linux/drivers/net/ethernet/sfc/tx_common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/****************************************************************************
   3 * Driver for Solarflare network controllers and boards
   4 * Copyright 2018 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include "net_driver.h"
  12#include "efx.h"
  13#include "nic_common.h"
  14#include "tx_common.h"
  15
  16static unsigned int efx_tx_cb_page_count(struct efx_tx_queue *tx_queue)
  17{
  18        return DIV_ROUND_UP(tx_queue->ptr_mask + 1,
  19                            PAGE_SIZE >> EFX_TX_CB_ORDER);
  20}
  21
  22int efx_probe_tx_queue(struct efx_tx_queue *tx_queue)
  23{
  24        struct efx_nic *efx = tx_queue->efx;
  25        unsigned int entries;
  26        int rc;
  27
  28        /* Create the smallest power-of-two aligned ring */
  29        entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE);
  30        EFX_WARN_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE);
  31        tx_queue->ptr_mask = entries - 1;
  32
  33        netif_dbg(efx, probe, efx->net_dev,
  34                  "creating TX queue %d size %#x mask %#x\n",
  35                  tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask);
  36
  37        /* Allocate software ring */
  38        tx_queue->buffer = kcalloc(entries, sizeof(*tx_queue->buffer),
  39                                   GFP_KERNEL);
  40        if (!tx_queue->buffer)
  41                return -ENOMEM;
  42
  43        tx_queue->cb_page = kcalloc(efx_tx_cb_page_count(tx_queue),
  44                                    sizeof(tx_queue->cb_page[0]), GFP_KERNEL);
  45        if (!tx_queue->cb_page) {
  46                rc = -ENOMEM;
  47                goto fail1;
  48        }
  49
  50        /* Allocate hardware ring, determine TXQ type */
  51        rc = efx_nic_probe_tx(tx_queue);
  52        if (rc)
  53                goto fail2;
  54
  55        tx_queue->channel->tx_queue_by_type[tx_queue->type] = tx_queue;
  56        return 0;
  57
  58fail2:
  59        kfree(tx_queue->cb_page);
  60        tx_queue->cb_page = NULL;
  61fail1:
  62        kfree(tx_queue->buffer);
  63        tx_queue->buffer = NULL;
  64        return rc;
  65}
  66
  67void efx_init_tx_queue(struct efx_tx_queue *tx_queue)
  68{
  69        struct efx_nic *efx = tx_queue->efx;
  70
  71        netif_dbg(efx, drv, efx->net_dev,
  72                  "initialising TX queue %d\n", tx_queue->queue);
  73
  74        tx_queue->insert_count = 0;
  75        tx_queue->notify_count = 0;
  76        tx_queue->write_count = 0;
  77        tx_queue->packet_write_count = 0;
  78        tx_queue->old_write_count = 0;
  79        tx_queue->read_count = 0;
  80        tx_queue->old_read_count = 0;
  81        tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID;
  82        tx_queue->xmit_pending = false;
  83        tx_queue->timestamping = (efx_ptp_use_mac_tx_timestamps(efx) &&
  84                                  tx_queue->channel == efx_ptp_channel(efx));
  85        tx_queue->completed_timestamp_major = 0;
  86        tx_queue->completed_timestamp_minor = 0;
  87
  88        tx_queue->xdp_tx = efx_channel_is_xdp_tx(tx_queue->channel);
  89        tx_queue->tso_version = 0;
  90
  91        /* Set up TX descriptor ring */
  92        efx_nic_init_tx(tx_queue);
  93
  94        tx_queue->initialised = true;
  95}
  96
  97void efx_fini_tx_queue(struct efx_tx_queue *tx_queue)
  98{
  99        struct efx_tx_buffer *buffer;
 100
 101        netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 102                  "shutting down TX queue %d\n", tx_queue->queue);
 103
 104        if (!tx_queue->buffer)
 105                return;
 106
 107        /* Free any buffers left in the ring */
 108        while (tx_queue->read_count != tx_queue->write_count) {
 109                unsigned int pkts_compl = 0, bytes_compl = 0;
 110
 111                buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask];
 112                efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
 113
 114                ++tx_queue->read_count;
 115        }
 116        tx_queue->xmit_pending = false;
 117        netdev_tx_reset_queue(tx_queue->core_txq);
 118}
 119
 120void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
 121{
 122        int i;
 123
 124        if (!tx_queue->buffer)
 125                return;
 126
 127        netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev,
 128                  "destroying TX queue %d\n", tx_queue->queue);
 129        efx_nic_remove_tx(tx_queue);
 130
 131        if (tx_queue->cb_page) {
 132                for (i = 0; i < efx_tx_cb_page_count(tx_queue); i++)
 133                        efx_nic_free_buffer(tx_queue->efx,
 134                                            &tx_queue->cb_page[i]);
 135                kfree(tx_queue->cb_page);
 136                tx_queue->cb_page = NULL;
 137        }
 138
 139        kfree(tx_queue->buffer);
 140        tx_queue->buffer = NULL;
 141        tx_queue->channel->tx_queue_by_type[tx_queue->type] = NULL;
 142}
 143
 144void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
 145                        struct efx_tx_buffer *buffer,
 146                        unsigned int *pkts_compl,
 147                        unsigned int *bytes_compl)
 148{
 149        if (buffer->unmap_len) {
 150                struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
 151                dma_addr_t unmap_addr = buffer->dma_addr - buffer->dma_offset;
 152
 153                if (buffer->flags & EFX_TX_BUF_MAP_SINGLE)
 154                        dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
 155                                         DMA_TO_DEVICE);
 156                else
 157                        dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
 158                                       DMA_TO_DEVICE);
 159                buffer->unmap_len = 0;
 160        }
 161
 162        if (buffer->flags & EFX_TX_BUF_SKB) {
 163                struct sk_buff *skb = (struct sk_buff *)buffer->skb;
 164
 165                EFX_WARN_ON_PARANOID(!pkts_compl || !bytes_compl);
 166                (*pkts_compl)++;
 167                (*bytes_compl) += skb->len;
 168                if (tx_queue->timestamping &&
 169                    (tx_queue->completed_timestamp_major ||
 170                     tx_queue->completed_timestamp_minor)) {
 171                        struct skb_shared_hwtstamps hwtstamp;
 172
 173                        hwtstamp.hwtstamp =
 174                                efx_ptp_nic_to_kernel_time(tx_queue);
 175                        skb_tstamp_tx(skb, &hwtstamp);
 176
 177                        tx_queue->completed_timestamp_major = 0;
 178                        tx_queue->completed_timestamp_minor = 0;
 179                }
 180                dev_consume_skb_any((struct sk_buff *)buffer->skb);
 181                netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev,
 182                           "TX queue %d transmission id %x complete\n",
 183                           tx_queue->queue, tx_queue->read_count);
 184        } else if (buffer->flags & EFX_TX_BUF_XDP) {
 185                xdp_return_frame_rx_napi(buffer->xdpf);
 186        }
 187
 188        buffer->len = 0;
 189        buffer->flags = 0;
 190}
 191
 192/* Remove packets from the TX queue
 193 *
 194 * This removes packets from the TX queue, up to and including the
 195 * specified index.
 196 */
 197static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue,
 198                                unsigned int index,
 199                                unsigned int *pkts_compl,
 200                                unsigned int *bytes_compl)
 201{
 202        struct efx_nic *efx = tx_queue->efx;
 203        unsigned int stop_index, read_ptr;
 204
 205        stop_index = (index + 1) & tx_queue->ptr_mask;
 206        read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 207
 208        while (read_ptr != stop_index) {
 209                struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr];
 210
 211                if (!efx_tx_buffer_in_use(buffer)) {
 212                        netif_err(efx, tx_err, efx->net_dev,
 213                                  "TX queue %d spurious TX completion id %d\n",
 214                                  tx_queue->queue, read_ptr);
 215                        efx_schedule_reset(efx, RESET_TYPE_TX_SKIP);
 216                        return;
 217                }
 218
 219                efx_dequeue_buffer(tx_queue, buffer, pkts_compl, bytes_compl);
 220
 221                ++tx_queue->read_count;
 222                read_ptr = tx_queue->read_count & tx_queue->ptr_mask;
 223        }
 224}
 225
 226void efx_xmit_done_check_empty(struct efx_tx_queue *tx_queue)
 227{
 228        if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) {
 229                tx_queue->old_write_count = READ_ONCE(tx_queue->write_count);
 230                if (tx_queue->read_count == tx_queue->old_write_count) {
 231                        /* Ensure that read_count is flushed. */
 232                        smp_mb();
 233                        tx_queue->empty_read_count =
 234                                tx_queue->read_count | EFX_EMPTY_COUNT_VALID;
 235                }
 236        }
 237}
 238
 239void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index)
 240{
 241        unsigned int fill_level, pkts_compl = 0, bytes_compl = 0;
 242        struct efx_nic *efx = tx_queue->efx;
 243
 244        EFX_WARN_ON_ONCE_PARANOID(index > tx_queue->ptr_mask);
 245
 246        efx_dequeue_buffers(tx_queue, index, &pkts_compl, &bytes_compl);
 247        tx_queue->pkts_compl += pkts_compl;
 248        tx_queue->bytes_compl += bytes_compl;
 249
 250        if (pkts_compl > 1)
 251                ++tx_queue->merge_events;
 252
 253        /* See if we need to restart the netif queue.  This memory
 254         * barrier ensures that we write read_count (inside
 255         * efx_dequeue_buffers()) before reading the queue status.
 256         */
 257        smp_mb();
 258        if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) &&
 259            likely(efx->port_enabled) &&
 260            likely(netif_device_present(efx->net_dev))) {
 261                fill_level = efx_channel_tx_fill_level(tx_queue->channel);
 262                if (fill_level <= efx->txq_wake_thresh)
 263                        netif_tx_wake_queue(tx_queue->core_txq);
 264        }
 265
 266        efx_xmit_done_check_empty(tx_queue);
 267}
 268
 269/* Remove buffers put into a tx_queue for the current packet.
 270 * None of the buffers must have an skb attached.
 271 */
 272void efx_enqueue_unwind(struct efx_tx_queue *tx_queue,
 273                        unsigned int insert_count)
 274{
 275        struct efx_tx_buffer *buffer;
 276        unsigned int bytes_compl = 0;
 277        unsigned int pkts_compl = 0;
 278
 279        /* Work backwards until we hit the original insert pointer value */
 280        while (tx_queue->insert_count != insert_count) {
 281                --tx_queue->insert_count;
 282                buffer = __efx_tx_queue_get_insert_buffer(tx_queue);
 283                efx_dequeue_buffer(tx_queue, buffer, &pkts_compl, &bytes_compl);
 284        }
 285}
 286
 287struct efx_tx_buffer *efx_tx_map_chunk(struct efx_tx_queue *tx_queue,
 288                                       dma_addr_t dma_addr, size_t len)
 289{
 290        const struct efx_nic_type *nic_type = tx_queue->efx->type;
 291        struct efx_tx_buffer *buffer;
 292        unsigned int dma_len;
 293
 294        /* Map the fragment taking account of NIC-dependent DMA limits. */
 295        do {
 296                buffer = efx_tx_queue_get_insert_buffer(tx_queue);
 297
 298                if (nic_type->tx_limit_len)
 299                        dma_len = nic_type->tx_limit_len(tx_queue, dma_addr, len);
 300                else
 301                        dma_len = len;
 302
 303                buffer->len = dma_len;
 304                buffer->dma_addr = dma_addr;
 305                buffer->flags = EFX_TX_BUF_CONT;
 306                len -= dma_len;
 307                dma_addr += dma_len;
 308                ++tx_queue->insert_count;
 309        } while (len);
 310
 311        return buffer;
 312}
 313
 314int efx_tx_tso_header_length(struct sk_buff *skb)
 315{
 316        size_t header_len;
 317
 318        if (skb->encapsulation)
 319                header_len = skb_inner_transport_header(skb) -
 320                                skb->data +
 321                                (inner_tcp_hdr(skb)->doff << 2u);
 322        else
 323                header_len = skb_transport_header(skb) - skb->data +
 324                                (tcp_hdr(skb)->doff << 2u);
 325        return header_len;
 326}
 327
 328/* Map all data from an SKB for DMA and create descriptors on the queue. */
 329int efx_tx_map_data(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
 330                    unsigned int segment_count)
 331{
 332        struct efx_nic *efx = tx_queue->efx;
 333        struct device *dma_dev = &efx->pci_dev->dev;
 334        unsigned int frag_index, nr_frags;
 335        dma_addr_t dma_addr, unmap_addr;
 336        unsigned short dma_flags;
 337        size_t len, unmap_len;
 338
 339        nr_frags = skb_shinfo(skb)->nr_frags;
 340        frag_index = 0;
 341
 342        /* Map header data. */
 343        len = skb_headlen(skb);
 344        dma_addr = dma_map_single(dma_dev, skb->data, len, DMA_TO_DEVICE);
 345        dma_flags = EFX_TX_BUF_MAP_SINGLE;
 346        unmap_len = len;
 347        unmap_addr = dma_addr;
 348
 349        if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
 350                return -EIO;
 351
 352        if (segment_count) {
 353                /* For TSO we need to put the header in to a separate
 354                 * descriptor. Map this separately if necessary.
 355                 */
 356                size_t header_len = efx_tx_tso_header_length(skb);
 357
 358                if (header_len != len) {
 359                        tx_queue->tso_long_headers++;
 360                        efx_tx_map_chunk(tx_queue, dma_addr, header_len);
 361                        len -= header_len;
 362                        dma_addr += header_len;
 363                }
 364        }
 365
 366        /* Add descriptors for each fragment. */
 367        do {
 368                struct efx_tx_buffer *buffer;
 369                skb_frag_t *fragment;
 370
 371                buffer = efx_tx_map_chunk(tx_queue, dma_addr, len);
 372
 373                /* The final descriptor for a fragment is responsible for
 374                 * unmapping the whole fragment.
 375                 */
 376                buffer->flags = EFX_TX_BUF_CONT | dma_flags;
 377                buffer->unmap_len = unmap_len;
 378                buffer->dma_offset = buffer->dma_addr - unmap_addr;
 379
 380                if (frag_index >= nr_frags) {
 381                        /* Store SKB details with the final buffer for
 382                         * the completion.
 383                         */
 384                        buffer->skb = skb;
 385                        buffer->flags = EFX_TX_BUF_SKB | dma_flags;
 386                        return 0;
 387                }
 388
 389                /* Move on to the next fragment. */
 390                fragment = &skb_shinfo(skb)->frags[frag_index++];
 391                len = skb_frag_size(fragment);
 392                dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
 393                                            DMA_TO_DEVICE);
 394                dma_flags = 0;
 395                unmap_len = len;
 396                unmap_addr = dma_addr;
 397
 398                if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
 399                        return -EIO;
 400        } while (1);
 401}
 402
 403unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
 404{
 405        /* Header and payload descriptor for each output segment, plus
 406         * one for every input fragment boundary within a segment
 407         */
 408        unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
 409
 410        /* Possibly one more per segment for option descriptors */
 411        if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
 412                max_descs += EFX_TSO_MAX_SEGS;
 413
 414        /* Possibly more for PCIe page boundaries within input fragments */
 415        if (PAGE_SIZE > EFX_PAGE_SIZE)
 416                max_descs += max_t(unsigned int, MAX_SKB_FRAGS,
 417                                   DIV_ROUND_UP(GSO_MAX_SIZE, EFX_PAGE_SIZE));
 418
 419        return max_descs;
 420}
 421
 422/*
 423 * Fallback to software TSO.
 424 *
 425 * This is used if we are unable to send a GSO packet through hardware TSO.
 426 * This should only ever happen due to per-queue restrictions - unsupported
 427 * packets should first be filtered by the feature flags.
 428 *
 429 * Returns 0 on success, error code otherwise.
 430 */
 431int efx_tx_tso_fallback(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
 432{
 433        struct sk_buff *segments, *next;
 434
 435        segments = skb_gso_segment(skb, 0);
 436        if (IS_ERR(segments))
 437                return PTR_ERR(segments);
 438
 439        dev_consume_skb_any(skb);
 440
 441        skb_list_walk_safe(segments, skb, next) {
 442                skb_mark_not_on_list(skb);
 443                efx_enqueue_skb(tx_queue, skb);
 444        }
 445
 446        return 0;
 447}
 448