linux/arch/mips/kvm/entry.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Generation of main entry point for the guest, exception handling.
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 *
  11 * Copyright (C) 2016 Imagination Technologies Ltd.
  12 */
  13
  14#include <linux/kvm_host.h>
  15#include <linux/log2.h>
  16#include <asm/mmu_context.h>
  17#include <asm/msa.h>
  18#include <asm/setup.h>
  19#include <asm/tlbex.h>
  20#include <asm/uasm.h>
  21
  22/* Register names */
  23#define ZERO            0
  24#define AT              1
  25#define V0              2
  26#define V1              3
  27#define A0              4
  28#define A1              5
  29
  30#if _MIPS_SIM == _MIPS_SIM_ABI32
  31#define T0              8
  32#define T1              9
  33#define T2              10
  34#define T3              11
  35#endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
  36
  37#if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
  38#define T0              12
  39#define T1              13
  40#define T2              14
  41#define T3              15
  42#endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
  43
  44#define S0              16
  45#define S1              17
  46#define T9              25
  47#define K0              26
  48#define K1              27
  49#define GP              28
  50#define SP              29
  51#define RA              31
  52
  53/* Some CP0 registers */
  54#define C0_PWBASE       5, 5
  55#define C0_HWRENA       7, 0
  56#define C0_BADVADDR     8, 0
  57#define C0_BADINSTR     8, 1
  58#define C0_BADINSTRP    8, 2
  59#define C0_PGD          9, 7
  60#define C0_ENTRYHI      10, 0
  61#define C0_GUESTCTL1    10, 4
  62#define C0_STATUS       12, 0
  63#define C0_GUESTCTL0    12, 6
  64#define C0_CAUSE        13, 0
  65#define C0_EPC          14, 0
  66#define C0_EBASE        15, 1
  67#define C0_CONFIG5      16, 5
  68#define C0_DDATA_LO     28, 3
  69#define C0_ERROREPC     30, 0
  70
  71#define CALLFRAME_SIZ   32
  72
  73#ifdef CONFIG_64BIT
  74#define ST0_KX_IF_64    ST0_KX
  75#else
  76#define ST0_KX_IF_64    0
  77#endif
  78
  79static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
  80static unsigned int scratch_tmp[2] = { C0_ERROREPC };
  81
  82enum label_id {
  83        label_fpu_1 = 1,
  84        label_msa_1,
  85        label_return_to_host,
  86        label_kernel_asid,
  87        label_exit_common,
  88};
  89
  90UASM_L_LA(_fpu_1)
  91UASM_L_LA(_msa_1)
  92UASM_L_LA(_return_to_host)
  93UASM_L_LA(_kernel_asid)
  94UASM_L_LA(_exit_common)
  95
  96static void *kvm_mips_build_enter_guest(void *addr);
  97static void *kvm_mips_build_ret_from_exit(void *addr);
  98static void *kvm_mips_build_ret_to_guest(void *addr);
  99static void *kvm_mips_build_ret_to_host(void *addr);
 100
 101/*
 102 * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
 103 * we assume symmetry.
 104 */
 105static int c0_kscratch(void)
 106{
 107        switch (boot_cpu_type()) {
 108        case CPU_XLP:
 109        case CPU_XLR:
 110                return 22;
 111        default:
 112                return 31;
 113        }
 114}
 115
 116/**
 117 * kvm_mips_entry_setup() - Perform global setup for entry code.
 118 *
 119 * Perform global setup for entry code, such as choosing a scratch register.
 120 *
 121 * Returns:     0 on success.
 122 *              -errno on failure.
 123 */
 124int kvm_mips_entry_setup(void)
 125{
 126        /*
 127         * We prefer to use KScratchN registers if they are available over the
 128         * defaults above, which may not work on all cores.
 129         */
 130        unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
 131
 132        if (pgd_reg != -1)
 133                kscratch_mask &= ~BIT(pgd_reg);
 134
 135        /* Pick a scratch register for storing VCPU */
 136        if (kscratch_mask) {
 137                scratch_vcpu[0] = c0_kscratch();
 138                scratch_vcpu[1] = ffs(kscratch_mask) - 1;
 139                kscratch_mask &= ~BIT(scratch_vcpu[1]);
 140        }
 141
 142        /* Pick a scratch register to use as a temp for saving state */
 143        if (kscratch_mask) {
 144                scratch_tmp[0] = c0_kscratch();
 145                scratch_tmp[1] = ffs(kscratch_mask) - 1;
 146                kscratch_mask &= ~BIT(scratch_tmp[1]);
 147        }
 148
 149        return 0;
 150}
 151
 152static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
 153                                        unsigned int frame)
 154{
 155        /* Save the VCPU scratch register value in cp0_epc of the stack frame */
 156        UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
 157        UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
 158
 159        /* Save the temp scratch register value in cp0_cause of stack frame */
 160        if (scratch_tmp[0] == c0_kscratch()) {
 161                UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
 162                UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
 163        }
 164}
 165
 166static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
 167                                           unsigned int frame)
 168{
 169        /*
 170         * Restore host scratch register values saved by
 171         * kvm_mips_build_save_scratch().
 172         */
 173        UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
 174        UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
 175
 176        if (scratch_tmp[0] == c0_kscratch()) {
 177                UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
 178                UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
 179        }
 180}
 181
 182/**
 183 * build_set_exc_base() - Assemble code to write exception base address.
 184 * @p:          Code buffer pointer.
 185 * @reg:        Source register (generated code may set WG bit in @reg).
 186 *
 187 * Assemble code to modify the exception base address in the EBase register,
 188 * using the appropriately sized access and setting the WG bit if necessary.
 189 */
 190static inline void build_set_exc_base(u32 **p, unsigned int reg)
 191{
 192        if (cpu_has_ebase_wg) {
 193                /* Set WG so that all the bits get written */
 194                uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
 195                UASM_i_MTC0(p, reg, C0_EBASE);
 196        } else {
 197                uasm_i_mtc0(p, reg, C0_EBASE);
 198        }
 199}
 200
 201/**
 202 * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
 203 * @addr:       Address to start writing code.
 204 *
 205 * Assemble the start of the vcpu_run function to run a guest VCPU. The function
 206 * conforms to the following prototype:
 207 *
 208 * int vcpu_run(struct kvm_vcpu *vcpu);
 209 *
 210 * The exit from the guest and return to the caller is handled by the code
 211 * generated by kvm_mips_build_ret_to_host().
 212 *
 213 * Returns:     Next address after end of written function.
 214 */
 215void *kvm_mips_build_vcpu_run(void *addr)
 216{
 217        u32 *p = addr;
 218        unsigned int i;
 219
 220        /*
 221         * A0: vcpu
 222         */
 223
 224        /* k0/k1 not being used in host kernel context */
 225        UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
 226        for (i = 16; i < 32; ++i) {
 227                if (i == 24)
 228                        i = 28;
 229                UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
 230        }
 231
 232        /* Save host status */
 233        uasm_i_mfc0(&p, V0, C0_STATUS);
 234        UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
 235
 236        /* Save scratch registers, will be used to store pointer to vcpu etc */
 237        kvm_mips_build_save_scratch(&p, V1, K1);
 238
 239        /* VCPU scratch register has pointer to vcpu */
 240        UASM_i_MTC0(&p, A0, scratch_vcpu[0], scratch_vcpu[1]);
 241
 242        /* Offset into vcpu->arch */
 243        UASM_i_ADDIU(&p, K1, A0, offsetof(struct kvm_vcpu, arch));
 244
 245        /*
 246         * Save the host stack to VCPU, used for exception processing
 247         * when we exit from the Guest
 248         */
 249        UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
 250
 251        /* Save the kernel gp as well */
 252        UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
 253
 254        /*
 255         * Setup status register for running the guest in UM, interrupts
 256         * are disabled
 257         */
 258        UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
 259        uasm_i_mtc0(&p, K0, C0_STATUS);
 260        uasm_i_ehb(&p);
 261
 262        /* load up the new EBASE */
 263        UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
 264        build_set_exc_base(&p, K0);
 265
 266        /*
 267         * Now that the new EBASE has been loaded, unset BEV, set
 268         * interrupt mask as it was but make sure that timer interrupts
 269         * are enabled
 270         */
 271        uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
 272        uasm_i_andi(&p, V0, V0, ST0_IM);
 273        uasm_i_or(&p, K0, K0, V0);
 274        uasm_i_mtc0(&p, K0, C0_STATUS);
 275        uasm_i_ehb(&p);
 276
 277        p = kvm_mips_build_enter_guest(p);
 278
 279        return p;
 280}
 281
 282/**
 283 * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
 284 * @addr:       Address to start writing code.
 285 *
 286 * Assemble the code to resume guest execution. This code is common between the
 287 * initial entry into the guest from the host, and returning from the exit
 288 * handler back to the guest.
 289 *
 290 * Returns:     Next address after end of written function.
 291 */
 292static void *kvm_mips_build_enter_guest(void *addr)
 293{
 294        u32 *p = addr;
 295        unsigned int i;
 296        struct uasm_label labels[2];
 297        struct uasm_reloc relocs[2];
 298        struct uasm_label __maybe_unused *l = labels;
 299        struct uasm_reloc __maybe_unused *r = relocs;
 300
 301        memset(labels, 0, sizeof(labels));
 302        memset(relocs, 0, sizeof(relocs));
 303
 304        /* Set Guest EPC */
 305        UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
 306        UASM_i_MTC0(&p, T0, C0_EPC);
 307
 308        /* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
 309        if (cpu_has_ldpte)
 310                UASM_i_MFC0(&p, K0, C0_PWBASE);
 311        else
 312                UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
 313        UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
 314
 315        /*
 316         * Set up KVM GPA pgd.
 317         * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
 318         * - call tlbmiss_handler_setup_pgd(mm->pgd)
 319         * - write mm->pgd into CP0_PWBase
 320         *
 321         * We keep S0 pointing at struct kvm so we can load the ASID below.
 322         */
 323        UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
 324                          (int)offsetof(struct kvm_vcpu, arch), K1);
 325        UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
 326        UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
 327        uasm_i_jalr(&p, RA, T9);
 328        /* delay slot */
 329        if (cpu_has_htw)
 330                UASM_i_MTC0(&p, A0, C0_PWBASE);
 331        else
 332                uasm_i_nop(&p);
 333
 334        /* Set GM bit to setup eret to VZ guest context */
 335        uasm_i_addiu(&p, V1, ZERO, 1);
 336        uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
 337        uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
 338        uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
 339
 340        if (cpu_has_guestid) {
 341                /*
 342                 * Set root mode GuestID, so that root TLB refill handler can
 343                 * use the correct GuestID in the root TLB.
 344                 */
 345
 346                /* Get current GuestID */
 347                uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
 348                /* Set GuestCtl1.RID = GuestCtl1.ID */
 349                uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
 350                           MIPS_GCTL1_ID_WIDTH);
 351                uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
 352                           MIPS_GCTL1_RID_WIDTH);
 353                uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
 354
 355                /* GuestID handles dealiasing so we don't need to touch ASID */
 356                goto skip_asid_restore;
 357        }
 358
 359        /* Root ASID Dealias (RAD) */
 360
 361        /* Save host ASID */
 362        UASM_i_MFC0(&p, K0, C0_ENTRYHI);
 363        UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
 364                  K1);
 365
 366        /* Set the root ASID for the Guest */
 367        UASM_i_ADDIU(&p, T1, S0,
 368                     offsetof(struct kvm, arch.gpa_mm.context.asid));
 369
 370        /* t1: contains the base of the ASID array, need to get the cpu id  */
 371        /* smp_processor_id */
 372        uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
 373        /* index the ASID array */
 374        uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
 375        UASM_i_ADDU(&p, T3, T1, T2);
 376        UASM_i_LW(&p, K0, 0, T3);
 377#ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
 378        /*
 379         * reuse ASID array offset
 380         * cpuinfo_mips is a multiple of sizeof(long)
 381         */
 382        uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
 383        uasm_i_mul(&p, T2, T2, T3);
 384
 385        UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
 386        UASM_i_ADDU(&p, AT, AT, T2);
 387        UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
 388        uasm_i_and(&p, K0, K0, T2);
 389#else
 390        uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
 391#endif
 392
 393        /* Set up KVM VZ root ASID (!guestid) */
 394        uasm_i_mtc0(&p, K0, C0_ENTRYHI);
 395skip_asid_restore:
 396        uasm_i_ehb(&p);
 397
 398        /* Disable RDHWR access */
 399        uasm_i_mtc0(&p, ZERO, C0_HWRENA);
 400
 401        /* load the guest context from VCPU and return */
 402        for (i = 1; i < 32; ++i) {
 403                /* Guest k0/k1 loaded later */
 404                if (i == K0 || i == K1)
 405                        continue;
 406                UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
 407        }
 408
 409#ifndef CONFIG_CPU_MIPSR6
 410        /* Restore hi/lo */
 411        UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
 412        uasm_i_mthi(&p, K0);
 413
 414        UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
 415        uasm_i_mtlo(&p, K0);
 416#endif
 417
 418        /* Restore the guest's k0/k1 registers */
 419        UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
 420        UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
 421
 422        /* Jump to guest */
 423        uasm_i_eret(&p);
 424
 425        uasm_resolve_relocs(relocs, labels);
 426
 427        return p;
 428}
 429
 430/**
 431 * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
 432 * @addr:       Address to start writing code.
 433 * @handler:    Address of common handler (within range of @addr).
 434 *
 435 * Assemble TLB refill exception fast path handler for guest execution.
 436 *
 437 * Returns:     Next address after end of written function.
 438 */
 439void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
 440{
 441        u32 *p = addr;
 442        struct uasm_label labels[2];
 443        struct uasm_reloc relocs[2];
 444#ifndef CONFIG_CPU_LOONGSON64
 445        struct uasm_label *l = labels;
 446        struct uasm_reloc *r = relocs;
 447#endif
 448
 449        memset(labels, 0, sizeof(labels));
 450        memset(relocs, 0, sizeof(relocs));
 451
 452        /* Save guest k1 into scratch register */
 453        UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
 454
 455        /* Get the VCPU pointer from the VCPU scratch register */
 456        UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
 457
 458        /* Save guest k0 into VCPU structure */
 459        UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
 460
 461        /*
 462         * Some of the common tlbex code uses current_cpu_type(). For KVM we
 463         * assume symmetry and just disable preemption to silence the warning.
 464         */
 465        preempt_disable();
 466
 467#ifdef CONFIG_CPU_LOONGSON64
 468        UASM_i_MFC0(&p, K1, C0_PGD);
 469        uasm_i_lddir(&p, K0, K1, 3);  /* global page dir */
 470#ifndef __PAGETABLE_PMD_FOLDED
 471        uasm_i_lddir(&p, K1, K0, 1);  /* middle page dir */
 472#endif
 473        uasm_i_ldpte(&p, K1, 0);      /* even */
 474        uasm_i_ldpte(&p, K1, 1);      /* odd */
 475        uasm_i_tlbwr(&p);
 476#else
 477        /*
 478         * Now for the actual refill bit. A lot of this can be common with the
 479         * Linux TLB refill handler, however we don't need to handle so many
 480         * cases. We only need to handle user mode refills, and user mode runs
 481         * with 32-bit addressing.
 482         *
 483         * Therefore the branch to label_vmalloc generated by build_get_pmde64()
 484         * that isn't resolved should never actually get taken and is harmless
 485         * to leave in place for now.
 486         */
 487
 488#ifdef CONFIG_64BIT
 489        build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
 490#else
 491        build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
 492#endif
 493
 494        /* we don't support huge pages yet */
 495
 496        build_get_ptep(&p, K0, K1);
 497        build_update_entries(&p, K0, K1);
 498        build_tlb_write_entry(&p, &l, &r, tlb_random);
 499#endif
 500
 501        preempt_enable();
 502
 503        /* Get the VCPU pointer from the VCPU scratch register again */
 504        UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
 505
 506        /* Restore the guest's k0/k1 registers */
 507        UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
 508        uasm_i_ehb(&p);
 509        UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
 510
 511        /* Jump to guest */
 512        uasm_i_eret(&p);
 513
 514        return p;
 515}
 516
 517/**
 518 * kvm_mips_build_exception() - Assemble first level guest exception handler.
 519 * @addr:       Address to start writing code.
 520 * @handler:    Address of common handler (within range of @addr).
 521 *
 522 * Assemble exception vector code for guest execution. The generated vector will
 523 * branch to the common exception handler generated by kvm_mips_build_exit().
 524 *
 525 * Returns:     Next address after end of written function.
 526 */
 527void *kvm_mips_build_exception(void *addr, void *handler)
 528{
 529        u32 *p = addr;
 530        struct uasm_label labels[2];
 531        struct uasm_reloc relocs[2];
 532        struct uasm_label *l = labels;
 533        struct uasm_reloc *r = relocs;
 534
 535        memset(labels, 0, sizeof(labels));
 536        memset(relocs, 0, sizeof(relocs));
 537
 538        /* Save guest k1 into scratch register */
 539        UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
 540
 541        /* Get the VCPU pointer from the VCPU scratch register */
 542        UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
 543        UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
 544
 545        /* Save guest k0 into VCPU structure */
 546        UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
 547
 548        /* Branch to the common handler */
 549        uasm_il_b(&p, &r, label_exit_common);
 550         uasm_i_nop(&p);
 551
 552        uasm_l_exit_common(&l, handler);
 553        uasm_resolve_relocs(relocs, labels);
 554
 555        return p;
 556}
 557
 558/**
 559 * kvm_mips_build_exit() - Assemble common guest exit handler.
 560 * @addr:       Address to start writing code.
 561 *
 562 * Assemble the generic guest exit handling code. This is called by the
 563 * exception vectors (generated by kvm_mips_build_exception()), and calls
 564 * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
 565 * depending on the return value.
 566 *
 567 * Returns:     Next address after end of written function.
 568 */
 569void *kvm_mips_build_exit(void *addr)
 570{
 571        u32 *p = addr;
 572        unsigned int i;
 573        struct uasm_label labels[3];
 574        struct uasm_reloc relocs[3];
 575        struct uasm_label *l = labels;
 576        struct uasm_reloc *r = relocs;
 577
 578        memset(labels, 0, sizeof(labels));
 579        memset(relocs, 0, sizeof(relocs));
 580
 581        /*
 582         * Generic Guest exception handler. We end up here when the guest
 583         * does something that causes a trap to kernel mode.
 584         *
 585         * Both k0/k1 registers will have already been saved (k0 into the vcpu
 586         * structure, and k1 into the scratch_tmp register).
 587         *
 588         * The k1 register will already contain the kvm_vcpu_arch pointer.
 589         */
 590
 591        /* Start saving Guest context to VCPU */
 592        for (i = 0; i < 32; ++i) {
 593                /* Guest k0/k1 saved later */
 594                if (i == K0 || i == K1)
 595                        continue;
 596                UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
 597        }
 598
 599#ifndef CONFIG_CPU_MIPSR6
 600        /* We need to save hi/lo and restore them on the way out */
 601        uasm_i_mfhi(&p, T0);
 602        UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
 603
 604        uasm_i_mflo(&p, T0);
 605        UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
 606#endif
 607
 608        /* Finally save guest k1 to VCPU */
 609        uasm_i_ehb(&p);
 610        UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
 611        UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
 612
 613        /* Now that context has been saved, we can use other registers */
 614
 615        /* Restore vcpu */
 616        UASM_i_MFC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
 617
 618        /*
 619         * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
 620         * the exception
 621         */
 622        UASM_i_MFC0(&p, K0, C0_EPC);
 623        UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
 624
 625        UASM_i_MFC0(&p, K0, C0_BADVADDR);
 626        UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
 627                  K1);
 628
 629        uasm_i_mfc0(&p, K0, C0_CAUSE);
 630        uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
 631
 632        if (cpu_has_badinstr) {
 633                uasm_i_mfc0(&p, K0, C0_BADINSTR);
 634                uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
 635                                           host_cp0_badinstr), K1);
 636        }
 637
 638        if (cpu_has_badinstrp) {
 639                uasm_i_mfc0(&p, K0, C0_BADINSTRP);
 640                uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
 641                                           host_cp0_badinstrp), K1);
 642        }
 643
 644        /* Now restore the host state just enough to run the handlers */
 645
 646        /* Switch EBASE to the one used by Linux */
 647        /* load up the host EBASE */
 648        uasm_i_mfc0(&p, V0, C0_STATUS);
 649
 650        uasm_i_lui(&p, AT, ST0_BEV >> 16);
 651        uasm_i_or(&p, K0, V0, AT);
 652
 653        uasm_i_mtc0(&p, K0, C0_STATUS);
 654        uasm_i_ehb(&p);
 655
 656        UASM_i_LA_mostly(&p, K0, (long)&ebase);
 657        UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
 658        build_set_exc_base(&p, K0);
 659
 660        if (raw_cpu_has_fpu) {
 661                /*
 662                 * If FPU is enabled, save FCR31 and clear it so that later
 663                 * ctc1's don't trigger FPE for pending exceptions.
 664                 */
 665                uasm_i_lui(&p, AT, ST0_CU1 >> 16);
 666                uasm_i_and(&p, V1, V0, AT);
 667                uasm_il_beqz(&p, &r, V1, label_fpu_1);
 668                 uasm_i_nop(&p);
 669                uasm_i_cfc1(&p, T0, 31);
 670                uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
 671                          K1);
 672                uasm_i_ctc1(&p, ZERO, 31);
 673                uasm_l_fpu_1(&l, p);
 674        }
 675
 676        if (cpu_has_msa) {
 677                /*
 678                 * If MSA is enabled, save MSACSR and clear it so that later
 679                 * instructions don't trigger MSAFPE for pending exceptions.
 680                 */
 681                uasm_i_mfc0(&p, T0, C0_CONFIG5);
 682                uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
 683                uasm_il_beqz(&p, &r, T0, label_msa_1);
 684                 uasm_i_nop(&p);
 685                uasm_i_cfcmsa(&p, T0, MSA_CSR);
 686                uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
 687                          K1);
 688                uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
 689                uasm_l_msa_1(&l, p);
 690        }
 691
 692        /* Restore host ASID */
 693        if (!cpu_has_guestid) {
 694                UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
 695                          K1);
 696                UASM_i_MTC0(&p, K0, C0_ENTRYHI);
 697        }
 698
 699        /*
 700         * Set up normal Linux process pgd.
 701         * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
 702         * - call tlbmiss_handler_setup_pgd(mm->pgd)
 703         * - write mm->pgd into CP0_PWBase
 704         */
 705        UASM_i_LW(&p, A0,
 706                  offsetof(struct kvm_vcpu_arch, host_pgd), K1);
 707        UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
 708        uasm_i_jalr(&p, RA, T9);
 709        /* delay slot */
 710        if (cpu_has_htw)
 711                UASM_i_MTC0(&p, A0, C0_PWBASE);
 712        else
 713                uasm_i_nop(&p);
 714
 715        /* Clear GM bit so we don't enter guest mode when EXL is cleared */
 716        uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
 717        uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
 718        uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
 719
 720        /* Save GuestCtl0 so we can access GExcCode after CPU migration */
 721        uasm_i_sw(&p, K0,
 722                  offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
 723
 724        if (cpu_has_guestid) {
 725                /*
 726                 * Clear root mode GuestID, so that root TLB operations use the
 727                 * root GuestID in the root TLB.
 728                 */
 729                uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
 730                /* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
 731                uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
 732                           MIPS_GCTL1_RID_WIDTH);
 733                uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
 734        }
 735
 736        /* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
 737        uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
 738        uasm_i_and(&p, V0, V0, AT);
 739        uasm_i_lui(&p, AT, ST0_CU0 >> 16);
 740        uasm_i_or(&p, V0, V0, AT);
 741#ifdef CONFIG_64BIT
 742        uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
 743#endif
 744        uasm_i_mtc0(&p, V0, C0_STATUS);
 745        uasm_i_ehb(&p);
 746
 747        /* Load up host GP */
 748        UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
 749
 750        /* Need a stack before we can jump to "C" */
 751        UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
 752
 753        /* Saved host state */
 754        UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
 755
 756        /*
 757         * XXXKYMA do we need to load the host ASID, maybe not because the
 758         * kernel entries are marked GLOBAL, need to verify
 759         */
 760
 761        /* Restore host scratch registers, as we'll have clobbered them */
 762        kvm_mips_build_restore_scratch(&p, K0, SP);
 763
 764        /* Restore RDHWR access */
 765        UASM_i_LA_mostly(&p, K0, (long)&hwrena);
 766        uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
 767        uasm_i_mtc0(&p, K0, C0_HWRENA);
 768
 769        /* Jump to handler */
 770        /*
 771         * XXXKYMA: not sure if this is safe, how large is the stack??
 772         * Now jump to the kvm_mips_handle_exit() to see if we can deal
 773         * with this in the kernel
 774         */
 775        uasm_i_move(&p, A0, S0);
 776        UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
 777        uasm_i_jalr(&p, RA, T9);
 778         UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
 779
 780        uasm_resolve_relocs(relocs, labels);
 781
 782        p = kvm_mips_build_ret_from_exit(p);
 783
 784        return p;
 785}
 786
 787/**
 788 * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
 789 * @addr:       Address to start writing code.
 790 *
 791 * Assemble the code to handle the return from kvm_mips_handle_exit(), either
 792 * resuming the guest or returning to the host depending on the return value.
 793 *
 794 * Returns:     Next address after end of written function.
 795 */
 796static void *kvm_mips_build_ret_from_exit(void *addr)
 797{
 798        u32 *p = addr;
 799        struct uasm_label labels[2];
 800        struct uasm_reloc relocs[2];
 801        struct uasm_label *l = labels;
 802        struct uasm_reloc *r = relocs;
 803
 804        memset(labels, 0, sizeof(labels));
 805        memset(relocs, 0, sizeof(relocs));
 806
 807        /* Return from handler Make sure interrupts are disabled */
 808        uasm_i_di(&p, ZERO);
 809        uasm_i_ehb(&p);
 810
 811        /*
 812         * XXXKYMA: k0/k1 could have been blown away if we processed
 813         * an exception while we were handling the exception from the
 814         * guest, reload k1
 815         */
 816
 817        uasm_i_move(&p, K1, S0);
 818        UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
 819
 820        /*
 821         * Check return value, should tell us if we are returning to the
 822         * host (handle I/O etc)or resuming the guest
 823         */
 824        uasm_i_andi(&p, T0, V0, RESUME_HOST);
 825        uasm_il_bnez(&p, &r, T0, label_return_to_host);
 826         uasm_i_nop(&p);
 827
 828        p = kvm_mips_build_ret_to_guest(p);
 829
 830        uasm_l_return_to_host(&l, p);
 831        p = kvm_mips_build_ret_to_host(p);
 832
 833        uasm_resolve_relocs(relocs, labels);
 834
 835        return p;
 836}
 837
 838/**
 839 * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
 840 * @addr:       Address to start writing code.
 841 *
 842 * Assemble the code to handle return from the guest exit handler
 843 * (kvm_mips_handle_exit()) back to the guest.
 844 *
 845 * Returns:     Next address after end of written function.
 846 */
 847static void *kvm_mips_build_ret_to_guest(void *addr)
 848{
 849        u32 *p = addr;
 850
 851        /* Put the saved pointer to vcpu (s0) back into the scratch register */
 852        UASM_i_MTC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
 853
 854        /* Load up the Guest EBASE to minimize the window where BEV is set */
 855        UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
 856
 857        /* Switch EBASE back to the one used by KVM */
 858        uasm_i_mfc0(&p, V1, C0_STATUS);
 859        uasm_i_lui(&p, AT, ST0_BEV >> 16);
 860        uasm_i_or(&p, K0, V1, AT);
 861        uasm_i_mtc0(&p, K0, C0_STATUS);
 862        uasm_i_ehb(&p);
 863        build_set_exc_base(&p, T0);
 864
 865        /* Setup status register for running guest in UM */
 866        uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
 867        UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
 868        uasm_i_and(&p, V1, V1, AT);
 869        uasm_i_mtc0(&p, V1, C0_STATUS);
 870        uasm_i_ehb(&p);
 871
 872        p = kvm_mips_build_enter_guest(p);
 873
 874        return p;
 875}
 876
 877/**
 878 * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
 879 * @addr:       Address to start writing code.
 880 *
 881 * Assemble the code to handle return from the guest exit handler
 882 * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
 883 * function generated by kvm_mips_build_vcpu_run().
 884 *
 885 * Returns:     Next address after end of written function.
 886 */
 887static void *kvm_mips_build_ret_to_host(void *addr)
 888{
 889        u32 *p = addr;
 890        unsigned int i;
 891
 892        /* EBASE is already pointing to Linux */
 893        UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
 894        UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
 895
 896        /*
 897         * r2/v0 is the return code, shift it down by 2 (arithmetic)
 898         * to recover the err code
 899         */
 900        uasm_i_sra(&p, K0, V0, 2);
 901        uasm_i_move(&p, V0, K0);
 902
 903        /* Load context saved on the host stack */
 904        for (i = 16; i < 31; ++i) {
 905                if (i == 24)
 906                        i = 28;
 907                UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
 908        }
 909
 910        /* Restore RDHWR access */
 911        UASM_i_LA_mostly(&p, K0, (long)&hwrena);
 912        uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
 913        uasm_i_mtc0(&p, K0, C0_HWRENA);
 914
 915        /* Restore RA, which is the address we will return to */
 916        UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
 917        uasm_i_jr(&p, RA);
 918         uasm_i_nop(&p);
 919
 920        return p;
 921}
 922
 923