMAND % 4);
4561        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4562
4563        raw_spin_lock_irqsave(&pci_lock, flags);
4564
4565        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4566
4567        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4568
4569        /*
4570         * Check interrupt status register to see whether our device
4571         * triggered the interrupt (when masking) or the next IRQ is
4572         * already pending (when unmasking).
4573         */
4574        if (mask != irq_pending) {
4575                mask_updated = false;
4576                goto done;
4577        }
4578
4579        origcmd = cmd_status_dword;
4580        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4581        if (mask)
4582                newcmd |= PCI_COMMAND_INTX_DISABLE;
4583        if (newcmd != origcmd)
4584                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4585
4586done:
4587        raw_spin_unlock_irqrestore(&pci_lock, flags);
4588
4589        return mask_updated;
4590}
4591
4592/**
4593 * pci_check_and_mask_intx - mask INTx on pending interrupt
4594 * @dev: the PCI device to operate on
4595 *
4596 * Check if the device dev has its INTx line asserted, mask it and return
4597 * true in that case. False is returned if no interrupt was pending.
4598 */
4599bool pci_check_and_mask_intx(struct pci_dev *dev)
4600{
4601        return pci_check_and_set_intx_mask(dev, true);
4602}
4603EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4604
4605/**
4606 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4607 * @dev: the PCI device to operate on
4608 *
4609 * Check if the device dev has its INTx line asserted, unmask it if not and
4610 * return true. False is returned and the mask remains active if there was
4611 * still an interrupt pending.
4612 */
4613bool pci_check_and_unmask_intx(struct pci_dev *dev)
4614{
4615        return pci_check_and_set_intx_mask(dev, false);
4616}
4617EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4618
4619/**
4620 * pci_wait_for_pending_transaction - wait for pending transaction
4621 * @dev: the PCI device to operate on
4622 *
4623 * Return 0 if transaction is pending 1 otherwise.
4624 */
4625int pci_wait_for_pending_transaction(struct pci_dev *dev)
4626{
4627        if (!pci_is_pcie(dev))
4628                return 1;
4629
4630        return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4631                                    PCI_EXP_DEVSTA_TRPND);
4632}
4633EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4634
4635/**
4636 * pcie_has_flr - check if a device supports function level resets
4637 * @dev: device to check
4638 *
4639 * Returns true if the device advertises support for PCIe function level
4640 * resets.
4641 */
4642bool pcie_has_flr(struct pci_dev *dev)
4643{
4644        u32 cap;
4645
4646        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4647                return false;
4648
4649        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4650        return cap & PCI_EXP_DEVCAP_FLR;
4651}
4652EXPORT_SYMBOL_GPL(pcie_has_flr);
4653
4654/**
4655 * pcie_flr - initiate a PCIe function level reset
4656 * @dev: device to reset
4657 *
4658 * Initiate a function level reset on @dev.  The caller should ensure the
4659 * device supports FLR before calling this function, e.g. by using the
4660 * pcie_has_flr() helper.
4661 */
4662int pcie_flr(struct pci_dev *dev)
4663{
4664        if (!pci_wait_for_pending_transaction(dev))
4665                pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4666
4667        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4668
4669        if (dev->imm_ready)
4670                return 0;
4671
4672        /*
4673         * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4674         * 100ms, but may silently discard requests while the FLR is in
4675         * progress.  Wait 100ms before trying to access the device.
4676         */
4677        msleep(100);
4678
4679        return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4680}
4681EXPORT_SYMBOL_GPL(pcie_flr);
4682
4683static int pci_af_flr(struct pci_dev *dev, int probe)
4684{
4685        int pos;
4686        u8 cap;
4687
4688        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4689        if (!pos)
4690                return -ENOTTY;
4691
4692        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4693                return -ENOTTY;
4694
4695        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4696        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4697                return -ENOTTY;
4698
4699        if (probe)
4700                return 0;
4701
4702        /*
4703         * Wait for Transaction Pending bit to clear.  A word-aligned test
4704         * is used, so we use the control offset rather than status and shift
4705         * the test bit to match.
4706         */
4707        if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4708                                 PCI_AF_STATUS_TP << 8))
4709                pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4710
4711        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4712
4713        if (dev->imm_ready)
4714                return 0;
4715
4716        /*
4717         * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4718         * updated 27 July 2006; a device must complete an FLR within
4719         * 100ms, but may silently discard requests while the FLR is in
4720         * progress.  Wait 100ms before trying to access the device.
4721         */
4722        msleep(100);
4723
4724        return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4725}
4726
4727/**
4728 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4729 * @dev: Device to reset.
4730 * @probe: If set, only check if the device can be reset this way.
4731 *
4732 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4733 * unset, it will be reinitialized internally when going from PCI_D3hot to
4734 * PCI_D0.  If that's the case and the device is not in a low-power state
4735 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4736 *
4737 * NOTE: This causes the caller to sleep for twice the device power transition
4738 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4739 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4740 * Moreover, only devices in D0 can be reset by this function.
4741 */
4742static int pci_pm_reset(struct pci_dev *dev, int probe)
4743{
4744        u16 csr;
4745
4746        if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4747                return -ENOTTY;
4748
4749        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4750        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4751                return -ENOTTY;
4752
4753        if (probe)
4754                return 0;
4755
4756        if (dev->current_state != PCI_D0)
4757                return -EINVAL;
4758
4759        csr &= ~PCI_PM_CTRL_STATE_MASK;
4760        csr |= PCI_D3hot;
4761        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4762        pci_dev_d3_sleep(dev);
4763
4764        csr &= ~PCI_PM_CTRL_STATE_MASK;
4765        csr |= PCI_D0;
4766        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4767        pci_dev_d3_sleep(dev);
4768
4769        return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4770}
4771
4772/**
4773 * pcie_wait_for_link_delay - Wait until link is active or inactive
4774 * @pdev: Bridge device
4775 * @active: waiting for active or inactive?
4776 * @delay: Delay to wait after link has become active (in ms)
4777 *
4778 * Use this to wait till link becomes active or inactive.
4779 */
4780static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4781                                     int delay)
4782{
4783        int timeout = 1000;
4784        bool ret;
4785        u16 lnk_status;
4786
4787        /*
4788         * Some controllers might not implement link active reporting. In this
4789         * case, we wait for 1000 ms + any delay requested by the caller.
4790         */
4791        if (!pdev->link_active_reporting) {
4792                msleep(timeout + delay);
4793                return true;
4794        }
4795
4796        /*
4797         * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4798         * after which we should expect an link active if the reset was
4799         * successful. If so, software must wait a minimum 100ms before sending
4800         * configuration requests to devices downstream this port.
4801         *
4802         * If the link fails to activate, either the device was physically
4803         * removed or the link is permanently failed.
4804         */
4805        if (active)
4806                msleep(20);
4807        for (;;) {
4808                pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4809                ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4810                if (ret == active)
4811                        break;
4812                if (timeout <= 0)
4813                        break;
4814                msleep(10);
4815                timeout -= 10;
4816        }
4817        if (active && ret)
4818                msleep(delay);
4819
4820        return ret == active;
4821}
4822
4823/**
4824 * pcie_wait_for_link - Wait until link is active or inactive
4825 * @pdev: Bridge device
4826 * @active: waiting for active or inactive?
4827 *
4828 * Use this to wait till link becomes active or inactive.
4829 */
4830bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4831{
4832        return pcie_wait_for_link_delay(pdev, active, 100);
4833}
4834
4835/*
4836 * Find maximum D3cold delay required by all the devices on the bus.  The
4837 * spec says 100 ms, but firmware can lower it and we allow drivers to
4838 * increase it as well.
4839 *
4840 * Called with @pci_bus_sem locked for reading.
4841 */
4842static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4843{
4844        const struct pci_dev *pdev;
4845        int min_delay = 100;
4846        int max_delay = 0;
4847
4848        list_for_each_entry(pdev, &bus->devices, bus_list) {
4849                if (pdev->d3cold_delay < min_delay)
4850                        min_delay = pdev->d3cold_delay;
4851                if (pdev->d3cold_delay > max_delay)
4852                        max_delay = pdev->d3cold_delay;
4853        }
4854
4855        return max(min_delay, max_delay);
4856}
4857
4858/**
4859 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4860 * @dev: PCI bridge
4861 *
4862 * Handle necessary delays before access to the devices on the secondary
4863 * side of the bridge are permitted after D3cold to D0 transition.
4864 *
4865 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4866 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4867 * 4.3.2.
4868 */
4869void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4870{
4871        struct pci_dev *child;
4872        int delay;
4873
4874        if (pci_dev_is_disconnected(dev))
4875                return;
4876
4877        if (!pci_is_bridge(dev) || !dev->bridge_d3)
4878                return;
4879
4880        down_read(&pci_bus_sem);
4881
4882        /*
4883         * We only deal with devices that are present currently on the bus.
4884         * For any hot-added devices the access delay is handled in pciehp
4885         * board_added(). In case of ACPI hotplug the firmware is expected
4886         * to configure the devices before OS is notified.
4887         */
4888        if (!dev->subor