linux/net/socket.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET          An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:     @(#)socket.c    1.1.93  18/02/95
   6 *
   7 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   8 *              Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  13 *                                      shutdown()
  14 *              Alan Cox        :       verify_area() fixes
  15 *              Alan Cox        :       Removed DDI
  16 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  17 *              Alan Cox        :       Moved a load of checks to the very
  18 *                                      top level.
  19 *              Alan Cox        :       Move address structures to/from user
  20 *                                      mode above the protocol layers.
  21 *              Rob Janssen     :       Allow 0 length sends.
  22 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  23 *                                      tty drivers).
  24 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  25 *              Jeff Uphoff     :       Made max number of sockets command-line
  26 *                                      configurable.
  27 *              Matti Aarnio    :       Made the number of sockets dynamic,
  28 *                                      to be allocated when needed, and mr.
  29 *                                      Uphoff's max is used as max to be
  30 *                                      allowed to allocate.
  31 *              Linus           :       Argh. removed all the socket allocation
  32 *                                      altogether: it's in the inode now.
  33 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  34 *                                      for NetROM and future kernel nfsd type
  35 *                                      stuff.
  36 *              Alan Cox        :       sendmsg/recvmsg basics.
  37 *              Tom Dyas        :       Export net symbols.
  38 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  39 *              Alan Cox        :       Added thread locking to sys_* calls
  40 *                                      for sockets. May have errors at the
  41 *                                      moment.
  42 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  43 *              Andi Kleen      :       Some small cleanups, optimizations,
  44 *                                      and fixed a copy_from_user() bug.
  45 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  47 *                                      protocol-independent
  48 *
  49 *      This module is effectively the top level interface to the BSD socket
  50 *      paradigm.
  51 *
  52 *      Based upon Swansea University Computer Society NET3.039
  53 */
  54
  55#include <linux/ethtool.h>
  56#include <linux/mm.h>
  57#include <linux/socket.h>
  58#include <linux/file.h>
  59#include <linux/net.h>
  60#include <linux/interrupt.h>
  61#include <linux/thread_info.h>
  62#include <linux/rcupdate.h>
  63#include <linux/netdevice.h>
  64#include <linux/proc_fs.h>
  65#include <linux/seq_file.h>
  66#include <linux/mutex.h>
  67#include <linux/if_bridge.h>
  68#include <linux/if_vlan.h>
  69#include <linux/ptp_classify.h>
  70#include <linux/init.h>
  71#include <linux/poll.h>
  72#include <linux/cache.h>
  73#include <linux/module.h>
  74#include <linux/highmem.h>
  75#include <linux/mount.h>
  76#include <linux/pseudo_fs.h>
  77#include <linux/security.h>
  78#include <linux/syscalls.h>
  79#include <linux/compat.h>
  80#include <linux/kmod.h>
  81#include <linux/audit.h>
  82#include <linux/wireless.h>
  83#include <linux/nsproxy.h>
  84#include <linux/magic.h>
  85#include <linux/slab.h>
  86#include <linux/xattr.h>
  87#include <linux/nospec.h>
  88#include <linux/indirect_call_wrapper.h>
  89
  90#include <linux/uaccess.h>
  91#include <asm/unistd.h>
  92
  93#include <net/compat.h>
  94#include <net/wext.h>
  95#include <net/cls_cgroup.h>
  96
  97#include <net/sock.h>
  98#include <linux/netfilter.h>
  99
 100#include <linux/if_tun.h>
 101#include <linux/ipv6_route.h>
 102#include <linux/route.h>
 103#include <linux/termios.h>
 104#include <linux/sockios.h>
 105#include <net/busy_poll.h>
 106#include <linux/errqueue.h>
 107#include <linux/ptp_clock_kernel.h>
 108
 109#ifdef CONFIG_NET_RX_BUSY_POLL
 110unsigned int sysctl_net_busy_read __read_mostly;
 111unsigned int sysctl_net_busy_poll __read_mostly;
 112#endif
 113
 114static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 115static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 116static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 117
 118static int sock_close(struct inode *inode, struct file *file);
 119static __poll_t sock_poll(struct file *file,
 120                              struct poll_table_struct *wait);
 121static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 122#ifdef CONFIG_COMPAT
 123static long compat_sock_ioctl(struct file *file,
 124                              unsigned int cmd, unsigned long arg);
 125#endif
 126static int sock_fasync(int fd, struct file *filp, int on);
 127static ssize_t sock_sendpage(struct file *file, struct page *page,
 128                             int offset, size_t size, loff_t *ppos, int more);
 129static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 130                                struct pipe_inode_info *pipe, size_t len,
 131                                unsigned int flags);
 132
 133#ifdef CONFIG_PROC_FS
 134static void sock_show_fdinfo(struct seq_file *m, struct file *f)
 135{
 136        struct socket *sock = f->private_data;
 137
 138        if (sock->ops->show_fdinfo)
 139                sock->ops->show_fdinfo(m, sock);
 140}
 141#else
 142#define sock_show_fdinfo NULL
 143#endif
 144
 145/*
 146 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 147 *      in the operation structures but are done directly via the socketcall() multiplexor.
 148 */
 149
 150static const struct file_operations socket_file_ops = {
 151        .owner =        THIS_MODULE,
 152        .llseek =       no_llseek,
 153        .read_iter =    sock_read_iter,
 154        .write_iter =   sock_write_iter,
 155        .poll =         sock_poll,
 156        .unlocked_ioctl = sock_ioctl,
 157#ifdef CONFIG_COMPAT
 158        .compat_ioctl = compat_sock_ioctl,
 159#endif
 160        .mmap =         sock_mmap,
 161        .release =      sock_close,
 162        .fasync =       sock_fasync,
 163        .sendpage =     sock_sendpage,
 164        .splice_write = generic_splice_sendpage,
 165        .splice_read =  sock_splice_read,
 166        .show_fdinfo =  sock_show_fdinfo,
 167};
 168
 169static const char * const pf_family_names[] = {
 170        [PF_UNSPEC]     = "PF_UNSPEC",
 171        [PF_UNIX]       = "PF_UNIX/PF_LOCAL",
 172        [PF_INET]       = "PF_INET",
 173        [PF_AX25]       = "PF_AX25",
 174        [PF_IPX]        = "PF_IPX",
 175        [PF_APPLETALK]  = "PF_APPLETALK",
 176        [PF_NETROM]     = "PF_NETROM",
 177        [PF_BRIDGE]     = "PF_BRIDGE",
 178        [PF_ATMPVC]     = "PF_ATMPVC",
 179        [PF_X25]        = "PF_X25",
 180        [PF_INET6]      = "PF_INET6",
 181        [PF_ROSE]       = "PF_ROSE",
 182        [PF_DECnet]     = "PF_DECnet",
 183        [PF_NETBEUI]    = "PF_NETBEUI",
 184        [PF_SECURITY]   = "PF_SECURITY",
 185        [PF_KEY]        = "PF_KEY",
 186        [PF_NETLINK]    = "PF_NETLINK/PF_ROUTE",
 187        [PF_PACKET]     = "PF_PACKET",
 188        [PF_ASH]        = "PF_ASH",
 189        [PF_ECONET]     = "PF_ECONET",
 190        [PF_ATMSVC]     = "PF_ATMSVC",
 191        [PF_RDS]        = "PF_RDS",
 192        [PF_SNA]        = "PF_SNA",
 193        [PF_IRDA]       = "PF_IRDA",
 194        [PF_PPPOX]      = "PF_PPPOX",
 195        [PF_WANPIPE]    = "PF_WANPIPE",
 196        [PF_LLC]        = "PF_LLC",
 197        [PF_IB]         = "PF_IB",
 198        [PF_MPLS]       = "PF_MPLS",
 199        [PF_CAN]        = "PF_CAN",
 200        [PF_TIPC]       = "PF_TIPC",
 201        [PF_BLUETOOTH]  = "PF_BLUETOOTH",
 202        [PF_IUCV]       = "PF_IUCV",
 203        [PF_RXRPC]      = "PF_RXRPC",
 204        [PF_ISDN]       = "PF_ISDN",
 205        [PF_PHONET]     = "PF_PHONET",
 206        [PF_IEEE802154] = "PF_IEEE802154",
 207        [PF_CAIF]       = "PF_CAIF",
 208        [PF_ALG]        = "PF_ALG",
 209        [PF_NFC]        = "PF_NFC",
 210        [PF_VSOCK]      = "PF_VSOCK",
 211        [PF_KCM]        = "PF_KCM",
 212        [PF_QIPCRTR]    = "PF_QIPCRTR",
 213        [PF_SMC]        = "PF_SMC",
 214        [PF_XDP]        = "PF_XDP",
 215};
 216
 217/*
 218 *      The protocol list. Each protocol is registered in here.
 219 */
 220
 221static DEFINE_SPINLOCK(net_family_lock);
 222static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 223
 224/*
 225 * Support routines.
 226 * Move socket addresses back and forth across the kernel/user
 227 * divide and look after the messy bits.
 228 */
 229
 230/**
 231 *      move_addr_to_kernel     -       copy a socket address into kernel space
 232 *      @uaddr: Address in user space
 233 *      @kaddr: Address in kernel space
 234 *      @ulen: Length in user space
 235 *
 236 *      The address is copied into kernel space. If the provided address is
 237 *      too long an error code of -EINVAL is returned. If the copy gives
 238 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 239 */
 240
 241int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 242{
 243        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 244                return -EINVAL;
 245        if (ulen == 0)
 246                return 0;
 247        if (copy_from_user(kaddr, uaddr, ulen))
 248                return -EFAULT;
 249        return audit_sockaddr(ulen, kaddr);
 250}
 251
 252/**
 253 *      move_addr_to_user       -       copy an address to user space
 254 *      @kaddr: kernel space address
 255 *      @klen: length of address in kernel
 256 *      @uaddr: user space address
 257 *      @ulen: pointer to user length field
 258 *
 259 *      The value pointed to by ulen on entry is the buffer length available.
 260 *      This is overwritten with the buffer space used. -EINVAL is returned
 261 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 262 *      is returned if either the buffer or the length field are not
 263 *      accessible.
 264 *      After copying the data up to the limit the user specifies, the true
 265 *      length of the data is written over the length limit the user
 266 *      specified. Zero is returned for a success.
 267 */
 268
 269static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 270                             void __user *uaddr, int __user *ulen)
 271{
 272        int err;
 273        int len;
 274
 275        BUG_ON(klen > sizeof(struct sockaddr_storage));
 276        err = get_user(len, ulen);
 277        if (err)
 278                return err;
 279        if (len > klen)
 280                len = klen;
 281        if (len < 0)
 282                return -EINVAL;
 283        if (len) {
 284                if (audit_sockaddr(klen, kaddr))
 285                        return -ENOMEM;
 286                if (copy_to_user(uaddr, kaddr, len))
 287                        return -EFAULT;
 288        }
 289        /*
 290         *      "fromlen shall refer to the value before truncation.."
 291         *                      1003.1g
 292         */
 293        return __put_user(klen, ulen);
 294}
 295
 296static struct kmem_cache *sock_inode_cachep __ro_after_init;
 297
 298static struct inode *sock_alloc_inode(struct super_block *sb)
 299{
 300        struct socket_alloc *ei;
 301
 302        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 303        if (!ei)
 304                return NULL;
 305        init_waitqueue_head(&ei->socket.wq.wait);
 306        ei->socket.wq.fasync_list = NULL;
 307        ei->socket.wq.flags = 0;
 308
 309        ei->socket.state = SS_UNCONNECTED;
 310        ei->socket.flags = 0;
 311        ei->socket.ops = NULL;
 312        ei->socket.sk = NULL;
 313        ei->socket.file = NULL;
 314
 315        return &ei->vfs_inode;
 316}
 317
 318static void sock_free_inode(struct inode *inode)
 319{
 320        struct socket_alloc *ei;
 321
 322        ei = container_of(inode, struct socket_alloc, vfs_inode);
 323        kmem_cache_free(sock_inode_cachep, ei);
 324}
 325
 326static void init_once(void *foo)
 327{
 328        struct socket_alloc *ei = (struct socket_alloc *)foo;
 329
 330        inode_init_once(&ei->vfs_inode);
 331}
 332
 333static void init_inodecache(void)
 334{
 335        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 336                                              sizeof(struct socket_alloc),
 337                                              0,
 338                                              (SLAB_HWCACHE_ALIGN |
 339                                               SLAB_RECLAIM_ACCOUNT |
 340                                               SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 341                                              init_once);
 342        BUG_ON(sock_inode_cachep == NULL);
 343}
 344
 345static const struct super_operations sockfs_ops = {
 346        .alloc_inode    = sock_alloc_inode,
 347        .free_inode     = sock_free_inode,
 348        .statfs         = simple_statfs,
 349};
 350
 351/*
 352 * sockfs_dname() is called from d_path().
 353 */
 354static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 355{
 356        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 357                                d_inode(dentry)->i_ino);
 358}
 359
 360static const struct dentry_operations sockfs_dentry_operations = {
 361        .d_dname  = sockfs_dname,
 362};
 363
 364static int sockfs_xattr_get(const struct xattr_handler *handler,
 365                            struct dentry *dentry, struct inode *inode,
 366                            const char *suffix, void *value, size_t size)
 367{
 368        if (value) {
 369                if (dentry->d_name.len + 1 > size)
 370                        return -ERANGE;
 371                memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 372        }
 373        return dentry->d_name.len + 1;
 374}
 375
 376#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 377#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 378#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 379
 380static const struct xattr_handler sockfs_xattr_handler = {
 381        .name = XATTR_NAME_SOCKPROTONAME,
 382        .get = sockfs_xattr_get,
 383};
 384
 385static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 386                                     struct user_namespace *mnt_userns,
 387                                     struct dentry *dentry, struct inode *inode,
 388                                     const char *suffix, const void *value,
 389                                     size_t size, int flags)
 390{
 391        /* Handled by LSM. */
 392        return -EAGAIN;
 393}
 394
 395static const struct xattr_handler sockfs_security_xattr_handler = {
 396        .prefix = XATTR_SECURITY_PREFIX,
 397        .set = sockfs_security_xattr_set,
 398};
 399
 400static const struct xattr_handler *sockfs_xattr_handlers[] = {
 401        &sockfs_xattr_handler,
 402        &sockfs_security_xattr_handler,
 403        NULL
 404};
 405
 406static int sockfs_init_fs_context(struct fs_context *fc)
 407{
 408        struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 409        if (!ctx)
 410                return -ENOMEM;
 411        ctx->ops = &sockfs_ops;
 412        ctx->dops = &sockfs_dentry_operations;
 413        ctx->xattr = sockfs_xattr_handlers;
 414        return 0;
 415}
 416
 417static struct vfsmount *sock_mnt __read_mostly;
 418
 419static struct file_system_type sock_fs_type = {
 420        .name =         "sockfs",
 421        .init_fs_context = sockfs_init_fs_context,
 422        .kill_sb =      kill_anon_super,
 423};
 424
 425/*
 426 *      Obtains the first available file descriptor and sets it up for use.
 427 *
 428 *      These functions create file structures and maps them to fd space
 429 *      of the current process. On success it returns file descriptor
 430 *      and file struct implicitly stored in sock->file.
 431 *      Note that another thread may close file descriptor before we return
 432 *      from this function. We use the fact that now we do not refer
 433 *      to socket after mapping. If one day we will need it, this
 434 *      function will increment ref. count on file by 1.
 435 *
 436 *      In any case returned fd MAY BE not valid!
 437 *      This race condition is unavoidable
 438 *      with shared fd spaces, we cannot solve it inside kernel,
 439 *      but we take care of internal coherence yet.
 440 */
 441
 442/**
 443 *      sock_alloc_file - Bind a &socket to a &file
 444 *      @sock: socket
 445 *      @flags: file status flags
 446 *      @dname: protocol name
 447 *
 448 *      Returns the &file bound with @sock, implicitly storing it
 449 *      in sock->file. If dname is %NULL, sets to "".
 450 *      On failure the return is a ERR pointer (see linux/err.h).
 451 *      This function uses GFP_KERNEL internally.
 452 */
 453
 454struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 455{
 456        struct file *file;
 457
 458        if (!dname)
 459                dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 460
 461        file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 462                                O_RDWR | (flags & O_NONBLOCK),
 463                                &socket_file_ops);
 464        if (IS_ERR(file)) {
 465                sock_release(sock);
 466                return file;
 467        }
 468
 469        sock->file = file;
 470        file->private_data = sock;
 471        stream_open(SOCK_INODE(sock), file);
 472        return file;
 473}
 474EXPORT_SYMBOL(sock_alloc_file);
 475
 476static int sock_map_fd(struct socket *sock, int flags)
 477{
 478        struct file *newfile;
 479        int fd = get_unused_fd_flags(flags);
 480        if (unlikely(fd < 0)) {
 481                sock_release(sock);
 482                return fd;
 483        }
 484
 485        newfile = sock_alloc_file(sock, flags, NULL);
 486        if (!IS_ERR(newfile)) {
 487                fd_install(fd, newfile);
 488                return fd;
 489        }
 490
 491        put_unused_fd(fd);
 492        return PTR_ERR(newfile);
 493}
 494
 495/**
 496 *      sock_from_file - Return the &socket bounded to @file.
 497 *      @file: file
 498 *
 499 *      On failure returns %NULL.
 500 */
 501
 502struct socket *sock_from_file(struct file *file)
 503{
 504        if (file->f_op == &socket_file_ops)
 505                return file->private_data;      /* set in sock_map_fd */
 506
 507        return NULL;
 508}
 509EXPORT_SYMBOL(sock_from_file);
 510
 511/**
 512 *      sockfd_lookup - Go from a file number to its socket slot
 513 *      @fd: file handle
 514 *      @err: pointer to an error code return
 515 *
 516 *      The file handle passed in is locked and the socket it is bound
 517 *      to is returned. If an error occurs the err pointer is overwritten
 518 *      with a negative errno code and NULL is returned. The function checks
 519 *      for both invalid handles and passing a handle which is not a socket.
 520 *
 521 *      On a success the socket object pointer is returned.
 522 */
 523
 524struct socket *sockfd_lookup(int fd, int *err)
 525{
 526        struct file *file;
 527        struct socket *sock;
 528
 529        file = fget(fd);
 530        if (!file) {
 531                *err = -EBADF;
 532                return NULL;
 533        }
 534
 535        sock = sock_from_file(file);
 536        if (!sock) {
 537                *err = -ENOTSOCK;
 538                fput(file);
 539        }
 540        return sock;
 541}
 542EXPORT_SYMBOL(sockfd_lookup);
 543
 544static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 545{
 546        struct fd f = fdget(fd);
 547        struct socket *sock;
 548
 549        *err = -EBADF;
 550        if (f.file) {
 551                sock = sock_from_file(f.file);
 552                if (likely(sock)) {
 553                        *fput_needed = f.flags & FDPUT_FPUT;
 554                        return sock;
 555                }
 556                *err = -ENOTSOCK;
 557                fdput(f);
 558        }
 559        return NULL;
 560}
 561
 562static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 563                                size_t size)
 564{
 565        ssize_t len;
 566        ssize_t used = 0;
 567
 568        len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 569        if (len < 0)
 570                return len;
 571        used += len;
 572        if (buffer) {
 573                if (size < used)
 574                        return -ERANGE;
 575                buffer += len;
 576        }
 577
 578        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 579        used += len;
 580        if (buffer) {
 581                if (size < used)
 582                        return -ERANGE;
 583                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 584                buffer += len;
 585        }
 586
 587        return used;
 588}
 589
 590static int sockfs_setattr(struct user_namespace *mnt_userns,
 591                          struct dentry *dentry, struct iattr *iattr)
 592{
 593        int err = simple_setattr(&init_user_ns, dentry, iattr);
 594
 595        if (!err && (iattr->ia_valid & ATTR_UID)) {
 596                struct socket *sock = SOCKET_I(d_inode(dentry));
 597
 598                if (sock->sk)
 599                        sock->sk->sk_uid = iattr->ia_uid;
 600                else
 601                        err = -ENOENT;
 602        }
 603
 604        return err;
 605}
 606
 607static const struct inode_operations sockfs_inode_ops = {
 608        .listxattr = sockfs_listxattr,
 609        .setattr = sockfs_setattr,
 610};
 611
 612/**
 613 *      sock_alloc - allocate a socket
 614 *
 615 *      Allocate a new inode and socket object. The two are bound together
 616 *      and initialised. The socket is then returned. If we are out of inodes
 617 *      NULL is returned. This functions uses GFP_KERNEL internally.
 618 */
 619
 620struct socket *sock_alloc(void)
 621{
 622        struct inode *inode;
 623        struct socket *sock;
 624
 625        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 626        if (!inode)
 627                return NULL;
 628
 629        sock = SOCKET_I(inode);
 630
 631        inode->i_ino = get_next_ino();
 632        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 633        inode->i_uid = current_fsuid();
 634        inode->i_gid = current_fsgid();
 635        inode->i_op = &sockfs_inode_ops;
 636
 637        return sock;
 638}
 639EXPORT_SYMBOL(sock_alloc);
 640
 641static void __sock_release(struct socket *sock, struct inode *inode)
 642{
 643        if (sock->ops) {
 644                struct module *owner = sock->ops->owner;
 645
 646                if (inode)
 647                        inode_lock(inode);
 648                sock->ops->release(sock);
 649                sock->sk = NULL;
 650                if (inode)
 651                        inode_unlock(inode);
 652                sock->ops = NULL;
 653                module_put(owner);
 654        }
 655
 656        if (sock->wq.fasync_list)
 657                pr_err("%s: fasync list not empty!\n", __func__);
 658
 659        if (!sock->file) {
 660                iput(SOCK_INODE(sock));
 661                return;
 662        }
 663        sock->file = NULL;
 664}
 665
 666/**
 667 *      sock_release - close a socket
 668 *      @sock: socket to close
 669 *
 670 *      The socket is released from the protocol stack if it has a release
 671 *      callback, and the inode is then released if the socket is bound to
 672 *      an inode not a file.
 673 */
 674void sock_release(struct socket *sock)
 675{
 676        __sock_release(sock, NULL);
 677}
 678EXPORT_SYMBOL(sock_release);
 679
 680void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 681{
 682        u8 flags = *tx_flags;
 683
 684        if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 685                flags |= SKBTX_HW_TSTAMP;
 686
 687        if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 688                flags |= SKBTX_SW_TSTAMP;
 689
 690        if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 691                flags |= SKBTX_SCHED_TSTAMP;
 692
 693        *tx_flags = flags;
 694}
 695EXPORT_SYMBOL(__sock_tx_timestamp);
 696
 697INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 698                                           size_t));
 699INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 700                                            size_t));
 701static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 702{
 703        int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
 704                                     inet_sendmsg, sock, msg,
 705                                     msg_data_left(msg));
 706        BUG_ON(ret == -EIOCBQUEUED);
 707        return ret;
 708}
 709
 710/**
 711 *      sock_sendmsg - send a message through @sock
 712 *      @sock: socket
 713 *      @msg: message to send
 714 *
 715 *      Sends @msg through @sock, passing through LSM.
 716 *      Returns the number of bytes sent, or an error code.
 717 */
 718int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 719{
 720        int err = security_socket_sendmsg(sock, msg,
 721                                          msg_data_left(msg));
 722
 723        return err ?: sock_sendmsg_nosec(sock, msg);
 724}
 725EXPORT_SYMBOL(sock_sendmsg);
 726
 727/**
 728 *      kernel_sendmsg - send a message through @sock (kernel-space)
 729 *      @sock: socket
 730 *      @msg: message header
 731 *      @vec: kernel vec
 732 *      @num: vec array length
 733 *      @size: total message data size
 734 *
 735 *      Builds the message data with @vec and sends it through @sock.
 736 *      Returns the number of bytes sent, or an error code.
 737 */
 738
 739int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 740                   struct kvec *vec, size_t num, size_t size)
 741{
 742        iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 743        return sock_sendmsg(sock, msg);
 744}
 745EXPORT_SYMBOL(kernel_sendmsg);
 746
 747/**
 748 *      kernel_sendmsg_locked - send a message through @sock (kernel-space)
 749 *      @sk: sock
 750 *      @msg: message header
 751 *      @vec: output s/g array
 752 *      @num: output s/g array length
 753 *      @size: total message data size
 754 *
 755 *      Builds the message data with @vec and sends it through @sock.
 756 *      Returns the number of bytes sent, or an error code.
 757 *      Caller must hold @sk.
 758 */
 759
 760int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 761                          struct kvec *vec, size_t num, size_t size)
 762{
 763        struct socket *sock = sk->sk_socket;
 764
 765        if (!sock->ops->sendmsg_locked)
 766                return sock_no_sendmsg_locked(sk, msg, size);
 767
 768        iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 769
 770        return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 771}
 772EXPORT_SYMBOL(kernel_sendmsg_locked);
 773
 774static bool skb_is_err_queue(const struct sk_buff *skb)
 775{
 776        /* pkt_type of skbs enqueued on the error queue are set to
 777         * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 778         * in recvmsg, since skbs received on a local socket will never
 779         * have a pkt_type of PACKET_OUTGOING.
 780         */
 781        return skb->pkt_type == PACKET_OUTGOING;
 782}
 783
 784/* On transmit, software and hardware timestamps are returned independently.
 785 * As the two skb clones share the hardware timestamp, which may be updated
 786 * before the software timestamp is received, a hardware TX timestamp may be
 787 * returned only if there is no software TX timestamp. Ignore false software
 788 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 789 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 790 * hardware timestamp.
 791 */
 792static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 793{
 794        return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 795}
 796
 797static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 798{
 799        struct scm_ts_pktinfo ts_pktinfo;
 800        struct net_device *orig_dev;
 801
 802        if (!skb_mac_header_was_set(skb))
 803                return;
 804
 805        memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 806
 807        rcu_read_lock();
 808        orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 809        if (orig_dev)
 810                ts_pktinfo.if_index = orig_dev->ifindex;
 811        rcu_read_unlock();
 812
 813        ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 814        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 815                 sizeof(ts_pktinfo), &ts_pktinfo);
 816}
 817
 818/*
 819 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 820 */
 821void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 822        struct sk_buff *skb)
 823{
 824        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 825        int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 826        struct scm_timestamping_internal tss;
 827
 828        int empty = 1, false_tstamp = 0;
 829        struct skb_shared_hwtstamps *shhwtstamps =
 830                skb_hwtstamps(skb);
 831
 832        /* Race occurred between timestamp enabling and packet
 833           receiving.  Fill in the current time for now. */
 834        if (need_software_tstamp && skb->tstamp == 0) {
 835                __net_timestamp(skb);
 836                false_tstamp = 1;
 837        }
 838
 839        if (need_software_tstamp) {
 840                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 841                        if (new_tstamp) {
 842                                struct __kernel_sock_timeval tv;
 843
 844                                skb_get_new_timestamp(skb, &tv);
 845                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 846                                         sizeof(tv), &tv);
 847                        } else {
 848                                struct __kernel_old_timeval tv;
 849
 850                                skb_get_timestamp(skb, &tv);
 851                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 852                                         sizeof(tv), &tv);
 853                        }
 854                } else {
 855                        if (new_tstamp) {
 856                                struct __kernel_timespec ts;
 857
 858                                skb_get_new_timestampns(skb, &ts);
 859                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 860                                         sizeof(ts), &ts);
 861                        } else {
 862                                struct __kernel_old_timespec ts;
 863
 864                                skb_get_timestampns(skb, &ts);
 865                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 866                                         sizeof(ts), &ts);
 867                        }
 868                }
 869        }
 870
 871        memset(&tss, 0, sizeof(tss));
 872        if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 873            ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 874                empty = 0;
 875        if (shhwtstamps &&
 876            (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 877            !skb_is_swtx_tstamp(skb, false_tstamp)) {
 878                if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
 879                        ptp_convert_timestamp(shhwtstamps, sk->sk_bind_phc);
 880
 881                if (ktime_to_timespec64_cond(shhwtstamps->hwtstamp,
 882                                             tss.ts + 2)) {
 883                        empty = 0;
 884
 885                        if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 886                            !skb_is_err_queue(skb))
 887                                put_ts_pktinfo(msg, skb);
 888                }
 889        }
 890        if (!empty) {
 891                if (sock_flag(sk, SOCK_TSTAMP_NEW))
 892                        put_cmsg_scm_timestamping64(msg, &tss);
 893                else
 894                        put_cmsg_scm_timestamping(msg, &tss);
 895
 896                if (skb_is_err_queue(skb) && skb->len &&
 897                    SKB_EXT_ERR(skb)->opt_stats)
 898                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 899                                 skb->len, skb->data);
 900        }
 901}
 902EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 903
 904void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 905        struct sk_buff *skb)
 906{
 907        int ack;
 908
 909        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 910                return;
 911        if (!skb->wifi_acked_valid)
 912                return;
 913
 914        ack = skb->wifi_acked;
 915
 916        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 917}
 918EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 919
 920static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 921                                   struct sk_buff *skb)
 922{
 923        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 924                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 925                        sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 926}
 927
 928void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 929        struct sk_buff *skb)
 930{
 931        sock_recv_timestamp(msg, sk, skb);
 932        sock_recv_drops(msg, sk, skb);
 933}
 934EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 935
 936INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
 937                                           size_t, int));
 938INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
 939                                            size_t, int));
 940static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 941                                     int flags)
 942{
 943        return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
 944                                  inet_recvmsg, sock, msg, msg_data_left(msg),
 945                                  flags);
 946}
 947
 948/**
 949 *      sock_recvmsg - receive a message from @sock
 950 *      @sock: socket
 951 *      @msg: message to receive
 952 *      @flags: message flags
 953 *
 954 *      Receives @msg from @sock, passing through LSM. Returns the total number
 955 *      of bytes received, or an error.
 956 */
 957int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 958{
 959        int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 960
 961        return err ?: sock_recvmsg_nosec(sock, msg, flags);
 962}
 963EXPORT_SYMBOL(sock_recvmsg);
 964
 965/**
 966 *      kernel_recvmsg - Receive a message from a socket (kernel space)
 967 *      @sock: The socket to receive the message from
 968 *      @msg: Received message
 969 *      @vec: Input s/g array for message data
 970 *      @num: Size of input s/g array
 971 *      @size: Number of bytes to read
 972 *      @flags: Message flags (MSG_DONTWAIT, etc...)
 973 *
 974 *      On return the msg structure contains the scatter/gather array passed in the
 975 *      vec argument. The array is modified so that it consists of the unfilled
 976 *      portion of the original array.
 977 *
 978 *      The returned value is the total number of bytes received, or an error.
 979 */
 980
 981int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 982                   struct kvec *vec, size_t num, size_t size, int flags)
 983{
 984        msg->msg_control_is_user = false;
 985        iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
 986        return sock_recvmsg(sock, msg, flags);
 987}
 988EXPORT_SYMBOL(kernel_recvmsg);
 989
 990static ssize_t sock_sendpage(struct file *file, struct page *page,
 991                             int offset, size_t size, loff_t *ppos, int more)
 992{
 993        struct socket *sock;
 994        int flags;
 995
 996        sock = file->private_data;
 997
 998        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 999        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1000        flags |= more;
1001
1002        return kernel_sendpage(sock, page, offset, size, flags);
1003}
1004
1005static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1006                                struct pipe_inode_info *pipe, size_t len,
1007                                unsigned int flags)
1008{
1009        struct socket *sock = file->private_data;
1010
1011        if (unlikely(!sock->ops->splice_read))
1012                return generic_file_splice_read(file, ppos, pipe, len, flags);
1013
1014        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1015}
1016
1017static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1018{
1019        struct file *file = iocb->ki_filp;
1020        struct socket *sock = file->private_data;
1021        struct msghdr msg = {.msg_iter = *to,
1022                             .msg_iocb = iocb};
1023        ssize_t res;
1024
1025        if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1026                msg.msg_flags = MSG_DONTWAIT;
1027
1028        if (iocb->ki_pos != 0)
1029                return -ESPIPE;
1030
1031        if (!iov_iter_count(to))        /* Match SYS5 behaviour */
1032                return 0;
1033
1034        res = sock_recvmsg(sock, &msg, msg.msg_flags);
1035        *to = msg.msg_iter;
1036        return res;
1037}
1038
1039static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1040{
1041        struct file *file = iocb->ki_filp;
1042        struct socket *sock = file->private_data;
1043        struct msghdr msg = {.msg_iter = *from,
1044                             .msg_iocb = iocb};
1045        ssize_t res;
1046
1047        if (iocb->ki_pos != 0)
1048                return -ESPIPE;
1049
1050        if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1051                msg.msg_flags = MSG_DONTWAIT;
1052
1053        if (sock->type == SOCK_SEQPACKET)
1054                msg.msg_flags |= MSG_EOR;
1055
1056        res = sock_sendmsg(sock, &msg);
1057        *from = msg.msg_iter;
1058        return res;
1059}
1060
1061/*
1062 * Atomic setting of ioctl hooks to avoid race
1063 * with module unload.
1064 */
1065
1066static DEFINE_MUTEX(br_ioctl_mutex);
1067static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1068
1069void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1070{
1071        mutex_lock(&br_ioctl_mutex);
1072        br_ioctl_hook = hook;
1073        mutex_unlock(&br_ioctl_mutex);
1074}
1075EXPORT_SYMBOL(brioctl_set);
1076
1077static DEFINE_MUTEX(vlan_ioctl_mutex);
1078static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1079
1080void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1081{
1082        mutex_lock(&vlan_ioctl_mutex);
1083        vlan_ioctl_hook = hook;
1084        mutex_unlock(&vlan_ioctl_mutex);
1085}
1086EXPORT_SYMBOL(vlan_ioctl_set);
1087
1088static long sock_do_ioctl(struct net *net, struct socket *sock,
1089                          unsigned int cmd, unsigned long arg)
1090{
1091        int err;
1092        void __user *argp = (void __user *)arg;
1093
1094        err = sock->ops->ioctl(sock, cmd, arg);
1095
1096        /*
1097         * If this ioctl is unknown try to hand it down
1098         * to the NIC driver.
1099         */
1100        if (err != -ENOIOCTLCMD)
1101                return err;
1102
1103        if (cmd == SIOCGIFCONF) {
1104                struct ifconf ifc;
1105                if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1106                        return -EFAULT;
1107                rtnl_lock();
1108                err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1109                rtnl_unlock();
1110                if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1111                        err = -EFAULT;
1112        } else if (is_socket_ioctl_cmd(cmd)) {
1113                struct ifreq ifr;
1114                bool need_copyout;
1115                if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1116                        return -EFAULT;
1117                err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1118                if (!err && need_copyout)
1119                        if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1120                                return -EFAULT;
1121        } else {
1122                err = -ENOTTY;
1123        }
1124        return err;
1125}
1126
1127/*
1128 *      With an ioctl, arg may well be a user mode pointer, but we don't know
1129 *      what to do with it - that's up to the protocol still.
1130 */
1131
1132static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1133{
1134        struct socket *sock;
1135        struct sock *sk;
1136        void __user *argp = (void __user *)arg;
1137        int pid, err;
1138        struct net *net;
1139
1140        sock = file->private_data;
1141        sk = sock->sk;
1142        net = sock_net(sk);
1143        if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1144                struct ifreq ifr;
1145                bool need_copyout;
1146                if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1147                        return -EFAULT;
1148                err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1149                if (!err && need_copyout)
1150                        if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1151                                return -EFAULT;
1152        } else
1153#ifdef CONFIG_WEXT_CORE
1154        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1155                err = wext_handle_ioctl(net, cmd, argp);
1156        } else
1157#endif
1158                switch (cmd) {
1159                case FIOSETOWN:
1160                case SIOCSPGRP:
1161                        err = -EFAULT;
1162                        if (get_user(pid, (int __user *)argp))
1163                                break;
1164                        err = f_setown(sock->file, pid, 1);
1165                        break;
1166                case FIOGETOWN:
1167                case SIOCGPGRP:
1168                        err = put_user(f_getown(sock->file),
1169                                       (int __user *)argp);
1170                        break;
1171                case SIOCGIFBR:
1172                case SIOCSIFBR:
1173                case SIOCBRADDBR:
1174                case SIOCBRDELBR:
1175                        err = -ENOPKG;
1176                        if (!br_ioctl_hook)
1177                                request_module("bridge");
1178
1179                        mutex_lock(&br_ioctl_mutex);
1180                        if (br_ioctl_hook)
1181                                err = br_ioctl_hook(net, cmd, argp);
1182                        mutex_unlock(&br_ioctl_mutex);
1183                        break;
1184                case SIOCGIFVLAN:
1185                case SIOCSIFVLAN:
1186                        err = -ENOPKG;
1187                        if (!vlan_ioctl_hook)
1188                                request_module("8021q");
1189
1190                        mutex_lock(&vlan_ioctl_mutex);
1191                        if (vlan_ioctl_hook)
1192                                err = vlan_ioctl_hook(net, argp);
1193                        mutex_unlock(&vlan_ioctl_mutex);
1194                        break;
1195                case SIOCGSKNS:
1196                        err = -EPERM;
1197                        if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1198                                break;
1199
1200                        err = open_related_ns(&net->ns, get_net_ns);
1201                        break;
1202                case SIOCGSTAMP_OLD:
1203                case SIOCGSTAMPNS_OLD:
1204                        if (!sock->ops->gettstamp) {
1205                                err = -ENOIOCTLCMD;
1206                                break;
1207                        }
1208                        err = sock->ops->gettstamp(sock, argp,
1209                                                   cmd == SIOCGSTAMP_OLD,
1210                                                   !IS_ENABLED(CONFIG_64BIT));
1211                        break;
1212                case SIOCGSTAMP_NEW:
1213                case SIOCGSTAMPNS_NEW:
1214                        if (!sock->ops->gettstamp) {
1215                                err = -ENOIOCTLCMD;
1216                                break;
1217                        }
1218                        err = sock->ops->gettstamp(sock, argp,
1219                                                   cmd == SIOCGSTAMP_NEW,
1220                                                   false);
1221                        break;
1222                default:
1223                        err = sock_do_ioctl(net, sock, cmd, arg);
1224                        break;
1225                }
1226        return err;
1227}
1228
1229/**
1230 *      sock_create_lite - creates a socket
1231 *      @family: protocol family (AF_INET, ...)
1232 *      @type: communication type (SOCK_STREAM, ...)
1233 *      @protocol: protocol (0, ...)
1234 *      @res: new socket
1235 *
1236 *      Creates a new socket and assigns it to @res, passing through LSM.
1237 *      The new socket initialization is not complete, see kernel_accept().
1238 *      Returns 0 or an error. On failure @res is set to %NULL.
1239 *      This function internally uses GFP_KERNEL.
1240 */
1241
1242int sock_create_lite(int family, int type, int protocol, struct socket **res)
1243{
1244        int err;
1245        struct socket *sock = NULL;
1246
1247        err = security_socket_create(family, type, protocol, 1);
1248        if (err)
1249                goto out;
1250
1251        sock = sock_alloc();
1252        if (!sock) {
1253                err = -ENOMEM;
1254                goto out;
1255        }
1256
1257        sock->type = type;
1258        err = security_socket_post_create(sock, family, type, protocol, 1);
1259        if (err)
1260                goto out_release;
1261
1262out:
1263        *res = sock;
1264        return err;
1265out_release:
1266        sock_release(sock);
1267        sock = NULL;
1268        goto out;
1269}
1270EXPORT_SYMBOL(sock_create_lite);
1271
1272/* No kernel lock held - perfect */
1273static __poll_t sock_poll(struct file *file, poll_table *wait)
1274{
1275        struct socket *sock = file->private_data;
1276        __poll_t events = poll_requested_events(wait), flag = 0;
1277
1278        if (!sock->ops->poll)
1279                return 0;
1280
1281        if (sk_can_busy_loop(sock->sk)) {
1282                /* poll once if requested by the syscall */
1283                if (events & POLL_BUSY_LOOP)
1284                        sk_busy_loop(sock->sk, 1);
1285
1286                /* if this socket can poll_ll, tell the system call */
1287                flag = POLL_BUSY_LOOP;
1288        }
1289
1290        return sock->ops->poll(file, sock, wait) | flag;
1291}
1292
1293static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1294{
1295        struct socket *sock = file->private_data;
1296
1297        return sock->ops->mmap(file, sock, vma);
1298}
1299
1300static int sock_close(struct inode *inode, struct file *filp)
1301{
1302        __sock_release(SOCKET_I(inode), inode);
1303        return 0;
1304}
1305
1306/*
1307 *      Update the socket async list
1308 *
1309 *      Fasync_list locking strategy.
1310 *
1311 *      1. fasync_list is modified only under process context socket lock
1312 *         i.e. under semaphore.
1313 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1314 *         or under socket lock
1315 */
1316
1317static int sock_fasync(int fd, struct file *filp, int on)
1318{
1319        struct socket *sock = filp->private_data;
1320        struct sock *sk = sock->sk;
1321        struct socket_wq *wq = &sock->wq;
1322
1323        if (sk == NULL)
1324                return -EINVAL;
1325
1326        lock_sock(sk);
1327        fasync_helper(fd, filp, on, &wq->fasync_list);
1328
1329        if (!wq->fasync_list)
1330                sock_reset_flag(sk, SOCK_FASYNC);
1331        else
1332                sock_set_flag(sk, SOCK_FASYNC);
1333
1334        release_sock(sk);
1335        return 0;
1336}
1337
1338/* This function may be called only under rcu_lock */
1339
1340int sock_wake_async(struct socket_wq *wq, int how, int band)
1341{
1342        if (!wq || !wq->fasync_list)
1343                return -1;
1344
1345        switch (how) {
1346        case SOCK_WAKE_WAITD:
1347                if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1348                        break;
1349                goto call_kill;
1350        case SOCK_WAKE_SPACE:
1351                if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1352                        break;
1353                fallthrough;
1354        case SOCK_WAKE_IO:
1355call_kill:
1356                kill_fasync(&wq->fasync_list, SIGIO, band);
1357                break;
1358        case SOCK_WAKE_URG:
1359                kill_fasync(&wq->fasync_list, SIGURG, band);
1360        }
1361
1362        return 0;
1363}
1364EXPORT_SYMBOL(sock_wake_async);
1365
1366/**
1367 *      __sock_create - creates a socket
1368 *      @net: net namespace
1369 *      @family: protocol family (AF_INET, ...)
1370 *      @type: communication type (SOCK_STREAM, ...)
1371 *      @protocol: protocol (0, ...)
1372 *      @res: new socket
1373 *      @kern: boolean for kernel space sockets
1374 *
1375 *      Creates a new socket and assigns it to @res, passing through LSM.
1376 *      Returns 0 or an error. On failure @res is set to %NULL. @kern must
1377 *      be set to true if the socket resides in kernel space.
1378 *      This function internally uses GFP_KERNEL.
1379 */
1380
1381int __sock_create(struct net *net, int family, int type, int protocol,
1382                         struct socket **res, int kern)
1383{
1384        int err;
1385        struct socket *sock;
1386        const struct net_proto_family *pf;
1387
1388        /*
1389         *      Check protocol is in range
1390         */
1391        if (family < 0 || family >= NPROTO)
1392                return -EAFNOSUPPORT;
1393        if (type < 0 || type >= SOCK_MAX)
1394                return -EINVAL;
1395
1396        /* Compatibility.
1397
1398           This uglymoron is moved from INET layer to here to avoid
1399           deadlock in module load.
1400         */
1401        if (family == PF_INET && type == SOCK_PACKET) {
1402                pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1403                             current->comm);
1404                family = PF_PACKET;
1405        }
1406
1407        err = security_socket_create(family, type, protocol, kern);
1408        if (err)
1409                return err;
1410
1411        /*
1412         *      Allocate the socket and allow the family to set things up. if
1413         *      the protocol is 0, the family is instructed to select an appropriate
1414         *      default.
1415         */
1416        sock = sock_alloc();
1417        if (!sock) {
1418                net_warn_ratelimited("socket: no more sockets\n");
1419                return -ENFILE; /* Not exactly a match, but its the
1420                                   closest posix thing */
1421        }
1422
1423        sock->type = type;
1424
1425#ifdef CONFIG_MODULES
1426        /* Attempt to load a protocol module if the find failed.
1427         *
1428         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1429         * requested real, full-featured networking support upon configuration.
1430         * Otherwise module support will break!
1431         */
1432        if (rcu_access_pointer(net_families[family]) == NULL)
1433                request_module("net-pf-%d", family);
1434#endif
1435
1436        rcu_read_lock();
1437        pf = rcu_dereference(net_families[family]);
1438        err = -EAFNOSUPPORT;
1439        if (!pf)
1440                goto out_release;
1441
1442        /*
1443         * We will call the ->create function, that possibly is in a loadable
1444         * module, so we have to bump that loadable module refcnt first.
1445         */
1446        if (!try_module_get(pf->owner))
1447                goto out_release;
1448
1449        /* Now protected by module ref count */
1450        rcu_read_unlock();
1451
1452        err = pf->create(net, sock, protocol, kern);
1453        if (err < 0)
1454                goto out_module_put;
1455
1456        /*
1457         * Now to bump the refcnt of the [loadable] module that owns this
1458         * socket at sock_release time we decrement its refcnt.
1459         */
1460        if (!try_module_get(sock->ops->owner))
1461                goto out_module_busy;
1462
1463        /*
1464         * Now that we're done with the ->create function, the [loadable]
1465         * module can have its refcnt decremented
1466         */
1467        module_put(pf->owner);
1468        err = security_socket_post_create(sock, family, type, protocol, kern);
1469        if (err)
1470                goto out_sock_release;
1471        *res = sock;
1472
1473        return 0;
1474
1475out_module_busy:
1476        err = -EAFNOSUPPORT;
1477out_module_put:
1478        sock->ops = NULL;
1479        module_put(pf->owner);
1480out_sock_release:
1481        sock_release(sock);
1482        return err;
1483
1484out_release:
1485        rcu_read_unlock();
1486        goto out_sock_release;
1487}
1488EXPORT_SYMBOL(__sock_create);
1489
1490/**
1491 *      sock_create - creates a socket
1492 *      @family: protocol family (AF_INET, ...)
1493 *      @type: communication type (SOCK_STREAM, ...)
1494 *      @protocol: protocol (0, ...)
1495 *      @res: new socket
1496 *
1497 *      A wrapper around __sock_create().
1498 *      Returns 0 or an error. This function internally uses GFP_KERNEL.
1499 */
1500
1501int sock_create(int family, int type, int protocol, struct socket **res)
1502{
1503        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1504}
1505EXPORT_SYMBOL(sock_create);
1506
1507/**
1508 *      sock_create_kern - creates a socket (kernel space)
1509 *      @net: net namespace
1510 *      @family: protocol family (AF_INET, ...)
1511 *      @type: communication type (SOCK_STREAM, ...)
1512 *      @protocol: protocol (0, ...)
1513 *      @res: new socket
1514 *
1515 *      A wrapper around __sock_create().
1516 *      Returns 0 or an error. This function internally uses GFP_KERNEL.
1517 */
1518
1519int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1520{
1521        return __sock_create(net, family, type, protocol, res, 1);
1522}
1523EXPORT_SYMBOL(sock_create_kern);
1524
1525int __sys_socket(int family, int type, int protocol)
1526{
1527        int retval;
1528        struct socket *sock;
1529        int flags;
1530
1531        /* Check the SOCK_* constants for consistency.  */
1532        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1533        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1534        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1535        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1536
1537        flags = type & ~SOCK_TYPE_MASK;
1538        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1539                return -EINVAL;
1540        type &= SOCK_TYPE_MASK;
1541
1542        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1543                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1544
1545        retval = sock_create(family, type, protocol, &sock);
1546        if (retval < 0)
1547                return retval;
1548
1549        return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1550}
1551
1552SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1553{
1554        return __sys_socket(family, type, protocol);
1555}
1556
1557/*
1558 *      Create a pair of connected sockets.
1559 */
1560
1561int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1562{
1563        struct socket *sock1, *sock2;
1564        int fd1, fd2, err;
1565        struct file *newfile1, *newfile2;
1566        int flags;
1567
1568        flags = type & ~SOCK_TYPE_MASK;
1569        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1570                return -EINVAL;
1571        type &= SOCK_TYPE_MASK;
1572
1573        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1574                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1575
1576        /*
1577         * reserve descriptors and make sure we won't fail
1578         * to return them to userland.
1579         */
1580        fd1 = get_unused_fd_flags(flags);
1581        if (unlikely(fd1 < 0))
1582                return fd1;
1583
1584        fd2 = get_unused_fd_flags(flags);
1585        if (unlikely(fd2 < 0)) {
1586                put_unused_fd(fd1);
1587                return fd2;
1588        }
1589
1590        err = put_user(fd1, &usockvec[0]);
1591        if (err)
1592                goto out;
1593
1594        err = put_user(fd2, &usockvec[1]);
1595        if (err)
1596                goto out;
1597
1598        /*
1599         * Obtain the first socket and check if the underlying protocol
1600         * supports the socketpair call.
1601         */
1602
1603        err = sock_create(family, type, protocol, &sock1);
1604        if (unlikely(err < 0))
1605                goto out;
1606
1607        err = sock_create(family, type, protocol, &sock2);
1608        if (unlikely(err < 0)) {
1609                sock_release(sock1);
1610                goto out;
1611        }
1612
1613        err = security_socket_socketpair(sock1, sock2);
1614        if (unlikely(err)) {
1615                sock_release(sock2);
1616                sock_release(sock1);
1617                goto out;
1618        }
1619
1620        err = sock1->ops->socketpair(sock1, sock2);
1621        if (unlikely(err < 0)) {
1622                sock_release(sock2);
1623                sock_release(sock1);
1624                goto out;
1625        }
1626
1627        newfile1 = sock_alloc_file(sock1, flags, NULL);
1628        if (IS_ERR(newfile1)) {
1629                err = PTR_ERR(newfile1);
1630                sock_release(sock2);
1631                goto out;
1632        }
1633
1634        newfile2 = sock_alloc_file(sock2, flags, NULL);
1635        if (IS_ERR(newfile2)) {
1636                err = PTR_ERR(newfile2);
1637                fput(newfile1);
1638                goto out;
1639        }
1640
1641        audit_fd_pair(fd1, fd2);
1642
1643        fd_install(fd1, newfile1);
1644        fd_install(fd2, newfile2);
1645        return 0;
1646
1647out:
1648        put_unused_fd(fd2);
1649        put_unused_fd(fd1);
1650        return err;
1651}
1652
1653SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1654                int __user *, usockvec)
1655{
1656        return __sys_socketpair(family, type, protocol, usockvec);
1657}
1658
1659/*
1660 *      Bind a name to a socket. Nothing much to do here since it's
1661 *      the protocol's responsibility to handle the local address.
1662 *
1663 *      We move the socket address to kernel space before we call
1664 *      the protocol layer (having also checked the address is ok).
1665 */
1666
1667int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1668{
1669        struct socket *sock;
1670        struct sockaddr_storage address;
1671        int err, fput_needed;
1672
1673        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674        if (sock) {
1675                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1676                if (!err) {
1677                        err = security_socket_bind(sock,
1678                                                   (struct sockaddr *)&address,
1679                                                   addrlen);
1680                        if (!err)
1681                                err = sock->ops->bind(sock,
1682                                                      (struct sockaddr *)
1683                                                      &address, addrlen);
1684                }
1685                fput_light(sock->file, fput_needed);
1686        }
1687        return err;
1688}
1689
1690SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1691{
1692        return __sys_bind(fd, umyaddr, addrlen);
1693}
1694
1695/*
1696 *      Perform a listen. Basically, we allow the protocol to do anything
1697 *      necessary for a listen, and if that works, we mark the socket as
1698 *      ready for listening.
1699 */
1700
1701int __sys_listen(int fd, int backlog)
1702{
1703        struct socket *sock;
1704        int err, fput_needed;
1705        int somaxconn;
1706
1707        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1708        if (sock) {
1709                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1710                if ((unsigned int)backlog > somaxconn)
1711                        backlog = somaxconn;
1712
1713                err = security_socket_listen(sock, backlog);
1714                if (!err)
1715                        err = sock->ops->listen(sock, backlog);
1716
1717                fput_light(sock->file, fput_needed);
1718        }
1719        return err;
1720}
1721
1722SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1723{
1724        return __sys_listen(fd, backlog);
1725}
1726
1727int __sys_accept4_file(struct file *file, unsigned file_flags,
1728                       struct sockaddr __user *upeer_sockaddr,
1729                       int __user *upeer_addrlen, int flags,
1730                       unsigned long nofile)
1731{
1732        struct socket *sock, *newsock;
1733        struct file *newfile;
1734        int err, len, newfd;
1735        struct sockaddr_storage address;
1736
1737        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1738                return -EINVAL;
1739
1740        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1741                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1742
1743        sock = sock_from_file(file);
1744        if (!sock) {
1745                err = -ENOTSOCK;
1746                goto out;
1747        }
1748
1749        err = -ENFILE;
1750        newsock = sock_alloc();
1751        if (!newsock)
1752                goto out;
1753
1754        newsock->type = sock->type;
1755        newsock->ops = sock->ops;
1756
1757        /*
1758         * We don't need try_module_get here, as the listening socket (sock)
1759         * has the protocol module (sock->ops->owner) held.
1760         */
1761        __module_get(newsock->ops->owner);
1762
1763        newfd = __get_unused_fd_flags(flags, nofile);
1764        if (unlikely(newfd < 0)) {
1765                err = newfd;
1766                sock_release(newsock);
1767                goto out;
1768        }
1769        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1770        if (IS_ERR(newfile)) {
1771                err = PTR_ERR(newfile);
1772                put_unused_fd(newfd);
1773                goto out;
1774        }
1775
1776        err = security_socket_accept(sock, newsock);
1777        if (err)
1778                goto out_fd;
1779
1780        err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1781                                        false);
1782        if (err < 0)
1783                goto out_fd;
1784
1785        if (upeer_sockaddr) {
1786                len = newsock->ops->getname(newsock,
1787                                        (struct sockaddr *)&address, 2);
1788                if (len < 0) {
1789                        err = -ECONNABORTED;
1790                        goto out_fd;
1791                }
1792                err = move_addr_to_user(&address,
1793                                        len, upeer_sockaddr, upeer_addrlen);
1794                if (err < 0)
1795                        goto out_fd;
1796        }
1797
1798        /* File flags are not inherited via accept() unlike another OSes. */
1799
1800        fd_install(newfd, newfile);
1801        err = newfd;
1802out:
1803        return err;
1804out_fd:
1805        fput(newfile);
1806        put_unused_fd(newfd);
1807        goto out;
1808
1809}
1810
1811/*
1812 *      For accept, we attempt to create a new socket, set up the link
1813 *      with the client, wake up the client, then return the new
1814 *      connected fd. We collect the address of the connector in kernel
1815 *      space and move it to user at the very end. This is unclean because
1816 *      we open the socket then return an error.
1817 *
1818 *      1003.1g adds the ability to recvmsg() to query connection pending
1819 *      status to recvmsg. We need to add that support in a way thats
1820 *      clean when we restructure accept also.
1821 */
1822
1823int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1824                  int __user *upeer_addrlen, int flags)
1825{
1826        int ret = -EBADF;
1827        struct fd f;
1828
1829        f = fdget(fd);
1830        if (f.file) {
1831                ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1832                                                upeer_addrlen, flags,
1833                                                rlimit(RLIMIT_NOFILE));
1834                fdput(f);
1835        }
1836
1837        return ret;
1838}
1839
1840SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1841                int __user *, upeer_addrlen, int, flags)
1842{
1843        return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1844}
1845
1846SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1847                int __user *, upeer_addrlen)
1848{
1849        return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1850}
1851
1852/*
1853 *      Attempt to connect to a socket with the server address.  The address
1854 *      is in user space so we verify it is OK and move it to kernel space.
1855 *
1856 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1857 *      break bindings
1858 *
1859 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1860 *      other SEQPACKET protocols that take time to connect() as it doesn't
1861 *      include the -EINPROGRESS status for such sockets.
1862 */
1863
1864int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1865                       int addrlen, int file_flags)
1866{
1867        struct socket *sock;
1868        int err;
1869
1870        sock = sock_from_file(file);
1871        if (!sock) {
1872                err = -ENOTSOCK;
1873                goto out;
1874        }
1875
1876        err =
1877            security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1878        if (err)
1879                goto out;
1880
1881        err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1882                                 sock->file->f_flags | file_flags);
1883out:
1884        return err;
1885}
1886
1887int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1888{
1889        int ret = -EBADF;
1890        struct fd f;
1891
1892        f = fdget(fd);
1893        if (f.file) {
1894                struct sockaddr_storage address;
1895
1896                ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1897                if (!ret)
1898                        ret = __sys_connect_file(f.file, &address, addrlen, 0);
1899                fdput(f);
1900        }
1901
1902        return ret;
1903}
1904
1905SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1906                int, addrlen)
1907{
1908        return __sys_connect(fd, uservaddr, addrlen);
1909}
1910
1911/*
1912 *      Get the local address ('name') of a socket object. Move the obtained
1913 *      name to user space.
1914 */
1915
1916int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1917                      int __user *usockaddr_len)
1918{
1919        struct socket *sock;
1920        struct sockaddr_storage address;
1921        int err, fput_needed;
1922
1923        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1924        if (!sock)
1925                goto out;
1926
1927        err = security_socket_getsockname(sock);
1928        if (err)
1929                goto out_put;
1930
1931        err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1932        if (err < 0)
1933                goto out_put;
1934        /* "err" is actually length in this case */
1935        err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1936
1937out_put:
1938        fput_light(sock->file, fput_needed);
1939out:
1940        return err;
1941}
1942
1943SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1944                int __user *, usockaddr_len)
1945{
1946        return __sys_getsockname(fd, usockaddr, usockaddr_len);
1947}
1948
1949/*
1950 *      Get the remote address ('name') of a socket object. Move the obtained
1951 *      name to user space.
1952 */
1953
1954int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1955                      int __user *usockaddr_len)
1956{
1957        struct socket *sock;
1958        struct sockaddr_storage address;
1959        int err, fput_needed;
1960
1961        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1962        if (sock != NULL) {
1963                err = security_socket_getpeername(sock);
1964                if (err) {
1965                        fput_light(sock->file, fput_needed);
1966                        return err;
1967                }
1968
1969                err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1970                if (err >= 0)
1971                        /* "err" is actually length in this case */
1972                        err = move_addr_to_user(&address, err, usockaddr,
1973                                                usockaddr_len);
1974                fput_light(sock->file, fput_needed);
1975        }
1976        return err;
1977}
1978
1979SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1980                int __user *, usockaddr_len)
1981{
1982        return __sys_getpeername(fd, usockaddr, usockaddr_len);
1983}
1984
1985/*
1986 *      Send a datagram to a given address. We move the address into kernel
1987 *      space and check the user space data area is readable before invoking
1988 *      the protocol.
1989 */
1990int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1991                 struct sockaddr __user *addr,  int addr_len)
1992{
1993        struct socket *sock;
1994        struct sockaddr_storage address;
1995        int err;
1996        struct msghdr msg;
1997        struct iovec iov;
1998        int fput_needed;
1999
2000        err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
2001        if (unlikely(err))
2002                return err;
2003        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2004        if (!sock)
2005                goto out;
2006
2007        msg.msg_name = NULL;
2008        msg.msg_control = NULL;
2009        msg.msg_controllen = 0;
2010        msg.msg_namelen = 0;
2011        if (addr) {
2012                err = move_addr_to_kernel(addr, addr_len, &address);
2013                if (err < 0)
2014                        goto out_put;
2015                msg.msg_name = (struct sockaddr *)&address;
2016                msg.msg_namelen = addr_len;
2017        }
2018        if (sock->file->f_flags & O_NONBLOCK)
2019                flags |= MSG_DONTWAIT;
2020        msg.msg_flags = flags;
2021        err = sock_sendmsg(sock, &msg);
2022
2023out_put:
2024        fput_light(sock->file, fput_needed);
2025out:
2026        return err;
2027}
2028
2029SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2030                unsigned int, flags, struct sockaddr __user *, addr,
2031                int, addr_len)
2032{
2033        return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2034}
2035
2036/*
2037 *      Send a datagram down a socket.
2038 */
2039
2040SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2041                unsigned int, flags)
2042{
2043        return __sys_sendto(fd, buff, len, flags, NULL, 0);
2044}
2045
2046/*
2047 *      Receive a frame from the socket and optionally record the address of the
2048 *      sender. We verify the buffers are writable and if needed move the
2049 *      sender address from kernel to user space.
2050 */
2051int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2052                   struct sockaddr __user *addr, int __user *addr_len)
2053{
2054        struct socket *sock;
2055        struct iovec iov;
2056        struct msghdr msg;
2057        struct sockaddr_storage address;
2058        int err, err2;
2059        int fput_needed;
2060
2061        err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2062        if (unlikely(err))
2063                return err;
2064        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2065        if (!sock)
2066                goto out;
2067
2068        msg.msg_control = NULL;
2069        msg.msg_controllen = 0;
2070        /* Save some cycles and don't copy the address if not needed */
2071        msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2072        /* We assume all kernel code knows the size of sockaddr_storage */
2073        msg.msg_namelen = 0;
2074        msg.msg_iocb = NULL;
2075        msg.msg_flags = 0;
2076        if (sock->file->f_flags & O_NONBLOCK)
2077                flags |= MSG_DONTWAIT;
2078        err = sock_recvmsg(sock, &msg, flags);
2079
2080        if (err >= 0 && addr != NULL) {
2081                err2 = move_addr_to_user(&address,
2082                                         msg.msg_namelen, addr, addr_len);
2083                if (err2 < 0)
2084                        err = err2;
2085        }
2086
2087        fput_light(sock->file, fput_needed);
2088out:
2089        return err;
2090}
2091
2092SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2093                unsigned int, flags, struct sockaddr __user *, addr,
2094                int __user *, addr_len)
2095{
2096        return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2097}
2098
2099/*
2100 *      Receive a datagram from a socket.
2101 */
2102
2103SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2104                unsigned int, flags)
2105{
2106        return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2107}
2108
2109static bool sock_use_custom_sol_socket(const struct socket *sock)
2110{
2111        const struct sock *sk = sock->sk;
2112
2113        /* Use sock->ops->setsockopt() for MPTCP */
2114        return IS_ENABLED(CONFIG_MPTCP) &&
2115               sk->sk_protocol == IPPROTO_MPTCP &&
2116               sk->sk_type == SOCK_STREAM &&
2117               (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2118}
2119
2120/*
2121 *      Set a socket option. Because we don't know the option lengths we have
2122 *      to pass the user mode parameter for the protocols to sort out.
2123 */
2124int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2125                int optlen)
2126{
2127        sockptr_t optval = USER_SOCKPTR(user_optval);
2128        char *kernel_optval = NULL;
2129        int err, fput_needed;
2130        struct socket *sock;
2131
2132        if (optlen < 0)
2133                return -EINVAL;
2134
2135        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2136        if (!sock)
2137                return err;
2138
2139        err = security_socket_setsockopt(sock, level, optname);
2140        if (err)
2141                goto out_put;
2142
2143        if (!in_compat_syscall())
2144                err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2145                                                     user_optval, &optlen,
2146                                                     &kernel_optval);
2147        if (err < 0)
2148                goto out_put;
2149        if (err > 0) {
2150                err = 0;
2151                goto out_put;
2152        }
2153
2154        if (kernel_optval)
2155                optval = KERNEL_SOCKPTR(kernel_optval);
2156        if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2157                err = sock_setsockopt(sock, level, optname, optval, optlen);
2158        else if (unlikely(!sock->ops->setsockopt))
2159                err = -EOPNOTSUPP;
2160        else
2161                err = sock->ops->setsockopt(sock, level, optname, optval,
2162                                            optlen);
2163        kfree(kernel_optval);
2164out_put:
2165        fput_light(sock->file, fput_needed);
2166        return err;
2167}
2168
2169SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2170                char __user *, optval, int, optlen)
2171{
2172        return __sys_setsockopt(fd, level, optname, optval, optlen);
2173}
2174
2175INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2176                                                         int optname));
2177
2178/*
2179 *      Get a socket option. Because we don't know the option lengths we have
2180 *      to pass a user mode parameter for the protocols to sort out.
2181 */
2182int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2183                int __user *optlen)
2184{
2185        int err, fput_needed;
2186        struct socket *sock;
2187        int max_optlen;
2188
2189        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2190        if (!sock)
2191                return err;
2192
2193        err = security_socket_getsockopt(sock, level, optname);
2194        if (err)
2195                goto out_put;
2196
2197        if (!in_compat_syscall())
2198                max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2199
2200        if (level == SOL_SOCKET)
2201                err = sock_getsockopt(sock, level, optname, optval, optlen);
2202        else if (unlikely(!sock->ops->getsockopt))
2203                err = -EOPNOTSUPP;
2204        else
2205                err = sock->ops->getsockopt(sock, level, optname, optval,
2206                                            optlen);
2207
2208        if (!in_compat_syscall())
2209                err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2210                                                     optval, optlen, max_optlen,
2211                                                     err);
2212out_put:
2213        fput_light(sock->file, fput_needed);
2214        return err;
2215}
2216
2217SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2218                char __user *, optval, int __user *, optlen)
2219{
2220        return __sys_getsockopt(fd, level, optname, optval, optlen);
2221}
2222
2223/*
2224 *      Shutdown a socket.
2225 */
2226
2227int __sys_shutdown_sock(struct socket *sock, int how)
2228{
2229        int err;
2230
2231        err = security_socket_shutdown(sock, how);
2232        if (!err)
2233                err = sock->ops->shutdown(sock, how);
2234
2235        return err;
2236}
2237
2238int __sys_shutdown(int fd, int how)
2239{
2240        int err, fput_needed;
2241        struct socket *sock;
2242
2243        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2244        if (sock != NULL) {
2245                err = __sys_shutdown_sock(sock, how);
2246                fput_light(sock->file, fput_needed);
2247        }
2248        return err;
2249}
2250
2251SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2252{
2253        return __sys_shutdown(fd, how);
2254}
2255
2256/* A couple of helpful macros for getting the address of the 32/64 bit
2257 * fields which are the same type (int / unsigned) on our platforms.
2258 */
2259#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2260#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
2261#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
2262
2263struct used_address {
2264        struct sockaddr_storage name;
2265        unsigned int name_len;
2266};
2267
2268int __copy_msghdr_from_user(struct msghdr *kmsg,
2269                            struct user_msghdr __user *umsg,
2270                            struct sockaddr __user **save_addr,
2271                            struct iovec __user **uiov, size_t *nsegs)
2272{
2273        struct user_msghdr msg;
2274        ssize_t err;
2275
2276        if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2277                return -EFAULT;
2278
2279        kmsg->msg_control_is_user = true;
2280        kmsg->msg_control_user = msg.msg_control;
2281        kmsg->msg_controllen = msg.msg_controllen;
2282        kmsg->msg_flags = msg.msg_flags;
2283
2284        kmsg->msg_namelen = msg.msg_namelen;
2285        if (!msg.msg_name)
2286                kmsg->msg_namelen = 0;
2287
2288        if (kmsg->msg_namelen < 0)
2289                return -EINVAL;
2290
2291        if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2292                kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2293
2294        if (save_addr)
2295                *save_addr = msg.msg_name;
2296
2297        if (msg.msg_name && kmsg->msg_namelen) {
2298                if (!save_addr) {
2299                        err = move_addr_to_kernel(msg.msg_name,
2300                                                  kmsg->msg_namelen,
2301                                                  kmsg->msg_name);
2302                        if (err < 0)
2303                                return err;
2304                }
2305        } else {
2306                kmsg->msg_name = NULL;
2307                kmsg->msg_namelen = 0;
2308        }
2309
2310        if (msg.msg_iovlen > UIO_MAXIOV)
2311                return -EMSGSIZE;
2312
2313        kmsg->msg_iocb = NULL;
2314        *uiov = msg.msg_iov;
2315        *nsegs = msg.msg_iovlen;
2316        return 0;
2317}
2318
2319static int copy_msghdr_from_user(struct msghdr *kmsg,
2320                                 struct user_msghdr __user *umsg,
2321                                 struct sockaddr __user **save_addr,
2322                                 struct iovec **iov)
2323{
2324        struct user_msghdr msg;
2325        ssize_t err;
2326
2327        err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2328                                        &msg.msg_iovlen);
2329        if (err)
2330                return err;
2331
2332        err = import_iovec(save_addr ? READ : WRITE,
2333                            msg.msg_iov, msg.msg_iovlen,
2334                            UIO_FASTIOV, iov, &kmsg->msg_iter);
2335        return err < 0 ? err : 0;
2336}
2337
2338static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2339                           unsigned int flags, struct used_address *used_address,
2340                           unsigned int allowed_msghdr_flags)
2341{
2342        unsigned char ctl[sizeof(struct cmsghdr) + 20]
2343                                __aligned(sizeof(__kernel_size_t));
2344        /* 20 is size of ipv6_pktinfo */
2345        unsigned char *ctl_buf = ctl;
2346        int ctl_len;
2347        ssize_t err;
2348
2349        err = -ENOBUFS;
2350
2351        if (msg_sys->msg_controllen > INT_MAX)
2352                goto out;
2353        flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2354        ctl_len = msg_sys->msg_controllen;
2355        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2356                err =
2357                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2358                                                     sizeof(ctl));
2359                if (err)
2360                        goto out;
2361                ctl_buf = msg_sys->msg_control;
2362                ctl_len = msg_sys->msg_controllen;
2363        } else if (ctl_len) {
2364                BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2365                             CMSG_ALIGN(sizeof(struct cmsghdr)));
2366                if (ctl_len > sizeof(ctl)) {
2367                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2368                        if (ctl_buf == NULL)
2369                                goto out;
2370                }
2371                err = -EFAULT;
2372                if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2373                        goto out_freectl;
2374                msg_sys->msg_control = ctl_buf;
2375                msg_sys->msg_control_is_user = false;
2376        }
2377        msg_sys->msg_flags = flags;
2378
2379        if (sock->file->f_flags & O_NONBLOCK)
2380                msg_sys->msg_flags |= MSG_DONTWAIT;
2381        /*
2382         * If this is sendmmsg() and current destination address is same as
2383         * previously succeeded address, omit asking LSM's decision.
2384         * used_address->name_len is initialized to UINT_MAX so that the first
2385         * destination address never matches.
2386         */
2387        if (used_address && msg_sys->msg_name &&
2388            used_address->name_len == msg_sys->msg_namelen &&
2389            !memcmp(&used_address->name, msg_sys->msg_name,
2390                    used_address->name_len)) {
2391                err = sock_sendmsg_nosec(sock, msg_sys);
2392                goto out_freectl;
2393        }
2394        err = sock_sendmsg(sock, msg_sys);
2395        /*
2396         * If this is sendmmsg() and sending to current destination address was
2397         * successful, remember it.
2398         */
2399        if (used_address && err >= 0) {
2400                used_address->name_len = msg_sys->msg_namelen;
2401                if (msg_sys->msg_name)
2402                        memcpy(&used_address->name, msg_sys->msg_name,
2403                               used_address->name_len);
2404        }
2405
2406out_freectl:
2407        if (ctl_buf != ctl)
2408                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2409out:
2410        return err;
2411}
2412
2413int sendmsg_copy_msghdr(struct msghdr *msg,
2414                        struct user_msghdr __user *umsg, unsigned flags,
2415                        struct iovec **iov)
2416{
2417        int err;
2418
2419        if (flags & MSG_CMSG_COMPAT) {
2420                struct compat_msghdr __user *msg_compat;
2421
2422                msg_compat = (struct compat_msghdr __user *) umsg;
2423                err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2424        } else {
2425                err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2426        }
2427        if (err < 0)
2428                return err;
2429
2430        return 0;
2431}
2432
2433static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2434                         struct msghdr *msg_sys, unsigned int flags,
2435                         struct used_address *used_address,
2436                         unsigned int allowed_msghdr_flags)
2437{
2438        struct sockaddr_storage address;
2439        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2440        ssize_t err;
2441
2442        msg_sys->msg_name = &address;
2443
2444        err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2445        if (err < 0)
2446                return err;
2447
2448        err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2449                                allowed_msghdr_flags);
2450        kfree(iov);
2451        return err;
2452}
2453
2454/*
2455 *      BSD sendmsg interface
2456 */
2457long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2458                        unsigned int flags)
2459{
2460        return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2461}
2462
2463long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2464                   bool forbid_cmsg_compat)
2465{
2466        int fput_needed, err;
2467        struct msghdr msg_sys;
2468        struct socket *sock;
2469
2470        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2471                return -EINVAL;
2472
2473        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2474        if (!sock)
2475                goto out;
2476
2477        err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2478
2479        fput_light(sock->file, fput_needed);
2480out:
2481        return err;
2482}
2483
2484SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2485{
2486        return __sys_sendmsg(fd, msg, flags, true);
2487}
2488
2489/*
2490 *      Linux sendmmsg interface
2491 */
2492
2493int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2494                   unsigned int flags, bool forbid_cmsg_compat)
2495{
2496        int fput_needed, err, datagrams;
2497        struct socket *sock;
2498        struct mmsghdr __user *entry;
2499        struct compat_mmsghdr __user *compat_entry;
2500        struct msghdr msg_sys;
2501        struct used_address used_address;
2502        unsigned int oflags = flags;
2503
2504        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2505                return -EINVAL;
2506
2507        if (vlen > UIO_MAXIOV)
2508                vlen = UIO_MAXIOV;
2509
2510        datagrams = 0;
2511
2512        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2513        if (!sock)
2514                return err;
2515
2516        used_address.name_len = UINT_MAX;
2517        entry = mmsg;
2518        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2519        err = 0;
2520        flags |= MSG_BATCH;
2521
2522        while (datagrams < vlen) {
2523                if (datagrams == vlen - 1)
2524                        flags = oflags;
2525
2526                if (MSG_CMSG_COMPAT & flags) {
2527                        err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2528                                             &msg_sys, flags, &used_address, MSG_EOR);
2529                        if (err < 0)
2530                                break;
2531                        err = __put_user(err, &compat_entry->msg_len);
2532                        ++compat_entry;
2533                } else {
2534                        err = ___sys_sendmsg(sock,
2535                                             (struct user_msghdr __user *)entry,
2536                                             &msg_sys, flags, &used_address, MSG_EOR);
2537                        if (err < 0)
2538                                break;
2539                        err = put_user(err, &entry->msg_len);
2540                        ++entry;
2541                }
2542
2543                if (err)
2544                        break;
2545                ++datagrams;
2546                if (msg_data_left(&msg_sys))
2547                        break;
2548                cond_resched();
2549        }
2550
2551        fput_light(sock->file, fput_needed);
2552
2553        /* We only return an error if no datagrams were able to be sent */
2554        if (datagrams != 0)
2555                return datagrams;
2556
2557        return err;
2558}
2559
2560SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2561                unsigned int, vlen, unsigned int, flags)
2562{
2563        return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2564}
2565
2566int recvmsg_copy_msghdr(struct msghdr *msg,
2567                        struct user_msghdr __user *umsg, unsigned flags,
2568                        struct sockaddr __user **uaddr,
2569                        struct iovec **iov)
2570{
2571        ssize_t err;
2572
2573        if (MSG_CMSG_COMPAT & flags) {
2574                struct compat_msghdr __user *msg_compat;
2575
2576                msg_compat = (struct compat_msghdr __user *) umsg;
2577                err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2578        } else {
2579                err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2580        }
2581        if (err < 0)
2582                return err;
2583
2584        return 0;
2585}
2586
2587static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2588                           struct user_msghdr __user *msg,
2589                           struct sockaddr __user *uaddr,
2590                           unsigned int flags, int nosec)
2591{
2592        struct compat_msghdr __user *msg_compat =
2593                                        (struct compat_msghdr __user *) msg;
2594        int __user *uaddr_len = COMPAT_NAMELEN(msg);
2595        struct sockaddr_storage addr;
2596        unsigned long cmsg_ptr;
2597        int len;
2598        ssize_t err;
2599
2600        msg_sys->msg_name = &addr;
2601        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2602        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2603
2604        /* We assume all kernel code knows the size of sockaddr_storage */
2605        msg_sys->msg_namelen = 0;
2606
2607        if (sock->file->f_flags & O_NONBLOCK)
2608                flags |= MSG_DONTWAIT;
2609
2610        if (unlikely(nosec))
2611                err = sock_recvmsg_nosec(sock, msg_sys, flags);
2612        else
2613                err = sock_recvmsg(sock, msg_sys, flags);
2614
2615        if (err < 0)
2616                goto out;
2617        len = err;
2618
2619        if (uaddr != NULL) {
2620                err = move_addr_to_user(&addr,
2621                                        msg_sys->msg_namelen, uaddr,
2622                                        uaddr_len);
2623                if (err < 0)
2624                        goto out;
2625        }
2626        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2627                         COMPAT_FLAGS(msg));
2628        if (err)
2629                goto out;
2630        if (MSG_CMSG_COMPAT & flags)
2631                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2632                                 &msg_compat->msg_controllen);
2633        else
2634                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2635                                 &msg->msg_controllen);
2636        if (err)
2637                goto out;
2638        err = len;
2639out:
2640        return err;
2641}
2642
2643static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2644                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2645{
2646        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2647        /* user mode address pointers */
2648        struct sockaddr __user *uaddr;
2649        ssize_t err;
2650
2651        err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2652        if (err < 0)
2653                return err;
2654
2655        err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2656        kfree(iov);
2657        return err;
2658}
2659
2660/*
2661 *      BSD recvmsg interface
2662 */
2663
2664long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2665                        struct user_msghdr __user *umsg,
2666                        struct sockaddr __user *uaddr, unsigned int flags)
2667{
2668        return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2669}
2670
2671long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2672                   bool forbid_cmsg_compat)
2673{
2674        int fput_needed, err;
2675        struct msghdr msg_sys;
2676        struct socket *sock;
2677
2678        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2679                return -EINVAL;
2680
2681        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2682        if (!sock)
2683                goto out;
2684
2685        err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2686
2687        fput_light(sock->file, fput_needed);
2688out:
2689        return err;
2690}
2691
2692SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2693                unsigned int, flags)
2694{
2695        return __sys_recvmsg(fd, msg, flags, true);
2696}
2697
2698/*
2699 *     Linux recvmmsg interface
2700 */
2701
2702static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2703                          unsigned int vlen, unsigned int flags,
2704                          struct timespec64 *timeout)
2705{
2706        int fput_needed, err, datagrams;
2707        struct socket *sock;
2708        struct mmsghdr __user *entry;
2709        struct compat_mmsghdr __user *compat_entry;
2710        struct msghdr msg_sys;
2711        struct timespec64 end_time;
2712        struct timespec64 timeout64;
2713
2714        if (timeout &&
2715            poll_select_set_timeout(&end_time, timeout->tv_sec,
2716                                    timeout->tv_nsec))
2717                return -EINVAL;
2718
2719        datagrams = 0;
2720
2721        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2722        if (!sock)
2723                return err;
2724
2725        if (likely(!(flags & MSG_ERRQUEUE))) {
2726                err = sock_error(sock->sk);
2727                if (err) {
2728                        datagrams = err;
2729                        goto out_put;
2730                }
2731        }
2732
2733        entry = mmsg;
2734        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2735
2736        while (datagrams < vlen) {
2737                /*
2738                 * No need to ask LSM for more than the first datagram.
2739                 */
2740                if (MSG_CMSG_COMPAT & flags) {
2741                        err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2742                                             &msg_sys, flags & ~MSG_WAITFORONE,
2743                                             datagrams);
2744                        if (err < 0)
2745                                break;
2746                        err = __put_user(err, &compat_entry->msg_len);
2747                        ++compat_entry;
2748                } else {
2749                        err = ___sys_recvmsg(sock,
2750                                             (struct user_msghdr __user *)entry,
2751                                             &msg_sys, flags & ~MSG_WAITFORONE,
2752                                             datagrams);
2753                        if (err < 0)
2754                                break;
2755                        err = put_user(err, &entry->msg_len);
2756                        ++entry;
2757                }
2758
2759                if (err)
2760                        break;
2761                ++datagrams;
2762
2763                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2764                if (flags & MSG_WAITFORONE)
2765                        flags |= MSG_DONTWAIT;
2766
2767                if (timeout) {
2768                        ktime_get_ts64(&timeout64);
2769                        *timeout = timespec64_sub(end_time, timeout64);
2770                        if (timeout->tv_sec < 0) {
2771                                timeout->tv_sec = timeout->tv_nsec = 0;
2772                                break;
2773                        }
2774
2775                        /* Timeout, return less than vlen datagrams */
2776                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2777                                break;
2778                }
2779
2780                /* Out of band data, return right away */
2781                if (msg_sys.msg_flags & MSG_OOB)
2782                        break;
2783                cond_resched();
2784        }
2785
2786        if (err == 0)
2787                goto out_put;
2788
2789        if (datagrams == 0) {
2790                datagrams = err;
2791                goto out_put;
2792        }
2793
2794        /*
2795         * We may return less entries than requested (vlen) if the
2796         * sock is non block and there aren't enough datagrams...
2797         */
2798        if (err != -EAGAIN) {
2799                /*
2800                 * ... or  if recvmsg returns an error after we
2801                 * received some datagrams, where we record the
2802                 * error to return on the next call or if the
2803                 * app asks about it using getsockopt(SO_ERROR).
2804                 */
2805                sock->sk->sk_err = -err;
2806        }
2807out_put:
2808        fput_light(sock->file, fput_needed);
2809
2810        return datagrams;
2811}
2812
2813int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2814                   unsigned int vlen, unsigned int flags,
2815                   struct __kernel_timespec __user *timeout,
2816                   struct old_timespec32 __user *timeout32)
2817{
2818        int datagrams;
2819        struct timespec64 timeout_sys;
2820
2821        if (timeout && get_timespec64(&timeout_sys, timeout))
2822                return -EFAULT;
2823
2824        if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2825                return -EFAULT;
2826
2827        if (!timeout && !timeout32)
2828                return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2829
2830        datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2831
2832        if (datagrams <= 0)
2833                return datagrams;
2834
2835        if (timeout && put_timespec64(&timeout_sys, timeout))
2836                datagrams = -EFAULT;
2837
2838        if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2839                datagrams = -EFAULT;
2840
2841        return datagrams;
2842}
2843
2844SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2845                unsigned int, vlen, unsigned int, flags,
2846                struct __kernel_timespec __user *, timeout)
2847{
2848        if (flags & MSG_CMSG_COMPAT)
2849                return -EINVAL;
2850
2851        return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2852}
2853
2854#ifdef CONFIG_COMPAT_32BIT_TIME
2855SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2856                unsigned int, vlen, unsigned int, flags,
2857                struct old_timespec32 __user *, timeout)
2858{
2859        if (flags & MSG_CMSG_COMPAT)
2860                return -EINVAL;
2861
2862        return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2863}
2864#endif
2865
2866#ifdef __ARCH_WANT_SYS_SOCKETCALL
2867/* Argument list sizes for sys_socketcall */
2868#define AL(x) ((x) * sizeof(unsigned long))
2869static const unsigned char nargs[21] = {
2870        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2871        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2872        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2873        AL(4), AL(5), AL(4)
2874};
2875
2876#undef AL
2877
2878/*
2879 *      System call vectors.
2880 *
2881 *      Argument checking cleaned up. Saved 20% in size.
2882 *  This function doesn't need to set the kernel lock because
2883 *  it is set by the callees.
2884 */
2885
2886SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2887{
2888        unsigned long a[AUDITSC_ARGS];
2889        unsigned long a0, a1;
2890        int err;
2891        unsigned int len;
2892
2893        if (call < 1 || call > SYS_SENDMMSG)
2894                return -EINVAL;
2895        call = array_index_nospec(call, SYS_SENDMMSG + 1);
2896
2897        len = nargs[call];
2898        if (len > sizeof(a))
2899                return -EINVAL;
2900
2901        /* copy_from_user should be SMP safe. */
2902        if (copy_from_user(a, args, len))
2903                return -EFAULT;
2904
2905        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2906        if (err)
2907                return err;
2908
2909        a0 = a[0];
2910        a1 = a[1];
2911
2912        switch (call) {
2913        case SYS_SOCKET:
2914                err = __sys_socket(a0, a1, a[2]);
2915                break;
2916        case SYS_BIND:
2917                err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2918                break;
2919        case SYS_CONNECT:
2920                err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2921                break;
2922        case SYS_LISTEN:
2923                err = __sys_listen(a0, a1);
2924                break;
2925        case SYS_ACCEPT:
2926                err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2927                                    (int __user *)a[2], 0);
2928                break;
2929        case SYS_GETSOCKNAME:
2930                err =
2931                    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2932                                      (int __user *)a[2]);
2933                break;
2934        case SYS_GETPEERNAME:
2935                err =
2936                    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2937                                      (int __user *)a[2]);
2938                break;
2939        case SYS_SOCKETPAIR:
2940                err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2941                break;
2942        case SYS_SEND:
2943                err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2944                                   NULL, 0);
2945                break;
2946        case SYS_SENDTO:
2947                err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2948                                   (struct sockaddr __user *)a[4], a[5]);
2949                break;
2950        case SYS_RECV:
2951                err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2952                                     NULL, NULL);
2953                break;
2954        case SYS_RECVFROM:
2955                err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2956                                     (struct sockaddr __user *)a[4],
2957                                     (int __user *)a[5]);
2958                break;
2959        case SYS_SHUTDOWN:
2960                err = __sys_shutdown(a0, a1);
2961                break;
2962        case SYS_SETSOCKOPT:
2963                err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2964                                       a[4]);
2965                break;
2966        case SYS_GETSOCKOPT:
2967                err =
2968                    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2969                                     (int __user *)a[4]);
2970                break;
2971        case SYS_SENDMSG:
2972                err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2973                                    a[2], true);
2974                break;
2975        case SYS_SENDMMSG:
2976                err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2977                                     a[3], true);
2978                break;
2979        case SYS_RECVMSG:
2980                err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2981                                    a[2], true);
2982                break;
2983        case SYS_RECVMMSG:
2984                if (IS_ENABLED(CONFIG_64BIT))
2985                        err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2986                                             a[2], a[3],
2987                                             (struct __kernel_timespec __user *)a[4],
2988                                             NULL);
2989                else
2990                        err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2991                                             a[2], a[3], NULL,
2992                                             (struct old_timespec32 __user *)a[4]);
2993                break;
2994        case SYS_ACCEPT4:
2995                err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2996                                    (int __user *)a[2], a[3]);
2997                break;
2998        default:
2999                err = -EINVAL;
3000                break;
3001        }
3002        return err;
3003}
3004
3005#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
3006
3007/**
3008 *      sock_register - add a socket protocol handler
3009 *      @ops: description of protocol
3010 *
3011 *      This function is called by a protocol handler that wants to
3012 *      advertise its address family, and have it linked into the
3013 *      socket interface. The value ops->family corresponds to the
3014 *      socket system call protocol family.
3015 */
3016int sock_register(const struct net_proto_family *ops)
3017{
3018        int err;
3019
3020        if (ops->family >= NPROTO) {
3021                pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3022                return -ENOBUFS;
3023        }
3024
3025        spin_lock(&net_family_lock);
3026        if (rcu_dereference_protected(net_families[ops->family],
3027                                      lockdep_is_held(&net_family_lock)))
3028                err = -EEXIST;
3029        else {
3030                rcu_assign_pointer(net_families[ops->family], ops);
3031                err = 0;
3032        }
3033        spin_unlock(&net_family_lock);
3034
3035        pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3036        return err;
3037}
3038EXPORT_SYMBOL(sock_register);
3039
3040/**
3041 *      sock_unregister - remove a protocol handler
3042 *      @family: protocol family to remove
3043 *
3044 *      This function is called by a protocol handler that wants to
3045 *      remove its address family, and have it unlinked from the
3046 *      new socket creation.
3047 *
3048 *      If protocol handler is a module, then it can use module reference
3049 *      counts to protect against new references. If protocol handler is not
3050 *      a module then it needs to provide its own protection in
3051 *      the ops->create routine.
3052 */
3053void sock_unregister(int family)
3054{
3055        BUG_ON(family < 0 || family >= NPROTO);
3056
3057        spin_lock(&net_family_lock);
3058        RCU_INIT_POINTER(net_families[family], NULL);
3059        spin_unlock(&net_family_lock);
3060
3061        synchronize_rcu();
3062
3063        pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3064}
3065EXPORT_SYMBOL(sock_unregister);
3066
3067bool sock_is_registered(int family)
3068{
3069        return family < NPROTO && rcu_access_pointer(net_families[family]);
3070}
3071
3072static int __init sock_init(void)
3073{
3074        int err;
3075        /*
3076         *      Initialize the network sysctl infrastructure.
3077         */
3078        err = net_sysctl_init();
3079        if (err)
3080                goto out;
3081
3082        /*
3083         *      Initialize skbuff SLAB cache
3084         */
3085        skb_init();
3086
3087        /*
3088         *      Initialize the protocols module.
3089         */
3090
3091        init_inodecache();
3092
3093        err = register_filesystem(&sock_fs_type);
3094        if (err)
3095                goto out;
3096        sock_mnt = kern_mount(&sock_fs_type);
3097        if (IS_ERR(sock_mnt)) {
3098                err = PTR_ERR(sock_mnt);
3099                goto out_mount;
3100        }
3101
3102        /* The real protocol initialization is performed in later initcalls.
3103         */
3104
3105#ifdef CONFIG_NETFILTER
3106        err = netfilter_init();
3107        if (err)
3108                goto out;
3109#endif
3110
3111        ptp_classifier_init();
3112
3113out:
3114        return err;
3115
3116out_mount:
3117        unregister_filesystem(&sock_fs_type);
3118        goto out;
3119}
3120
3121core_initcall(sock_init);       /* early initcall */
3122
3123#ifdef CONFIG_PROC_FS
3124void socket_seq_show(struct seq_file *seq)
3125{
3126        seq_printf(seq, "sockets: used %d\n",
3127                   sock_inuse_get(seq->private));
3128}
3129#endif                          /* CONFIG_PROC_FS */
3130
3131#ifdef CONFIG_COMPAT
3132static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3133{
3134        struct compat_ifconf ifc32;
3135        struct ifconf ifc;
3136        int err;
3137
3138        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3139                return -EFAULT;
3140
3141        ifc.ifc_len = ifc32.ifc_len;
3142        ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3143
3144        rtnl_lock();
3145        err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3146        rtnl_unlock();
3147        if (err)
3148                return err;
3149
3150        ifc32.ifc_len = ifc.ifc_len;
3151        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3152                return -EFAULT;
3153
3154        return 0;
3155}
3156
3157static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3158{
3159        struct compat_ethtool_rxnfc __user *compat_rxnfc;
3160        bool convert_in = false, convert_out = false;
3161        size_t buf_size = 0;
3162        struct ethtool_rxnfc __user *rxnfc = NULL;
3163        struct ifreq ifr;
3164        u32 rule_cnt = 0, actual_rule_cnt;
3165        u32 ethcmd;
3166        u32 data;
3167        int ret;
3168
3169        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3170                return -EFAULT;
3171
3172        compat_rxnfc = compat_ptr(data);
3173
3174        if (get_user(ethcmd, &compat_rxnfc->cmd))
3175                return -EFAULT;
3176
3177        /* Most ethtool structures are defined without padding.
3178         * Unfortunately struct ethtool_rxnfc is an exception.
3179         */
3180        switch (ethcmd) {
3181        default:
3182                break;
3183        case ETHTOOL_GRXCLSRLALL:
3184                /* Buffer size is variable */
3185                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3186                        return -EFAULT;
3187                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3188                        return -ENOMEM;
3189                buf_size += rule_cnt * sizeof(u32);
3190                fallthrough;
3191        case ETHTOOL_GRXRINGS:
3192        case ETHTOOL_GRXCLSRLCNT:
3193        case ETHTOOL_GRXCLSRULE:
3194        case ETHTOOL_SRXCLSRLINS:
3195                convert_out = true;
3196                fallthrough;
3197        case ETHTOOL_SRXCLSRLDEL:
3198                buf_size += sizeof(struct ethtool_rxnfc);
3199                convert_in = true;
3200                rxnfc = compat_alloc_user_space(buf_size);
3201                break;
3202        }
3203
3204        if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3205                return -EFAULT;
3206
3207        ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3208
3209        if (convert_in) {
3210                /* We expect there to be holes between fs.m_ext and
3211                 * fs.ring_cookie and at the end of fs, but nowhere else.
3212                 */
3213                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3214                             sizeof(compat_rxnfc->fs.m_ext) !=
3215                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
3216                             sizeof(rxnfc->fs.m_ext));
3217                BUILD_BUG_ON(
3218                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
3219                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3220                        offsetof(struct ethtool_rxnfc, fs.location) -
3221                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3222
3223                if (copy_in_user(rxnfc, compat_rxnfc,
3224                                 (void __user *)(&rxnfc->fs.m_ext + 1) -
3225                                 (void __user *)rxnfc) ||
3226                    copy_in_user(&rxnfc->fs.ring_cookie,
3227                                 &compat_rxnfc->fs.ring_cookie,
3228                                 (void __user *)(&rxnfc->fs.location + 1) -
3229                                 (void __user *)&rxnfc->fs.ring_cookie))
3230                        return -EFAULT;
3231                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3232                        if (put_user(rule_cnt, &rxnfc->rule_cnt))
3233                                return -EFAULT;
3234                } else if (copy_in_user(&rxnfc->rule_cnt,
3235                                        &compat_rxnfc->rule_cnt,
3236                                        sizeof(rxnfc->rule_cnt)))
3237                        return -EFAULT;
3238        }
3239
3240        ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3241        if (ret)
3242                return ret;
3243
3244        if (convert_out) {
3245                if (copy_in_user(compat_rxnfc, rxnfc,
3246                                 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3247                                 (const void __user *)rxnfc) ||
3248                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3249                                 &rxnfc->fs.ring_cookie,
3250                                 (const void __user *)(&rxnfc->fs.location + 1) -
3251                                 (const void __user *)&rxnfc->fs.ring_cookie) ||
3252                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3253                                 sizeof(rxnfc->rule_cnt)))
3254                        return -EFAULT;
3255
3256                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3257                        /* As an optimisation, we only copy the actual
3258                         * number of rules that the underlying
3259                         * function returned.  Since Mallory might
3260                         * change the rule count in user memory, we
3261                         * check that it is less than the rule count
3262                         * originally given (as the user buffer size),
3263                         * which has been range-checked.
3264                         */
3265                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3266                                return -EFAULT;
3267                        if (actual_rule_cnt < rule_cnt)
3268                                rule_cnt = actual_rule_cnt;
3269                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
3270                                         &rxnfc->rule_locs[0],
3271                                         rule_cnt * sizeof(u32)))
3272                                return -EFAULT;
3273                }
3274        }
3275
3276        return 0;
3277}
3278
3279static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3280{
3281        compat_uptr_t uptr32;
3282        struct ifreq ifr;
3283        void __user *saved;
3284        int err;
3285
3286        if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3287                return -EFAULT;
3288
3289        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3290                return -EFAULT;
3291
3292        saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3293        ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3294
3295        err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3296        if (!err) {
3297                ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3298                if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3299                        err = -EFAULT;
3300        }
3301        return err;
3302}
3303
3304/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3305static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3306                                 struct compat_ifreq __user *u_ifreq32)
3307{
3308        struct ifreq ifreq;
3309        u32 data32;
3310
3311        if (!is_socket_ioctl_cmd(cmd))
3312                return -ENOTTY;
3313        if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3314                return -EFAULT;
3315        if (get_user(data32, &u_ifreq32->ifr_data))
3316                return -EFAULT;
3317        ifreq.ifr_data = compat_ptr(data32);
3318
3319        return dev_ioctl(net, cmd, &ifreq, NULL);
3320}
3321
3322static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3323                              unsigned int cmd,
3324                              struct compat_ifreq __user *uifr32)
3325{
3326        struct ifreq __user *uifr;
3327        int err;
3328
3329        /* Handle the fact that while struct ifreq has the same *layout* on
3330         * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3331         * which are handled elsewhere, it still has different *size* due to
3332         * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3333         * resulting in struct ifreq being 32 and 40 bytes respectively).
3334         * As a result, if the struct happens to be at the end of a page and
3335         * the next page isn't readable/writable, we get a fault. To prevent
3336         * that, copy back and forth to the full size.
3337         */
3338
3339        uifr = compat_alloc_user_space(sizeof(*uifr));
3340        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3341                return -EFAULT;
3342
3343        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3344
3345        if (!err) {
3346                switch (cmd) {
3347                case SIOCGIFFLAGS:
3348                case SIOCGIFMETRIC:
3349                case SIOCGIFMTU:
3350                case SIOCGIFMEM:
3351                case SIOCGIFHWADDR:
3352                case SIOCGIFINDEX:
3353                case SIOCGIFADDR:
3354                case SIOCGIFBRDADDR:
3355                case SIOCGIFDSTADDR:
3356                case SIOCGIFNETMASK:
3357                case SIOCGIFPFLAGS:
3358                case SIOCGIFTXQLEN:
3359                case SIOCGMIIPHY:
3360                case SIOCGMIIREG:
3361                case SIOCGIFNAME:
3362                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3363                                err = -EFAULT;
3364                        break;
3365                }
3366        }
3367        return err;
3368}
3369
3370static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3371                        struct compat_ifreq __user *uifr32)
3372{
3373        struct ifreq ifr;
3374        struct compat_ifmap __user *uifmap32;
3375        int err;
3376
3377        uifmap32 = &uifr32->ifr_ifru.ifru_map;
3378        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3379        err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3380        err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3381        err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3382        err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3383        err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3384        err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3385        if (err)
3386                return -EFAULT;
3387
3388        err = dev_ioctl(net, cmd, &ifr, NULL);
3389
3390        if (cmd == SIOCGIFMAP && !err) {
3391                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3392                err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3393                err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3394                err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3395                err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3396                err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3397                err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3398                if (err)
3399                        err = -EFAULT;
3400        }
3401        return err;
3402}
3403
3404/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3405 * for some operations; this forces use of the newer bridge-utils that
3406 * use compatible ioctls
3407 */
3408static int old_bridge_ioctl(compat_ulong_t __user *argp)
3409{
3410        compat_ulong_t tmp;
3411
3412        if (get_user(tmp, argp))
3413                return -EFAULT;
3414        if (tmp == BRCTL_GET_VERSION)
3415                return BRCTL_VERSION + 1;
3416        return -EINVAL;
3417}
3418
3419static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3420                         unsigned int cmd, unsigned long arg)
3421{
3422        void __user *argp = compat_ptr(arg);
3423        struct sock *sk = sock->sk;
3424        struct net *net = sock_net(sk);
3425
3426        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3427                return compat_ifr_data_ioctl(net, cmd, argp);
3428
3429        switch (cmd) {
3430        case SIOCSIFBR:
3431        case SIOCGIFBR:
3432                return old_bridge_ioctl(argp);
3433        case SIOCGIFCONF:
3434                return compat_dev_ifconf(net, argp);
3435        case SIOCETHTOOL:
3436                return ethtool_ioctl(net, argp);
3437        case SIOCWANDEV:
3438                return compat_siocwandev(net, argp);
3439        case SIOCGIFMAP:
3440        case SIOCSIFMAP:
3441                return compat_sioc_ifmap(net, cmd, argp);
3442        case SIOCGSTAMP_OLD:
3443        case SIOCGSTAMPNS_OLD:
3444                if (!sock->ops->gettstamp)
3445                        return -ENOIOCTLCMD;
3446                return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3447                                            !COMPAT_USE_64BIT_TIME);
3448
3449        case SIOCBONDSLAVEINFOQUERY:
3450        case SIOCBONDINFOQUERY:
3451        case SIOCSHWTSTAMP:
3452        case SIOCGHWTSTAMP:
3453                return compat_ifr_data_ioctl(net, cmd, argp);
3454
3455        case FIOSETOWN:
3456        case SIOCSPGRP:
3457        case FIOGETOWN:
3458        case SIOCGPGRP:
3459        case SIOCBRADDBR:
3460        case SIOCBRDELBR:
3461        case SIOCGIFVLAN:
3462        case SIOCSIFVLAN:
3463        case SIOCGSKNS:
3464        case SIOCGSTAMP_NEW:
3465        case SIOCGSTAMPNS_NEW:
3466                return sock_ioctl(file, cmd, arg);
3467
3468        case SIOCGIFFLAGS:
3469        case SIOCSIFFLAGS:
3470        case SIOCGIFMETRIC:
3471        case SIOCSIFMETRIC:
3472        case SIOCGIFMTU:
3473        case SIOCSIFMTU:
3474        case SIOCGIFMEM:
3475        case SIOCSIFMEM:
3476        case SIOCGIFHWADDR:
3477        case SIOCSIFHWADDR:
3478        case SIOCADDMULTI:
3479        case SIOCDELMULTI:
3480        case SIOCGIFINDEX:
3481        case SIOCGIFADDR:
3482        case SIOCSIFADDR:
3483        case SIOCSIFHWBROADCAST:
3484        case SIOCDIFADDR:
3485        case SIOCGIFBRDADDR:
3486        case SIOCSIFBRDADDR:
3487        case SIOCGIFDSTADDR:
3488        case SIOCSIFDSTADDR:
3489        case SIOCGIFNETMASK:
3490        case SIOCSIFNETMASK:
3491        case SIOCSIFPFLAGS:
3492        case SIOCGIFPFLAGS:
3493        case SIOCGIFTXQLEN:
3494        case SIOCSIFTXQLEN:
3495        case SIOCBRADDIF:
3496        case SIOCBRDELIF:
3497        case SIOCGIFNAME:
3498        case SIOCSIFNAME:
3499        case SIOCGMIIPHY:
3500        case SIOCGMIIREG:
3501        case SIOCSMIIREG:
3502        case SIOCBONDENSLAVE:
3503        case SIOCBONDRELEASE:
3504        case SIOCBONDSETHWADDR:
3505        case SIOCBONDCHANGEACTIVE:
3506                return compat_ifreq_ioctl(net, sock, cmd, argp);
3507
3508        case SIOCSARP:
3509        case SIOCGARP:
3510        case SIOCDARP:
3511        case SIOCOUTQ:
3512        case SIOCOUTQNSD:
3513        case SIOCATMARK:
3514                return sock_do_ioctl(net, sock, cmd, arg);
3515        }
3516
3517        return -ENOIOCTLCMD;
3518}
3519
3520static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3521                              unsigned long arg)
3522{
3523        struct socket *sock = file->private_data;
3524        int ret = -ENOIOCTLCMD;
3525        struct sock *sk;
3526        struct net *net;
3527
3528        sk = sock->sk;
3529        net = sock_net(sk);
3530
3531        if (sock->ops->compat_ioctl)
3532                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3533
3534        if (ret == -ENOIOCTLCMD &&
3535            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3536                ret = compat_wext_handle_ioctl(net, cmd, arg);
3537
3538        if (ret == -ENOIOCTLCMD)
3539                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3540
3541        return ret;
3542}
3543#endif
3544
3545/**
3546 *      kernel_bind - bind an address to a socket (kernel space)
3547 *      @sock: socket
3548 *      @addr: address
3549 *      @addrlen: length of address
3550 *
3551 *      Returns 0 or an error.
3552 */
3553
3554int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3555{
3556        return sock->ops->bind(sock, addr, addrlen);
3557}
3558EXPORT_SYMBOL(kernel_bind);
3559
3560/**
3561 *      kernel_listen - move socket to listening state (kernel space)
3562 *      @sock: socket
3563 *      @backlog: pending connections queue size
3564 *
3565 *      Returns 0 or an error.
3566 */
3567
3568int kernel_listen(struct socket *sock, int backlog)
3569{
3570        return sock->ops->listen(sock, backlog);
3571}
3572EXPORT_SYMBOL(kernel_listen);
3573
3574/**
3575 *      kernel_accept - accept a connection (kernel space)
3576 *      @sock: listening socket
3577 *      @newsock: new connected socket
3578 *      @flags: flags
3579 *
3580 *      @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3581 *      If it fails, @newsock is guaranteed to be %NULL.
3582 *      Returns 0 or an error.
3583 */
3584
3585int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3586{
3587        struct sock *sk = sock->sk;
3588        int err;
3589
3590        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3591                               newsock);
3592        if (err < 0)
3593                goto done;
3594
3595        err = sock->ops->accept(sock, *newsock, flags, true);
3596        if (err < 0) {
3597                sock_release(*newsock);
3598                *newsock = NULL;
3599                goto done;
3600        }
3601
3602        (*newsock)->ops = sock->ops;
3603        __module_get((*newsock)->ops->owner);
3604
3605done:
3606        return err;
3607}
3608EXPORT_SYMBOL(kernel_accept);
3609
3610/**
3611 *      kernel_connect - connect a socket (kernel space)
3612 *      @sock: socket
3613 *      @addr: address
3614 *      @addrlen: address length
3615 *      @flags: flags (O_NONBLOCK, ...)
3616 *
3617 *      For datagram sockets, @addr is the address to which datagrams are sent
3618 *      by default, and the only address from which datagrams are received.
3619 *      For stream sockets, attempts to connect to @addr.
3620 *      Returns 0 or an error code.
3621 */
3622
3623int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3624                   int flags)
3625{
3626        return sock->ops->connect(sock, addr, addrlen, flags);
3627}
3628EXPORT_SYMBOL(kernel_connect);
3629
3630/**
3631 *      kernel_getsockname - get the address which the socket is bound (kernel space)
3632 *      @sock: socket
3633 *      @addr: address holder
3634 *
3635 *      Fills the @addr pointer with the address which the socket is bound.
3636 *      Returns 0 or an error code.
3637 */
3638
3639int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3640{
3641        return sock->ops->getname(sock, addr, 0);
3642}
3643EXPORT_SYMBOL(kernel_getsockname);
3644
3645/**
3646 *      kernel_getpeername - get the address which the socket is connected (kernel space)
3647 *      @sock: socket
3648 *      @addr: address holder
3649 *
3650 *      Fills the @addr pointer with the address which the socket is connected.
3651 *      Returns 0 or an error code.
3652 */
3653
3654int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3655{
3656        return sock->ops->getname(sock, addr, 1);
3657}
3658EXPORT_SYMBOL(kernel_getpeername);
3659
3660/**
3661 *      kernel_sendpage - send a &page through a socket (kernel space)
3662 *      @sock: socket
3663 *      @page: page
3664 *      @offset: page offset
3665 *      @size: total size in bytes
3666 *      @flags: flags (MSG_DONTWAIT, ...)
3667 *
3668 *      Returns the total amount sent in bytes or an error.
3669 */
3670
3671int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3672                    size_t size, int flags)
3673{
3674        if (sock->ops->sendpage) {
3675                /* Warn in case the improper page to zero-copy send */
3676                WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3677                return sock->ops->sendpage(sock, page, offset, size, flags);
3678        }
3679        return sock_no_sendpage(sock, page, offset, size, flags);
3680}
3681EXPORT_SYMBOL(kernel_sendpage);
3682
3683/**
3684 *      kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3685 *      @sk: sock
3686 *      @page: page
3687 *      @offset: page offset
3688 *      @size: total size in bytes
3689 *      @flags: flags (MSG_DONTWAIT, ...)
3690 *
3691 *      Returns the total amount sent in bytes or an error.
3692 *      Caller must hold @sk.
3693 */
3694
3695int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3696                           size_t size, int flags)
3697{
3698        struct socket *sock = sk->sk_socket;
3699
3700        if (sock->ops->sendpage_locked)
3701                return sock->ops->sendpage_locked(sk, page, offset, size,
3702                                                  flags);
3703
3704        return sock_no_sendpage_locked(sk, page, offset, size, flags);
3705}
3706EXPORT_SYMBOL(kernel_sendpage_locked);
3707
3708/**
3709 *      kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3710 *      @sock: socket
3711 *      @how: connection part
3712 *
3713 *      Returns 0 or an error.
3714 */
3715
3716int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3717{
3718        return sock->ops->shutdown(sock, how);
3719}
3720EXPORT_SYMBOL(kernel_sock_shutdown);
3721
3722/**
3723 *      kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3724 *      @sk: socket
3725 *
3726 *      This routine returns the IP overhead imposed by a socket i.e.
3727 *      the length of the underlying IP header, depending on whether
3728 *      this is an IPv4 or IPv6 socket and the length from IP options turned
3729 *      on at the socket. Assumes that the caller has a lock on the socket.
3730 */
3731
3732u32 kernel_sock_ip_overhead(struct sock *sk)
3733{
3734        struct inet_sock *inet;
3735        struct ip_options_rcu *opt;
3736        u32 overhead = 0;
3737#if IS_ENABLED(CONFIG_IPV6)
3738        struct ipv6_pinfo *np;
3739        struct ipv6_txoptions *optv6 = NULL;
3740#endif /* IS_ENABLED(CONFIG_IPV6) */
3741
3742        if (!sk)
3743                return overhead;
3744
3745        switch (sk->sk_family) {
3746        case AF_INET:
3747                inet = inet_sk(sk);
3748                overhead += sizeof(struct iphdr);
3749                opt = rcu_dereference_protected(inet->inet_opt,
3750                                                sock_owned_by_user(sk));
3751                if (opt)
3752                        overhead += opt->opt.optlen;
3753                return overhead;
3754#if IS_ENABLED(CONFIG_IPV6)
3755        case AF_INET6:
3756                np = inet6_sk(sk);
3757                overhead += sizeof(struct ipv6hdr);
3758                if (np)
3759                        optv6 = rcu_dereference_protected(np->opt,
3760                                                          sock_owned_by_user(sk));
3761                if (optv6)
3762                        overhead += (optv6->opt_flen + optv6->opt_nflen);
3763                return overhead;
3764#endif /* IS_ENABLED(CONFIG_IPV6) */
3765        default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3766                return overhead;
3767        }
3768}
3769EXPORT_SYMBOL(kernel_sock_ip_overhead);
3770