linux/sound/soc/fsl/fsl_dma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Freescale DMA ALSA SoC PCM driver
   4//
   5// Author: Timur Tabi <timur@freescale.com>
   6//
   7// Copyright 2007-2010 Freescale Semiconductor, Inc.
   8//
   9// This driver implements ASoC support for the Elo DMA controller, which is
  10// the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  11// the PCM driver is what handles the DMA buffer.
  12
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/platform_device.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/interrupt.h>
  18#include <linux/delay.h>
  19#include <linux/gfp.h>
  20#include <linux/of_address.h>
  21#include <linux/of_irq.h>
  22#include <linux/of_platform.h>
  23#include <linux/list.h>
  24#include <linux/slab.h>
  25
  26#include <sound/core.h>
  27#include <sound/pcm.h>
  28#include <sound/pcm_params.h>
  29#include <sound/soc.h>
  30
  31#include <asm/io.h>
  32
  33#include "fsl_dma.h"
  34#include "fsl_ssi.h"    /* For the offset of stx0 and srx0 */
  35
  36#define DRV_NAME "fsl_dma"
  37
  38/*
  39 * The formats that the DMA controller supports, which is anything
  40 * that is 8, 16, or 32 bits.
  41 */
  42#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8         | \
  43                            SNDRV_PCM_FMTBIT_U8         | \
  44                            SNDRV_PCM_FMTBIT_S16_LE     | \
  45                            SNDRV_PCM_FMTBIT_S16_BE     | \
  46                            SNDRV_PCM_FMTBIT_U16_LE     | \
  47                            SNDRV_PCM_FMTBIT_U16_BE     | \
  48                            SNDRV_PCM_FMTBIT_S24_LE     | \
  49                            SNDRV_PCM_FMTBIT_S24_BE     | \
  50                            SNDRV_PCM_FMTBIT_U24_LE     | \
  51                            SNDRV_PCM_FMTBIT_U24_BE     | \
  52                            SNDRV_PCM_FMTBIT_S32_LE     | \
  53                            SNDRV_PCM_FMTBIT_S32_BE     | \
  54                            SNDRV_PCM_FMTBIT_U32_LE     | \
  55                            SNDRV_PCM_FMTBIT_U32_BE)
  56struct dma_object {
  57        struct snd_soc_component_driver dai;
  58        dma_addr_t ssi_stx_phys;
  59        dma_addr_t ssi_srx_phys;
  60        unsigned int ssi_fifo_depth;
  61        struct ccsr_dma_channel __iomem *channel;
  62        unsigned int irq;
  63        bool assigned;
  64};
  65
  66/*
  67 * The number of DMA links to use.  Two is the bare minimum, but if you
  68 * have really small links you might need more.
  69 */
  70#define NUM_DMA_LINKS   2
  71
  72/** fsl_dma_private: p-substream DMA data
  73 *
  74 * Each substream has a 1-to-1 association with a DMA channel.
  75 *
  76 * The link[] array is first because it needs to be aligned on a 32-byte
  77 * boundary, so putting it first will ensure alignment without padding the
  78 * structure.
  79 *
  80 * @link[]: array of link descriptors
  81 * @dma_channel: pointer to the DMA channel's registers
  82 * @irq: IRQ for this DMA channel
  83 * @substream: pointer to the substream object, needed by the ISR
  84 * @ssi_sxx_phys: bus address of the STX or SRX register to use
  85 * @ld_buf_phys: physical address of the LD buffer
  86 * @current_link: index into link[] of the link currently being processed
  87 * @dma_buf_phys: physical address of the DMA buffer
  88 * @dma_buf_next: physical address of the next period to process
  89 * @dma_buf_end: physical address of the byte after the end of the DMA
  90 * @buffer period_size: the size of a single period
  91 * @num_periods: the number of periods in the DMA buffer
  92 */
  93struct fsl_dma_private {
  94        struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  95        struct ccsr_dma_channel __iomem *dma_channel;
  96        unsigned int irq;
  97        struct snd_pcm_substream *substream;
  98        dma_addr_t ssi_sxx_phys;
  99        unsigned int ssi_fifo_depth;
 100        dma_addr_t ld_buf_phys;
 101        unsigned int current_link;
 102        dma_addr_t dma_buf_phys;
 103        dma_addr_t dma_buf_next;
 104        dma_addr_t dma_buf_end;
 105        size_t period_size;
 106        unsigned int num_periods;
 107};
 108
 109/**
 110 * fsl_dma_hardare: define characteristics of the PCM hardware.
 111 *
 112 * The PCM hardware is the Freescale DMA controller.  This structure defines
 113 * the capabilities of that hardware.
 114 *
 115 * Since the sampling rate and data format are not controlled by the DMA
 116 * controller, we specify no limits for those values.  The only exception is
 117 * period_bytes_min, which is set to a reasonably low value to prevent the
 118 * DMA controller from generating too many interrupts per second.
 119 *
 120 * Since each link descriptor has a 32-bit byte count field, we set
 121 * period_bytes_max to the largest 32-bit number.  We also have no maximum
 122 * number of periods.
 123 *
 124 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
 125 * limitation in the SSI driver requires the sample rates for playback and
 126 * capture to be the same.
 127 */
 128static const struct snd_pcm_hardware fsl_dma_hardware = {
 129
 130        .info                   = SNDRV_PCM_INFO_INTERLEAVED |
 131                                  SNDRV_PCM_INFO_MMAP |
 132                                  SNDRV_PCM_INFO_MMAP_VALID |
 133                                  SNDRV_PCM_INFO_JOINT_DUPLEX |
 134                                  SNDRV_PCM_INFO_PAUSE,
 135        .formats                = FSLDMA_PCM_FORMATS,
 136        .period_bytes_min       = 512,          /* A reasonable limit */
 137        .period_bytes_max       = (u32) -1,
 138        .periods_min            = NUM_DMA_LINKS,
 139        .periods_max            = (unsigned int) -1,
 140        .buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
 141};
 142
 143/**
 144 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
 145 *
 146 * This function should be called by the ISR whenever the DMA controller
 147 * halts data transfer.
 148 */
 149static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
 150{
 151        snd_pcm_stop_xrun(substream);
 152}
 153
 154/**
 155 * fsl_dma_update_pointers - update LD pointers to point to the next period
 156 *
 157 * As each period is completed, this function changes the link
 158 * descriptor pointers for that period to point to the next period.
 159 */
 160static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
 161{
 162        struct fsl_dma_link_descriptor *link =
 163                &dma_private->link[dma_private->current_link];
 164
 165        /* Update our link descriptors to point to the next period. On a 36-bit
 166         * system, we also need to update the ESAD bits.  We also set (keep) the
 167         * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
 168         */
 169        if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 170                link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
 171#ifdef CONFIG_PHYS_64BIT
 172                link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
 173                        upper_32_bits(dma_private->dma_buf_next));
 174#endif
 175        } else {
 176                link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
 177#ifdef CONFIG_PHYS_64BIT
 178                link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
 179                        upper_32_bits(dma_private->dma_buf_next));
 180#endif
 181        }
 182
 183        /* Update our variables for next time */
 184        dma_private->dma_buf_next += dma_private->period_size;
 185
 186        if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
 187                dma_private->dma_buf_next = dma_private->dma_buf_phys;
 188
 189        if (++dma_private->current_link >= NUM_DMA_LINKS)
 190                dma_private->current_link = 0;
 191}
 192
 193/**
 194 * fsl_dma_isr: interrupt handler for the DMA controller
 195 *
 196 * @irq: IRQ of the DMA channel
 197 * @dev_id: pointer to the dma_private structure for this DMA channel
 198 */
 199static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
 200{
 201        struct fsl_dma_private *dma_private = dev_id;
 202        struct snd_pcm_substream *substream = dma_private->substream;
 203        struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
 204        struct device *dev = rtd->dev;
 205        struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
 206        irqreturn_t ret = IRQ_NONE;
 207        u32 sr, sr2 = 0;
 208
 209        /* We got an interrupt, so read the status register to see what we
 210           were interrupted for.
 211         */
 212        sr = in_be32(&dma_channel->sr);
 213
 214        if (sr & CCSR_DMA_SR_TE) {
 215                dev_err(dev, "dma transmit error\n");
 216                fsl_dma_abort_stream(substream);
 217                sr2 |= CCSR_DMA_SR_TE;
 218                ret = IRQ_HANDLED;
 219        }
 220
 221        if (sr & CCSR_DMA_SR_CH)
 222                ret = IRQ_HANDLED;
 223
 224        if (sr & CCSR_DMA_SR_PE) {
 225                dev_err(dev, "dma programming error\n");
 226                fsl_dma_abort_stream(substream);
 227                sr2 |= CCSR_DMA_SR_PE;
 228                ret = IRQ_HANDLED;
 229        }
 230
 231        if (sr & CCSR_DMA_SR_EOLNI) {
 232                sr2 |= CCSR_DMA_SR_EOLNI;
 233                ret = IRQ_HANDLED;
 234        }
 235
 236        if (sr & CCSR_DMA_SR_CB)
 237                ret = IRQ_HANDLED;
 238
 239        if (sr & CCSR_DMA_SR_EOSI) {
 240                /* Tell ALSA we completed a period. */
 241                snd_pcm_period_elapsed(substream);
 242
 243                /*
 244                 * Update our link descriptors to point to the next period. We
 245                 * only need to do this if the number of periods is not equal to
 246                 * the number of links.
 247                 */
 248                if (dma_private->num_periods != NUM_DMA_LINKS)
 249                        fsl_dma_update_pointers(dma_private);
 250
 251                sr2 |= CCSR_DMA_SR_EOSI;
 252                ret = IRQ_HANDLED;
 253        }
 254
 255        if (sr & CCSR_DMA_SR_EOLSI) {
 256                sr2 |= CCSR_DMA_SR_EOLSI;
 257                ret = IRQ_HANDLED;
 258        }
 259
 260        /* Clear the bits that we set */
 261        if (sr2)
 262                out_be32(&dma_channel->sr, sr2);
 263
 264        return ret;
 265}
 266
 267/**
 268 * fsl_dma_new: initialize this PCM driver.
 269 *
 270 * This function is called when the codec driver calls snd_soc_new_pcms(),
 271 * once for each .dai_link in the machine driver's snd_soc_card
 272 * structure.
 273 *
 274 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
 275 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
 276 * is specified. Therefore, any DMA buffers we allocate will always be in low
 277 * memory, but we support for 36-bit physical addresses anyway.
 278 *
 279 * Regardless of where the memory is actually allocated, since the device can
 280 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
 281 */
 282static int fsl_dma_new(struct snd_soc_component *component,
 283                       struct snd_soc_pcm_runtime *rtd)
 284{
 285        struct snd_card *card = rtd->card->snd_card;
 286        struct snd_pcm *pcm = rtd->pcm;
 287        int ret;
 288
 289        ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
 290        if (ret)
 291                return ret;
 292
 293        /* Some codecs have separate DAIs for playback and capture, so we
 294         * should allocate a DMA buffer only for the streams that are valid.
 295         */
 296
 297        if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
 298                ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
 299                        fsl_dma_hardware.buffer_bytes_max,
 300                        &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
 301                if (ret) {
 302                        dev_err(card->dev, "can't alloc playback dma buffer\n");
 303                        return ret;
 304                }
 305        }
 306
 307        if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
 308                ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
 309                        fsl_dma_hardware.buffer_bytes_max,
 310                        &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
 311                if (ret) {
 312                        dev_err(card->dev, "can't alloc capture dma buffer\n");
 313                        snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
 314                        return ret;
 315                }
 316        }
 317
 318        return 0;
 319}
 320
 321/**
 322 * fsl_dma_open: open a new substream.
 323 *
 324 * Each substream has its own DMA buffer.
 325 *
 326 * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
 327 * descriptors that ping-pong from one period to the next.  For example, if
 328 * there are six periods and two link descriptors, this is how they look
 329 * before playback starts:
 330 *
 331 *                 The last link descriptor
 332 *   ____________  points back to the first
 333 *  |            |
 334 *  V            |
 335 *  ___    ___   |
 336 * |   |->|   |->|
 337 * |___|  |___|
 338 *   |      |
 339 *   |      |
 340 *   V      V
 341 *  _________________________________________
 342 * |      |      |      |      |      |      |  The DMA buffer is
 343 * |      |      |      |      |      |      |    divided into 6 parts
 344 * |______|______|______|______|______|______|
 345 *
 346 * and here's how they look after the first period is finished playing:
 347 *
 348 *   ____________
 349 *  |            |
 350 *  V            |
 351 *  ___    ___   |
 352 * |   |->|   |->|
 353 * |___|  |___|
 354 *   |      |
 355 *   |______________
 356 *          |       |
 357 *          V       V
 358 *  _________________________________________
 359 * |      |      |      |      |      |      |
 360 * |      |      |      |      |      |      |
 361 * |______|______|______|______|______|______|
 362 *
 363 * The first link descriptor now points to the third period.  The DMA
 364 * controller is currently playing the second period.  When it finishes, it
 365 * will jump back to the first descriptor and play the third period.
 366 *
 367 * There are four reasons we do this:
 368 *
 369 * 1. The only way to get the DMA controller to automatically restart the
 370 *    transfer when it gets to the end of the buffer is to use chaining
 371 *    mode.  Basic direct mode doesn't offer that feature.
 372 * 2. We need to receive an interrupt at the end of every period.  The DMA
 373 *    controller can generate an interrupt at the end of every link transfer
 374 *    (aka segment).  Making each period into a DMA segment will give us the
 375 *    interrupts we need.
 376 * 3. By creating only two link descriptors, regardless of the number of
 377 *    periods, we do not need to reallocate the link descriptors if the
 378 *    number of periods changes.
 379 * 4. All of the audio data is still stored in a single, contiguous DMA
 380 *    buffer, which is what ALSA expects.  We're just dividing it into
 381 *    contiguous parts, and creating a link descriptor for each one.
 382 */
 383static int fsl_dma_open(struct snd_soc_component *component,
 384                        struct snd_pcm_substream *substream)
 385{
 386        struct snd_pcm_runtime *runtime = substream->runtime;
 387        struct device *dev = component->dev;
 388        struct dma_object *dma =
 389                container_of(component->driver, struct dma_object, dai);
 390        struct fsl_dma_private *dma_private;
 391        struct ccsr_dma_channel __iomem *dma_channel;
 392        dma_addr_t ld_buf_phys;
 393        u64 temp_link;          /* Pointer to next link descriptor */
 394        u32 mr;
 395        int ret = 0;
 396        unsigned int i;
 397
 398        /*
 399         * Reject any DMA buffer whose size is not a multiple of the period
 400         * size.  We need to make sure that the DMA buffer can be evenly divided
 401         * into periods.
 402         */
 403        ret = snd_pcm_hw_constraint_integer(runtime,
 404                SNDRV_PCM_HW_PARAM_PERIODS);
 405        if (ret < 0) {
 406                dev_err(dev, "invalid buffer size\n");
 407                return ret;
 408        }
 409
 410        if (dma->assigned) {
 411                dev_err(dev, "dma channel already assigned\n");
 412                return -EBUSY;
 413        }
 414
 415        dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
 416                                         &ld_buf_phys, GFP_KERNEL);
 417        if (!dma_private) {
 418                dev_err(dev, "can't allocate dma private data\n");
 419                return -ENOMEM;
 420        }
 421        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 422                dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
 423        else
 424                dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
 425
 426        dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
 427        dma_private->dma_channel = dma->channel;
 428        dma_private->irq = dma->irq;
 429        dma_private->substream = substream;
 430        dma_private->ld_buf_phys = ld_buf_phys;
 431        dma_private->dma_buf_phys = substream->dma_buffer.addr;
 432
 433        ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
 434                          dma_private);
 435        if (ret) {
 436                dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
 437                        dma_private->irq, ret);
 438                dma_free_coherent(dev, sizeof(struct fsl_dma_private),
 439                        dma_private, dma_private->ld_buf_phys);
 440                return ret;
 441        }
 442
 443        dma->assigned = true;
 444
 445        snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
 446        snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
 447        runtime->private_data = dma_private;
 448
 449        /* Program the fixed DMA controller parameters */
 450
 451        dma_channel = dma_private->dma_channel;
 452
 453        temp_link = dma_private->ld_buf_phys +
 454                sizeof(struct fsl_dma_link_descriptor);
 455
 456        for (i = 0; i < NUM_DMA_LINKS; i++) {
 457                dma_private->link[i].next = cpu_to_be64(temp_link);
 458
 459                temp_link += sizeof(struct fsl_dma_link_descriptor);
 460        }
 461        /* The last link descriptor points to the first */
 462        dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
 463
 464        /* Tell the DMA controller where the first link descriptor is */
 465        out_be32(&dma_channel->clndar,
 466                CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
 467        out_be32(&dma_channel->eclndar,
 468                CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
 469
 470        /* The manual says the BCR must be clear before enabling EMP */
 471        out_be32(&dma_channel->bcr, 0);
 472
 473        /*
 474         * Program the mode register for interrupts, external master control,
 475         * and source/destination hold.  Also clear the Channel Abort bit.
 476         */
 477        mr = in_be32(&dma_channel->mr) &
 478                ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
 479
 480        /*
 481         * We want External Master Start and External Master Pause enabled,
 482         * because the SSI is controlling the DMA controller.  We want the DMA
 483         * controller to be set up in advance, and then we signal only the SSI
 484         * to start transferring.
 485         *
 486         * We want End-Of-Segment Interrupts enabled, because this will generate
 487         * an interrupt at the end of each segment (each link descriptor
 488         * represents one segment).  Each DMA segment is the same thing as an
 489         * ALSA period, so this is how we get an interrupt at the end of every
 490         * period.
 491         *
 492         * We want Error Interrupt enabled, so that we can get an error if
 493         * the DMA controller is mis-programmed somehow.
 494         */
 495        mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
 496                CCSR_DMA_MR_EMS_EN;
 497
 498        /* For playback, we want the destination address to be held.  For
 499           capture, set the source address to be held. */
 500        mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
 501                CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
 502
 503        out_be32(&dma_channel->mr, mr);
 504
 505        return 0;
 506}
 507
 508/**
 509 * fsl_dma_hw_params: continue initializing the DMA links
 510 *
 511 * This function obtains hardware parameters about the opened stream and
 512 * programs the DMA controller accordingly.
 513 *
 514 * One drawback of big-endian is that when copying integers of different
 515 * sizes to a fixed-sized register, the address to which the integer must be
 516 * copied is dependent on the size of the integer.
 517 *
 518 * For example, if P is the address of a 32-bit register, and X is a 32-bit
 519 * integer, then X should be copied to address P.  However, if X is a 16-bit
 520 * integer, then it should be copied to P+2.  If X is an 8-bit register,
 521 * then it should be copied to P+3.
 522 *
 523 * So for playback of 8-bit samples, the DMA controller must transfer single
 524 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
 525 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
 526 *
 527 * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
 528 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
 529 * and 8 bytes at a time).  So we do not support packed 24-bit samples.
 530 * 24-bit data must be padded to 32 bits.
 531 */
 532static int fsl_dma_hw_params(struct snd_soc_component *component,
 533                             struct snd_pcm_substream *substream,
 534                             struct snd_pcm_hw_params *hw_params)
 535{
 536        struct snd_pcm_runtime *runtime = substream->runtime;
 537        struct fsl_dma_private *dma_private = runtime->private_data;
 538        struct device *dev = component->dev;
 539
 540        /* Number of bits per sample */
 541        unsigned int sample_bits =
 542                snd_pcm_format_physical_width(params_format(hw_params));
 543
 544        /* Number of bytes per frame */
 545        unsigned int sample_bytes = sample_bits / 8;
 546
 547        /* Bus address of SSI STX register */
 548        dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
 549
 550        /* Size of the DMA buffer, in bytes */
 551        size_t buffer_size = params_buffer_bytes(hw_params);
 552
 553        /* Number of bytes per period */
 554        size_t period_size = params_period_bytes(hw_params);
 555
 556        /* Pointer to next period */
 557        dma_addr_t temp_addr = substream->dma_buffer.addr;
 558
 559        /* Pointer to DMA controller */
 560        struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
 561
 562        u32 mr; /* DMA Mode Register */
 563
 564        unsigned int i;
 565
 566        /* Initialize our DMA tracking variables */
 567        dma_private->period_size = period_size;
 568        dma_private->num_periods = params_periods(hw_params);
 569        dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
 570        dma_private->dma_buf_next = dma_private->dma_buf_phys +
 571                (NUM_DMA_LINKS * period_size);
 572
 573        if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
 574                /* This happens if the number of periods == NUM_DMA_LINKS */
 575                dma_private->dma_buf_next = dma_private->dma_buf_phys;
 576
 577        mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
 578                  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
 579
 580        /* Due to a quirk of the SSI's STX register, the target address
 581         * for the DMA operations depends on the sample size.  So we calculate
 582         * that offset here.  While we're at it, also tell the DMA controller
 583         * how much data to transfer per sample.
 584         */
 585        switch (sample_bits) {
 586        case 8:
 587                mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
 588                ssi_sxx_phys += 3;
 589                break;
 590        case 16:
 591                mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
 592                ssi_sxx_phys += 2;
 593                break;
 594        case 32:
 595                mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
 596                break;
 597        default:
 598                /* We should never get here */
 599                dev_err(dev, "unsupported sample size %u\n", sample_bits);
 600                return -EINVAL;
 601        }
 602
 603        /*
 604         * BWC determines how many bytes are sent/received before the DMA
 605         * controller checks the SSI to see if it needs to stop. BWC should
 606         * always be a multiple of the frame size, so that we always transmit
 607         * whole frames.  Each frame occupies two slots in the FIFO.  The
 608         * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
 609         * (MR[BWC] can only represent even powers of two).
 610         *
 611         * To simplify the process, we set BWC to the largest value that is
 612         * less than or equal to the FIFO watermark.  For playback, this ensures
 613         * that we transfer the maximum amount without overrunning the FIFO.
 614         * For capture, this ensures that we transfer the maximum amount without
 615         * underrunning the FIFO.
 616         *
 617         * f = SSI FIFO depth
 618         * w = SSI watermark value (which equals f - 2)
 619         * b = DMA bandwidth count (in bytes)
 620         * s = sample size (in bytes, which equals frame_size * 2)
 621         *
 622         * For playback, we never transmit more than the transmit FIFO
 623         * watermark, otherwise we might write more data than the FIFO can hold.
 624         * The watermark is equal to the FIFO depth minus two.
 625         *
 626         * For capture, two equations must hold:
 627         *      w > f - (b / s)
 628         *      w >= b / s
 629         *
 630         * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
 631         * b = s * w, which is equal to
 632         *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
 633         */
 634        mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
 635
 636        out_be32(&dma_channel->mr, mr);
 637
 638        for (i = 0; i < NUM_DMA_LINKS; i++) {
 639                struct fsl_dma_link_descriptor *link = &dma_private->link[i];
 640
 641                link->count = cpu_to_be32(period_size);
 642
 643                /* The snoop bit tells the DMA controller whether it should tell
 644                 * the ECM to snoop during a read or write to an address. For
 645                 * audio, we use DMA to transfer data between memory and an I/O
 646                 * device (the SSI's STX0 or SRX0 register). Snooping is only
 647                 * needed if there is a cache, so we need to snoop memory
 648                 * addresses only.  For playback, that means we snoop the source
 649                 * but not the destination.  For capture, we snoop the
 650                 * destination but not the source.
 651                 *
 652                 * Note that failing to snoop properly is unlikely to cause
 653                 * cache incoherency if the period size is larger than the
 654                 * size of L1 cache.  This is because filling in one period will
 655                 * flush out the data for the previous period.  So if you
 656                 * increased period_bytes_min to a large enough size, you might
 657                 * get more performance by not snooping, and you'll still be
 658                 * okay.  You'll need to update fsl_dma_update_pointers() also.
 659                 */
 660                if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 661                        link->source_addr = cpu_to_be32(temp_addr);
 662                        link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
 663                                upper_32_bits(temp_addr));
 664
 665                        link->dest_addr = cpu_to_be32(ssi_sxx_phys);
 666                        link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
 667                                upper_32_bits(ssi_sxx_phys));
 668                } else {
 669                        link->source_addr = cpu_to_be32(ssi_sxx_phys);
 670                        link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
 671                                upper_32_bits(ssi_sxx_phys));
 672
 673                        link->dest_addr = cpu_to_be32(temp_addr);
 674                        link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
 675                                upper_32_bits(temp_addr));
 676                }
 677
 678                temp_addr += period_size;
 679        }
 680
 681        return 0;
 682}
 683
 684/**
 685 * fsl_dma_pointer: determine the current position of the DMA transfer
 686 *
 687 * This function is called by ALSA when ALSA wants to know where in the
 688 * stream buffer the hardware currently is.
 689 *
 690 * For playback, the SAR register contains the physical address of the most
 691 * recent DMA transfer.  For capture, the value is in the DAR register.
 692 *
 693 * The base address of the buffer is stored in the source_addr field of the
 694 * first link descriptor.
 695 */
 696static snd_pcm_uframes_t fsl_dma_pointer(struct snd_soc_component *component,
 697                                         struct snd_pcm_substream *substream)
 698{
 699        struct snd_pcm_runtime *runtime = substream->runtime;
 700        struct fsl_dma_private *dma_private = runtime->private_data;
 701        struct device *dev = component->dev;
 702        struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
 703        dma_addr_t position;
 704        snd_pcm_uframes_t frames;
 705
 706        /* Obtain the current DMA pointer, but don't read the ESAD bits if we
 707         * only have 32-bit DMA addresses.  This function is typically called
 708         * in interrupt context, so we need to optimize it.
 709         */
 710        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 711                position = in_be32(&dma_channel->sar);
 712#ifdef CONFIG_PHYS_64BIT
 713                position |= (u64)(in_be32(&dma_channel->satr) &
 714                                  CCSR_DMA_ATR_ESAD_MASK) << 32;
 715#endif
 716        } else {
 717                position = in_be32(&dma_channel->dar);
 718#ifdef CONFIG_PHYS_64BIT
 719                position |= (u64)(in_be32(&dma_channel->datr) &
 720                                  CCSR_DMA_ATR_ESAD_MASK) << 32;
 721#endif
 722        }
 723
 724        /*
 725         * When capture is started, the SSI immediately starts to fill its FIFO.
 726         * This means that the DMA controller is not started until the FIFO is
 727         * full.  However, ALSA calls this function before that happens, when
 728         * MR.DAR is still zero.  In this case, just return zero to indicate
 729         * that nothing has been received yet.
 730         */
 731        if (!position)
 732                return 0;
 733
 734        if ((position < dma_private->dma_buf_phys) ||
 735            (position > dma_private->dma_buf_end)) {
 736                dev_err(dev, "dma pointer is out of range, halting stream\n");
 737                return SNDRV_PCM_POS_XRUN;
 738        }
 739
 740        frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
 741
 742        /*
 743         * If the current address is just past the end of the buffer, wrap it
 744         * around.
 745         */
 746        if (frames == runtime->buffer_size)
 747                frames = 0;
 748
 749        return frames;
 750}
 751
 752/**
 753 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
 754 *
 755 * Release the resources allocated in fsl_dma_hw_params() and de-program the
 756 * registers.
 757 *
 758 * This function can be called multiple times.
 759 */
 760static int fsl_dma_hw_free(struct snd_soc_component *component,
 761                           struct snd_pcm_substream *substream)
 762{
 763        struct snd_pcm_runtime *runtime = substream->runtime;
 764        struct fsl_dma_private *dma_private = runtime->private_data;
 765
 766        if (dma_private) {
 767                struct ccsr_dma_channel __iomem *dma_channel;
 768
 769                dma_channel = dma_private->dma_channel;
 770
 771                /* Stop the DMA */
 772                out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
 773                out_be32(&dma_channel->mr, 0);
 774
 775                /* Reset all the other registers */
 776                out_be32(&dma_channel->sr, -1);
 777                out_be32(&dma_channel->clndar, 0);
 778                out_be32(&dma_channel->eclndar, 0);
 779                out_be32(&dma_channel->satr, 0);
 780                out_be32(&dma_channel->sar, 0);
 781                out_be32(&dma_channel->datr, 0);
 782                out_be32(&dma_channel->dar, 0);
 783                out_be32(&dma_channel->bcr, 0);
 784                out_be32(&dma_channel->nlndar, 0);
 785                out_be32(&dma_channel->enlndar, 0);
 786        }
 787
 788        return 0;
 789}
 790
 791/**
 792 * fsl_dma_close: close the stream.
 793 */
 794static int fsl_dma_close(struct snd_soc_component *component,
 795                         struct snd_pcm_substream *substream)
 796{
 797        struct snd_pcm_runtime *runtime = substream->runtime;
 798        struct fsl_dma_private *dma_private = runtime->private_data;
 799        struct device *dev = component->dev;
 800        struct dma_object *dma =
 801                container_of(component->driver, struct dma_object, dai);
 802
 803        if (dma_private) {
 804                if (dma_private->irq)
 805                        free_irq(dma_private->irq, dma_private);
 806
 807                /* Deallocate the fsl_dma_private structure */
 808                dma_free_coherent(dev, sizeof(struct fsl_dma_private),
 809                                  dma_private, dma_private->ld_buf_phys);
 810                substream->runtime->private_data = NULL;
 811        }
 812
 813        dma->assigned = false;
 814
 815        return 0;
 816}
 817
 818/*
 819 * Remove this PCM driver.
 820 */
 821static void fsl_dma_free_dma_buffers(struct snd_soc_component *component,
 822                                     struct snd_pcm *pcm)
 823{
 824        struct snd_pcm_substream *substream;
 825        unsigned int i;
 826
 827        for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
 828                substream = pcm->streams[i].substream;
 829                if (substream) {
 830                        snd_dma_free_pages(&substream->dma_buffer);
 831                        substream->dma_buffer.area = NULL;
 832                        substream->dma_buffer.addr = 0;
 833                }
 834        }
 835}
 836
 837/**
 838 * find_ssi_node -- returns the SSI node that points to its DMA channel node
 839 *
 840 * Although this DMA driver attempts to operate independently of the other
 841 * devices, it still needs to determine some information about the SSI device
 842 * that it's working with.  Unfortunately, the device tree does not contain
 843 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
 844 * other way.  So we need to scan the device tree for SSI nodes until we find
 845 * the one that points to the given DMA channel node.  It's ugly, but at least
 846 * it's contained in this one function.
 847 */
 848static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
 849{
 850        struct device_node *ssi_np, *np;
 851
 852        for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
 853                /* Check each DMA phandle to see if it points to us.  We
 854                 * assume that device_node pointers are a valid comparison.
 855                 */
 856                np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
 857                of_node_put(np);
 858                if (np == dma_channel_np)
 859                        return ssi_np;
 860
 861                np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
 862                of_node_put(np);
 863                if (np == dma_channel_np)
 864                        return ssi_np;
 865        }
 866
 867        return NULL;
 868}
 869
 870static int fsl_soc_dma_probe(struct platform_device *pdev)
 871{
 872        struct dma_object *dma;
 873        struct device_node *np = pdev->dev.of_node;
 874        struct device_node *ssi_np;
 875        struct resource res;
 876        const uint32_t *iprop;
 877        int ret;
 878
 879        /* Find the SSI node that points to us. */
 880        ssi_np = find_ssi_node(np);
 881        if (!ssi_np) {
 882                dev_err(&pdev->dev, "cannot find parent SSI node\n");
 883                return -ENODEV;
 884        }
 885
 886        ret = of_address_to_resource(ssi_np, 0, &res);
 887        if (ret) {
 888                dev_err(&pdev->dev, "could not determine resources for %pOF\n",
 889                        ssi_np);
 890                of_node_put(ssi_np);
 891                return ret;
 892        }
 893
 894        dma = kzalloc(sizeof(*dma), GFP_KERNEL);
 895        if (!dma) {
 896                of_node_put(ssi_np);
 897                return -ENOMEM;
 898        }
 899
 900        dma->dai.name = DRV_NAME;
 901        dma->dai.open = fsl_dma_open;
 902        dma->dai.close = fsl_dma_close;
 903        dma->dai.hw_params = fsl_dma_hw_params;
 904        dma->dai.hw_free = fsl_dma_hw_free;
 905        dma->dai.pointer = fsl_dma_pointer;
 906        dma->dai.pcm_construct = fsl_dma_new;
 907        dma->dai.pcm_destruct = fsl_dma_free_dma_buffers;
 908
 909        /* Store the SSI-specific information that we need */
 910        dma->ssi_stx_phys = res.start + REG_SSI_STX0;
 911        dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
 912
 913        iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
 914        if (iprop)
 915                dma->ssi_fifo_depth = be32_to_cpup(iprop);
 916        else
 917                /* Older 8610 DTs didn't have the fifo-depth property */
 918                dma->ssi_fifo_depth = 8;
 919
 920        of_node_put(ssi_np);
 921
 922        ret = devm_snd_soc_register_component(&pdev->dev, &dma->dai, NULL, 0);
 923        if (ret) {
 924                dev_err(&pdev->dev, "could not register platform\n");
 925                kfree(dma);
 926                return ret;
 927        }
 928
 929        dma->channel = of_iomap(np, 0);
 930        dma->irq = irq_of_parse_and_map(np, 0);
 931
 932        dev_set_drvdata(&pdev->dev, dma);
 933
 934        return 0;
 935}
 936
 937static int fsl_soc_dma_remove(struct platform_device *pdev)
 938{
 939        struct dma_object *dma = dev_get_drvdata(&pdev->dev);
 940
 941        iounmap(dma->channel);
 942        irq_dispose_mapping(dma->irq);
 943        kfree(dma);
 944
 945        return 0;
 946}
 947
 948static const struct of_device_id fsl_soc_dma_ids[] = {
 949        { .compatible = "fsl,ssi-dma-channel", },
 950        {}
 951};
 952MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
 953
 954static struct platform_driver fsl_soc_dma_driver = {
 955        .driver = {
 956                .name = "fsl-pcm-audio",
 957                .of_match_table = fsl_soc_dma_ids,
 958        },
 959        .probe = fsl_soc_dma_probe,
 960        .remove = fsl_soc_dma_remove,
 961};
 962
 963module_platform_driver(fsl_soc_dma_driver);
 964
 965MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
 966MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
 967MODULE_LICENSE("GPL v2");
 968