linux/drivers/rtc/interface.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * RTC subsystem, interface functions
   4 *
   5 * Copyright (C) 2005 Tower Technologies
   6 * Author: Alessandro Zummo <a.zummo@towertech.it>
   7 *
   8 * based on arch/arm/common/rtctime.c
   9 */
  10
  11#include <linux/rtc.h>
  12#include <linux/sched.h>
  13#include <linux/module.h>
  14#include <linux/log2.h>
  15#include <linux/workqueue.h>
  16
  17#define CREATE_TRACE_POINTS
  18#include <trace/events/rtc.h>
  19
  20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
  21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
  22
  23static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
  24{
  25        time64_t secs;
  26
  27        if (!rtc->offset_secs)
  28                return;
  29
  30        secs = rtc_tm_to_time64(tm);
  31
  32        /*
  33         * Since the reading time values from RTC device are always in the RTC
  34         * original valid range, but we need to skip the overlapped region
  35         * between expanded range and original range, which is no need to add
  36         * the offset.
  37         */
  38        if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
  39            (rtc->start_secs < rtc->range_min &&
  40             secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
  41                return;
  42
  43        rtc_time64_to_tm(secs + rtc->offset_secs, tm);
  44}
  45
  46static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
  47{
  48        time64_t secs;
  49
  50        if (!rtc->offset_secs)
  51                return;
  52
  53        secs = rtc_tm_to_time64(tm);
  54
  55        /*
  56         * If the setting time values are in the valid range of RTC hardware
  57         * device, then no need to subtract the offset when setting time to RTC
  58         * device. Otherwise we need to subtract the offset to make the time
  59         * values are valid for RTC hardware device.
  60         */
  61        if (secs >= rtc->range_min && secs <= rtc->range_max)
  62                return;
  63
  64        rtc_time64_to_tm(secs - rtc->offset_secs, tm);
  65}
  66
  67static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
  68{
  69        if (rtc->range_min != rtc->range_max) {
  70                time64_t time = rtc_tm_to_time64(tm);
  71                time64_t range_min = rtc->set_start_time ? rtc->start_secs :
  72                        rtc->range_min;
  73                timeu64_t range_max = rtc->set_start_time ?
  74                        (rtc->start_secs + rtc->range_max - rtc->range_min) :
  75                        rtc->range_max;
  76
  77                if (time < range_min || time > range_max)
  78                        return -ERANGE;
  79        }
  80
  81        return 0;
  82}
  83
  84static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
  85{
  86        int err;
  87
  88        if (!rtc->ops) {
  89                err = -ENODEV;
  90        } else if (!rtc->ops->read_time) {
  91                err = -EINVAL;
  92        } else {
  93                memset(tm, 0, sizeof(struct rtc_time));
  94                err = rtc->ops->read_time(rtc->dev.parent, tm);
  95                if (err < 0) {
  96                        dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
  97                                err);
  98                        return err;
  99                }
 100
 101                rtc_add_offset(rtc, tm);
 102
 103                err = rtc_valid_tm(tm);
 104                if (err < 0)
 105                        dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
 106        }
 107        return err;
 108}
 109
 110int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
 111{
 112        int err;
 113
 114        err = mutex_lock_interruptible(&rtc->ops_lock);
 115        if (err)
 116                return err;
 117
 118        err = __rtc_read_time(rtc, tm);
 119        mutex_unlock(&rtc->ops_lock);
 120
 121        trace_rtc_read_time(rtc_tm_to_time64(tm), err);
 122        return err;
 123}
 124EXPORT_SYMBOL_GPL(rtc_read_time);
 125
 126int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
 127{
 128        int err, uie;
 129
 130        err = rtc_valid_tm(tm);
 131        if (err != 0)
 132                return err;
 133
 134        err = rtc_valid_range(rtc, tm);
 135        if (err)
 136                return err;
 137
 138        rtc_subtract_offset(rtc, tm);
 139
 140#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 141        uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
 142#else
 143        uie = rtc->uie_rtctimer.enabled;
 144#endif
 145        if (uie) {
 146                err = rtc_update_irq_enable(rtc, 0);
 147                if (err)
 148                        return err;
 149        }
 150
 151        err = mutex_lock_interruptible(&rtc->ops_lock);
 152        if (err)
 153                return err;
 154
 155        if (!rtc->ops)
 156                err = -ENODEV;
 157        else if (rtc->ops->set_time)
 158                err = rtc->ops->set_time(rtc->dev.parent, tm);
 159        else
 160                err = -EINVAL;
 161
 162        pm_stay_awake(rtc->dev.parent);
 163        mutex_unlock(&rtc->ops_lock);
 164        /* A timer might have just expired */
 165        schedule_work(&rtc->irqwork);
 166
 167        if (uie) {
 168                err = rtc_update_irq_enable(rtc, 1);
 169                if (err)
 170                        return err;
 171        }
 172
 173        trace_rtc_set_time(rtc_tm_to_time64(tm), err);
 174        return err;
 175}
 176EXPORT_SYMBOL_GPL(rtc_set_time);
 177
 178static int rtc_read_alarm_internal(struct rtc_device *rtc,
 179                                   struct rtc_wkalrm *alarm)
 180{
 181        int err;
 182
 183        err = mutex_lock_interruptible(&rtc->ops_lock);
 184        if (err)
 185                return err;
 186
 187        if (!rtc->ops) {
 188                err = -ENODEV;
 189        } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) {
 190                err = -EINVAL;
 191        } else {
 192                alarm->enabled = 0;
 193                alarm->pending = 0;
 194                alarm->time.tm_sec = -1;
 195                alarm->time.tm_min = -1;
 196                alarm->time.tm_hour = -1;
 197                alarm->time.tm_mday = -1;
 198                alarm->time.tm_mon = -1;
 199                alarm->time.tm_year = -1;
 200                alarm->time.tm_wday = -1;
 201                alarm->time.tm_yday = -1;
 202                alarm->time.tm_isdst = -1;
 203                err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
 204        }
 205
 206        mutex_unlock(&rtc->ops_lock);
 207
 208        trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 209        return err;
 210}
 211
 212int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 213{
 214        int err;
 215        struct rtc_time before, now;
 216        int first_time = 1;
 217        time64_t t_now, t_alm;
 218        enum { none, day, month, year } missing = none;
 219        unsigned int days;
 220
 221        /* The lower level RTC driver may return -1 in some fields,
 222         * creating invalid alarm->time values, for reasons like:
 223         *
 224         *   - The hardware may not be capable of filling them in;
 225         *     many alarms match only on time-of-day fields, not
 226         *     day/month/year calendar data.
 227         *
 228         *   - Some hardware uses illegal values as "wildcard" match
 229         *     values, which non-Linux firmware (like a BIOS) may try
 230         *     to set up as e.g. "alarm 15 minutes after each hour".
 231         *     Linux uses only oneshot alarms.
 232         *
 233         * When we see that here, we deal with it by using values from
 234         * a current RTC timestamp for any missing (-1) values.  The
 235         * RTC driver prevents "periodic alarm" modes.
 236         *
 237         * But this can be racey, because some fields of the RTC timestamp
 238         * may have wrapped in the interval since we read the RTC alarm,
 239         * which would lead to us inserting inconsistent values in place
 240         * of the -1 fields.
 241         *
 242         * Reading the alarm and timestamp in the reverse sequence
 243         * would have the same race condition, and not solve the issue.
 244         *
 245         * So, we must first read the RTC timestamp,
 246         * then read the RTC alarm value,
 247         * and then read a second RTC timestamp.
 248         *
 249         * If any fields of the second timestamp have changed
 250         * when compared with the first timestamp, then we know
 251         * our timestamp may be inconsistent with that used by
 252         * the low-level rtc_read_alarm_internal() function.
 253         *
 254         * So, when the two timestamps disagree, we just loop and do
 255         * the process again to get a fully consistent set of values.
 256         *
 257         * This could all instead be done in the lower level driver,
 258         * but since more than one lower level RTC implementation needs it,
 259         * then it's probably best best to do it here instead of there..
 260         */
 261
 262        /* Get the "before" timestamp */
 263        err = rtc_read_time(rtc, &before);
 264        if (err < 0)
 265                return err;
 266        do {
 267                if (!first_time)
 268                        memcpy(&before, &now, sizeof(struct rtc_time));
 269                first_time = 0;
 270
 271                /* get the RTC alarm values, which may be incomplete */
 272                err = rtc_read_alarm_internal(rtc, alarm);
 273                if (err)
 274                        return err;
 275
 276                /* full-function RTCs won't have such missing fields */
 277                if (rtc_valid_tm(&alarm->time) == 0) {
 278                        rtc_add_offset(rtc, &alarm->time);
 279                        return 0;
 280                }
 281
 282                /* get the "after" timestamp, to detect wrapped fields */
 283                err = rtc_read_time(rtc, &now);
 284                if (err < 0)
 285                        return err;
 286
 287                /* note that tm_sec is a "don't care" value here: */
 288        } while (before.tm_min  != now.tm_min ||
 289                 before.tm_hour != now.tm_hour ||
 290                 before.tm_mon  != now.tm_mon ||
 291                 before.tm_year != now.tm_year);
 292
 293        /* Fill in the missing alarm fields using the timestamp; we
 294         * know there's at least one since alarm->time is invalid.
 295         */
 296        if (alarm->time.tm_sec == -1)
 297                alarm->time.tm_sec = now.tm_sec;
 298        if (alarm->time.tm_min == -1)
 299                alarm->time.tm_min = now.tm_min;
 300        if (alarm->time.tm_hour == -1)
 301                alarm->time.tm_hour = now.tm_hour;
 302
 303        /* For simplicity, only support date rollover for now */
 304        if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
 305                alarm->time.tm_mday = now.tm_mday;
 306                missing = day;
 307        }
 308        if ((unsigned int)alarm->time.tm_mon >= 12) {
 309                alarm->time.tm_mon = now.tm_mon;
 310                if (missing == none)
 311                        missing = month;
 312        }
 313        if (alarm->time.tm_year == -1) {
 314                alarm->time.tm_year = now.tm_year;
 315                if (missing == none)
 316                        missing = year;
 317        }
 318
 319        /* Can't proceed if alarm is still invalid after replacing
 320         * missing fields.
 321         */
 322        err = rtc_valid_tm(&alarm->time);
 323        if (err)
 324                goto done;
 325
 326        /* with luck, no rollover is needed */
 327        t_now = rtc_tm_to_time64(&now);
 328        t_alm = rtc_tm_to_time64(&alarm->time);
 329        if (t_now < t_alm)
 330                goto done;
 331
 332        switch (missing) {
 333        /* 24 hour rollover ... if it's now 10am Monday, an alarm that
 334         * that will trigger at 5am will do so at 5am Tuesday, which
 335         * could also be in the next month or year.  This is a common
 336         * case, especially for PCs.
 337         */
 338        case day:
 339                dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
 340                t_alm += 24 * 60 * 60;
 341                rtc_time64_to_tm(t_alm, &alarm->time);
 342                break;
 343
 344        /* Month rollover ... if it's the 31th, an alarm on the 3rd will
 345         * be next month.  An alarm matching on the 30th, 29th, or 28th
 346         * may end up in the month after that!  Many newer PCs support
 347         * this type of alarm.
 348         */
 349        case month:
 350                dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
 351                do {
 352                        if (alarm->time.tm_mon < 11) {
 353                                alarm->time.tm_mon++;
 354                        } else {
 355                                alarm->time.tm_mon = 0;
 356                                alarm->time.tm_year++;
 357                        }
 358                        days = rtc_month_days(alarm->time.tm_mon,
 359                                              alarm->time.tm_year);
 360                } while (days < alarm->time.tm_mday);
 361                break;
 362
 363        /* Year rollover ... easy except for leap years! */
 364        case year:
 365                dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
 366                do {
 367                        alarm->time.tm_year++;
 368                } while (!is_leap_year(alarm->time.tm_year + 1900) &&
 369                         rtc_valid_tm(&alarm->time) != 0);
 370                break;
 371
 372        default:
 373                dev_warn(&rtc->dev, "alarm rollover not handled\n");
 374        }
 375
 376        err = rtc_valid_tm(&alarm->time);
 377
 378done:
 379        if (err)
 380                dev_warn(&rtc->dev, "invalid alarm value: %ptR\n",
 381                         &alarm->time);
 382
 383        return err;
 384}
 385
 386int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 387{
 388        int err;
 389
 390        err = mutex_lock_interruptible(&rtc->ops_lock);
 391        if (err)
 392                return err;
 393        if (!rtc->ops) {
 394                err = -ENODEV;
 395        } else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->read_alarm) {
 396                err = -EINVAL;
 397        } else {
 398                memset(alarm, 0, sizeof(struct rtc_wkalrm));
 399                alarm->enabled = rtc->aie_timer.enabled;
 400                alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
 401        }
 402        mutex_unlock(&rtc->ops_lock);
 403
 404        trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
 405        return err;
 406}
 407EXPORT_SYMBOL_GPL(rtc_read_alarm);
 408
 409static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 410{
 411        struct rtc_time tm;
 412        time64_t now, scheduled;
 413        int err;
 414
 415        err = rtc_valid_tm(&alarm->time);
 416        if (err)
 417                return err;
 418
 419        scheduled = rtc_tm_to_time64(&alarm->time);
 420
 421        /* Make sure we're not setting alarms in the past */
 422        err = __rtc_read_time(rtc, &tm);
 423        if (err)
 424                return err;
 425        now = rtc_tm_to_time64(&tm);
 426        if (scheduled <= now)
 427                return -ETIME;
 428        /*
 429         * XXX - We just checked to make sure the alarm time is not
 430         * in the past, but there is still a race window where if
 431         * the is alarm set for the next second and the second ticks
 432         * over right here, before we set the alarm.
 433         */
 434
 435        rtc_subtract_offset(rtc, &alarm->time);
 436
 437        if (!rtc->ops)
 438                err = -ENODEV;
 439        else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
 440                err = -EINVAL;
 441        else
 442                err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
 443
 444        trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
 445        return err;
 446}
 447
 448int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 449{
 450        int err;
 451
 452        if (!rtc->ops)
 453                return -ENODEV;
 454        else if (!test_bit(RTC_FEATURE_ALARM, rtc->features))
 455                return -EINVAL;
 456
 457        err = rtc_valid_tm(&alarm->time);
 458        if (err != 0)
 459                return err;
 460
 461        err = rtc_valid_range(rtc, &alarm->time);
 462        if (err)
 463                return err;
 464
 465        err = mutex_lock_interruptible(&rtc->ops_lock);
 466        if (err)
 467                return err;
 468        if (rtc->aie_timer.enabled)
 469                rtc_timer_remove(rtc, &rtc->aie_timer);
 470
 471        rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 472        rtc->aie_timer.period = 0;
 473        if (alarm->enabled)
 474                err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 475
 476        mutex_unlock(&rtc->ops_lock);
 477
 478        return err;
 479}
 480EXPORT_SYMBOL_GPL(rtc_set_alarm);
 481
 482/* Called once per device from rtc_device_register */
 483int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
 484{
 485        int err;
 486        struct rtc_time now;
 487
 488        err = rtc_valid_tm(&alarm->time);
 489        if (err != 0)
 490                return err;
 491
 492        err = rtc_read_time(rtc, &now);
 493        if (err)
 494                return err;
 495
 496        err = mutex_lock_interruptible(&rtc->ops_lock);
 497        if (err)
 498                return err;
 499
 500        rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
 501        rtc->aie_timer.period = 0;
 502
 503        /* Alarm has to be enabled & in the future for us to enqueue it */
 504        if (alarm->enabled && (rtc_tm_to_ktime(now) <
 505                         rtc->aie_timer.node.expires)) {
 506                rtc->aie_timer.enabled = 1;
 507                timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
 508                trace_rtc_timer_enqueue(&rtc->aie_timer);
 509        }
 510        mutex_unlock(&rtc->ops_lock);
 511        return err;
 512}
 513EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
 514
 515int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 516{
 517        int err;
 518
 519        err = mutex_lock_interruptible(&rtc->ops_lock);
 520        if (err)
 521                return err;
 522
 523        if (rtc->aie_timer.enabled != enabled) {
 524                if (enabled)
 525                        err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
 526                else
 527                        rtc_timer_remove(rtc, &rtc->aie_timer);
 528        }
 529
 530        if (err)
 531                /* nothing */;
 532        else if (!rtc->ops)
 533                err = -ENODEV;
 534        else if (!test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
 535                err = -EINVAL;
 536        else
 537                err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
 538
 539        mutex_unlock(&rtc->ops_lock);
 540
 541        trace_rtc_alarm_irq_enable(enabled, err);
 542        return err;
 543}
 544EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
 545
 546int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
 547{
 548        int err;
 549
 550        err = mutex_lock_interruptible(&rtc->ops_lock);
 551        if (err)
 552                return err;
 553
 554#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 555        if (enabled == 0 && rtc->uie_irq_active) {
 556                mutex_unlock(&rtc->ops_lock);
 557                return rtc_dev_update_irq_enable_emul(rtc, 0);
 558        }
 559#endif
 560        /* make sure we're changing state */
 561        if (rtc->uie_rtctimer.enabled == enabled)
 562                goto out;
 563
 564        if (rtc->uie_unsupported || !test_bit(RTC_FEATURE_ALARM, rtc->features)) {
 565                mutex_unlock(&rtc->ops_lock);
 566#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
 567                return rtc_dev_update_irq_enable_emul(rtc, enabled);
 568#else
 569                return -EINVAL;
 570#endif
 571        }
 572
 573        if (enabled) {
 574                struct rtc_time tm;
 575                ktime_t now, onesec;
 576
 577                err = __rtc_read_time(rtc, &tm);
 578                if (err)
 579                        goto out;
 580                onesec = ktime_set(1, 0);
 581                now = rtc_tm_to_ktime(tm);
 582                rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
 583                rtc->uie_rtctimer.period = ktime_set(1, 0);
 584                err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
 585        } else {
 586                rtc_timer_remove(rtc, &rtc->uie_rtctimer);
 587        }
 588
 589out:
 590        mutex_unlock(&rtc->ops_lock);
 591
 592        return err;
 593}
 594EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
 595
 596/**
 597 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
 598 * @rtc: pointer to the rtc device
 599 * @num: number of occurence of the event
 600 * @mode: type of the event, RTC_AF, RTC_UF of RTC_PF
 601 *
 602 * This function is called when an AIE, UIE or PIE mode interrupt
 603 * has occurred (or been emulated).
 604 *
 605 */
 606void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
 607{
 608        unsigned long flags;
 609
 610        /* mark one irq of the appropriate mode */
 611        spin_lock_irqsave(&rtc->irq_lock, flags);
 612        rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF | mode);
 613        spin_unlock_irqrestore(&rtc->irq_lock, flags);
 614
 615        wake_up_interruptible(&rtc->irq_queue);
 616        kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
 617}
 618
 619/**
 620 * rtc_aie_update_irq - AIE mode rtctimer hook
 621 * @rtc: pointer to the rtc_device
 622 *
 623 * This functions is called when the aie_timer expires.
 624 */
 625void rtc_aie_update_irq(struct rtc_device *rtc)
 626{
 627        rtc_handle_legacy_irq(rtc, 1, RTC_AF);
 628}
 629
 630/**
 631 * rtc_uie_update_irq - UIE mode rtctimer hook
 632 * @rtc: pointer to the rtc_device
 633 *
 634 * This functions is called when the uie_timer expires.
 635 */
 636void rtc_uie_update_irq(struct rtc_device *rtc)
 637{
 638        rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
 639}
 640
 641/**
 642 * rtc_pie_update_irq - PIE mode hrtimer hook
 643 * @timer: pointer to the pie mode hrtimer
 644 *
 645 * This function is used to emulate PIE mode interrupts
 646 * using an hrtimer. This function is called when the periodic
 647 * hrtimer expires.
 648 */
 649enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
 650{
 651        struct rtc_device *rtc;
 652        ktime_t period;
 653        u64 count;
 654
 655        rtc = container_of(timer, struct rtc_device, pie_timer);
 656
 657        period = NSEC_PER_SEC / rtc->irq_freq;
 658        count = hrtimer_forward_now(timer, period);
 659
 660        rtc_handle_legacy_irq(rtc, count, RTC_PF);
 661
 662        return HRTIMER_RESTART;
 663}
 664
 665/**
 666 * rtc_update_irq - Triggered when a RTC interrupt occurs.
 667 * @rtc: the rtc device
 668 * @num: how many irqs are being reported (usually one)
 669 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 670 * Context: any
 671 */
 672void rtc_update_irq(struct rtc_device *rtc,
 673                    unsigned long num, unsigned long events)
 674{
 675        if (IS_ERR_OR_NULL(rtc))
 676                return;
 677
 678        pm_stay_awake(rtc->dev.parent);
 679        schedule_work(&rtc->irqwork);
 680}
 681EXPORT_SYMBOL_GPL(rtc_update_irq);
 682
 683struct rtc_device *rtc_class_open(const char *name)
 684{
 685        struct device *dev;
 686        struct rtc_device *rtc = NULL;
 687
 688        dev = class_find_device_by_name(rtc_class, name);
 689        if (dev)
 690                rtc = to_rtc_device(dev);
 691
 692        if (rtc) {
 693                if (!try_module_get(rtc->owner)) {
 694                        put_device(dev);
 695                        rtc = NULL;
 696                }
 697        }
 698
 699        return rtc;
 700}
 701EXPORT_SYMBOL_GPL(rtc_class_open);
 702
 703void rtc_class_close(struct rtc_device *rtc)
 704{
 705        module_put(rtc->owner);
 706        put_device(&rtc->dev);
 707}
 708EXPORT_SYMBOL_GPL(rtc_class_close);
 709
 710static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
 711{
 712        /*
 713         * We always cancel the timer here first, because otherwise
 714         * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
 715         * when we manage to start the timer before the callback
 716         * returns HRTIMER_RESTART.
 717         *
 718         * We cannot use hrtimer_cancel() here as a running callback
 719         * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
 720         * would spin forever.
 721         */
 722        if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
 723                return -1;
 724
 725        if (enabled) {
 726                ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
 727
 728                hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
 729        }
 730        return 0;
 731}
 732
 733/**
 734 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 735 * @rtc: the rtc device
 736 * @enabled: true to enable periodic IRQs
 737 * Context: any
 738 *
 739 * Note that rtc_irq_set_freq() should previously have been used to
 740 * specify the desired frequency of periodic IRQ.
 741 */
 742int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
 743{
 744        int err = 0;
 745
 746        while (rtc_update_hrtimer(rtc, enabled) < 0)
 747                cpu_relax();
 748
 749        rtc->pie_enabled = enabled;
 750
 751        trace_rtc_irq_set_state(enabled, err);
 752        return err;
 753}
 754
 755/**
 756 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 757 * @rtc: the rtc device
 758 * @freq: positive frequency
 759 * Context: any
 760 *
 761 * Note that rtc_irq_set_state() is used to enable or disable the
 762 * periodic IRQs.
 763 */
 764int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
 765{
 766        int err = 0;
 767
 768        if (freq <= 0 || freq > RTC_MAX_FREQ)
 769                return -EINVAL;
 770
 771        rtc->irq_freq = freq;
 772        while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
 773                cpu_relax();
 774
 775        trace_rtc_irq_set_freq(freq, err);
 776        return err;
 777}
 778
 779/**
 780 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
 781 * @rtc: rtc device
 782 * @timer: timer being added.
 783 *
 784 * Enqueues a timer onto the rtc devices timerqueue and sets
 785 * the next alarm event appropriately.
 786 *
 787 * Sets the enabled bit on the added timer.
 788 *
 789 * Must hold ops_lock for proper serialization of timerqueue
 790 */
 791static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
 792{
 793        struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 794        struct rtc_time tm;
 795        ktime_t now;
 796
 797        timer->enabled = 1;
 798        __rtc_read_time(rtc, &tm);
 799        now = rtc_tm_to_ktime(tm);
 800
 801        /* Skip over expired timers */
 802        while (next) {
 803                if (next->expires >= now)
 804                        break;
 805                next = timerqueue_iterate_next(next);
 806        }
 807
 808        timerqueue_add(&rtc->timerqueue, &timer->node);
 809        trace_rtc_timer_enqueue(timer);
 810        if (!next || ktime_before(timer->node.expires, next->expires)) {
 811                struct rtc_wkalrm alarm;
 812                int err;
 813
 814                alarm.time = rtc_ktime_to_tm(timer->node.expires);
 815                alarm.enabled = 1;
 816                err = __rtc_set_alarm(rtc, &alarm);
 817                if (err == -ETIME) {
 818                        pm_stay_awake(rtc->dev.parent);
 819                        schedule_work(&rtc->irqwork);
 820                } else if (err) {
 821                        timerqueue_del(&rtc->timerqueue, &timer->node);
 822                        trace_rtc_timer_dequeue(timer);
 823                        timer->enabled = 0;
 824                        return err;
 825                }
 826        }
 827        return 0;
 828}
 829
 830static void rtc_alarm_disable(struct rtc_device *rtc)
 831{
 832        if (!rtc->ops || !test_bit(RTC_FEATURE_ALARM, rtc->features) || !rtc->ops->alarm_irq_enable)
 833                return;
 834
 835        rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
 836        trace_rtc_alarm_irq_enable(0, 0);
 837}
 838
 839/**
 840 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
 841 * @rtc: rtc device
 842 * @timer: timer being removed.
 843 *
 844 * Removes a timer onto the rtc devices timerqueue and sets
 845 * the next alarm event appropriately.
 846 *
 847 * Clears the enabled bit on the removed timer.
 848 *
 849 * Must hold ops_lock for proper serialization of timerqueue
 850 */
 851static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
 852{
 853        struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
 854
 855        timerqueue_del(&rtc->timerqueue, &timer->node);
 856        trace_rtc_timer_dequeue(timer);
 857        timer->enabled = 0;
 858        if (next == &timer->node) {
 859                struct rtc_wkalrm alarm;
 860                int err;
 861
 862                next = timerqueue_getnext(&rtc->timerqueue);
 863                if (!next) {
 864                        rtc_alarm_disable(rtc);
 865                        return;
 866                }
 867                alarm.time = rtc_ktime_to_tm(next->expires);
 868                alarm.enabled = 1;
 869                err = __rtc_set_alarm(rtc, &alarm);
 870                if (err == -ETIME) {
 871                        pm_stay_awake(rtc->dev.parent);
 872                        schedule_work(&rtc->irqwork);
 873                }
 874        }
 875}
 876
 877/**
 878 * rtc_timer_do_work - Expires rtc timers
 879 * @work: work item
 880 *
 881 * Expires rtc timers. Reprograms next alarm event if needed.
 882 * Called via worktask.
 883 *
 884 * Serializes access to timerqueue via ops_lock mutex
 885 */
 886void rtc_timer_do_work(struct work_struct *work)
 887{
 888        struct rtc_timer *timer;
 889        struct timerqueue_node *next;
 890        ktime_t now;
 891        struct rtc_time tm;
 892
 893        struct rtc_device *rtc =
 894                container_of(work, struct rtc_device, irqwork);
 895
 896        mutex_lock(&rtc->ops_lock);
 897again:
 898        __rtc_read_time(rtc, &tm);
 899        now = rtc_tm_to_ktime(tm);
 900        while ((next = timerqueue_getnext(&rtc->timerqueue))) {
 901                if (next->expires > now)
 902                        break;
 903
 904                /* expire timer */
 905                timer = container_of(next, struct rtc_timer, node);
 906                timerqueue_del(&rtc->timerqueue, &timer->node);
 907                trace_rtc_timer_dequeue(timer);
 908                timer->enabled = 0;
 909                if (timer->func)
 910                        timer->func(timer->rtc);
 911
 912                trace_rtc_timer_fired(timer);
 913                /* Re-add/fwd periodic timers */
 914                if (ktime_to_ns(timer->period)) {
 915                        timer->node.expires = ktime_add(timer->node.expires,
 916                                                        timer->period);
 917                        timer->enabled = 1;
 918                        timerqueue_add(&rtc->timerqueue, &timer->node);
 919                        trace_rtc_timer_enqueue(timer);
 920                }
 921        }
 922
 923        /* Set next alarm */
 924        if (next) {
 925                struct rtc_wkalrm alarm;
 926                int err;
 927                int retry = 3;
 928
 929                alarm.time = rtc_ktime_to_tm(next->expires);
 930                alarm.enabled = 1;
 931reprogram:
 932                err = __rtc_set_alarm(rtc, &alarm);
 933                if (err == -ETIME) {
 934                        goto again;
 935                } else if (err) {
 936                        if (retry-- > 0)
 937                                goto reprogram;
 938
 939                        timer = container_of(next, struct rtc_timer, node);
 940                        timerqueue_del(&rtc->timerqueue, &timer->node);
 941                        trace_rtc_timer_dequeue(timer);
 942                        timer->enabled = 0;
 943                        dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
 944                        goto again;
 945                }
 946        } else {
 947                rtc_alarm_disable(rtc);
 948        }
 949
 950        pm_relax(rtc->dev.parent);
 951        mutex_unlock(&rtc->ops_lock);
 952}
 953
 954/* rtc_timer_init - Initializes an rtc_timer
 955 * @timer: timer to be intiialized
 956 * @f: function pointer to be called when timer fires
 957 * @rtc: pointer to the rtc_device
 958 *
 959 * Kernel interface to initializing an rtc_timer.
 960 */
 961void rtc_timer_init(struct rtc_timer *timer, void (*f)(struct rtc_device *r),
 962                    struct rtc_device *rtc)
 963{
 964        timerqueue_init(&timer->node);
 965        timer->enabled = 0;
 966        timer->func = f;
 967        timer->rtc = rtc;
 968}
 969
 970/* rtc_timer_start - Sets an rtc_timer to fire in the future
 971 * @ rtc: rtc device to be used
 972 * @ timer: timer being set
 973 * @ expires: time at which to expire the timer
 974 * @ period: period that the timer will recur
 975 *
 976 * Kernel interface to set an rtc_timer
 977 */
 978int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
 979                    ktime_t expires, ktime_t period)
 980{
 981        int ret = 0;
 982
 983        mutex_lock(&rtc->ops_lock);
 984        if (timer->enabled)
 985                rtc_timer_remove(rtc, timer);
 986
 987        timer->node.expires = expires;
 988        timer->period = period;
 989
 990        ret = rtc_timer_enqueue(rtc, timer);
 991
 992        mutex_unlock(&rtc->ops_lock);
 993        return ret;
 994}
 995
 996/* rtc_timer_cancel - Stops an rtc_timer
 997 * @ rtc: rtc device to be used
 998 * @ timer: timer being set
 999 *
1000 * Kernel interface to cancel an rtc_timer
1001 */
1002void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1003{
1004        mutex_lock(&rtc->ops_lock);
1005        if (timer->enabled)
1006                rtc_timer_remove(rtc, timer);
1007        mutex_unlock(&rtc->ops_lock);
1008}
1009
1010/**
1011 * rtc_read_offset - Read the amount of rtc offset in parts per billion
1012 * @rtc: rtc device to be used
1013 * @offset: the offset in parts per billion
1014 *
1015 * see below for details.
1016 *
1017 * Kernel interface to read rtc clock offset
1018 * Returns 0 on success, or a negative number on error.
1019 * If read_offset() is not implemented for the rtc, return -EINVAL
1020 */
1021int rtc_read_offset(struct rtc_device *rtc, long *offset)
1022{
1023        int ret;
1024
1025        if (!rtc->ops)
1026                return -ENODEV;
1027
1028        if (!rtc->ops->read_offset)
1029                return -EINVAL;
1030
1031        mutex_lock(&rtc->ops_lock);
1032        ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1033        mutex_unlock(&rtc->ops_lock);
1034
1035        trace_rtc_read_offset(*offset, ret);
1036        return ret;
1037}
1038
1039/**
1040 * rtc_set_offset - Adjusts the duration of the average second
1041 * @rtc: rtc device to be used
1042 * @offset: the offset in parts per billion
1043 *
1044 * Some rtc's allow an adjustment to the average duration of a second
1045 * to compensate for differences in the actual clock rate due to temperature,
1046 * the crystal, capacitor, etc.
1047 *
1048 * The adjustment applied is as follows:
1049 *   t = t0 * (1 + offset * 1e-9)
1050 * where t0 is the measured length of 1 RTC second with offset = 0
1051 *
1052 * Kernel interface to adjust an rtc clock offset.
1053 * Return 0 on success, or a negative number on error.
1054 * If the rtc offset is not setable (or not implemented), return -EINVAL
1055 */
1056int rtc_set_offset(struct rtc_device *rtc, long offset)
1057{
1058        int ret;
1059
1060        if (!rtc->ops)
1061                return -ENODEV;
1062
1063        if (!rtc->ops->set_offset)
1064                return -EINVAL;
1065
1066        mutex_lock(&rtc->ops_lock);
1067        ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1068        mutex_unlock(&rtc->ops_lock);
1069
1070        trace_rtc_set_offset(offset, ret);
1071        return ret;
1072}
1073