linux/drivers/net/ethernet/intel/ice/ice_lib.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_base.h"
   6#include "ice_flow.h"
   7#include "ice_lib.h"
   8#include "ice_fltr.h"
   9#include "ice_dcb_lib.h"
  10#include "ice_devlink.h"
  11
  12/**
  13 * ice_vsi_type_str - maps VSI type enum to string equivalents
  14 * @vsi_type: VSI type enum
  15 */
  16const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
  17{
  18        switch (vsi_type) {
  19        case ICE_VSI_PF:
  20                return "ICE_VSI_PF";
  21        case ICE_VSI_VF:
  22                return "ICE_VSI_VF";
  23        case ICE_VSI_CTRL:
  24                return "ICE_VSI_CTRL";
  25        case ICE_VSI_LB:
  26                return "ICE_VSI_LB";
  27        default:
  28                return "unknown";
  29        }
  30}
  31
  32/**
  33 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
  34 * @vsi: the VSI being configured
  35 * @ena: start or stop the Rx rings
  36 *
  37 * First enable/disable all of the Rx rings, flush any remaining writes, and
  38 * then verify that they have all been enabled/disabled successfully. This will
  39 * let all of the register writes complete when enabling/disabling the Rx rings
  40 * before waiting for the change in hardware to complete.
  41 */
  42static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
  43{
  44        int ret = 0;
  45        u16 i;
  46
  47        for (i = 0; i < vsi->num_rxq; i++)
  48                ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
  49
  50        ice_flush(&vsi->back->hw);
  51
  52        for (i = 0; i < vsi->num_rxq; i++) {
  53                ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
  54                if (ret)
  55                        break;
  56        }
  57
  58        return ret;
  59}
  60
  61/**
  62 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
  63 * @vsi: VSI pointer
  64 *
  65 * On error: returns error code (negative)
  66 * On success: returns 0
  67 */
  68static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
  69{
  70        struct ice_pf *pf = vsi->back;
  71        struct device *dev;
  72
  73        dev = ice_pf_to_dev(pf);
  74
  75        /* allocate memory for both Tx and Rx ring pointers */
  76        vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
  77                                     sizeof(*vsi->tx_rings), GFP_KERNEL);
  78        if (!vsi->tx_rings)
  79                return -ENOMEM;
  80
  81        vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
  82                                     sizeof(*vsi->rx_rings), GFP_KERNEL);
  83        if (!vsi->rx_rings)
  84                goto err_rings;
  85
  86        /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */
  87        vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq),
  88                                    sizeof(*vsi->txq_map), GFP_KERNEL);
  89
  90        if (!vsi->txq_map)
  91                goto err_txq_map;
  92
  93        vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
  94                                    sizeof(*vsi->rxq_map), GFP_KERNEL);
  95        if (!vsi->rxq_map)
  96                goto err_rxq_map;
  97
  98        /* There is no need to allocate q_vectors for a loopback VSI. */
  99        if (vsi->type == ICE_VSI_LB)
 100                return 0;
 101
 102        /* allocate memory for q_vector pointers */
 103        vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
 104                                      sizeof(*vsi->q_vectors), GFP_KERNEL);
 105        if (!vsi->q_vectors)
 106                goto err_vectors;
 107
 108        vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL);
 109        if (!vsi->af_xdp_zc_qps)
 110                goto err_zc_qps;
 111
 112        return 0;
 113
 114err_zc_qps:
 115        devm_kfree(dev, vsi->q_vectors);
 116err_vectors:
 117        devm_kfree(dev, vsi->rxq_map);
 118err_rxq_map:
 119        devm_kfree(dev, vsi->txq_map);
 120err_txq_map:
 121        devm_kfree(dev, vsi->rx_rings);
 122err_rings:
 123        devm_kfree(dev, vsi->tx_rings);
 124        return -ENOMEM;
 125}
 126
 127/**
 128 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
 129 * @vsi: the VSI being configured
 130 */
 131static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
 132{
 133        switch (vsi->type) {
 134        case ICE_VSI_PF:
 135        case ICE_VSI_CTRL:
 136        case ICE_VSI_LB:
 137                /* a user could change the values of num_[tr]x_desc using
 138                 * ethtool -G so we should keep those values instead of
 139                 * overwriting them with the defaults.
 140                 */
 141                if (!vsi->num_rx_desc)
 142                        vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
 143                if (!vsi->num_tx_desc)
 144                        vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
 145                break;
 146        default:
 147                dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
 148                        vsi->type);
 149                break;
 150        }
 151}
 152
 153/**
 154 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
 155 * @vsi: the VSI being configured
 156 * @vf_id: ID of the VF being configured
 157 *
 158 * Return 0 on success and a negative value on error
 159 */
 160static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
 161{
 162        struct ice_pf *pf = vsi->back;
 163        struct ice_vf *vf = NULL;
 164
 165        if (vsi->type == ICE_VSI_VF)
 166                vsi->vf_id = vf_id;
 167        else
 168                vsi->vf_id = ICE_INVAL_VFID;
 169
 170        switch (vsi->type) {
 171        case ICE_VSI_PF:
 172                vsi->alloc_txq = min3(pf->num_lan_msix,
 173                                      ice_get_avail_txq_count(pf),
 174                                      (u16)num_online_cpus());
 175                if (vsi->req_txq) {
 176                        vsi->alloc_txq = vsi->req_txq;
 177                        vsi->num_txq = vsi->req_txq;
 178                }
 179
 180                pf->num_lan_tx = vsi->alloc_txq;
 181
 182                /* only 1 Rx queue unless RSS is enabled */
 183                if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 184                        vsi->alloc_rxq = 1;
 185                } else {
 186                        vsi->alloc_rxq = min3(pf->num_lan_msix,
 187                                              ice_get_avail_rxq_count(pf),
 188                                              (u16)num_online_cpus());
 189                        if (vsi->req_rxq) {
 190                                vsi->alloc_rxq = vsi->req_rxq;
 191                                vsi->num_rxq = vsi->req_rxq;
 192                        }
 193                }
 194
 195                pf->num_lan_rx = vsi->alloc_rxq;
 196
 197                vsi->num_q_vectors = min_t(int, pf->num_lan_msix,
 198                                           max_t(int, vsi->alloc_rxq,
 199                                                 vsi->alloc_txq));
 200                break;
 201        case ICE_VSI_VF:
 202                vf = &pf->vf[vsi->vf_id];
 203                if (vf->num_req_qs)
 204                        vf->num_vf_qs = vf->num_req_qs;
 205                vsi->alloc_txq = vf->num_vf_qs;
 206                vsi->alloc_rxq = vf->num_vf_qs;
 207                /* pf->num_msix_per_vf includes (VF miscellaneous vector +
 208                 * data queue interrupts). Since vsi->num_q_vectors is number
 209                 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
 210                 * original vector count
 211                 */
 212                vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF;
 213                break;
 214        case ICE_VSI_CTRL:
 215                vsi->alloc_txq = 1;
 216                vsi->alloc_rxq = 1;
 217                vsi->num_q_vectors = 1;
 218                break;
 219        case ICE_VSI_LB:
 220                vsi->alloc_txq = 1;
 221                vsi->alloc_rxq = 1;
 222                break;
 223        default:
 224                dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type);
 225                break;
 226        }
 227
 228        ice_vsi_set_num_desc(vsi);
 229}
 230
 231/**
 232 * ice_get_free_slot - get the next non-NULL location index in array
 233 * @array: array to search
 234 * @size: size of the array
 235 * @curr: last known occupied index to be used as a search hint
 236 *
 237 * void * is being used to keep the functionality generic. This lets us use this
 238 * function on any array of pointers.
 239 */
 240static int ice_get_free_slot(void *array, int size, int curr)
 241{
 242        int **tmp_array = (int **)array;
 243        int next;
 244
 245        if (curr < (size - 1) && !tmp_array[curr + 1]) {
 246                next = curr + 1;
 247        } else {
 248                int i = 0;
 249
 250                while ((i < size) && (tmp_array[i]))
 251                        i++;
 252                if (i == size)
 253                        next = ICE_NO_VSI;
 254                else
 255                        next = i;
 256        }
 257        return next;
 258}
 259
 260/**
 261 * ice_vsi_delete - delete a VSI from the switch
 262 * @vsi: pointer to VSI being removed
 263 */
 264static void ice_vsi_delete(struct ice_vsi *vsi)
 265{
 266        struct ice_pf *pf = vsi->back;
 267        struct ice_vsi_ctx *ctxt;
 268        enum ice_status status;
 269
 270        ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
 271        if (!ctxt)
 272                return;
 273
 274        if (vsi->type == ICE_VSI_VF)
 275                ctxt->vf_num = vsi->vf_id;
 276        ctxt->vsi_num = vsi->vsi_num;
 277
 278        memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
 279
 280        status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
 281        if (status)
 282                dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n",
 283                        vsi->vsi_num, ice_stat_str(status));
 284
 285        kfree(ctxt);
 286}
 287
 288/**
 289 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
 290 * @vsi: pointer to VSI being cleared
 291 */
 292static void ice_vsi_free_arrays(struct ice_vsi *vsi)
 293{
 294        struct ice_pf *pf = vsi->back;
 295        struct device *dev;
 296
 297        dev = ice_pf_to_dev(pf);
 298
 299        if (vsi->af_xdp_zc_qps) {
 300                bitmap_free(vsi->af_xdp_zc_qps);
 301                vsi->af_xdp_zc_qps = NULL;
 302        }
 303        /* free the ring and vector containers */
 304        if (vsi->q_vectors) {
 305                devm_kfree(dev, vsi->q_vectors);
 306                vsi->q_vectors = NULL;
 307        }
 308        if (vsi->tx_rings) {
 309                devm_kfree(dev, vsi->tx_rings);
 310                vsi->tx_rings = NULL;
 311        }
 312        if (vsi->rx_rings) {
 313                devm_kfree(dev, vsi->rx_rings);
 314                vsi->rx_rings = NULL;
 315        }
 316        if (vsi->txq_map) {
 317                devm_kfree(dev, vsi->txq_map);
 318                vsi->txq_map = NULL;
 319        }
 320        if (vsi->rxq_map) {
 321                devm_kfree(dev, vsi->rxq_map);
 322                vsi->rxq_map = NULL;
 323        }
 324}
 325
 326/**
 327 * ice_vsi_clear - clean up and deallocate the provided VSI
 328 * @vsi: pointer to VSI being cleared
 329 *
 330 * This deallocates the VSI's queue resources, removes it from the PF's
 331 * VSI array if necessary, and deallocates the VSI
 332 *
 333 * Returns 0 on success, negative on failure
 334 */
 335static int ice_vsi_clear(struct ice_vsi *vsi)
 336{
 337        struct ice_pf *pf = NULL;
 338        struct device *dev;
 339
 340        if (!vsi)
 341                return 0;
 342
 343        if (!vsi->back)
 344                return -EINVAL;
 345
 346        pf = vsi->back;
 347        dev = ice_pf_to_dev(pf);
 348
 349        if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
 350                dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
 351                return -EINVAL;
 352        }
 353
 354        mutex_lock(&pf->sw_mutex);
 355        /* updates the PF for this cleared VSI */
 356
 357        pf->vsi[vsi->idx] = NULL;
 358        if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL)
 359                pf->next_vsi = vsi->idx;
 360        if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL &&
 361            vsi->vf_id != ICE_INVAL_VFID)
 362                pf->next_vsi = vsi->idx;
 363
 364        ice_vsi_free_arrays(vsi);
 365        mutex_unlock(&pf->sw_mutex);
 366        devm_kfree(dev, vsi);
 367
 368        return 0;
 369}
 370
 371/**
 372 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
 373 * @irq: interrupt number
 374 * @data: pointer to a q_vector
 375 */
 376static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
 377{
 378        struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 379
 380        if (!q_vector->tx.ring)
 381                return IRQ_HANDLED;
 382
 383#define FDIR_RX_DESC_CLEAN_BUDGET 64
 384        ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET);
 385        ice_clean_ctrl_tx_irq(q_vector->tx.ring);
 386
 387        return IRQ_HANDLED;
 388}
 389
 390/**
 391 * ice_msix_clean_rings - MSIX mode Interrupt Handler
 392 * @irq: interrupt number
 393 * @data: pointer to a q_vector
 394 */
 395static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
 396{
 397        struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
 398
 399        if (!q_vector->tx.ring && !q_vector->rx.ring)
 400                return IRQ_HANDLED;
 401
 402        q_vector->total_events++;
 403
 404        napi_schedule(&q_vector->napi);
 405
 406        return IRQ_HANDLED;
 407}
 408
 409/**
 410 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
 411 * @pf: board private structure
 412 * @vsi_type: type of VSI
 413 * @vf_id: ID of the VF being configured
 414 *
 415 * returns a pointer to a VSI on success, NULL on failure.
 416 */
 417static struct ice_vsi *
 418ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id)
 419{
 420        struct device *dev = ice_pf_to_dev(pf);
 421        struct ice_vsi *vsi = NULL;
 422
 423        /* Need to protect the allocation of the VSIs at the PF level */
 424        mutex_lock(&pf->sw_mutex);
 425
 426        /* If we have already allocated our maximum number of VSIs,
 427         * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
 428         * is available to be populated
 429         */
 430        if (pf->next_vsi == ICE_NO_VSI) {
 431                dev_dbg(dev, "out of VSI slots!\n");
 432                goto unlock_pf;
 433        }
 434
 435        vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
 436        if (!vsi)
 437                goto unlock_pf;
 438
 439        vsi->type = vsi_type;
 440        vsi->back = pf;
 441        set_bit(ICE_VSI_DOWN, vsi->state);
 442
 443        if (vsi_type == ICE_VSI_VF)
 444                ice_vsi_set_num_qs(vsi, vf_id);
 445        else
 446                ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
 447
 448        switch (vsi->type) {
 449        case ICE_VSI_PF:
 450                if (ice_vsi_alloc_arrays(vsi))
 451                        goto err_rings;
 452
 453                /* Setup default MSIX irq handler for VSI */
 454                vsi->irq_handler = ice_msix_clean_rings;
 455                break;
 456        case ICE_VSI_CTRL:
 457                if (ice_vsi_alloc_arrays(vsi))
 458                        goto err_rings;
 459
 460                /* Setup ctrl VSI MSIX irq handler */
 461                vsi->irq_handler = ice_msix_clean_ctrl_vsi;
 462                break;
 463        case ICE_VSI_VF:
 464                if (ice_vsi_alloc_arrays(vsi))
 465                        goto err_rings;
 466                break;
 467        case ICE_VSI_LB:
 468                if (ice_vsi_alloc_arrays(vsi))
 469                        goto err_rings;
 470                break;
 471        default:
 472                dev_warn(dev, "Unknown VSI type %d\n", vsi->type);
 473                goto unlock_pf;
 474        }
 475
 476        if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) {
 477                /* Use the last VSI slot as the index for PF control VSI */
 478                vsi->idx = pf->num_alloc_vsi - 1;
 479                pf->ctrl_vsi_idx = vsi->idx;
 480                pf->vsi[vsi->idx] = vsi;
 481        } else {
 482                /* fill slot and make note of the index */
 483                vsi->idx = pf->next_vsi;
 484                pf->vsi[pf->next_vsi] = vsi;
 485
 486                /* prepare pf->next_vsi for next use */
 487                pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
 488                                                 pf->next_vsi);
 489        }
 490
 491        if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID)
 492                pf->vf[vf_id].ctrl_vsi_idx = vsi->idx;
 493        goto unlock_pf;
 494
 495err_rings:
 496        devm_kfree(dev, vsi);
 497        vsi = NULL;
 498unlock_pf:
 499        mutex_unlock(&pf->sw_mutex);
 500        return vsi;
 501}
 502
 503/**
 504 * ice_alloc_fd_res - Allocate FD resource for a VSI
 505 * @vsi: pointer to the ice_vsi
 506 *
 507 * This allocates the FD resources
 508 *
 509 * Returns 0 on success, -EPERM on no-op or -EIO on failure
 510 */
 511static int ice_alloc_fd_res(struct ice_vsi *vsi)
 512{
 513        struct ice_pf *pf = vsi->back;
 514        u32 g_val, b_val;
 515
 516        /* Flow Director filters are only allocated/assigned to the PF VSI which
 517         * passes the traffic. The CTRL VSI is only used to add/delete filters
 518         * so we don't allocate resources to it
 519         */
 520
 521        /* FD filters from guaranteed pool per VSI */
 522        g_val = pf->hw.func_caps.fd_fltr_guar;
 523        if (!g_val)
 524                return -EPERM;
 525
 526        /* FD filters from best effort pool */
 527        b_val = pf->hw.func_caps.fd_fltr_best_effort;
 528        if (!b_val)
 529                return -EPERM;
 530
 531        if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF))
 532                return -EPERM;
 533
 534        if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
 535                return -EPERM;
 536
 537        vsi->num_gfltr = g_val / pf->num_alloc_vsi;
 538
 539        /* each VSI gets same "best_effort" quota */
 540        vsi->num_bfltr = b_val;
 541
 542        if (vsi->type == ICE_VSI_VF) {
 543                vsi->num_gfltr = 0;
 544
 545                /* each VSI gets same "best_effort" quota */
 546                vsi->num_bfltr = b_val;
 547        }
 548
 549        return 0;
 550}
 551
 552/**
 553 * ice_vsi_get_qs - Assign queues from PF to VSI
 554 * @vsi: the VSI to assign queues to
 555 *
 556 * Returns 0 on success and a negative value on error
 557 */
 558static int ice_vsi_get_qs(struct ice_vsi *vsi)
 559{
 560        struct ice_pf *pf = vsi->back;
 561        struct ice_qs_cfg tx_qs_cfg = {
 562                .qs_mutex = &pf->avail_q_mutex,
 563                .pf_map = pf->avail_txqs,
 564                .pf_map_size = pf->max_pf_txqs,
 565                .q_count = vsi->alloc_txq,
 566                .scatter_count = ICE_MAX_SCATTER_TXQS,
 567                .vsi_map = vsi->txq_map,
 568                .vsi_map_offset = 0,
 569                .mapping_mode = ICE_VSI_MAP_CONTIG
 570        };
 571        struct ice_qs_cfg rx_qs_cfg = {
 572                .qs_mutex = &pf->avail_q_mutex,
 573                .pf_map = pf->avail_rxqs,
 574                .pf_map_size = pf->max_pf_rxqs,
 575                .q_count = vsi->alloc_rxq,
 576                .scatter_count = ICE_MAX_SCATTER_RXQS,
 577                .vsi_map = vsi->rxq_map,
 578                .vsi_map_offset = 0,
 579                .mapping_mode = ICE_VSI_MAP_CONTIG
 580        };
 581        int ret;
 582
 583        ret = __ice_vsi_get_qs(&tx_qs_cfg);
 584        if (ret)
 585                return ret;
 586        vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
 587
 588        ret = __ice_vsi_get_qs(&rx_qs_cfg);
 589        if (ret)
 590                return ret;
 591        vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
 592
 593        return 0;
 594}
 595
 596/**
 597 * ice_vsi_put_qs - Release queues from VSI to PF
 598 * @vsi: the VSI that is going to release queues
 599 */
 600static void ice_vsi_put_qs(struct ice_vsi *vsi)
 601{
 602        struct ice_pf *pf = vsi->back;
 603        int i;
 604
 605        mutex_lock(&pf->avail_q_mutex);
 606
 607        for (i = 0; i < vsi->alloc_txq; i++) {
 608                clear_bit(vsi->txq_map[i], pf->avail_txqs);
 609                vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
 610        }
 611
 612        for (i = 0; i < vsi->alloc_rxq; i++) {
 613                clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
 614                vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
 615        }
 616
 617        mutex_unlock(&pf->avail_q_mutex);
 618}
 619
 620/**
 621 * ice_is_safe_mode
 622 * @pf: pointer to the PF struct
 623 *
 624 * returns true if driver is in safe mode, false otherwise
 625 */
 626bool ice_is_safe_mode(struct ice_pf *pf)
 627{
 628        return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
 629}
 630
 631/**
 632 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
 633 * @vsi: the VSI being cleaned up
 634 *
 635 * This function deletes RSS input set for all flows that were configured
 636 * for this VSI
 637 */
 638static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
 639{
 640        struct ice_pf *pf = vsi->back;
 641        enum ice_status status;
 642
 643        if (ice_is_safe_mode(pf))
 644                return;
 645
 646        status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
 647        if (status)
 648                dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n",
 649                        vsi->vsi_num, ice_stat_str(status));
 650}
 651
 652/**
 653 * ice_rss_clean - Delete RSS related VSI structures and configuration
 654 * @vsi: the VSI being removed
 655 */
 656static void ice_rss_clean(struct ice_vsi *vsi)
 657{
 658        struct ice_pf *pf = vsi->back;
 659        struct device *dev;
 660
 661        dev = ice_pf_to_dev(pf);
 662
 663        if (vsi->rss_hkey_user)
 664                devm_kfree(dev, vsi->rss_hkey_user);
 665        if (vsi->rss_lut_user)
 666                devm_kfree(dev, vsi->rss_lut_user);
 667
 668        ice_vsi_clean_rss_flow_fld(vsi);
 669        /* remove RSS replay list */
 670        if (!ice_is_safe_mode(pf))
 671                ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
 672}
 673
 674/**
 675 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
 676 * @vsi: the VSI being configured
 677 */
 678static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
 679{
 680        struct ice_hw_common_caps *cap;
 681        struct ice_pf *pf = vsi->back;
 682
 683        if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
 684                vsi->rss_size = 1;
 685                return;
 686        }
 687
 688        cap = &pf->hw.func_caps.common_cap;
 689        switch (vsi->type) {
 690        case ICE_VSI_PF:
 691                /* PF VSI will inherit RSS instance of PF */
 692                vsi->rss_table_size = (u16)cap->rss_table_size;
 693                vsi->rss_size = min_t(u16, num_online_cpus(),
 694                                      BIT(cap->rss_table_entry_width));
 695                vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
 696                break;
 697        case ICE_VSI_VF:
 698                /* VF VSI will get a small RSS table.
 699                 * For VSI_LUT, LUT size should be set to 64 bytes.
 700                 */
 701                vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
 702                vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
 703                vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
 704                break;
 705        case ICE_VSI_LB:
 706                break;
 707        default:
 708                dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
 709                        ice_vsi_type_str(vsi->type));
 710                break;
 711        }
 712}
 713
 714/**
 715 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
 716 * @ctxt: the VSI context being set
 717 *
 718 * This initializes a default VSI context for all sections except the Queues.
 719 */
 720static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
 721{
 722        u32 table = 0;
 723
 724        memset(&ctxt->info, 0, sizeof(ctxt->info));
 725        /* VSI's should be allocated from shared pool */
 726        ctxt->alloc_from_pool = true;
 727        /* Src pruning enabled by default */
 728        ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
 729        /* Traffic from VSI can be sent to LAN */
 730        ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
 731        /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
 732         * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
 733         * packets untagged/tagged.
 734         */
 735        ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
 736                                  ICE_AQ_VSI_VLAN_MODE_M) >>
 737                                 ICE_AQ_VSI_VLAN_MODE_S);
 738        /* Have 1:1 UP mapping for both ingress/egress tables */
 739        table |= ICE_UP_TABLE_TRANSLATE(0, 0);
 740        table |= ICE_UP_TABLE_TRANSLATE(1, 1);
 741        table |= ICE_UP_TABLE_TRANSLATE(2, 2);
 742        table |= ICE_UP_TABLE_TRANSLATE(3, 3);
 743        table |= ICE_UP_TABLE_TRANSLATE(4, 4);
 744        table |= ICE_UP_TABLE_TRANSLATE(5, 5);
 745        table |= ICE_UP_TABLE_TRANSLATE(6, 6);
 746        table |= ICE_UP_TABLE_TRANSLATE(7, 7);
 747        ctxt->info.ingress_table = cpu_to_le32(table);
 748        ctxt->info.egress_table = cpu_to_le32(table);
 749        /* Have 1:1 UP mapping for outer to inner UP table */
 750        ctxt->info.outer_up_table = cpu_to_le32(table);
 751        /* No Outer tag support outer_tag_flags remains to zero */
 752}
 753
 754/**
 755 * ice_vsi_setup_q_map - Setup a VSI queue map
 756 * @vsi: the VSI being configured
 757 * @ctxt: VSI context structure
 758 */
 759static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
 760{
 761        u16 offset = 0, qmap = 0, tx_count = 0, pow = 0;
 762        u16 num_txq_per_tc, num_rxq_per_tc;
 763        u16 qcount_tx = vsi->alloc_txq;
 764        u16 qcount_rx = vsi->alloc_rxq;
 765        bool ena_tc0 = false;
 766        u8 netdev_tc = 0;
 767        int i;
 768
 769        /* at least TC0 should be enabled by default */
 770        if (vsi->tc_cfg.numtc) {
 771                if (!(vsi->tc_cfg.ena_tc & BIT(0)))
 772                        ena_tc0 = true;
 773        } else {
 774                ena_tc0 = true;
 775        }
 776
 777        if (ena_tc0) {
 778                vsi->tc_cfg.numtc++;
 779                vsi->tc_cfg.ena_tc |= 1;
 780        }
 781
 782        num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
 783        if (!num_rxq_per_tc)
 784                num_rxq_per_tc = 1;
 785        num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
 786        if (!num_txq_per_tc)
 787                num_txq_per_tc = 1;
 788
 789        /* find the (rounded up) power-of-2 of qcount */
 790        pow = (u16)order_base_2(num_rxq_per_tc);
 791
 792        /* TC mapping is a function of the number of Rx queues assigned to the
 793         * VSI for each traffic class and the offset of these queues.
 794         * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
 795         * queues allocated to TC0. No:of queues is a power-of-2.
 796         *
 797         * If TC is not enabled, the queue offset is set to 0, and allocate one
 798         * queue, this way, traffic for the given TC will be sent to the default
 799         * queue.
 800         *
 801         * Setup number and offset of Rx queues for all TCs for the VSI
 802         */
 803        ice_for_each_traffic_class(i) {
 804                if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
 805                        /* TC is not enabled */
 806                        vsi->tc_cfg.tc_info[i].qoffset = 0;
 807                        vsi->tc_cfg.tc_info[i].qcount_rx = 1;
 808                        vsi->tc_cfg.tc_info[i].qcount_tx = 1;
 809                        vsi->tc_cfg.tc_info[i].netdev_tc = 0;
 810                        ctxt->info.tc_mapping[i] = 0;
 811                        continue;
 812                }
 813
 814                /* TC is enabled */
 815                vsi->tc_cfg.tc_info[i].qoffset = offset;
 816                vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
 817                vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
 818                vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
 819
 820                qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
 821                        ICE_AQ_VSI_TC_Q_OFFSET_M) |
 822                        ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
 823                         ICE_AQ_VSI_TC_Q_NUM_M);
 824                offset += num_rxq_per_tc;
 825                tx_count += num_txq_per_tc;
 826                ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
 827        }
 828
 829        /* if offset is non-zero, means it is calculated correctly based on
 830         * enabled TCs for a given VSI otherwise qcount_rx will always
 831         * be correct and non-zero because it is based off - VSI's
 832         * allocated Rx queues which is at least 1 (hence qcount_tx will be
 833         * at least 1)
 834         */
 835        if (offset)
 836                vsi->num_rxq = offset;
 837        else
 838                vsi->num_rxq = num_rxq_per_tc;
 839
 840        vsi->num_txq = tx_count;
 841
 842        if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
 843                dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
 844                /* since there is a chance that num_rxq could have been changed
 845                 * in the above for loop, make num_txq equal to num_rxq.
 846                 */
 847                vsi->num_txq = vsi->num_rxq;
 848        }
 849
 850        /* Rx queue mapping */
 851        ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
 852        /* q_mapping buffer holds the info for the first queue allocated for
 853         * this VSI in the PF space and also the number of queues associated
 854         * with this VSI.
 855         */
 856        ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
 857        ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
 858}
 859
 860/**
 861 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
 862 * @ctxt: the VSI context being set
 863 * @vsi: the VSI being configured
 864 */
 865static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
 866{
 867        u8 dflt_q_group, dflt_q_prio;
 868        u16 dflt_q, report_q, val;
 869
 870        if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
 871            vsi->type != ICE_VSI_VF)
 872                return;
 873
 874        val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
 875        ctxt->info.valid_sections |= cpu_to_le16(val);
 876        dflt_q = 0;
 877        dflt_q_group = 0;
 878        report_q = 0;
 879        dflt_q_prio = 0;
 880
 881        /* enable flow director filtering/programming */
 882        val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
 883        ctxt->info.fd_options = cpu_to_le16(val);
 884        /* max of allocated flow director filters */
 885        ctxt->info.max_fd_fltr_dedicated =
 886                        cpu_to_le16(vsi->num_gfltr);
 887        /* max of shared flow director filters any VSI may program */
 888        ctxt->info.max_fd_fltr_shared =
 889                        cpu_to_le16(vsi->num_bfltr);
 890        /* default queue index within the VSI of the default FD */
 891        val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) &
 892               ICE_AQ_VSI_FD_DEF_Q_M);
 893        /* target queue or queue group to the FD filter */
 894        val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) &
 895                ICE_AQ_VSI_FD_DEF_GRP_M);
 896        ctxt->info.fd_def_q = cpu_to_le16(val);
 897        /* queue index on which FD filter completion is reported */
 898        val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) &
 899               ICE_AQ_VSI_FD_REPORT_Q_M);
 900        /* priority of the default qindex action */
 901        val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) &
 902                ICE_AQ_VSI_FD_DEF_PRIORITY_M);
 903        ctxt->info.fd_report_opt = cpu_to_le16(val);
 904}
 905
 906/**
 907 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
 908 * @ctxt: the VSI context being set
 909 * @vsi: the VSI being configured
 910 */
 911static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
 912{
 913        u8 lut_type, hash_type;
 914        struct device *dev;
 915        struct ice_pf *pf;
 916
 917        pf = vsi->back;
 918        dev = ice_pf_to_dev(pf);
 919
 920        switch (vsi->type) {
 921        case ICE_VSI_PF:
 922                /* PF VSI will inherit RSS instance of PF */
 923                lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
 924                hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
 925                break;
 926        case ICE_VSI_VF:
 927                /* VF VSI will gets a small RSS table which is a VSI LUT type */
 928                lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
 929                hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
 930                break;
 931        default:
 932                dev_dbg(dev, "Unsupported VSI type %s\n",
 933                        ice_vsi_type_str(vsi->type));
 934                return;
 935        }
 936
 937        ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
 938                                ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
 939                                ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
 940                                 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
 941}
 942
 943/**
 944 * ice_vsi_init - Create and initialize a VSI
 945 * @vsi: the VSI being configured
 946 * @init_vsi: is this call creating a VSI
 947 *
 948 * This initializes a VSI context depending on the VSI type to be added and
 949 * passes it down to the add_vsi aq command to create a new VSI.
 950 */
 951static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi)
 952{
 953        struct ice_pf *pf = vsi->back;
 954        struct ice_hw *hw = &pf->hw;
 955        struct ice_vsi_ctx *ctxt;
 956        struct device *dev;
 957        int ret = 0;
 958
 959        dev = ice_pf_to_dev(pf);
 960        ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
 961        if (!ctxt)
 962                return -ENOMEM;
 963
 964        switch (vsi->type) {
 965        case ICE_VSI_CTRL:
 966        case ICE_VSI_LB:
 967        case ICE_VSI_PF:
 968                ctxt->flags = ICE_AQ_VSI_TYPE_PF;
 969                break;
 970        case ICE_VSI_VF:
 971                ctxt->flags = ICE_AQ_VSI_TYPE_VF;
 972                /* VF number here is the absolute VF number (0-255) */
 973                ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
 974                break;
 975        default:
 976                ret = -ENODEV;
 977                goto out;
 978        }
 979
 980        ice_set_dflt_vsi_ctx(ctxt);
 981        if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
 982                ice_set_fd_vsi_ctx(ctxt, vsi);
 983        /* if the switch is in VEB mode, allow VSI loopback */
 984        if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
 985                ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
 986
 987        /* Set LUT type and HASH type if RSS is enabled */
 988        if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
 989            vsi->type != ICE_VSI_CTRL) {
 990                ice_set_rss_vsi_ctx(ctxt, vsi);
 991                /* if updating VSI context, make sure to set valid_section:
 992                 * to indicate which section of VSI context being updated
 993                 */
 994                if (!init_vsi)
 995                        ctxt->info.valid_sections |=
 996                                cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
 997        }
 998
 999        ctxt->info.sw_id = vsi->port_info->sw_id;
1000        ice_vsi_setup_q_map(vsi, ctxt);
1001        if (!init_vsi) /* means VSI being updated */
1002                /* must to indicate which section of VSI context are
1003                 * being modified
1004                 */
1005                ctxt->info.valid_sections |=
1006                        cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1007
1008        /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off
1009         * respectively
1010         */
1011        if (vsi->type == ICE_VSI_VF) {
1012                ctxt->info.valid_sections |=
1013                        cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1014                if (pf->vf[vsi->vf_id].spoofchk) {
1015                        ctxt->info.sec_flags |=
1016                                ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1017                                (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1018                                 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
1019                } else {
1020                        ctxt->info.sec_flags &=
1021                                ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
1022                                  (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
1023                                   ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
1024                }
1025        }
1026
1027        /* Allow control frames out of main VSI */
1028        if (vsi->type == ICE_VSI_PF) {
1029                ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1030                ctxt->info.valid_sections |=
1031                        cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1032        }
1033
1034        if (init_vsi) {
1035                ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1036                if (ret) {
1037                        dev_err(dev, "Add VSI failed, err %d\n", ret);
1038                        ret = -EIO;
1039                        goto out;
1040                }
1041        } else {
1042                ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1043                if (ret) {
1044                        dev_err(dev, "Update VSI failed, err %d\n", ret);
1045                        ret = -EIO;
1046                        goto out;
1047                }
1048        }
1049
1050        /* keep context for update VSI operations */
1051        vsi->info = ctxt->info;
1052
1053        /* record VSI number returned */
1054        vsi->vsi_num = ctxt->vsi_num;
1055
1056out:
1057        kfree(ctxt);
1058        return ret;
1059}
1060
1061/**
1062 * ice_free_res - free a block of resources
1063 * @res: pointer to the resource
1064 * @index: starting index previously returned by ice_get_res
1065 * @id: identifier to track owner
1066 *
1067 * Returns number of resources freed
1068 */
1069int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
1070{
1071        int count = 0;
1072        int i;
1073
1074        if (!res || index >= res->end)
1075                return -EINVAL;
1076
1077        id |= ICE_RES_VALID_BIT;
1078        for (i = index; i < res->end && res->list[i] == id; i++) {
1079                res->list[i] = 0;
1080                count++;
1081        }
1082
1083        return count;
1084}
1085
1086/**
1087 * ice_search_res - Search the tracker for a block of resources
1088 * @res: pointer to the resource
1089 * @needed: size of the block needed
1090 * @id: identifier to track owner
1091 *
1092 * Returns the base item index of the block, or -ENOMEM for error
1093 */
1094static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
1095{
1096        u16 start = 0, end = 0;
1097
1098        if (needed > res->end)
1099                return -ENOMEM;
1100
1101        id |= ICE_RES_VALID_BIT;
1102
1103        do {
1104                /* skip already allocated entries */
1105                if (res->list[end++] & ICE_RES_VALID_BIT) {
1106                        start = end;
1107                        if ((start + needed) > res->end)
1108                                break;
1109                }
1110
1111                if (end == (start + needed)) {
1112                        int i = start;
1113
1114                        /* there was enough, so assign it to the requestor */
1115                        while (i != end)
1116                                res->list[i++] = id;
1117
1118                        return start;
1119                }
1120        } while (end < res->end);
1121
1122        return -ENOMEM;
1123}
1124
1125/**
1126 * ice_get_free_res_count - Get free count from a resource tracker
1127 * @res: Resource tracker instance
1128 */
1129static u16 ice_get_free_res_count(struct ice_res_tracker *res)
1130{
1131        u16 i, count = 0;
1132
1133        for (i = 0; i < res->end; i++)
1134                if (!(res->list[i] & ICE_RES_VALID_BIT))
1135                        count++;
1136
1137        return count;
1138}
1139
1140/**
1141 * ice_get_res - get a block of resources
1142 * @pf: board private structure
1143 * @res: pointer to the resource
1144 * @needed: size of the block needed
1145 * @id: identifier to track owner
1146 *
1147 * Returns the base item index of the block, or negative for error
1148 */
1149int
1150ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
1151{
1152        if (!res || !pf)
1153                return -EINVAL;
1154
1155        if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
1156                dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n",
1157                        needed, res->num_entries, id);
1158                return -EINVAL;
1159        }
1160
1161        return ice_search_res(res, needed, id);
1162}
1163
1164/**
1165 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1166 * @vsi: ptr to the VSI
1167 *
1168 * This should only be called after ice_vsi_alloc() which allocates the
1169 * corresponding SW VSI structure and initializes num_queue_pairs for the
1170 * newly allocated VSI.
1171 *
1172 * Returns 0 on success or negative on failure
1173 */
1174static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1175{
1176        struct ice_pf *pf = vsi->back;
1177        struct device *dev;
1178        u16 num_q_vectors;
1179        int base;
1180
1181        dev = ice_pf_to_dev(pf);
1182        /* SRIOV doesn't grab irq_tracker entries for each VSI */
1183        if (vsi->type == ICE_VSI_VF)
1184                return 0;
1185
1186        if (vsi->base_vector) {
1187                dev_dbg(dev, "VSI %d has non-zero base vector %d\n",
1188                        vsi->vsi_num, vsi->base_vector);
1189                return -EEXIST;
1190        }
1191
1192        num_q_vectors = vsi->num_q_vectors;
1193        /* reserve slots from OS requested IRQs */
1194        if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) {
1195                struct ice_vf *vf;
1196                int i;
1197
1198                ice_for_each_vf(pf, i) {
1199                        vf = &pf->vf[i];
1200                        if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) {
1201                                base = pf->vsi[vf->ctrl_vsi_idx]->base_vector;
1202                                break;
1203                        }
1204                }
1205                if (i == pf->num_alloc_vfs)
1206                        base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1207                                           ICE_RES_VF_CTRL_VEC_ID);
1208        } else {
1209                base = ice_get_res(pf, pf->irq_tracker, num_q_vectors,
1210                                   vsi->idx);
1211        }
1212
1213        if (base < 0) {
1214                dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n",
1215                        ice_get_free_res_count(pf->irq_tracker),
1216                        ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors);
1217                return -ENOENT;
1218        }
1219        vsi->base_vector = (u16)base;
1220        pf->num_avail_sw_msix -= num_q_vectors;
1221
1222        return 0;
1223}
1224
1225/**
1226 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1227 * @vsi: the VSI having rings deallocated
1228 */
1229static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1230{
1231        int i;
1232
1233        /* Avoid stale references by clearing map from vector to ring */
1234        if (vsi->q_vectors) {
1235                ice_for_each_q_vector(vsi, i) {
1236                        struct ice_q_vector *q_vector = vsi->q_vectors[i];
1237
1238                        if (q_vector) {
1239                                q_vector->tx.ring = NULL;
1240                                q_vector->rx.ring = NULL;
1241                        }
1242                }
1243        }
1244
1245        if (vsi->tx_rings) {
1246                for (i = 0; i < vsi->alloc_txq; i++) {
1247                        if (vsi->tx_rings[i]) {
1248                                kfree_rcu(vsi->tx_rings[i], rcu);
1249                                WRITE_ONCE(vsi->tx_rings[i], NULL);
1250                        }
1251                }
1252        }
1253        if (vsi->rx_rings) {
1254                for (i = 0; i < vsi->alloc_rxq; i++) {
1255                        if (vsi->rx_rings[i]) {
1256                                kfree_rcu(vsi->rx_rings[i], rcu);
1257                                WRITE_ONCE(vsi->rx_rings[i], NULL);
1258                        }
1259                }
1260        }
1261}
1262
1263/**
1264 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1265 * @vsi: VSI which is having rings allocated
1266 */
1267static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1268{
1269        struct ice_pf *pf = vsi->back;
1270        struct device *dev;
1271        u16 i;
1272
1273        dev = ice_pf_to_dev(pf);
1274        /* Allocate Tx rings */
1275        for (i = 0; i < vsi->alloc_txq; i++) {
1276                struct ice_ring *ring;
1277
1278                /* allocate with kzalloc(), free with kfree_rcu() */
1279                ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1280
1281                if (!ring)
1282                        goto err_out;
1283
1284                ring->q_index = i;
1285                ring->reg_idx = vsi->txq_map[i];
1286                ring->ring_active = false;
1287                ring->vsi = vsi;
1288                ring->dev = dev;
1289                ring->count = vsi->num_tx_desc;
1290                WRITE_ONCE(vsi->tx_rings[i], ring);
1291        }
1292
1293        /* Allocate Rx rings */
1294        for (i = 0; i < vsi->alloc_rxq; i++) {
1295                struct ice_ring *ring;
1296
1297                /* allocate with kzalloc(), free with kfree_rcu() */
1298                ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1299                if (!ring)
1300                        goto err_out;
1301
1302                ring->q_index = i;
1303                ring->reg_idx = vsi->rxq_map[i];
1304                ring->ring_active = false;
1305                ring->vsi = vsi;
1306                ring->netdev = vsi->netdev;
1307                ring->dev = dev;
1308                ring->count = vsi->num_rx_desc;
1309                WRITE_ONCE(vsi->rx_rings[i], ring);
1310        }
1311
1312        return 0;
1313
1314err_out:
1315        ice_vsi_clear_rings(vsi);
1316        return -ENOMEM;
1317}
1318
1319/**
1320 * ice_vsi_manage_rss_lut - disable/enable RSS
1321 * @vsi: the VSI being changed
1322 * @ena: boolean value indicating if this is an enable or disable request
1323 *
1324 * In the event of disable request for RSS, this function will zero out RSS
1325 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1326 * LUT.
1327 */
1328void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1329{
1330        u8 *lut;
1331
1332        lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1333        if (!lut)
1334                return;
1335
1336        if (ena) {
1337                if (vsi->rss_lut_user)
1338                        memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1339                else
1340                        ice_fill_rss_lut(lut, vsi->rss_table_size,
1341                                         vsi->rss_size);
1342        }
1343
1344        ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1345        kfree(lut);
1346}
1347
1348/**
1349 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1350 * @vsi: VSI to be configured
1351 */
1352static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1353{
1354        struct ice_pf *pf = vsi->back;
1355        struct device *dev;
1356        u8 *lut, *key;
1357        int err;
1358
1359        dev = ice_pf_to_dev(pf);
1360        vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1361
1362        lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1363        if (!lut)
1364                return -ENOMEM;
1365
1366        if (vsi->rss_lut_user)
1367                memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1368        else
1369                ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1370
1371        err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1372        if (err) {
1373                dev_err(dev, "set_rss_lut failed, error %d\n", err);
1374                goto ice_vsi_cfg_rss_exit;
1375        }
1376
1377        key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1378        if (!key) {
1379                err = -ENOMEM;
1380                goto ice_vsi_cfg_rss_exit;
1381        }
1382
1383        if (vsi->rss_hkey_user)
1384                memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1385        else
1386                netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1387
1388        err = ice_set_rss_key(vsi, key);
1389        if (err)
1390                dev_err(dev, "set_rss_key failed, error %d\n", err);
1391
1392        kfree(key);
1393ice_vsi_cfg_rss_exit:
1394        kfree(lut);
1395        return err;
1396}
1397
1398/**
1399 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1400 * @vsi: VSI to be configured
1401 *
1402 * This function will only be called during the VF VSI setup. Upon successful
1403 * completion of package download, this function will configure default RSS
1404 * input sets for VF VSI.
1405 */
1406static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1407{
1408        struct ice_pf *pf = vsi->back;
1409        enum ice_status status;
1410        struct device *dev;
1411
1412        dev = ice_pf_to_dev(pf);
1413        if (ice_is_safe_mode(pf)) {
1414                dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1415                        vsi->vsi_num);
1416                return;
1417        }
1418
1419        status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA);
1420        if (status)
1421                dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n",
1422                        vsi->vsi_num, ice_stat_str(status));
1423}
1424
1425/**
1426 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1427 * @vsi: VSI to be configured
1428 *
1429 * This function will only be called after successful download package call
1430 * during initialization of PF. Since the downloaded package will erase the
1431 * RSS section, this function will configure RSS input sets for different
1432 * flow types. The last profile added has the highest priority, therefore 2
1433 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1434 * (i.e. IPv4 src/dst TCP src/dst port).
1435 */
1436static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1437{
1438        u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num;
1439        struct ice_pf *pf = vsi->back;
1440        struct ice_hw *hw = &pf->hw;
1441        enum ice_status status;
1442        struct device *dev;
1443
1444        dev = ice_pf_to_dev(pf);
1445        if (ice_is_safe_mode(pf)) {
1446                dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1447                        vsi_num);
1448                return;
1449        }
1450        /* configure RSS for IPv4 with input set IP src/dst */
1451        status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1452                                 ICE_FLOW_SEG_HDR_IPV4);
1453        if (status)
1454                dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n",
1455                        vsi_num, ice_stat_str(status));
1456
1457        /* configure RSS for IPv6 with input set IPv6 src/dst */
1458        status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1459                                 ICE_FLOW_SEG_HDR_IPV6);
1460        if (status)
1461                dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n",
1462                        vsi_num, ice_stat_str(status));
1463
1464        /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1465        status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4,
1466                                 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4);
1467        if (status)
1468                dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n",
1469                        vsi_num, ice_stat_str(status));
1470
1471        /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1472        status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4,
1473                                 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4);
1474        if (status)
1475                dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n",
1476                        vsi_num, ice_stat_str(status));
1477
1478        /* configure RSS for sctp4 with input set IP src/dst */
1479        status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4,
1480                                 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4);
1481        if (status)
1482                dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n",
1483                        vsi_num, ice_stat_str(status));
1484
1485        /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1486        status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6,
1487                                 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6);
1488        if (status)
1489                dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n",
1490                        vsi_num, ice_stat_str(status));
1491
1492        /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1493        status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6,
1494                                 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6);
1495        if (status)
1496                dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n",
1497                        vsi_num, ice_stat_str(status));
1498
1499        /* configure RSS for sctp6 with input set IPv6 src/dst */
1500        status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6,
1501                                 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6);
1502        if (status)
1503                dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n",
1504                        vsi_num, ice_stat_str(status));
1505}
1506
1507/**
1508 * ice_pf_state_is_nominal - checks the PF for nominal state
1509 * @pf: pointer to PF to check
1510 *
1511 * Check the PF's state for a collection of bits that would indicate
1512 * the PF is in a state that would inhibit normal operation for
1513 * driver functionality.
1514 *
1515 * Returns true if PF is in a nominal state, false otherwise
1516 */
1517bool ice_pf_state_is_nominal(struct ice_pf *pf)
1518{
1519        DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1520
1521        if (!pf)
1522                return false;
1523
1524        bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1525        if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1526                return false;
1527
1528        return true;
1529}
1530
1531/**
1532 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1533 * @vsi: the VSI to be updated
1534 */
1535void ice_update_eth_stats(struct ice_vsi *vsi)
1536{
1537        struct ice_eth_stats *prev_es, *cur_es;
1538        struct ice_hw *hw = &vsi->back->hw;
1539        u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
1540
1541        prev_es = &vsi->eth_stats_prev;
1542        cur_es = &vsi->eth_stats;
1543
1544        ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1545                          &prev_es->rx_bytes, &cur_es->rx_bytes);
1546
1547        ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1548                          &prev_es->rx_unicast, &cur_es->rx_unicast);
1549
1550        ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1551                          &prev_es->rx_multicast, &cur_es->rx_multicast);
1552
1553        ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1554                          &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1555
1556        ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1557                          &prev_es->rx_discards, &cur_es->rx_discards);
1558
1559        ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1560                          &prev_es->tx_bytes, &cur_es->tx_bytes);
1561
1562        ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1563                          &prev_es->tx_unicast, &cur_es->tx_unicast);
1564
1565        ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1566                          &prev_es->tx_multicast, &cur_es->tx_multicast);
1567
1568        ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1569                          &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1570
1571        ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1572                          &prev_es->tx_errors, &cur_es->tx_errors);
1573
1574        vsi->stat_offsets_loaded = true;
1575}
1576
1577/**
1578 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1579 * @vsi: the VSI being configured
1580 * @vid: VLAN ID to be added
1581 * @action: filter action to be performed on match
1582 */
1583int
1584ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action)
1585{
1586        struct ice_pf *pf = vsi->back;
1587        struct device *dev;
1588        int err = 0;
1589
1590        dev = ice_pf_to_dev(pf);
1591
1592        if (!ice_fltr_add_vlan(vsi, vid, action)) {
1593                vsi->num_vlan++;
1594        } else {
1595                err = -ENODEV;
1596                dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid,
1597                        vsi->vsi_num);
1598        }
1599
1600        return err;
1601}
1602
1603/**
1604 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1605 * @vsi: the VSI being configured
1606 * @vid: VLAN ID to be removed
1607 *
1608 * Returns 0 on success and negative on failure
1609 */
1610int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1611{
1612        struct ice_pf *pf = vsi->back;
1613        enum ice_status status;
1614        struct device *dev;
1615        int err = 0;
1616
1617        dev = ice_pf_to_dev(pf);
1618
1619        status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI);
1620        if (!status) {
1621                vsi->num_vlan--;
1622        } else if (status == ICE_ERR_DOES_NOT_EXIST) {
1623                dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n",
1624                        vid, vsi->vsi_num, ice_stat_str(status));
1625        } else {
1626                dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n",
1627                        vid, vsi->vsi_num, ice_stat_str(status));
1628                err = -EIO;
1629        }
1630
1631        return err;
1632}
1633
1634/**
1635 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length
1636 * @vsi: VSI
1637 */
1638void ice_vsi_cfg_frame_size(struct ice_vsi *vsi)
1639{
1640        if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) {
1641                vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1642                vsi->rx_buf_len = ICE_RXBUF_2048;
1643#if (PAGE_SIZE < 8192)
1644        } else if (!ICE_2K_TOO_SMALL_WITH_PADDING &&
1645                   (vsi->netdev->mtu <= ETH_DATA_LEN)) {
1646                vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN;
1647                vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN;
1648#endif
1649        } else {
1650                vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX;
1651#if (PAGE_SIZE < 8192)
1652                vsi->rx_buf_len = ICE_RXBUF_3072;
1653#else
1654                vsi->rx_buf_len = ICE_RXBUF_2048;
1655#endif
1656        }
1657}
1658
1659/**
1660 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1661 * @hw: HW pointer
1662 * @pf_q: index of the Rx queue in the PF's queue space
1663 * @rxdid: flexible descriptor RXDID
1664 * @prio: priority for the RXDID for this queue
1665 */
1666void
1667ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio)
1668{
1669        int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1670
1671        /* clear any previous values */
1672        regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1673                    QRXFLXP_CNTXT_RXDID_PRIO_M |
1674                    QRXFLXP_CNTXT_TS_M);
1675
1676        regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
1677                QRXFLXP_CNTXT_RXDID_IDX_M;
1678
1679        regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) &
1680                QRXFLXP_CNTXT_RXDID_PRIO_M;
1681
1682        wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1683}
1684
1685/**
1686 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1687 * @vsi: the VSI being configured
1688 *
1689 * Return 0 on success and a negative value on error
1690 * Configure the Rx VSI for operation.
1691 */
1692int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1693{
1694        u16 i;
1695
1696        if (vsi->type == ICE_VSI_VF)
1697                goto setup_rings;
1698
1699        ice_vsi_cfg_frame_size(vsi);
1700setup_rings:
1701        /* set up individual rings */
1702        for (i = 0; i < vsi->num_rxq; i++) {
1703                int err;
1704
1705                err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1706                if (err) {
1707                        dev_err(ice_pf_to_dev(vsi->back), "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1708                                i, err);
1709                        return err;
1710                }
1711        }
1712
1713        return 0;
1714}
1715
1716/**
1717 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1718 * @vsi: the VSI being configured
1719 * @rings: Tx ring array to be configured
1720 * @count: number of Tx ring array elements
1721 *
1722 * Return 0 on success and a negative value on error
1723 * Configure the Tx VSI for operation.
1724 */
1725static int
1726ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, u16 count)
1727{
1728        struct ice_aqc_add_tx_qgrp *qg_buf;
1729        u16 q_idx = 0;
1730        int err = 0;
1731
1732        qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL);
1733        if (!qg_buf)
1734                return -ENOMEM;
1735
1736        qg_buf->num_txqs = 1;
1737
1738        for (q_idx = 0; q_idx < count; q_idx++) {
1739                err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf);
1740                if (err)
1741                        goto err_cfg_txqs;
1742        }
1743
1744err_cfg_txqs:
1745        kfree(qg_buf);
1746        return err;
1747}
1748
1749/**
1750 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1751 * @vsi: the VSI being configured
1752 *
1753 * Return 0 on success and a negative value on error
1754 * Configure the Tx VSI for operation.
1755 */
1756int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1757{
1758        return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq);
1759}
1760
1761/**
1762 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI
1763 * @vsi: the VSI being configured
1764 *
1765 * Return 0 on success and a negative value on error
1766 * Configure the Tx queues dedicated for XDP in given VSI for operation.
1767 */
1768int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi)
1769{
1770        int ret;
1771        int i;
1772
1773        ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq);
1774        if (ret)
1775                return ret;
1776
1777        for (i = 0; i < vsi->num_xdp_txq; i++)
1778                vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]);
1779
1780        return ret;
1781}
1782
1783/**
1784 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1785 * @intrl: interrupt rate limit in usecs
1786 * @gran: interrupt rate limit granularity in usecs
1787 *
1788 * This function converts a decimal interrupt rate limit in usecs to the format
1789 * expected by firmware.
1790 */
1791static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1792{
1793        u32 val = intrl / gran;
1794
1795        if (val)
1796                return val | GLINT_RATE_INTRL_ENA_M;
1797        return 0;
1798}
1799
1800/**
1801 * ice_write_intrl - write throttle rate limit to interrupt specific register
1802 * @q_vector: pointer to interrupt specific structure
1803 * @intrl: throttle rate limit in microseconds to write
1804 */
1805void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1806{
1807        struct ice_hw *hw = &q_vector->vsi->back->hw;
1808
1809        wr32(hw, GLINT_RATE(q_vector->reg_idx),
1810             ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1811}
1812
1813/**
1814 * __ice_write_itr - write throttle rate to register
1815 * @q_vector: pointer to interrupt data structure
1816 * @rc: pointer to ring container
1817 * @itr: throttle rate in microseconds to write
1818 */
1819static void __ice_write_itr(struct ice_q_vector *q_vector,
1820                            struct ice_ring_container *rc, u16 itr)
1821{
1822        struct ice_hw *hw = &q_vector->vsi->back->hw;
1823
1824        wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1825             ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1826}
1827
1828/**
1829 * ice_write_itr - write throttle rate to queue specific register
1830 * @rc: pointer to ring container
1831 * @itr: throttle rate in microseconds to write
1832 */
1833void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1834{
1835        struct ice_q_vector *q_vector;
1836
1837        if (!rc->ring)
1838                return;
1839
1840        q_vector = rc->ring->q_vector;
1841
1842        __ice_write_itr(q_vector, rc, itr);
1843}
1844
1845/**
1846 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1847 * @vsi: the VSI being configured
1848 *
1849 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1850 * for the VF VSI.
1851 */
1852void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1853{
1854        struct ice_pf *pf = vsi->back;
1855        struct ice_hw *hw = &pf->hw;
1856        u16 txq = 0, rxq = 0;
1857        int i, q;
1858
1859        for (i = 0; i < vsi->num_q_vectors; i++) {
1860                struct ice_q_vector *q_vector = vsi->q_vectors[i];
1861                u16 reg_idx = q_vector->reg_idx;
1862
1863                ice_cfg_itr(hw, q_vector);
1864
1865                /* Both Transmit Queue Interrupt Cause Control register
1866                 * and Receive Queue Interrupt Cause control register
1867                 * expects MSIX_INDX field to be the vector index
1868                 * within the function space and not the absolute
1869                 * vector index across PF or across device.
1870                 * For SR-IOV VF VSIs queue vector index always starts
1871                 * with 1 since first vector index(0) is used for OICR
1872                 * in VF space. Since VMDq and other PF VSIs are within
1873                 * the PF function space, use the vector index that is
1874                 * tracked for this PF.
1875                 */
1876                for (q = 0; q < q_vector->num_ring_tx; q++) {
1877                        ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1878                                              q_vector->tx.itr_idx);
1879                        txq++;
1880                }
1881
1882                for (q = 0; q < q_vector->num_ring_rx; q++) {
1883                        ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1884                                              q_vector->rx.itr_idx);
1885                        rxq++;
1886                }
1887        }
1888}
1889
1890/**
1891 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
1892 * @vsi: the VSI being changed
1893 */
1894int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
1895{
1896        struct ice_hw *hw = &vsi->back->hw;
1897        struct ice_vsi_ctx *ctxt;
1898        enum ice_status status;
1899        int ret = 0;
1900
1901        ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1902        if (!ctxt)
1903                return -ENOMEM;
1904
1905        /* Here we are configuring the VSI to let the driver add VLAN tags by
1906         * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
1907         * insertion happens in the Tx hot path, in ice_tx_map.
1908         */
1909        ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
1910
1911        /* Preserve existing VLAN strip setting */
1912        ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
1913                                  ICE_AQ_VSI_VLAN_EMOD_M);
1914
1915        ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1916
1917        status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1918        if (status) {
1919                dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n",
1920                        ice_stat_str(status),
1921                        ice_aq_str(hw->adminq.sq_last_status));
1922                ret = -EIO;
1923                goto out;
1924        }
1925
1926        vsi->info.vlan_flags = ctxt->info.vlan_flags;
1927out:
1928        kfree(ctxt);
1929        return ret;
1930}
1931
1932/**
1933 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
1934 * @vsi: the VSI being changed
1935 * @ena: boolean value indicating if this is a enable or disable request
1936 */
1937int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
1938{
1939        struct ice_hw *hw = &vsi->back->hw;
1940        struct ice_vsi_ctx *ctxt;
1941        enum ice_status status;
1942        int ret = 0;
1943
1944        /* do not allow modifying VLAN stripping when a port VLAN is configured
1945         * on this VSI
1946         */
1947        if (vsi->info.pvid)
1948                return 0;
1949
1950        ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1951        if (!ctxt)
1952                return -ENOMEM;
1953
1954        /* Here we are configuring what the VSI should do with the VLAN tag in
1955         * the Rx packet. We can either leave the tag in the packet or put it in
1956         * the Rx descriptor.
1957         */
1958        if (ena)
1959                /* Strip VLAN tag from Rx packet and put it in the desc */
1960                ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
1961        else
1962                /* Disable stripping. Leave tag in packet */
1963                ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
1964
1965        /* Allow all packets untagged/tagged */
1966        ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
1967
1968        ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1969
1970        status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1971        if (status) {
1972                dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n",
1973                        ena, ice_stat_str(status),
1974                        ice_aq_str(hw->adminq.sq_last_status));
1975                ret = -EIO;
1976                goto out;
1977        }
1978
1979        vsi->info.vlan_flags = ctxt->info.vlan_flags;
1980out:
1981        kfree(ctxt);
1982        return ret;
1983}
1984
1985/**
1986 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1987 * @vsi: the VSI whose rings are to be enabled
1988 *
1989 * Returns 0 on success and a negative value on error
1990 */
1991int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1992{
1993        return ice_vsi_ctrl_all_rx_rings(vsi, true);
1994}
1995
1996/**
1997 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1998 * @vsi: the VSI whose rings are to be disabled
1999 *
2000 * Returns 0 on success and a negative value on error
2001 */
2002int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
2003{
2004        return ice_vsi_ctrl_all_rx_rings(vsi, false);
2005}
2006
2007/**
2008 * ice_vsi_stop_tx_rings - Disable Tx rings
2009 * @vsi: the VSI being configured
2010 * @rst_src: reset source
2011 * @rel_vmvf_num: Relative ID of VF/VM
2012 * @rings: Tx ring array to be stopped
2013 * @count: number of Tx ring array elements
2014 */
2015static int
2016ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2017                      u16 rel_vmvf_num, struct ice_ring **rings, u16 count)
2018{
2019        u16 q_idx;
2020
2021        if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2022                return -EINVAL;
2023
2024        for (q_idx = 0; q_idx < count; q_idx++) {
2025                struct ice_txq_meta txq_meta = { };
2026                int status;
2027
2028                if (!rings || !rings[q_idx])
2029                        return -EINVAL;
2030
2031                ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
2032                status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
2033                                              rings[q_idx], &txq_meta);
2034
2035                if (status)
2036                        return status;
2037        }
2038
2039        return 0;
2040}
2041
2042/**
2043 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2044 * @vsi: the VSI being configured
2045 * @rst_src: reset source
2046 * @rel_vmvf_num: Relative ID of VF/VM
2047 */
2048int
2049ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2050                          u16 rel_vmvf_num)
2051{
2052        return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2053}
2054
2055/**
2056 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2057 * @vsi: the VSI being configured
2058 */
2059int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2060{
2061        return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2062}
2063
2064/**
2065 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
2066 * @vsi: VSI to check whether or not VLAN pruning is enabled.
2067 *
2068 * returns true if Rx VLAN pruning is enabled and false otherwise.
2069 */
2070bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
2071{
2072        if (!vsi)
2073                return false;
2074
2075        return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA);
2076}
2077
2078/**
2079 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2080 * @vsi: VSI to enable or disable VLAN pruning on
2081 * @ena: set to true to enable VLAN pruning and false to disable it
2082 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2083 *
2084 * returns 0 if VSI is updated, negative otherwise
2085 */
2086int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2087{
2088        struct ice_vsi_ctx *ctxt;
2089        struct ice_pf *pf;
2090        int status;
2091
2092        if (!vsi)
2093                return -EINVAL;
2094
2095        /* Don't enable VLAN pruning if the netdev is currently in promiscuous
2096         * mode. VLAN pruning will be enabled when the interface exits
2097         * promiscuous mode if any VLAN filters are active.
2098         */
2099        if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena)
2100                return 0;
2101
2102        pf = vsi->back;
2103        ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
2104        if (!ctxt)
2105                return -ENOMEM;
2106
2107        ctxt->info = vsi->info;
2108
2109        if (ena)
2110                ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2111        else
2112                ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2113
2114        if (!vlan_promisc)
2115                ctxt->info.valid_sections =
2116                        cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
2117
2118        status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2119        if (status) {
2120                netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n",
2121                           ena ? "En" : "Dis", vsi->idx, vsi->vsi_num,
2122                           ice_stat_str(status),
2123                           ice_aq_str(pf->hw.adminq.sq_last_status));
2124                goto err_out;
2125        }
2126
2127        vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2128
2129        kfree(ctxt);
2130        return 0;
2131
2132err_out:
2133        kfree(ctxt);
2134        return -EIO;
2135}
2136
2137static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2138{
2139        struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg;
2140
2141        vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2142        vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2143}
2144
2145/**
2146 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2147 * @vsi: VSI to set the q_vectors register index on
2148 */
2149static int
2150ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2151{
2152        u16 i;
2153
2154        if (!vsi || !vsi->q_vectors)
2155                return -EINVAL;
2156
2157        ice_for_each_q_vector(vsi, i) {
2158                struct ice_q_vector *q_vector = vsi->q_vectors[i];
2159
2160                if (!q_vector) {
2161                        dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n",
2162                                i, vsi->vsi_num);
2163                        goto clear_reg_idx;
2164                }
2165
2166                if (vsi->type == ICE_VSI_VF) {
2167                        struct ice_vf *vf = &vsi->back->vf[vsi->vf_id];
2168
2169                        q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector);
2170                } else {
2171                        q_vector->reg_idx =
2172                                q_vector->v_idx + vsi->base_vector;
2173                }
2174        }
2175
2176        return 0;
2177
2178clear_reg_idx:
2179        ice_for_each_q_vector(vsi, i) {
2180                struct ice_q_vector *q_vector = vsi->q_vectors[i];
2181
2182                if (q_vector)
2183                        q_vector->reg_idx = 0;
2184        }
2185
2186        return -EINVAL;
2187}
2188
2189/**
2190 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2191 * @vsi: the VSI being configured
2192 * @tx: bool to determine Tx or Rx rule
2193 * @create: bool to determine create or remove Rule
2194 */
2195void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2196{
2197        enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2198                                    enum ice_sw_fwd_act_type act);
2199        struct ice_pf *pf = vsi->back;
2200        enum ice_status status;
2201        struct device *dev;
2202
2203        dev = ice_pf_to_dev(pf);
2204        eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2205
2206        if (tx) {
2207                status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2208                                  ICE_DROP_PACKET);
2209        } else {
2210                if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2211                        status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2212                                                          create);
2213                } else {
2214                        status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2215                                          ICE_FWD_TO_VSI);
2216                }
2217        }
2218
2219        if (status)
2220                dev_err(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n",
2221                        create ? "adding" : "removing", tx ? "TX" : "RX",
2222                        vsi->vsi_num, ice_stat_str(status));
2223}
2224
2225/**
2226 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2227 * @vsi: pointer to the VSI
2228 *
2229 * This function will allocate new scheduler aggregator now if needed and will
2230 * move specified VSI into it.
2231 */
2232static void ice_set_agg_vsi(struct ice_vsi *vsi)
2233{
2234        struct device *dev = ice_pf_to_dev(vsi->back);
2235        struct ice_agg_node *agg_node_iter = NULL;
2236        u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2237        struct ice_agg_node *agg_node = NULL;
2238        int node_offset, max_agg_nodes = 0;
2239        struct ice_port_info *port_info;
2240        struct ice_pf *pf = vsi->back;
2241        u32 agg_node_id_start = 0;
2242        enum ice_status status;
2243
2244        /* create (as needed) scheduler aggregator node and move VSI into
2245         * corresponding aggregator node
2246         * - PF aggregator node to contains VSIs of type _PF and _CTRL
2247         * - VF aggregator nodes will contain VF VSI
2248         */
2249        port_info = pf->hw.port_info;
2250        if (!port_info)
2251                return;
2252
2253        switch (vsi->type) {
2254        case ICE_VSI_CTRL:
2255        case ICE_VSI_LB:
2256        case ICE_VSI_PF:
2257                max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2258                agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2259                agg_node_iter = &pf->pf_agg_node[0];
2260                break;
2261        case ICE_VSI_VF:
2262                /* user can create 'n' VFs on a given PF, but since max children
2263                 * per aggregator node can be only 64. Following code handles
2264                 * aggregator(s) for VF VSIs, either selects a agg_node which
2265                 * was already created provided num_vsis < 64, otherwise
2266                 * select next available node, which will be created
2267                 */
2268                max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2269                agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2270                agg_node_iter = &pf->vf_agg_node[0];
2271                break;
2272        default:
2273                /* other VSI type, handle later if needed */
2274                dev_dbg(dev, "unexpected VSI type %s\n",
2275                        ice_vsi_type_str(vsi->type));
2276                return;
2277        }
2278
2279        /* find the appropriate aggregator node */
2280        for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2281                /* see if we can find space in previously created
2282                 * node if num_vsis < 64, otherwise skip
2283                 */
2284                if (agg_node_iter->num_vsis &&
2285                    agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2286                        agg_node_iter++;
2287                        continue;
2288                }
2289
2290                if (agg_node_iter->valid &&
2291                    agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2292                        agg_id = agg_node_iter->agg_id;
2293                        agg_node = agg_node_iter;
2294                        break;
2295                }
2296
2297                /* find unclaimed agg_id */
2298                if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2299                        agg_id = node_offset + agg_node_id_start;
2300                        agg_node = agg_node_iter;
2301                        break;
2302                }
2303                /* move to next agg_node */
2304                agg_node_iter++;
2305        }
2306
2307        if (!agg_node)
2308                return;
2309
2310        /* if selected aggregator node was not created, create it */
2311        if (!agg_node->valid) {
2312                status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2313                                     (u8)vsi->tc_cfg.ena_tc);
2314                if (status) {
2315                        dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2316                                agg_id);
2317                        return;
2318                }
2319                /* aggregator node is created, store the neeeded info */
2320                agg_node->valid = true;
2321                agg_node->agg_id = agg_id;
2322        }
2323
2324        /* move VSI to corresponding aggregator node */
2325        status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2326                                     (u8)vsi->tc_cfg.ena_tc);
2327        if (status) {
2328                dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2329                        vsi->idx, agg_id);
2330                return;
2331        }
2332
2333        /* keep active children count for aggregator node */
2334        agg_node->num_vsis++;
2335
2336        /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2337         * to aggregator node
2338         */
2339        vsi->agg_node = agg_node;
2340        dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2341                vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2342                vsi->agg_node->num_vsis);
2343}
2344
2345/**
2346 * ice_vsi_setup - Set up a VSI by a given type
2347 * @pf: board private structure
2348 * @pi: pointer to the port_info instance
2349 * @vsi_type: VSI type
2350 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2351 *         used only for ICE_VSI_VF VSI type. For other VSI types, should
2352 *         fill-in ICE_INVAL_VFID as input.
2353 *
2354 * This allocates the sw VSI structure and its queue resources.
2355 *
2356 * Returns pointer to the successfully allocated and configured VSI sw struct on
2357 * success, NULL on failure.
2358 */
2359struct ice_vsi *
2360ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2361              enum ice_vsi_type vsi_type, u16 vf_id)
2362{
2363        u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2364        struct device *dev = ice_pf_to_dev(pf);
2365        enum ice_status status;
2366        struct ice_vsi *vsi;
2367        int ret, i;
2368
2369        if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL)
2370                vsi = ice_vsi_alloc(pf, vsi_type, vf_id);
2371        else
2372                vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID);
2373
2374        if (!vsi) {
2375                dev_err(dev, "could not allocate VSI\n");
2376                return NULL;
2377        }
2378
2379        vsi->port_info = pi;
2380        vsi->vsw = pf->first_sw;
2381        if (vsi->type == ICE_VSI_PF)
2382                vsi->ethtype = ETH_P_PAUSE;
2383
2384        if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL)
2385                vsi->vf_id = vf_id;
2386
2387        ice_alloc_fd_res(vsi);
2388
2389        if (ice_vsi_get_qs(vsi)) {
2390                dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2391                        vsi->idx);
2392                goto unroll_vsi_alloc;
2393        }
2394
2395        /* set RSS capabilities */
2396        ice_vsi_set_rss_params(vsi);
2397
2398        /* set TC configuration */
2399        ice_vsi_set_tc_cfg(vsi);
2400
2401        /* create the VSI */
2402        ret = ice_vsi_init(vsi, true);
2403        if (ret)
2404                goto unroll_get_qs;
2405
2406        switch (vsi->type) {
2407        case ICE_VSI_CTRL:
2408        case ICE_VSI_PF:
2409                ret = ice_vsi_alloc_q_vectors(vsi);
2410                if (ret)
2411                        goto unroll_vsi_init;
2412
2413                ret = ice_vsi_setup_vector_base(vsi);
2414                if (ret)
2415                        goto unroll_alloc_q_vector;
2416
2417                ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2418                if (ret)
2419                        goto unroll_vector_base;
2420
2421                ret = ice_vsi_alloc_rings(vsi);
2422                if (ret)
2423                        goto unroll_vector_base;
2424
2425                /* Always add VLAN ID 0 switch rule by default. This is needed
2426                 * in order to allow all untagged and 0 tagged priority traffic
2427                 * if Rx VLAN pruning is enabled. Also there are cases where we
2428                 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid()
2429                 * so this handles those cases (i.e. adding the PF to a bridge
2430                 * without the 8021q module loaded).
2431                 */
2432                ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
2433                if (ret)
2434                        goto unroll_clear_rings;
2435
2436                ice_vsi_map_rings_to_vectors(vsi);
2437
2438                /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2439                if (vsi->type != ICE_VSI_CTRL)
2440                        /* Do not exit if configuring RSS had an issue, at
2441                         * least receive traffic on first queue. Hence no
2442                         * need to capture return value
2443                         */
2444                        if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2445                                ice_vsi_cfg_rss_lut_key(vsi);
2446                                ice_vsi_set_rss_flow_fld(vsi);
2447                        }
2448                ice_init_arfs(vsi);
2449                break;
2450        case ICE_VSI_VF:
2451                /* VF driver will take care of creating netdev for this type and
2452                 * map queues to vectors through Virtchnl, PF driver only
2453                 * creates a VSI and corresponding structures for bookkeeping
2454                 * purpose
2455                 */
2456                ret = ice_vsi_alloc_q_vectors(vsi);
2457                if (ret)
2458                        goto unroll_vsi_init;
2459
2460                ret = ice_vsi_alloc_rings(vsi);
2461                if (ret)
2462                        goto unroll_alloc_q_vector;
2463
2464                ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2465                if (ret)
2466                        goto unroll_vector_base;
2467
2468                /* Do not exit if configuring RSS had an issue, at least
2469                 * receive traffic on first queue. Hence no need to capture
2470                 * return value
2471                 */
2472                if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2473                        ice_vsi_cfg_rss_lut_key(vsi);
2474                        ice_vsi_set_vf_rss_flow_fld(vsi);
2475                }
2476                break;
2477        case ICE_VSI_LB:
2478                ret = ice_vsi_alloc_rings(vsi);
2479                if (ret)
2480                        goto unroll_vsi_init;
2481                break;
2482        default:
2483                /* clean up the resources and exit */
2484                goto unroll_vsi_init;
2485        }
2486
2487        /* configure VSI nodes based on number of queues and TC's */
2488        for (i = 0; i < vsi->tc_cfg.numtc; i++)
2489                max_txqs[i] = vsi->alloc_txq;
2490
2491        status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2492                                 max_txqs);
2493        if (status) {
2494                dev_err(dev, "VSI %d failed lan queue config, error %s\n",
2495                        vsi->vsi_num, ice_stat_str(status));
2496                goto unroll_clear_rings;
2497        }
2498
2499        /* Add switch rule to drop all Tx Flow Control Frames, of look up
2500         * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2501         * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2502         * The rule is added once for PF VSI in order to create appropriate
2503         * recipe, since VSI/VSI list is ignored with drop action...
2504         * Also add rules to handle LLDP Tx packets.  Tx LLDP packets need to
2505         * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2506         * settings in the HW.
2507         */
2508        if (!ice_is_safe_mode(pf))
2509                if (vsi->type == ICE_VSI_PF) {
2510                        ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2511                                         ICE_DROP_PACKET);
2512                        ice_cfg_sw_lldp(vsi, true, true);
2513                }
2514
2515        if (!vsi->agg_node)
2516                ice_set_agg_vsi(vsi);
2517        return vsi;
2518
2519unroll_clear_rings:
2520        ice_vsi_clear_rings(vsi);
2521unroll_vector_base:
2522        /* reclaim SW interrupts back to the common pool */
2523        ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2524        pf->num_avail_sw_msix += vsi->num_q_vectors;
2525unroll_alloc_q_vector:
2526        ice_vsi_free_q_vectors(vsi);
2527unroll_vsi_init:
2528        ice_vsi_delete(vsi);
2529unroll_get_qs:
2530        ice_vsi_put_qs(vsi);
2531unroll_vsi_alloc:
2532        if (vsi_type == ICE_VSI_VF)
2533                ice_enable_lag(pf->lag);
2534        ice_vsi_clear(vsi);
2535
2536        return NULL;
2537}
2538
2539/**
2540 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2541 * @vsi: the VSI being cleaned up
2542 */
2543static void ice_vsi_release_msix(struct ice_vsi *vsi)
2544{
2545        struct ice_pf *pf = vsi->back;
2546        struct ice_hw *hw = &pf->hw;
2547        u32 txq = 0;
2548        u32 rxq = 0;
2549        int i, q;
2550
2551        for (i = 0; i < vsi->num_q_vectors; i++) {
2552                struct ice_q_vector *q_vector = vsi->q_vectors[i];
2553
2554                ice_write_intrl(q_vector, 0);
2555                for (q = 0; q < q_vector->num_ring_tx; q++) {
2556                        ice_write_itr(&q_vector->tx, 0);
2557                        wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2558                        if (ice_is_xdp_ena_vsi(vsi)) {
2559                                u32 xdp_txq = txq + vsi->num_xdp_txq;
2560
2561                                wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2562                        }
2563                        txq++;
2564                }
2565
2566                for (q = 0; q < q_vector->num_ring_rx; q++) {
2567                        ice_write_itr(&q_vector->rx, 0);
2568                        wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2569                        rxq++;
2570                }
2571        }
2572
2573        ice_flush(hw);
2574}
2575
2576/**
2577 * ice_vsi_free_irq - Free the IRQ association with the OS
2578 * @vsi: the VSI being configured
2579 */
2580void ice_vsi_free_irq(struct ice_vsi *vsi)
2581{
2582        struct ice_pf *pf = vsi->back;
2583        int base = vsi->base_vector;
2584        int i;
2585
2586        if (!vsi->q_vectors || !vsi->irqs_ready)
2587                return;
2588
2589        ice_vsi_release_msix(vsi);
2590        if (vsi->type == ICE_VSI_VF)
2591                return;
2592
2593        vsi->irqs_ready = false;
2594        ice_for_each_q_vector(vsi, i) {
2595                u16 vector = i + base;
2596                int irq_num;
2597
2598                irq_num = pf->msix_entries[vector].vector;
2599
2600                /* free only the irqs that were actually requested */
2601                if (!vsi->q_vectors[i] ||
2602                    !(vsi->q_vectors[i]->num_ring_tx ||
2603                      vsi->q_vectors[i]->num_ring_rx))
2604                        continue;
2605
2606                /* clear the affinity notifier in the IRQ descriptor */
2607                irq_set_affinity_notifier(irq_num, NULL);
2608
2609                /* clear the affinity_mask in the IRQ descriptor */
2610                irq_set_affinity_hint(irq_num, NULL);
2611                synchronize_irq(irq_num);
2612                devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2613        }
2614}
2615
2616/**
2617 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2618 * @vsi: the VSI having resources freed
2619 */
2620void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2621{
2622        int i;
2623
2624        if (!vsi->tx_rings)
2625                return;
2626
2627        ice_for_each_txq(vsi, i)
2628                if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2629                        ice_free_tx_ring(vsi->tx_rings[i]);
2630}
2631
2632/**
2633 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2634 * @vsi: the VSI having resources freed
2635 */
2636void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2637{
2638        int i;
2639
2640        if (!vsi->rx_rings)
2641                return;
2642
2643        ice_for_each_rxq(vsi, i)
2644                if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2645                        ice_free_rx_ring(vsi->rx_rings[i]);
2646}
2647
2648/**
2649 * ice_vsi_close - Shut down a VSI
2650 * @vsi: the VSI being shut down
2651 */
2652void ice_vsi_close(struct ice_vsi *vsi)
2653{
2654        if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2655                ice_down(vsi);
2656
2657        ice_vsi_free_irq(vsi);
2658        ice_vsi_free_tx_rings(vsi);
2659        ice_vsi_free_rx_rings(vsi);
2660}
2661
2662/**
2663 * ice_ena_vsi - resume a VSI
2664 * @vsi: the VSI being resume
2665 * @locked: is the rtnl_lock already held
2666 */
2667int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2668{
2669        int err = 0;
2670
2671        if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2672                return 0;
2673
2674        clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2675
2676        if (vsi->netdev && vsi->type == ICE_VSI_PF) {
2677                if (netif_running(vsi->netdev)) {
2678                        if (!locked)
2679                                rtnl_lock();
2680
2681                        err = ice_open_internal(vsi->netdev);
2682
2683                        if (!locked)
2684                                rtnl_unlock();
2685                }
2686        } else if (vsi->type == ICE_VSI_CTRL) {
2687                err = ice_vsi_open_ctrl(vsi);
2688        }
2689
2690        return err;
2691}
2692
2693/**
2694 * ice_dis_vsi - pause a VSI
2695 * @vsi: the VSI being paused
2696 * @locked: is the rtnl_lock already held
2697 */
2698void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2699{
2700        if (test_bit(ICE_VSI_DOWN, vsi->state))
2701                return;
2702
2703        set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2704
2705        if (vsi->type == ICE_VSI_PF && vsi->netdev) {
2706                if (netif_running(vsi->netdev)) {
2707                        if (!locked)
2708                                rtnl_lock();
2709
2710                        ice_vsi_close(vsi);
2711
2712                        if (!locked)
2713                                rtnl_unlock();
2714                } else {
2715                        ice_vsi_close(vsi);
2716                }
2717        } else if (vsi->type == ICE_VSI_CTRL) {
2718                ice_vsi_close(vsi);
2719        }
2720}
2721
2722/**
2723 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2724 * @vsi: the VSI being un-configured
2725 */
2726void ice_vsi_dis_irq(struct ice_vsi *vsi)
2727{
2728        int base = vsi->base_vector;
2729        struct ice_pf *pf = vsi->back;
2730        struct ice_hw *hw = &pf->hw;
2731        u32 val;
2732        int i;
2733
2734        /* disable interrupt causation from each queue */
2735        if (vsi->tx_rings) {
2736                ice_for_each_txq(vsi, i) {
2737                        if (vsi->tx_rings[i]) {
2738                                u16 reg;
2739
2740                                reg = vsi->tx_rings[i]->reg_idx;
2741                                val = rd32(hw, QINT_TQCTL(reg));
2742                                val &= ~QINT_TQCTL_CAUSE_ENA_M;
2743                                wr32(hw, QINT_TQCTL(reg), val);
2744                        }
2745                }
2746        }
2747
2748        if (vsi->rx_rings) {
2749                ice_for_each_rxq(vsi, i) {
2750                        if (vsi->rx_rings[i]) {
2751                                u16 reg;
2752
2753                                reg = vsi->rx_rings[i]->reg_idx;
2754                                val = rd32(hw, QINT_RQCTL(reg));
2755                                val &= ~QINT_RQCTL_CAUSE_ENA_M;
2756                                wr32(hw, QINT_RQCTL(reg), val);
2757                        }
2758                }
2759        }
2760
2761        /* disable each interrupt */
2762        ice_for_each_q_vector(vsi, i) {
2763                if (!vsi->q_vectors[i])
2764                        continue;
2765                wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2766        }
2767
2768        ice_flush(hw);
2769
2770        /* don't call synchronize_irq() for VF's from the host */
2771        if (vsi->type == ICE_VSI_VF)
2772                return;
2773
2774        ice_for_each_q_vector(vsi, i)
2775                synchronize_irq(pf->msix_entries[i + base].vector);
2776}
2777
2778/**
2779 * ice_napi_del - Remove NAPI handler for the VSI
2780 * @vsi: VSI for which NAPI handler is to be removed
2781 */
2782void ice_napi_del(struct ice_vsi *vsi)
2783{
2784        int v_idx;
2785
2786        if (!vsi->netdev)
2787                return;
2788
2789        ice_for_each_q_vector(vsi, v_idx)
2790                netif_napi_del(&vsi->q_vectors[v_idx]->napi);
2791}
2792
2793/**
2794 * ice_vsi_release - Delete a VSI and free its resources
2795 * @vsi: the VSI being removed
2796 *
2797 * Returns 0 on success or < 0 on error
2798 */
2799int ice_vsi_release(struct ice_vsi *vsi)
2800{
2801        struct ice_pf *pf;
2802
2803        if (!vsi->back)
2804                return -ENODEV;
2805        pf = vsi->back;
2806
2807        /* do not unregister while driver is in the reset recovery pending
2808         * state. Since reset/rebuild happens through PF service task workqueue,
2809         * it's not a good idea to unregister netdev that is associated to the
2810         * PF that is running the work queue items currently. This is done to
2811         * avoid check_flush_dependency() warning on this wq
2812         */
2813        if (vsi->netdev && !ice_is_reset_in_progress(pf->state) &&
2814            (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) {
2815                unregister_netdev(vsi->netdev);
2816                clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
2817        }
2818
2819        ice_devlink_destroy_port(vsi);
2820
2821        if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2822                ice_rss_clean(vsi);
2823
2824        /* Disable VSI and free resources */
2825        if (vsi->type != ICE_VSI_LB)
2826                ice_vsi_dis_irq(vsi);
2827        ice_vsi_close(vsi);
2828
2829        /* SR-IOV determines needed MSIX resources all at once instead of per
2830         * VSI since when VFs are spawned we know how many VFs there are and how
2831         * many interrupts each VF needs. SR-IOV MSIX resources are also
2832         * cleared in the same manner.
2833         */
2834        if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) {
2835                struct ice_vf *vf;
2836                int i;
2837
2838                ice_for_each_vf(pf, i) {
2839                        vf = &pf->vf[i];
2840                        if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI)
2841                                break;
2842                }
2843                if (i == pf->num_alloc_vfs) {
2844                        /* No other VFs left that have control VSI, reclaim SW
2845                         * interrupts back to the common pool
2846                         */
2847                        ice_free_res(pf->irq_tracker, vsi->base_vector,
2848                                     ICE_RES_VF_CTRL_VEC_ID);
2849                        pf->num_avail_sw_msix += vsi->num_q_vectors;
2850                }
2851        } else if (vsi->type != ICE_VSI_VF) {
2852                /* reclaim SW interrupts back to the common pool */
2853                ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
2854                pf->num_avail_sw_msix += vsi->num_q_vectors;
2855        }
2856
2857        if (!ice_is_safe_mode(pf)) {
2858                if (vsi->type == ICE_VSI_PF) {
2859                        ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2860                                            ICE_DROP_PACKET);
2861                        ice_cfg_sw_lldp(vsi, true, false);
2862                        /* The Rx rule will only exist to remove if the LLDP FW
2863                         * engine is currently stopped
2864                         */
2865                        if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2866                                ice_cfg_sw_lldp(vsi, false, false);
2867                }
2868        }
2869
2870        ice_fltr_remove_all(vsi);
2871        ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2872        ice_vsi_delete(vsi);
2873        ice_vsi_free_q_vectors(vsi);
2874
2875        if (vsi->netdev) {
2876                if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) {
2877                        unregister_netdev(vsi->netdev);
2878                        clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
2879                }
2880                if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) {
2881                        free_netdev(vsi->netdev);
2882                        vsi->netdev = NULL;
2883                        clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
2884                }
2885        }
2886
2887        if (vsi->type == ICE_VSI_VF &&
2888            vsi->agg_node && vsi->agg_node->valid)
2889                vsi->agg_node->num_vsis--;
2890        ice_vsi_clear_rings(vsi);
2891
2892        ice_vsi_put_qs(vsi);
2893
2894        /* retain SW VSI data structure since it is needed to unregister and
2895         * free VSI netdev when PF is not in reset recovery pending state,\
2896         * for ex: during rmmod.
2897         */
2898        if (!ice_is_reset_in_progress(pf->state))
2899                ice_vsi_clear(vsi);
2900
2901        return 0;
2902}
2903
2904/**
2905 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2906 * @vsi: VSI connected with q_vectors
2907 * @coalesce: array of struct with stored coalesce
2908 *
2909 * Returns array size.
2910 */
2911static int
2912ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2913                             struct ice_coalesce_stored *coalesce)
2914{
2915        int i;
2916
2917        ice_for_each_q_vector(vsi, i) {
2918                struct ice_q_vector *q_vector = vsi->q_vectors[i];
2919
2920                coalesce[i].itr_tx = q_vector->tx.itr_setting;
2921                coalesce[i].itr_rx = q_vector->rx.itr_setting;
2922                coalesce[i].intrl = q_vector->intrl;
2923
2924                if (i < vsi->num_txq)
2925                        coalesce[i].tx_valid = true;
2926                if (i < vsi->num_rxq)
2927                        coalesce[i].rx_valid = true;
2928        }
2929
2930        return vsi->num_q_vectors;
2931}
2932
2933/**
2934 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2935 * @vsi: VSI connected with q_vectors
2936 * @coalesce: pointer to array of struct with stored coalesce
2937 * @size: size of coalesce array
2938 *
2939 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2940 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2941 * to default value.
2942 */
2943static void
2944ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2945                             struct ice_coalesce_stored *coalesce, int size)
2946{
2947        struct ice_ring_container *rc;
2948        int i;
2949
2950        if ((size && !coalesce) || !vsi)
2951                return;
2952
2953        /* There are a couple of cases that have to be handled here:
2954         *   1. The case where the number of queue vectors stays the same, but
2955         *      the number of Tx or Rx rings changes (the first for loop)
2956         *   2. The case where the number of queue vectors increased (the
2957         *      second for loop)
2958         */
2959        for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2960                /* There are 2 cases to handle here and they are the same for
2961                 * both Tx and Rx:
2962                 *   if the entry was valid previously (coalesce[i].[tr]x_valid
2963                 *   and the loop variable is less than the number of rings
2964                 *   allocated, then write the previous values
2965                 *
2966                 *   if the entry was not valid previously, but the number of
2967                 *   rings is less than are allocated (this means the number of
2968                 *   rings increased from previously), then write out the
2969                 *   values in the first element
2970                 *
2971                 *   Also, always write the ITR, even if in ITR_IS_DYNAMIC
2972                 *   as there is no harm because the dynamic algorithm
2973                 *   will just overwrite.
2974                 */
2975                if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
2976                        rc = &vsi->q_vectors[i]->rx;
2977                        rc->itr_setting = coalesce[i].itr_rx;
2978                        ice_write_itr(rc, rc->itr_setting);
2979                } else if (i < vsi->alloc_rxq) {
2980                        rc = &vsi->q_vectors[i]->rx;
2981                        rc->itr_setting = coalesce[0].itr_rx;
2982                        ice_write_itr(rc, rc->itr_setting);
2983                }
2984
2985                if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
2986                        rc = &vsi->q_vectors[i]->tx;
2987                        rc->itr_setting = coalesce[i].itr_tx;
2988                        ice_write_itr(rc, rc->itr_setting);
2989                } else if (i < vsi->alloc_txq) {
2990                        rc = &vsi->q_vectors[i]->tx;
2991                        rc->itr_setting = coalesce[0].itr_tx;
2992                        ice_write_itr(rc, rc->itr_setting);
2993                }
2994
2995                vsi->q_vectors[i]->intrl = coalesce[i].intrl;
2996                ice_write_intrl(vsi->q_vectors[i], coalesce[i].intrl);
2997        }
2998
2999        /* the number of queue vectors increased so write whatever is in
3000         * the first element
3001         */
3002        for (; i < vsi->num_q_vectors; i++) {
3003                /* transmit */
3004                rc = &vsi->q_vectors[i]->tx;
3005                rc->itr_setting = coalesce[0].itr_tx;
3006                ice_write_itr(rc, rc->itr_setting);
3007
3008                /* receive */
3009                rc = &vsi->q_vectors[i]->rx;
3010                rc->itr_setting = coalesce[0].itr_rx;
3011                ice_write_itr(rc, rc->itr_setting);
3012
3013                vsi->q_vectors[i]->intrl = coalesce[0].intrl;
3014                ice_write_intrl(vsi->q_vectors[i], coalesce[0].intrl);
3015        }
3016}
3017
3018/**
3019 * ice_vsi_rebuild - Rebuild VSI after reset
3020 * @vsi: VSI to be rebuild
3021 * @init_vsi: is this an initialization or a reconfigure of the VSI
3022 *
3023 * Returns 0 on success and negative value on failure
3024 */
3025int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi)
3026{
3027        u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3028        struct ice_coalesce_stored *coalesce;
3029        int prev_num_q_vectors = 0;
3030        struct ice_vf *vf = NULL;
3031        enum ice_vsi_type vtype;
3032        enum ice_status status;
3033        struct ice_pf *pf;
3034        int ret, i;
3035
3036        if (!vsi)
3037                return -EINVAL;
3038
3039        pf = vsi->back;
3040        vtype = vsi->type;
3041        if (vtype == ICE_VSI_VF)
3042                vf = &pf->vf[vsi->vf_id];
3043
3044        coalesce = kcalloc(vsi->num_q_vectors,
3045                           sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3046        if (!coalesce)
3047                return -ENOMEM;
3048
3049        prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3050
3051        ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
3052        ice_vsi_free_q_vectors(vsi);
3053
3054        /* SR-IOV determines needed MSIX resources all at once instead of per
3055         * VSI since when VFs are spawned we know how many VFs there are and how
3056         * many interrupts each VF needs. SR-IOV MSIX resources are also
3057         * cleared in the same manner.
3058         */
3059        if (vtype != ICE_VSI_VF) {
3060                /* reclaim SW interrupts back to the common pool */
3061                ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx);
3062                pf->num_avail_sw_msix += vsi->num_q_vectors;
3063                vsi->base_vector = 0;
3064        }
3065
3066        if (ice_is_xdp_ena_vsi(vsi))
3067                /* return value check can be skipped here, it always returns
3068                 * 0 if reset is in progress
3069                 */
3070                ice_destroy_xdp_rings(vsi);
3071        ice_vsi_put_qs(vsi);
3072        ice_vsi_clear_rings(vsi);
3073        ice_vsi_free_arrays(vsi);
3074        if (vtype == ICE_VSI_VF)
3075                ice_vsi_set_num_qs(vsi, vf->vf_id);
3076        else
3077                ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
3078
3079        ret = ice_vsi_alloc_arrays(vsi);
3080        if (ret < 0)
3081                goto err_vsi;
3082
3083        ice_vsi_get_qs(vsi);
3084
3085        ice_alloc_fd_res(vsi);
3086        ice_vsi_set_tc_cfg(vsi);
3087
3088        /* Initialize VSI struct elements and create VSI in FW */
3089        ret = ice_vsi_init(vsi, init_vsi);
3090        if (ret < 0)
3091                goto err_vsi;
3092
3093        switch (vtype) {
3094        case ICE_VSI_CTRL:
3095        case ICE_VSI_PF:
3096                ret = ice_vsi_alloc_q_vectors(vsi);
3097                if (ret)
3098                        goto err_rings;
3099
3100                ret = ice_vsi_setup_vector_base(vsi);
3101                if (ret)
3102                        goto err_vectors;
3103
3104                ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3105                if (ret)
3106                        goto err_vectors;
3107
3108                ret = ice_vsi_alloc_rings(vsi);
3109                if (ret)
3110                        goto err_vectors;
3111
3112                ice_vsi_map_rings_to_vectors(vsi);
3113                if (ice_is_xdp_ena_vsi(vsi)) {
3114                        vsi->num_xdp_txq = vsi->alloc_rxq;
3115                        ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog);
3116                        if (ret)
3117                                goto err_vectors;
3118                }
3119                /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
3120                if (vtype != ICE_VSI_CTRL)
3121                        /* Do not exit if configuring RSS had an issue, at
3122                         * least receive traffic on first queue. Hence no
3123                         * need to capture return value
3124                         */
3125                        if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3126                                ice_vsi_cfg_rss_lut_key(vsi);
3127                break;
3128        case ICE_VSI_VF:
3129                ret = ice_vsi_alloc_q_vectors(vsi);
3130                if (ret)
3131                        goto err_rings;
3132
3133                ret = ice_vsi_set_q_vectors_reg_idx(vsi);
3134                if (ret)
3135                        goto err_vectors;
3136
3137                ret = ice_vsi_alloc_rings(vsi);
3138                if (ret)
3139                        goto err_vectors;
3140
3141                break;
3142        default:
3143                break;
3144        }
3145
3146        /* configure VSI nodes based on number of queues and TC's */
3147        for (i = 0; i < vsi->tc_cfg.numtc; i++) {
3148                max_txqs[i] = vsi->alloc_txq;
3149
3150                if (ice_is_xdp_ena_vsi(vsi))
3151                        max_txqs[i] += vsi->num_xdp_txq;
3152        }
3153
3154        status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3155                                 max_txqs);
3156        if (status) {
3157                dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n",
3158                        vsi->vsi_num, ice_stat_str(status));
3159                if (init_vsi) {
3160                        ret = -EIO;
3161                        goto err_vectors;
3162                } else {
3163                        return ice_schedule_reset(pf, ICE_RESET_PFR);
3164                }
3165        }
3166        ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3167        kfree(coalesce);
3168
3169        return 0;
3170
3171err_vectors:
3172        ice_vsi_free_q_vectors(vsi);
3173err_rings:
3174        if (vsi->netdev) {
3175                vsi->current_netdev_flags = 0;
3176                unregister_netdev(vsi->netdev);
3177                free_netdev(vsi->netdev);
3178                vsi->netdev = NULL;
3179        }
3180err_vsi:
3181        ice_vsi_clear(vsi);
3182        set_bit(ICE_RESET_FAILED, pf->state);
3183        kfree(coalesce);
3184        return ret;
3185}
3186
3187/**
3188 * ice_is_reset_in_progress - check for a reset in progress
3189 * @state: PF state field
3190 */
3191bool ice_is_reset_in_progress(unsigned long *state)
3192{
3193        return test_bit(ICE_RESET_OICR_RECV, state) ||
3194               test_bit(ICE_PFR_REQ, state) ||
3195               test_bit(ICE_CORER_REQ, state) ||
3196               test_bit(ICE_GLOBR_REQ, state);
3197}
3198
3199#ifdef CONFIG_DCB
3200/**
3201 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3202 * @vsi: VSI being configured
3203 * @ctx: the context buffer returned from AQ VSI update command
3204 */
3205static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3206{
3207        vsi->info.mapping_flags = ctx->info.mapping_flags;
3208        memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3209               sizeof(vsi->info.q_mapping));
3210        memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3211               sizeof(vsi->info.tc_mapping));
3212}
3213
3214/**
3215 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3216 * @vsi: VSI to be configured
3217 * @ena_tc: TC bitmap
3218 *
3219 * VSI queues expected to be quiesced before calling this function
3220 */
3221int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3222{
3223        u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3224        struct ice_pf *pf = vsi->back;
3225        struct ice_vsi_ctx *ctx;
3226        enum ice_status status;
3227        struct device *dev;
3228        int i, ret = 0;
3229        u8 num_tc = 0;
3230
3231        dev = ice_pf_to_dev(pf);
3232
3233        ice_for_each_traffic_class(i) {
3234                /* build bitmap of enabled TCs */
3235                if (ena_tc & BIT(i))
3236                        num_tc++;
3237                /* populate max_txqs per TC */
3238                max_txqs[i] = vsi->alloc_txq;
3239        }
3240
3241        vsi->tc_cfg.ena_tc = ena_tc;
3242        vsi->tc_cfg.numtc = num_tc;
3243
3244        ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3245        if (!ctx)
3246                return -ENOMEM;
3247
3248        ctx->vf_num = 0;
3249        ctx->info = vsi->info;
3250
3251        ice_vsi_setup_q_map(vsi, ctx);
3252
3253        /* must to indicate which section of VSI context are being modified */
3254        ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3255        status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3256        if (status) {
3257                dev_info(dev, "Failed VSI Update\n");
3258                ret = -EIO;
3259                goto out;
3260        }
3261
3262        status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3263                                 max_txqs);
3264
3265        if (status) {
3266                dev_err(dev, "VSI %d failed TC config, error %s\n",
3267                        vsi->vsi_num, ice_stat_str(status));
3268                ret = -EIO;
3269                goto out;
3270        }
3271        ice_vsi_update_q_map(vsi, ctx);
3272        vsi->info.valid_sections = 0;
3273
3274        ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3275out:
3276        kfree(ctx);
3277        return ret;
3278}
3279#endif /* CONFIG_DCB */
3280
3281/**
3282 * ice_update_ring_stats - Update ring statistics
3283 * @ring: ring to update
3284 * @pkts: number of processed packets
3285 * @bytes: number of processed bytes
3286 *
3287 * This function assumes that caller has acquired a u64_stats_sync lock.
3288 */
3289static void ice_update_ring_stats(struct ice_ring *ring, u64 pkts, u64 bytes)
3290{
3291        ring->stats.bytes += bytes;
3292        ring->stats.pkts += pkts;
3293}
3294
3295/**
3296 * ice_update_tx_ring_stats - Update Tx ring specific counters
3297 * @tx_ring: ring to update
3298 * @pkts: number of processed packets
3299 * @bytes: number of processed bytes
3300 */
3301void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes)
3302{
3303        u64_stats_update_begin(&tx_ring->syncp);
3304        ice_update_ring_stats(tx_ring, pkts, bytes);
3305        u64_stats_update_end(&tx_ring->syncp);
3306}
3307
3308/**
3309 * ice_update_rx_ring_stats - Update Rx ring specific counters
3310 * @rx_ring: ring to update
3311 * @pkts: number of processed packets
3312 * @bytes: number of processed bytes
3313 */
3314void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes)
3315{
3316        u64_stats_update_begin(&rx_ring->syncp);
3317        ice_update_ring_stats(rx_ring, pkts, bytes);
3318        u64_stats_update_end(&rx_ring->syncp);
3319}
3320
3321/**
3322 * ice_status_to_errno - convert from enum ice_status to Linux errno
3323 * @err: ice_status value to convert
3324 */
3325int ice_status_to_errno(enum ice_status err)
3326{
3327        switch (err) {
3328        case ICE_SUCCESS:
3329                return 0;
3330        case ICE_ERR_DOES_NOT_EXIST:
3331                return -ENOENT;
3332        case ICE_ERR_OUT_OF_RANGE:
3333                return -ENOTTY;
3334        case ICE_ERR_PARAM:
3335                return -EINVAL;
3336        case ICE_ERR_NO_MEMORY:
3337                return -ENOMEM;
3338        case ICE_ERR_MAX_LIMIT:
3339                return -EAGAIN;
3340        default:
3341                return -EINVAL;
3342        }
3343}
3344
3345/**
3346 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3347 * @sw: switch to check if its default forwarding VSI is free
3348 *
3349 * Return true if the default forwarding VSI is already being used, else returns
3350 * false signalling that it's available to use.
3351 */
3352bool ice_is_dflt_vsi_in_use(struct ice_sw *sw)
3353{
3354        return (sw->dflt_vsi && sw->dflt_vsi_ena);
3355}
3356
3357/**
3358 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3359 * @sw: switch for the default forwarding VSI to compare against
3360 * @vsi: VSI to compare against default forwarding VSI
3361 *
3362 * If this VSI passed in is the default forwarding VSI then return true, else
3363 * return false
3364 */
3365bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3366{
3367        return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena);
3368}
3369
3370/**
3371 * ice_set_dflt_vsi - set the default forwarding VSI
3372 * @sw: switch used to assign the default forwarding VSI
3373 * @vsi: VSI getting set as the default forwarding VSI on the switch
3374 *
3375 * If the VSI passed in is already the default VSI and it's enabled just return
3376 * success.
3377 *
3378 * If there is already a default VSI on the switch and it's enabled then return
3379 * -EEXIST since there can only be one default VSI per switch.
3380 *
3381 *  Otherwise try to set the VSI passed in as the switch's default VSI and
3382 *  return the result.
3383 */
3384int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi)
3385{
3386        enum ice_status status;
3387        struct device *dev;
3388
3389        if (!sw || !vsi)
3390                return -EINVAL;
3391
3392        dev = ice_pf_to_dev(vsi->back);
3393
3394        /* the VSI passed in is already the default VSI */
3395        if (ice_is_vsi_dflt_vsi(sw, vsi)) {
3396                dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3397                        vsi->vsi_num);
3398                return 0;
3399        }
3400
3401        /* another VSI is already the default VSI for this switch */
3402        if (ice_is_dflt_vsi_in_use(sw)) {
3403                dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n",
3404                        sw->dflt_vsi->vsi_num);
3405                return -EEXIST;
3406        }
3407
3408        status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX);
3409        if (status) {
3410                dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n",
3411                        vsi->vsi_num, ice_stat_str(status));
3412                return -EIO;
3413        }
3414
3415        sw->dflt_vsi = vsi;
3416        sw->dflt_vsi_ena = true;
3417
3418        return 0;
3419}
3420
3421/**
3422 * ice_clear_dflt_vsi - clear the default forwarding VSI
3423 * @sw: switch used to clear the default VSI
3424 *
3425 * If the switch has no default VSI or it's not enabled then return error.
3426 *
3427 * Otherwise try to clear the default VSI and return the result.
3428 */
3429int ice_clear_dflt_vsi(struct ice_sw *sw)
3430{
3431        struct ice_vsi *dflt_vsi;
3432        enum ice_status status;
3433        struct device *dev;
3434
3435        if (!sw)
3436                return -EINVAL;
3437
3438        dev = ice_pf_to_dev(sw->pf);
3439
3440        dflt_vsi = sw->dflt_vsi;
3441
3442        /* there is no default VSI configured */
3443        if (!ice_is_dflt_vsi_in_use(sw))
3444                return -ENODEV;
3445
3446        status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false,
3447                                  ICE_FLTR_RX);
3448        if (status) {
3449                dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n",
3450                        dflt_vsi->vsi_num, ice_stat_str(status));
3451                return -EIO;
3452        }
3453
3454        sw->dflt_vsi = NULL;
3455        sw->dflt_vsi_ena = false;
3456
3457        return 0;
3458}
3459
3460/**
3461 * ice_set_link - turn on/off physical link
3462 * @vsi: VSI to modify physical link on
3463 * @ena: turn on/off physical link
3464 */
3465int ice_set_link(struct ice_vsi *vsi, bool ena)
3466{
3467        struct device *dev = ice_pf_to_dev(vsi->back);
3468        struct ice_port_info *pi = vsi->port_info;
3469        struct ice_hw *hw = pi->hw;
3470        enum ice_status status;
3471
3472        if (vsi->type != ICE_VSI_PF)
3473                return -EINVAL;
3474
3475        status = ice_aq_set_link_restart_an(pi, ena, NULL);
3476
3477        /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3478         * this is not a fatal error, so print a warning message and return
3479         * a success code. Return an error if FW returns an error code other
3480         * than ICE_AQ_RC_EMODE
3481         */
3482        if (status == ICE_ERR_AQ_ERROR) {
3483                if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3484                        dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n",
3485                                 (ena ? "ON" : "OFF"), ice_stat_str(status),
3486                                 ice_aq_str(hw->adminq.sq_last_status));
3487        } else if (status) {
3488                dev_err(dev, "can't set link to %s, err %s aq_err %s\n",
3489                        (ena ? "ON" : "OFF"), ice_stat_str(status),
3490                        ice_aq_str(hw->adminq.sq_last_status));
3491                return -EIO;
3492        }
3493
3494        return 0;
3495}
3496